--- date: 2022-03-22 21:25 modification date: Tuesday 22nd March 2022 21:25:56 title: formally etale aliases: [formally etale] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags - #todo/untagged - Refs: - #todo/add-references - Links: - [scheme](Unsorted/scheme.md) - [formally smooth](Unsorted/formally%20smooth.md) --- # formally etale Idea: meant to look like a local isomorphism by inducing a pointwise isomorphism on tangent spaces. Idea: $X\to S$ is etale when for all $T\to X$, a first-order thickening $T_1 \to S$ lifts uniquely to $T_1\to X$. \begin{tikzcd} {\in \Algs{R}} &&&&&& {\in \Sch\slice{S}} \\ \textcolor{rgb,255:red,92;green,92;blue,214}{R} && {\forall B} && {\forall T} && \textcolor{rgb,255:red,92;green,92;blue,214}{X} \\ \\ \textcolor{rgb,255:red,92;green,92;blue,214}{A} && {\forall B/I,\quad I^2=0} && {T_1 {\scriptsyle \text{first order thickening}}} && \textcolor{rgb,255:red,92;green,92;blue,214}{S} \\ {} &&&& {} \arrow[color={rgb,255:red,92;green,92;blue,214}, from=2-1, to=4-1] \arrow["\forall", from=2-1, to=2-3] \arrow[""{name=0, anchor=center, inner sep=0}, two heads, from=2-3, to=4-3] \arrow["{\forall }", from=4-1, to=4-3] \arrow["{\exists !}"{description}, dashed, from=4-1, to=2-3] \arrow[from=4-5, to=4-7] \arrow[color={rgb,255:red,92;green,92;blue,214}, from=2-7, to=4-7] \arrow[from=2-5, to=2-7] \arrow[""{name=1, anchor=center, inner sep=0}, "{\forall }", from=2-5, to=4-5] \arrow["{\exists !}"{description}, dashed, from=4-5, to=2-7] \arrow[shorten <=26pt, shorten >=26pt, Rightarrow, squiggly, from=0, to=1] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMTIsWzAsMSwiUiIsWzI0MCw2MCw2MCwxXV0sWzAsMywiQSIsWzI0MCw2MCw2MCwxXV0sWzIsMSwiXFxmb3JhbGwgQiJdLFsyLDMsIlxcZm9yYWxsIEIvSSxcXHF1YWQgSV4yPTAiXSxbNiwxLCJYIixbMjQwLDYwLDYwLDFdXSxbNiwzLCJTIixbMjQwLDYwLDYwLDFdXSxbNCwxLCJcXGZvcmFsbCBUIl0sWzQsMywiVF8xIHtcXHNjcmlwdHN5bGUgXFx0ZXh0e2ZpcnN0IG9yZGVyIHRoaWNrZW5pbmd9fSJdLFswLDRdLFs0LDRdLFs2LDAsIlxcaW4gXFxTY2hcXHNsaWNle1N9Il0sWzAsMCwiXFxpbiBcXEFsZ3N7Un0iXSxbMCwxLCIiLDAseyJjb2xvdXIiOlsyNDAsNjAsNjBdfV0sWzAsMiwiXFxmb3JhbGwiXSxbMiwzLCIiLDIseyJzdHlsZSI6eyJoZWFkIjp7Im5hbWUiOiJlcGkifX19XSxbMSwzLCJcXGZvcmFsbCAiXSxbMSwyLCJcXGV4aXN0cyAhIiwxLHsic3R5bGUiOnsiYm9keSI6eyJuYW1lIjoiZGFzaGVkIn19fV0sWzcsNV0sWzQsNSwiIiwyLHsiY29sb3VyIjpbMjQwLDYwLDYwXX1dLFs2LDRdLFs2LDcsIlxcZm9yYWxsICJdLFs3LDQsIlxcZXhpc3RzICEiLDEseyJzdHlsZSI6eyJib2R5Ijp7Im5hbWUiOiJkYXNoZWQifX19XSxbMTQsMjAsIiIsMix7InNob3J0ZW4iOnsic291cmNlIjoyMCwidGFyZ2V0IjoyMH0sInN0eWxlIjp7ImJvZHkiOnsibmFtZSI6InNxdWlnZ2x5In19fV1d) Equivalent characterizations: - The [relative differentials](Unsorted/algebraic%20de%20Rham%20cohomology.md) $\Omega_{X/S} = 0$ (the [relative differentials](Unsorted/algebraic%20de%20Rham%20cohomology.md) vanish) and the [conormal sheaf](conormal%20sheaf) vanishes, $\mathcal{C}_{X/S} = 0$. - $\globsec{X; \OO_X}\to \globsec{Y; \OO_Y}$ is a formally etale morphism of rings. Trivially implies [formally unramified](formally%20unramified.md). If $f$ is additionally [locally of finite presentation](locally%20of%20finite%20presentation), then $f$ is an [etale morphism](Unsorted/etale.md).