--- date: 2022-04-13 09:06 modification date: Wednesday 13th April 2022 09:06:56 title: "examples of classifying spaces" aliases: [examples of classifying spaces] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags: - #todo/untagged - Refs: - - Links: - #todo/create-links --- # examples of classifying spaces - $\B B_n = \Conf_n(\RR^2)$ for $B_n$ the [pure braid group](Braid%20group) - Take the *unordered* [configuration space](Unsorted/configuration%20space.md) for the usual braid group. - $\B \Free(S) \cong \bigvee_{S} S^1$. - $\GL_n(\RR) \to V_n \to \B \GL_n(\RR) \cong \Gr_n(\RR^\infty)$ for $V_n$ the [Stiefel manifold](Unsorted/Stiefel%20manifold.md). - Note $\B\Orth_n(\RR) = \B\GL_n(\RR)$. - Classifies rank $n$ vector bundles. - $\B S^3 = \B \Sp_1 = \B\SU_2 = B \SS(H) = \HP^\infty$ where $H$ are [quaternions](quaternions) and $\SS(H)$ denotes the units. - $\B \pi_1 \Sigma_g \cong \Sigma_g$ for $g\geq 1$ (so [hyperbolic surfaces](hyperbolic%20surfaces)). - #todo/why - $\B \pi_1 M \cong M$ for $(M, g)$ Riemannian if the sectional curvature satisfies $\sec _g M \leq 0$. - #todo/why - $\B(G\ast H) \cong \B G \wedgeprod \B H$ - $\B \Aut_\Top(M)$ classifies fiber bundles with fiber $M$ - $\B S_n$ classifies $n\dash$sheeted covering spaces ## Building blocks for finite simple groups - $\ZZ \to \RR \to S^1 \implies \B\ZZ = S^1 = \U_1 = K(\ZZ, 1)$. - $\B S^1 =\B \U_1 = \B^2 \ZZ = \B\GL_1(\RR^\infty) K(\ZZ, 2) = \CP^\infty$. - Note $\SL_2(\RR), \SO_2(\RR),, \SO_2(\CC), \Sp_2(\RR), \SU_{1, 1}, \SU_1$ are all homotopy equivalent to $\U_1$. - $\ZZ\cartpower{n} \to \RR^n\to T^n \implies \B \ZZ\cartpower n \cong (S^1)\cartpower{n}$. - $C_n \to S^\infty \mapsvia{\vector z \mapsto \zeta_n \vector z} L_n^\infty \implies \B C_n \cong L_n^\infty$, an infinite [lens space](lens%20space). - $C_2 \to S^\infty \to \RP^\infty\implies \B C_2 \cong \RP^\infty$ - $\B \Orth_1(\RR) =\B \Spin_1 = \B \GL_1(\RR) = K(C_2, 1)$