--- date: 2022-02-23 18:45 modification date: Friday 18th March 2022 00:23:10 title: infinity categories aliases: [infinity categories, infinity category, infty-category, infty-categories] --- --- - Tags - #higher-algebra/derived #higher-algebra/infty-cats #resources #todo/learning - Refs: - [Unsorted/Introduction to infinity categories](Unsorted/Introduction%20to%20infinity%20categories.md) - [A crash course on infty cats](https://people.math.harvard.edu/~yifei/indcoh/HigherCats.pdf) #resources/videos - Short notes: , #resources/notes - [Seminar notes](attachments/highercats.pdf) #resources/notes - #resources/notes - A short course on infty categories: #projects/lecture-notes - Recs from Glaeser - For treatments that cover quasi-categories in detail, there's Cisinski's book (https://cisinski.app.uni-regensburg.de/CatLR.pdf), and Rezk's notes . - For "big-picture" treatments (which gloss over technical details in order to get quickly to some interesting applications) there's - Mazel-Gee's notes (https://etale.site/teaching/w21/math-128-lecture-notes.pdf) which @Reuben Stern (they/them) already mentioned, as well as - Groth's short course on infinity-categories (https://arxiv.org/pdf/1007.2925.pdf). - Links: - [Kan extension](Unsorted/Kan%20extension.md) - [simplicial set](Unsorted/simplicial%20set.md) - [Kan complex](Unsorted/Kan%20complex.md) - [cartesian fibration](cartesian%20fibration.md) - [stable infinity category](stable%20infinity%20category) - [pregeometry](pregeometry.md) - [infty topos](infty%20topos) - [presentable category](presentable%20category) - [localization (category theory)](Unsorted/localization%20(category%20theory).md) - [derived ring](derived%20ring.md) - [nerve](Unsorted/nerve.md) - [modules over a category](Unsorted/modules%20over%20a%20category.md) - [simplicial category](Unsorted/simplicial%20category.md) - [higher category](higher%20category.md) - [Kan complex](Kan%20complex.md) - [Kan extension](Kan%20extension.md) - [simplicial set](simplicial%20set.md) - [stable infinity category](stable%20infinity%20category.md) - [infinity groupoids](infinity%20groupoids.md) - [classifying space](classifying%20space.md) - [homotopy type](homotopy%20type.md) - [Kan fibration](Kan%20fibration) - Models: - [quasicategory](quasicategory.md) - Complete [Segal spaces](Segal%20spaces.md) - [Gamma space](Gamma%20space)? - [skeleta](skeleta.md) - [hypercovering](Unsorted/hypercovering.md) - [hyper-descent](hyper-descent.md) - [Waldhausen S construction](Waldhausen%20S%20construction.md) for infinity categories - [[tangent category]] - [factorization homology](Unsorted/factorization%20homology.md) --- # infinity categories # Misc ![](attachments/Pasted%20image%2020220425095015.png) What is an infinity category? ![](attachments/Pasted%20image%2020220318002310.png) ![](attachments/Pasted%20image%2020220318002449.png) How to build an infty category: ![](attachments/Pasted%20image%2020220429235334.png) :::{.definition title="$\infty\dash$Category"} An $\infty\dash$category $\mathcal{C}$ is a (large) [simplicial set](simplicial%20set.md)] $\mathcal{C}$ such that any diagram of the form \begin{tikzcd} {\Lambda_i^n} && {\mathcal{C}} \\ \\ {\Delta_n} \arrow[from=1-1, to=3-1] \arrow[from=1-1, to=1-3] \arrow["{\exists}"', from=3-1, to=1-3, dashed] \end{tikzcd} ![Pasted image 20210515015420](attachments/Pasted%20image%2020210515015420.png) admits the indicated lift, where $\Lambda_i^n$ is an $i\dash$horn (a simplex missing the $i$th face) for $0 < i < n$. ::: - All inner horns are fillable, i.e. [simplicial set](simplicial%20set.md) are *inner* Kan complexes. - Different to Kan complexes, which include all $i$. # Notes - ∞-categories form a (large) ∞-category. - The [Segal condition](Segal%20condition), essentially characterizes $\infty\dash$categories among simplicial [infinity groupoids](infinity%20groupoids.md) - Given two ∞-categories $\cat D, \cat C$, there is a **functor ∞-category** $\Fun(\cat D, \cat C)$. - In terms of [quasicategory](quasicategory.md), the hom here is internal hom in [simplicial set](simplicial%20set.md). - Example: for a given ∞-category $\cat I$ we have the ∞-category of [presheaves](presheaves) $\Fun(\cat I\op , \inftyGrpd)$ -In practice, ∞-categories are constructed from existing ones by constructions that automatically guarantee that the result is again an ∞-category, - The construction typically uses universal properties in such a way that the resulting ∞-category is only defined up to equivalence - Can take a [homotopy category](homotopy%20category.md) - For each $n \geq 0$ there is a cat $\Delta[n] = \nerve{\ts{0 \leq 1 \leq \cdots \leq n}}$. - Commutative triangles in $\cat C$: objects in the functor category $\Fun(\Delta[2], \cat C)$ - $\inftycat \leq \Kan$: infinity categories are a subcategory of Kan complexes. ## Adjunctions ![Pasted image 20210603191341](attachments/Pasted%20image%2020210603191341.png) ![Pasted image 20210603191352](attachments/Pasted%20image%2020210603191352.png) ![Pasted image 20210731191442](attachments/Pasted%20image%2020210731191442.png) ## Examples ![](attachments/Pasted%20image%2020220318002719.png) # Endomorphism categories ![](attachments/Pasted%20image%2020220318003654.png) # Algebras ![](attachments/Pasted%20image%2020220318003729.png) # Misc ![](attachments/Pasted%20image%2020220319214242.png) ![](attachments/Pasted%20image%2020220319214304.png) ![](attachments/Pasted%20image%2020220319214319.png) ![](attachments/Pasted%20image%2020220320040545.png)