--- date: 2022-01-15 21:49 modification date: Wednesday 16th February 2022 21:39:26 title: limit aliases: [colimit, colim, filtered category] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags: - #higher-algebra/category-theory - Refs: - #todo/add-references - Links: - #todo/create-links --- # Limits (Categorical) Modern POV: realize in terms of a [Kan extension](Unsorted/Kan%20extension.md): ![](attachments/Pasted%20image%2020220320032421.png) ![](attachments/Pasted%20image%2020220531025324.png) ## Mnemonics to distinguish lims and colims | Inverse/projective limit | Direct/colimit | | --------------------------------------------------------------------------------- | -------------------------------------------------------------------------------- | | $\lim$ | $\colim$ | | Above: ![](attachments/Pasted%20image%2020220603121253.png) | Below: ![](attachments/Pasted%20image%2020220603121316.png) | | terminal cones | initial cocones | | subobjects of $\displaystyle\prod$ | quotient objects of $\Disjoint$ or $\bigoplus$ | | terminal objects | initial objects | | pullbacks | pushouts | | products | coproducts | | kernels | cokernels | | equalizers | coequalizers | | commutes with contravariant hom: $\cat{C}(A, \lim B_i) = \lim \cat{C}(A, B_i)$ | commutes with covariant hom: $\cat{C}(\lim A_i, B) \cong \colim \cat{C}(A_i, B)$ | | continuous | cocontinuous | | "impose equations" | "glue objects" | | $\ZZpadic = \lim(\cdots \mapsvia{\mod p^2} \ZZ/p^2\ZZ \mapsvia{\mod p} \ZZ/p\ZZ)$ | $\ZZ(p^\infty) = \colim(\ZZ/p\ZZ \mapsvia{\times p} \ZZ/p^2\ZZ \mapsvia{\times p} \cdots)$ | Idea: the limit should be the *closest* object to all of the $F(X_i)$. # The Calculus of Limits - Commuting lims: - Self-commuting: lims commute with lims, colims commute with colims. - There is a morphism $\colim \lim A_{i, j} \to \lim \colim A_{i, j}$ which need not be an isomorphism, i.e. limits need not commute with colimits in general. - **Filtered** colimits commute with **finite** limits in $\Set$. - Preservation of properties: - Limits respect finite group actions, i.e. $(\lim A_i)/G \iso \lim (A_i/G)$. - Finite colims of compact objects are compact - The acronyms for adjoints: - RAPL: right adjoints preserve limits - LAPC: left adjoints preserve colimits - LARE: Left adjoints are right-exact - RALE: right adjoints are left-exact # Definitions ![](attachments/Pasted%20image%2020220316203247.png) ## Limits ![](attachments/Pasted%20image%2020220124120148.png) ![](attachments/Pasted%20image%2020220124120203.png) ![](attachments/Pasted%20image%2020220124120224.png) ![](attachments/Pasted%20image%2020220203235717.png) ## Colimits For $F: \cat I \to \cat C$, define $\chi_X: \cat I\to \cat C$ for $X\in \cat C$ regarded as a set (groupoid with only identity morphisms) to be the **constant functor** $Y\mapsto X$ for all $Y$ and $f\mapsto \id_X$ for all $f$. Then $$ \lim_I F(\wait) \da {\Cat}(\chi_{(\wait)}, F): \cat C \to \Set $$ i.e. the limit is the functor sending $X$ to natural transformations between $\chi_X$ and $F$. If this functor is representable, it can be identified with an object in $\cat C$. Definition in terms of cones and cocones: ![Pasted image 20211003193342](attachments/Pasted%20image%2020211003193342.png) ![Pasted image 20211003193427](attachments/Pasted%20image%2020211003193427.png) # Examples - $\lim(\bullet \rrarrows \bullet)$ is an equalizer - For $I$ an index set regarded as a groupoid with only identities, $\lim(\bullet, \bullet, \cdots) = \prod_{i\in I} \bullet_i$ . Use that $\lim_I F(X) = \ts{X\to X_i}$ if $F(i) \da X_i$. - $\lim(\bullet \to \bullet \from \bullet) = \bullet\fiberprod{\bullet}\bullet$ is a fiber product. ![](attachments/Pasted%20image%2020220316204004.png) # Filtered categories and colimits ![](attachments/Pasted%20image%2020220316203344.png) ![](attachments/Pasted%20image%2020220317232012.png) ![](attachments/Pasted%20image%2020220317232039.png) ![](attachments/Pasted%20image%2020220317232055.png) ![](attachments/Pasted%20image%2020220318002919.png)