--- date: 2022-02-23 18:45 modification date: Friday 25th March 2022 20:21:38 title: Day convolution aliases: [Day convolution, convolution product, convolution] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags - #homotopy/stable-homotopy/equivariant - Refs: - - Links: - [coend](coend.md) --- # Day convolution ![](attachments/Pasted%20image%2020220510150912.png) - Turns the functor category $\Fun(\cat C\op, \cat D)$ into a monoidal category $\Fun_{\hat \tensor}(\cat C\op, \cat D)$. For $\cat{C}$ be a [symmetric monoidal category](Unsorted/monoidal%20category.md) over another monoidal category $(\cat{D}, \tensor_D)$, and define a **convolution product** \[ \hat{\tensor}: \Fun( \opcat{\cat C}, \cat D)\cartpower{2} &\to \Fun(\opcat{\cat C}, \cat D) \\ (F, G) &\mapsto F\hat{\tensor} G \] where $F\hat\tensor G$ is the following left [Kan extension](Kan%20extension.md) : \begin{tikzcd} {\cat{C}^{\times 2}} && {\cat{D}^{\times 2}} \\ \\ {\cat{C}} && {\cat{D}} \arrow["{(F, G)}", from=1-1, to=1-3] \arrow["{\wait\tensor_D\wait}", from=1-3, to=3-3] \arrow["{\wait \tensor_C \wait}"', from=1-1, to=3-1] \arrow["{F\hat\tensor G}"', dashed, from=3-1, to=3-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNCxbMCwwLCJcXGNhdHtDfV57XFx0aW1lcyAyfSJdLFsyLDAsIlxcY2F0e0R9XntcXHRpbWVzIDJ9Il0sWzIsMiwiXFxjYXR7RH0iXSxbMCwyLCJcXGNhdHtDfSJdLFswLDEsIihGLCBHKSJdLFsxLDIsIlxcd2FpdFxcdGVuc29yX0RcXHdhaXQiXSxbMCwzLCJcXHRlbnNvcl9DIiwyXSxbMywyLCJGXFxoYXRcXHRlbnNvciBHIiwyLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV1d) Here the diagram is not required to commute, but rather satisfy some universal property: there is an equivalence of categories? #todo \[ \cat{C}\cat{D}(F\hat\tensor G, ?) \cong \cat{C}^2\cat{D}(\tensor_D \circ (F, G), \,\, ? \circ \tensor_C) .\] Equivalently, take the 2-category of [cocomplete](cocomplete) [tensor categories](Unsorted/tensor%20category.md) $\Cat_{c\tensor}$, \[ \Cat_{c\tensor}( \Fun_{\hat\tensor}(\cat C\op, \cat D), ?) \cong \Cat_{c\tensor}(\cat C, ?) \times \Cat_{\tensor}(\cat D, ?) .\] Equivalently, define by the following [coend](coend.md) : \[ F\hat\tensor G(\wait) \da \int^{x, y\in \cat{C}} \cat{C}(x\tensor_C y, \wait) \tensor_D F(x) \tensor_D G(y) .\] ![](attachments/Pasted%20image%2020220316203634.png) ![](attachments/Pasted%20image%2020220320035436.png)