--- date: 2021-04-26 19:35 modification date: Sunday 23rd January 2022 00:48:15 title: "Spectral sequence of a two step filtration" aliases: [Spectral sequence of a two step filtration] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags: - #spectral-sequences #homotopy #projects/notes/reading #examples/explicit-computations - Refs: - #todo/add-references - Links: - [spectral sequence](Unsorted/spectral%20sequence.md) - [filtration](Unsorted/filtered%20spectra.md) --- # Spectral sequence of a two step filtration ## Goal We want to explicitly consider all of the objects, maps, and differentials in a particular spectral sequence arising from a space that admits a filtration that terminates in two steps. There are several concrete examples that should fit into this framework: - $0 \injects S^k \injects S^n$ for any $k < n$ - $0 \injects S^n \injects \CP^n$ - $0 \injects \RP^n \injects S^n$ - Using $S^n$ as a double cover of $\RP^n$ ## Setup: Space and Filtration Let $X$ be a space and let $A\subset X$ be a subspace, inducing the inclusion $A\mapsvia{i} X$, so we have the following inclusions of spaces: $$0 \injects A \injects B$$ Then consider applying the "chain functor" $C_*(\cdot): \textbf{Top} \into \textbf{Ab}$ that sends a space $X$ to a singular chain complex $$C_*(X) \definedas \cdots \mapsvia{\del_{i-1}} C_i(X) \mapsvia{\del_i} C_{i+1}(X) \mapsvia{\del_{i+1}} \cdots$$ Applying this functor to the above inclusion induces an inclusion of chain complexes: $0 \injects C_*(A) \injects C_*(X)$ We regard this as a two step filtration on $C^*(X)$ by making the following identifications: - $F_0C_*(X) \definedas C_*(X)$ - $F_1C_*(X) \definedas C_*(A)$ - $F_2C_*(X) \definedas 0$ And we obtain the primary object of interest for this spectral sequence: $0 = F_2C_*(X) \injects F_1C_*(X) \injects F_0C_*(X) = C_*(X)$ This process is roughly summarized in the following diagram: $$ \begin{CD} 0 @>>\injects> A @>i>\injects> X \\ @VVV @VVC_*(\cdot)V @VVV\\ 0 @>>\injects> C_*(A) @>i_*>\injects> C_*(X)\\ @| @| @|\\ F_2C_*(X) @>>\injects> F_1C_*(X) @>i_*>\injects> F_0C_*(X) \end{CD} $$ # Setup: Spectral Sequence A few definitions to recall: $G_iC_*(X) \definedas \frac{F_iC_*(X)}{F_{i+1}C_*(X)}$ $E_0^{p,q} = G_pC_{p+q}(X)$ $E_1^{p,q} = H(E_0^{p,q}, d_0)$ # Computation of Pages ## $E_{-1}$ Not standard usage, here I consider the "$E_{-1}$ page" to be simply a presentation of the double complex itself. The formula works out to be something like $E_{-1}^{p,q} = F_pC_q(X)$ $$ \begin{array}{l:r|cccc} q= n &\hspace{4em} 0 & F_0C_n(X) & F_1C_n(X) & F_2C_n(X) \\ \vdots & \vdots & \vdots & \vdots \\ q=3 &0 & F_0C_3(X) & F_1C_3(X) & F_2C_3(X) \\ q=2 &0 & F_0C_2(X) & F_1C_2(X) & F_2C_2(X) \\ q=1 &0 & F_0C_1(X) & F_1C_1(X) & F_2C_1(X) \\ q=0 &0 & F_0C_0(X) & F_1C_0(X) & F_2C_0(X) \\ \hline \\ q=-1 &0 & 0 & 0 & 0 \\ q-2 &0 & 0 & 0 & 0 \\ \\\hdashline\\ p = -2 & p=-1& p=0 & p=1 & p=2 \\ \end{array} $$ For clarity, we unpack definitions here to show how the actual original chain complexes sit inside of this page: $$ \begin{array}{l:r|cccc} q= n &\hspace{4em} 0 & C_n(X) & C_n(A) & 0 \\ \vdots & \vdots & \vdots & \vdots \\ q=3 &0 & C_3(X) & C_3(A) & 0 \\ q=2 &0 & C_2(X) & C_2(A) & 0 \\ q=1 &0 & C_1(X) & C_1(A) & 0 \\ q=0 &0 & C_0(X) & C_0(A) & 0 \\ \hline \\ q=-1 &0 & 0 & 0 & 0 \\ q-2 &0 & 0 & 0 & 0 \\ \\\hdashline\\ p = -2 & p=-1& p=0 & p=1 & p=2 \\ \end{array} $$ Focusing on the area $p,q >= -1$, we use the fact that the chain complexes come with natural boundary maps to define the differentials $d_{-1}\definedas \del_n: C_n(X) \into C_{n-1}(X)$. $$ \begin{CD} 0 @<<< 0 @<<< 0 @<<< 0 \\ @VVV @VVV @VVV @VVV \\ 0 @<<< C_n(X) @<