--- date: 2022-01-23 19:52 modification date: Sunday 23rd January 2022 19:53:25 title: fractional ideal aliases: ["fractional ideal", "colon ideal", "principal fractional ideal"] --- Tags: #todo #todo/stub Refs: ? # Fractional Ideal Idea: get methods that work for primes $p\in \ZZ$ to work for ideals $\gens{p} \in \Id(\ZZ)$, and then generalize to other rings e.g. to get unique factorization. ![](attachments/Pasted%20image%2020220123202618.png) ![](attachments/Pasted%20image%2020220123202646.png) Definitions: ![](attachments/Pasted%20image%2020220123195231.png) ![](attachments/Pasted%20image%2020220123195314.png) # Colon Ideal ![](attachments/Pasted%20image%2020220123195354.png) # Invertibility Invertibility of fractional ideals: ![](attachments/Pasted%20image%2020220123195729.png) Fact: in a [Dedekind domain](Dedekind%20domain.md) every nonzero fractional ideal is invertible. Example of noninvertible ideals: ![](attachments/Pasted%20image%2020220123195920.png) ![](attachments/Pasted%20image%2020220123201959.png) # Primality ![](attachments/Pasted%20image%2020220124114019.png) # Exercises Let $A$ be an integral domain with fraction field $K$ and let $M$ be a nonzero A-submodule of $K$. Then $M^{\vee} \simeq(A: M):=\{x \in K: x M \subseteq A\}$; in particular, if $M$ is an invertible fractional ideal then $M^{\vee} \simeq M^{-1}$ and $M^{\vee \vee} \simeq M$.