--- date: 2022-01-15 21:49 modification date: Friday 28th January 2022 23:06:27 title: curves aliases: [curve] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags: - #AG #arithmetic-geometry - Refs: - #todo/add-references - Links: - [scheme](Unsorted/scheme.md) - [elliptic curve](MOCs/elliptic%20curve.md) - [algebraic curve](Unsorted/algebraic%20curve.md) - [good reduction](good%20reduction) - [semistable reduction](semistable%20reduction) --- # curves # Definitions - **Variety**: an [integral](Unsorted/integrally%20closed.md) [separated](Unsorted/separated.md) [scheme](scheme.md) of [finite type](finite%20type.md) over $k$. - **Dimension**: dimension as a Noetherian topological space. - **Curve**: a [complete variety](complete%20variety) (proper over $k$) of dimension 1. - **Singular**: for $\mfm \normal \OO_{X, x}$ the maximal ideal of the local ring at a closed point $x$, $X$ is singular if $\dim_{\kappa(x)} \mfm/\mfm^2 \neq 1$ where $\kappa(x)$ is the residue field at $x$. - [valuation](Unsorted/Valuations.md) : for $f \in \OO_{X, x}$, $v_p(f)$ is the largest $n$ such that $f\in \mfm^n$. - Zero: $v_p(f) > 0$ - Pole: $v_p(f) < 0$ - Nonvanishing: $v_p(f) = 0$. - [Unsorted/function field](Unsorted/function%20field.md) : the local ring $K(X) \da \OO_{X, \tilde x}$ for $\tilde x$ the generic point. - **Degree**: for $f:X\to Y$, the degree of the field extension $[K(X) : f^* K(Y)]$. - [Ramification index](Ramification%20index.md) : $e_f(x)$ defined as the largest $n$ such that $f^* \mfm_{f(x)} \subseteq \mfm_x^n$. - [ramified](Unsorted/ramification%20index.md) : $e_f(x) > 1$. - Alternatively: at a closed point $x$, $f^* \mfm_{f(x)} = \mfm_x$ and the extension $\OO_x/\mfm_x$ is a finite separable extension of $\OO_{f(x)} / \mfm_{f(x)}$. - Structure morphism: for a scheme $X$ over $k$, the map $S: X\to \spec k$ - [geometric point](Unsorted/geometric%20fiber.md) : a section to the structure map, $s: \spec k \to X$ so that $\spec k \mapsvia{s} X \mapsvia{S} \spec k$ is the identity on $\spec k$ - [elliptic curve](elliptic%20curve.md) : genus 1. Coincides with $y^2 = x^3 + Ax + B$. Exists as a pointed [scheme](scheme.md) $(E, O)$ - [isogeny](isogeny) : a pointed map $(E_1, O_1) \mapsvia{f} (E_2, O_2)$, so $f(O_1) = O_2$. - [supersingular](MOCs/elliptic%20curve.md) : $\ker\qty{E \mapsvia{\cdot p} E } = 0$ where $\ch k = p > 0$. - **Ordinary**: $\ker\qty{E\mapsvia{\cdot p} E } = \ZZ/p$ - [etale morphism](Unsorted/etale.md) : [flat](Unsorted/faithfully%20flat.md) and [unramified](Unsorted/unramified.md). Supposed to look like a local homeomorphism in a covering space. ![](attachments/Pasted%20image%2020220407190651.png) # Genus formula ![](attachments/Pasted%20image%2020220214101151.png) # Examples ## Genus 0 #todo ## Genus 1 [elliptic curves](MOCs/elliptic%20curve.md) ## Genus 2 [hyperellptic](Unsorted/hyperellptic.md) ![](attachments/Pasted%20image%2020220214104026.png) ## Genus 3 ![](attachments/Pasted%20image%2020220214104810.png) ![](attachments/Pasted%20image%2020220214104904.png) ## Genus 4 ![](attachments/Pasted%20image%2020220214104930.png) ## Genus 5 ![](attachments/Pasted%20image%2020220214104946.png) # Homology ![](attachments/Pasted%20image%2020220214113837.png) # Examples ![](attachments/Pasted%20image%2020220410185146.png)