--- date: 2021-10-21 18:42 modification date: Thursday 21st October 2021 18:42:50 title: Global field aliases: ["global field", "global fields", "local field"] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags: - #NT/algebraic #arithmetic-geometry - Refs: - #todo/add-references - Links: - [absolute value](Unsorted/absolute%20value.md) - [valuation](Unsorted/Valuations.md) --- # global field **Motto**: number field or function field. ![](attachments/Pasted%20image%2020220510164552.png) ![](attachments/Pasted%20image%2020220129175344.png) # function fields - Function field: an extension $F\slice k$ where $[F: k(x)] < \infty$ for some $x$ transcendental over $k$. # global fields ![](attachments/Pasted%20image%2020220124121754.png) ![](attachments/Pasted%20image%2020220126094743.png) ![](attachments/Pasted%20image%2020220126224953.png) Global fields satisfy a product formula: $$ x\in K\smz \implies \displaystyle\prod_{v\in \Places(K)} \abs{x}_v = 1 $$ ![](attachments/Pasted%20image%2020220129172449.png) # local fields ![](attachments/Pasted%20image%2020220124122029.png) ![](attachments/Pasted%20image%2020220126232321.png) - Idea: can arise as the rings of germs of functions, i.e. the local rings on a scheme. - Arise as the completions of global fields. - Another defintion: a field complete wrt a topology induced by a [discrete valuation](discrete%20valuation) with a finite residue field. - Classification of local fields: - Every local field is the completion of a global field wrt an absolute value. - An [archimedean](archimedean) local field is either $\RR$ or $\CC$. - A [nonarchimedean](nonarchimedean.md) local field is a finite extension $L/K$ for $K=\QQpadic$ or $\FF_q\fls{t}$ - The completion of $\ff(K)$ with respect to an [absolute value](Unsorted/absolute%20value.md)or [valuation](valuation) for $K$ a global field is a locally compact field, and thus a local field. - # Examples ![](attachments/Pasted%20image%2020220124122104.png) - Global fields - $\QQ$ - Algebraic number fields $K\slice \QQ$ - $L\slice K$ finite extensions of $K = \FF_q\rff{t}$, i.e. function fields of an [algebraic curve](Unsorted/algebraic%20curve.md) over a finite field - Local fields: - $\RR$ and $\QQpadic$ for $p$ all primes in $\ZZ$ are local. - $\FF_q\fls{t}$ formal Laurent series over a finite field. - The completion of a global field at a [valuation](Unsorted/Valuations.md) / [absolute value](Unsorted/absolute%20value.md). - Nonexample: $\CC\fls{t}$, since its residue field is $\CC\fps{t}/\gens{t} \cong \CC$ which is not finite. ![](attachments/Pasted%20image%2020220124225444.png)