--- date: 2022-04-27 22:16 modification date: Wednesday 27th April 2022 22:16:22 title: "disambiguating completion and localization" aliases: [disambiguating completion and localization] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags: - #todo/untagged - Refs: - #todo/add-references - Links: - [localization of rings](Unsorted/localization%20of%20rings.md) - [adic completion](Unsorted/adic%20completion.md) --- # disambiguating completion and localization **Inversion**: adjoin a formal inverse. $$\ZZ\invert{p} = \ts{{a\over b}\in \QQ \st b=p^k} .$$ **Localization** at $p$: invert all primes $\ell\neq p$. Geometrically: invert all functions which are no in the ideal $\gens{p}$, so function that do not vanish at $p$, by adjoining inverses to *all* elements in $\ZZ\sm\gens{p}$ $$\ZZ_p \da \ZZplocal = \ZZ\plocalize{\gens{p}} = \ts{{a\over b}\in \QQ \st b\not\in\gens{p}} = \ts{x\in \QQ \st v_p(x)\geq 0} = \ZZ\adjoin{\ts{\ell\inv \st \ell\neq p }} $$ These are functions that are defined **locally** on a neighborhood of the point $p$. **Completion (adically)** at $p$: compatible systems of lifts: $$ \ZZpcomplete = \lim\qty{ \cdots \from^{\mod p^3} \ZZ/p^2 \ZZ\from^{\mod p^2} \ZZ/p\ZZ } \subseteq \prod_{n\geq 0} \ZZ/p^n \ZZ $$ These are functions defined on a [formal neighborhood](formal%20neighborhood) of the point $p$, and the projections $\ZZ \to \ZZpadic \to \ZZ/p\ZZ$ correspond to $\ts{p} \injects \Spf \ZZpadic \injects \Spec \ZZ$. **Completion (profinite)**: a limit over all finite quotients (normal subgroups with finite index) over the subgroup lattice: $$ \ZZprof = \lim\ts{\ZZ/n\ZZ \to \ZZ/m\ZZ \st m\mid n } \cong \prod_{p} \ZZpadic = \AA_\ZZ^{<\infty} $$ where $\AA_Z = \RR \times \prod_p \ZZpadic$. **Prufer groups**, which are the Pontrayagin duals of $\ZZpadic$: $$\ZZ/p^\infty \da \colim(\ZZ/p \mapsvia p \ZZ/p^2 \mapsvia p \cdots) \cong \gens{\zeta_{p}, \zeta_{p^2}, \cdots} = \ZZ\invert{p}/\ZZ = \ts{(x_i) \st x_1^p = 1, x_2^p = x_1, x_3^p = x_2,\cdots}.$$ Ideal localization: $L_I \ZZ$ is localization at the monoid $\ZZ\sm I$ and allows inverting all functions that do not vanish on $V(I) \subseteq \spec \ZZ$. Prime localization: $L_{p^c} \ZZ$ is localization at $\ts{1, p, p^2,\cdots}$ allows inverting all functions that vanish on $\gens{p} \in \spec \ZZ$, so $\spec L_{p^c} \ZZ = (\spec \ZZ) \sm \gens{p}$ is a punctured $\spec \ZZ$. # Questions - What does $\spec \ZZ\invert{p} \to \spec \ZZ$ represent? - What does $\spec \ZZpadic \to \spec \ZZ$ represent? - What does $\spec \ZZplocal \to \spec \ZZ$ represent? - What does $\Spec \ZZprof \to \spec \ZZ$ represent?