--- date: 2021-04-26 --- Tags: #homotopy #homotopy #spectral-sequences #resources # Spectral sequence of a Serre fibration ## Reference List - **Rational Homotopy Theory and Differential Forms** by Griffiths and Morgan - **Differential Forms in Algebraic Topology** by Bott and Tu - **Differential Topology** by Hirsch - **Comprehensive Introduction to Differential Geometry** by Spivak - **Topology from the Differentiable Viewpoint** by Milnor - **Topology and Geometry** by Bredon - **User's Guide to Spectral Sequences** by Mcleary - View <http://www.math.hcmuns.edu.vn/~nvdong/DoiDongDieuNhom/McCleary%20J.%20User%20s%20guide%20to%20spectral%20sequences%20(2ed.,%20CUP,%202001)(575s).pdf> - Apparently lots of technical details #resources # Spectral Sequence of a Serre Fibration The standard Serre [fibration](fibration.md) : $\Omega X \into PX \mapsvia{f} X$ where $\Omega X$ is the loop space, $PX$ is the path space, and $f$ is the "evaluation at the endpoint" map. Note that $PX$ is contractible! Consider a SES $0 \to A \to B \to C \to C$, then look at it as a 2-step filtration of $B$ so - $F^0B = B$, - $F^1B = A$, - $F^2B = 0$. The sections are $G_0 = C, G_1 = A$. Can use this to obtain LES from SS. Homology in the ring-theoretic setting: If $R$ is a Noetherian ring and $I \subseteq R$, then if $I$ can be generated by $n$ elements then $H_I^i(M) = 0$ for any $R$-module $M$ and $i > n$. Thus to prove $I$ can *not* be generated by $n$ elements, it suffices to find a module $M$ where $H_I^{n+1} \neq 0$. ## Other Fibrations Lots of good examples of computations [here](https://en.wikipedia.org/wiki/Serre_spectral_sequence) Some fibrations - Hopf: $S^1 \into S^3 \into S^2$ - $S^1 \into S^{2n+1} \into \CP^n$ - Path space: $\Omega S^n \into PS^n \into S^n$ Serre Spectral Sequence Example: For the fibration $S^1 \into S^3 \into S^2$, the $E_2$ page: [Link to Diagram](https://q.uiver.app/?q=WzAsMTYsWzIsMSwiSF4wKFNeMjsgXFxaWikiXSxbMiwyLCJIXjAoU14yOyBcXFpaKSJdLFs0LDEsIkheMShTXjI7IFxcWlopIl0sWzQsMiwiSF4xKFNeMjsgXFxaWikiXSxbNiwxLCJIXjIoU14yOyBcXFpaKSJdLFs2LDIsIkheMihTXjI7IFxcWlopIl0sWzEsM10sWzAsMywiXFxidWxsZXQiXSxbNywzLCJcXGJ1bGxldCJdLFsxLDAsIlxcYnVsbGV0Il0sWzEsNCwiXFxidWxsZXQiXSxbMCwyLCIwIl0sWzIsNCwiMCJdLFswLDEsIjEiXSxbNCw0LCIxIl0sWzYsNCwiMiJdLFs3LDgsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XSxbOSwxMCwiIiwwLHsic3R5bGUiOnsiaGVhZCI6eyJuYW1lIjoibm9uZSJ9fX1dXQ==) \begin{tikzcd} & \bullet \\ 1 && {H^0(S^2; \ZZ)} && {H^1(S^2; \ZZ)} && {H^2(S^2; \ZZ)} \\ 0 && {H^0(S^2; \ZZ)} && {H^1(S^2; \ZZ)} && {H^2(S^2; \ZZ)} \\ \bullet & {} &&&&&& \bullet \\ & \bullet & 0 && 1 && 2 \arrow[no head, from=4-1, to=4-8] \arrow[no head, from=1-2, to=5-2] \end{tikzcd} Which is equal to [Link to Diagram](https://q.uiver.app/?q=WzAsMTYsWzIsMSwiSF4wKFNeMjsgXFxaWikiXSxbMiwyLCJIXjAoU14yOyBcXFpaKSJdLFs0LDEsIjAiXSxbNCwyLCIwIl0sWzYsMSwiSF4yKFNeMjsgXFxaWikiXSxbNiwyLCJIXjIoU14yOyBcXFpaKSJdLFsxLDNdLFswLDMsIlxcYnVsbGV0Il0sWzcsMywiXFxidWxsZXQiXSxbMSwwLCJcXGJ1bGxldCJdLFsxLDQsIlxcYnVsbGV0Il0sWzAsMiwiMCJdLFsyLDQsIjAiXSxbMCwxLCIxIl0sWzQsNCwiMSJdLFs2LDQsIjIiXSxbNyw4LCIiLDAseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJub25lIn19fV0sWzksMTAsIiIsMCx7InN0eWxlIjp7ImhlYWQiOnsibmFtZSI6Im5vbmUifX19XV0=) \begin{tikzcd} & \bullet \\ 1 && {H^0(S^2; \ZZ)} && 0 && {H^2(S^2; \ZZ)} \\ 0 && {H^0(S^2; \ZZ)} && 0 && {H^2(S^2; \ZZ)} \\ \bullet & {} &&&&&& \bullet \\ & \bullet & 0 && 1 && 2 \arrow[no head, from=4-1, to=4-8] \arrow[no head, from=1-2, to=5-2] \end{tikzcd} And $E_3 = E_\infty$, so $d_2^{0,1}$ is an isomorphism. *Note: Probably a good starting point for basic calculations? Fill out the missing details for this table.* :::{.exercise title="?"} Prove \[ \pi_4(S^2) = \frac{\ZZ}{2\ZZ} .\] ::: ## Applications Proof of [Hurewicz](Hurewicz.md) using spectral sequences: [Thm 3.2.2](http://homepages.math.uic.edu/~mholmb2/serre.pdf)