--- date: 2022-02-23 18:45 modification date: Wednesday 23rd February 2022 18:45:08 title: Hopf algebra aliases: [Hopf algebra] --- --- - Tags - #lie-theory - Refs: - #todo/add-references - Links: - [universal enveloping algebra](universal%20enveloping%20algebra.md) --- # Hopf algebra ![](attachments/Pasted%20image%2020210731183646.png) ![](attachments/Pasted%20image%2020210731191606.png) ![](attachments/Pasted%20image%2020210731191629.png) - Comultiplication: $\Delta: H\to H\tensorpower{k}{2}$ - Counit $\eps; H\to k$ - Antipode $S: H\selfmap$ ## 16:16 - See Manin's universal [quantum groups](quantum%20groups). - Manin defines a universal bialgebra for $A$, which coacts on $A$ in a universal way. - See [Unsorted/koszul duality](Unsorted/koszul%20duality.md) - Forgetful functor from Hopf algebras to bialgebras has a left adjoint: the [Hopf envelope](Hopf%20envelope). - Universal quantum group: take Hopf envelope of universal bialgebra. - See [quadratic algebra](quadratic%20algebra) - Twisting conditions for bialgebras: $B$ is $\ZZ\dash$graded and $\Delta(B_n) \subseteq B\tensorpower{k}{2}$. - Zhang twist: supplies a twisted multiplication. - Possibly related to [alpha twisted vector space](alpha%20twisted%20vector%20space)? - $\grmods{A} \iso \grmods{A^{\phi}}$ for $A^{\phi}$ a Zhang twist. - Morita-Takeuchi equivalence: equivalence of categories of comodules. - This talk compares cocycle twists to Zhang twists. - For $\OO(G)$ the coordinate ring of $G\in\Alg\Grp$, elements $g\in G$ induce automorphism $r_g, \ell_g: \OO(G)\selfmap$ by left/right translation, and every twisting pair is of the form $(r_g, \ell_g\inv)$. - Sovereign: equivalence between left and right duality functors. - Pointed algebra: simple comodules are 1-dimensional - Smash product of Hopf algebras: $H_1\tensor H_2$ as a vector space, with a deformed multiplication. - Example: $U(\lieg)\smashprod k[G]$. - See [quantum Yang Baxter](quantum%20Yang%20Baxter) equations. Solutions are $R\in \Endo_k(V\tensorpower{2})$ satisfying a tensor formula corresponding to moving strands in a braid. - Can be obtained from any braiding on $\comods{H}$. - Use equivalence of braided monoidal cats to get new solutions: $\cmods{H} \iso \comod{A(R)\localize{g}}\iso \comods{A(R)\localize{g}^{\sigma}}$. # Examples The [group algebra](Unsorted/group%20algebra.md): ![](attachments/Pasted%20image%2020220316211737.png) ![](attachments/Pasted%20image%2020220316212016.png) - $k[G]$ for $g\in \Fin\Grp$ with $g\to g\tensor g, g\to 1, g\to g\inv$ - $U(\lieg)$ with $x\to x\tensor 1 + 1\tensor x, x\to 0, x\to x\inv$. - The coordinate ring of any $X\in \Alg\Grp$. - Actions: $H\actson M$ where $\lambda: H\tensor M\to M$ compatible with mult - Coaction: $\rho: M\to H\tensor M$ compatible with comult. - Convolution algebra: $\Hom_k(H, k)$ under $fg \mapsto \mu_k \circ (f\tensor g) \circ \Delta_H$ for $\Delta_H$ the comult on $H$ and $\mu_k$ the multiplication on $k$. - Can twist multiplication by a 2-cocycle $\sigma: H\tensorpower{2} \to k$.