--- date: 2021-10-29 02:02 modification date: Friday 29th October 2021 02:02:42 title: Riemann Hypothesis aliases: [Riemann Hypothesis, RH, GRH] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags - #NT/analytic - Refs: - #todo/add-references - Links: - #todo/create-links --- # Riemann Hypothesis # GRH Statement: for $L(\chi, s)$ an arbitrary [L function](Unsorted/L%20function.md), its meromorphic continuation to $\CC$ has zeros only along the line $\Re(s) = {1\over 2}$. Obviously wildly open! Some interesting conditional results: - Compare to [Dirichlet's theorem on primes in arithmetic progressions](Unsorted/Dirichlet's%20theorem%20on%20primes%20in%20arithmetic%20progressions.md). Fix an [arithmetic progressions](arithmetic%20progressions) $A = A(a, d) = \ts{a, a+d, a+2d,\cdots}$ for $a,d$ coprime and define $\pi_A(x) \da \ts{p\in A \st p\leq x, p\text{ prime }}$; then GRH implies an asymptotic estimate in $x$: $$ \pi_A(x) \sim \phi(d)\inv\int_2^x {1\over \log t}\dt + \bigo\qty{x^{{1\over 2} + \eps}} $$ - GRH implies a weak form of [Goldbach](Goldbach). ## EGRH More generally, the [Dedekind zeta function](Unsorted/Dedekind%20zeta%20function.md) $\zeta_K(s)$ of a [number field](Unsorted/number%20field.md) $K$, the conjecture is that if $s$ is a zero with $\Re(s) \in (0, 1)$, then $\Re(s) = {1\over 2}$. Conditional results: - An effective version of [Chebotarev density](Unsorted/Chebotarev%20density.md). ## Computing zeta(2) Compute $\zeta(2)$: consider $f(z) \da \pi \cot(\pi z)$, whence $f(z) = f(z+1)$, has poles at every $z\in \ZZ$ with residue 1, and is bounded at $i\infty$. Then: ![Pasted image 20211029020500.png](Pasted%20image%2020211029020500.png) ![Pasted image 20211029020511.png](Pasted%20image%2020211029020511.png) ## Notes ![Pasted image 20211029020530.png](Pasted%20image%2020211029020530.png) # Primes ![](attachments/Pasted%20image%2020220504204919.png) See [Connes operator](Connes%20operator): ![](attachments/Pasted%20image%2020220504205139.png)