--- created: 2022-04-05T23:42 updated: 2023-12-28T18:14 --- --- date: 2021-10-21 18:42 modification date: Thursday 21st October 2021 20:41:02 title: modular form aliases: ["modular forms", "modularity", "modular"] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags: - #arithmetic-geometry/Langlands #NT/analytic - Refs: - Course notes: #resources/course-notes - Apostol, *Modular Functions and Dirichlet Series in Number Theory*. - See also previous book in series, *Introduction to Analytic Number Theory* - Harvard summer tutorial: - Links: - [Hecke operator](Hecke operator) - [Eisenstein series](Eisenstein series) - [Weight of a modular form](Weight of a modular form) - [modular curve](Unsorted/modular%20curve.md) - [Siegel modular forms](Siegel%20modular%20forms) - [Hecke operator](Hecke%20operator) - [automorphic form](Unsorted/automorphic%20form.md) --- # modular form ![](attachments/2023-01-12modform.png) ![](attachments/2023-01-12cusp.png) ![](attachments/2023-01-12universalmodular.png) ![](attachments/2023-01-12modularform.png) ![](attachments/Pasted%20image%2020220430213647.png) - Ways to think of a modular form: - Functions ([automorphic forms](automorphic%20forms)) on $\GL_2$ - Functions on $\HH$ - Sections of a line bundle over a moduli of curves - Related to [q series](q%20series.md) - Many classical modular forms are [generating function](generating function) for integer partitions in interesting ways ![](attachments/Pasted%20image%2020220211002118.png) ![](attachments/Pasted%20image%2020220210182831.png) ![](attachments/Pasted%20image%2020220211002301.png) # L functions ![](attachments/Pasted%20image%2020220430213719.png) # Examples - Ramanujan delta: $\Delta(q)=q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}$, a holomorphic cusp form of [weight](weight%20of%20a%20modular%20form) 12 and [level](level%20of%20a%20modular%20form) 1. # Notes - **Modularity theorem**: If $E \in \Ell_{\QQ}$, then $E$ admits a rational parameterization. Proved by Wiles et al. ![](attachments/Pasted%20image%2020220202221424.png) ![Pasted image 20211029131059.png](Pasted%20image%2020211029131059.png) ![Pasted image 20211029131114.png](Pasted%20image%2020211029131114.png) ![Pasted image 20211029131212.png](Pasted%20image%2020211029131212.png) ![](attachments/Pasted%20image%2020220204094501.png) Relation to [Weil Conjectures](Unsorted/Weil%20Conjectures.md): ![](attachments/Pasted%20image%2020220204094635.png) # Stack formulation ![](attachments/2023-01-12stack.png) # Modular forms from lattices Let $L$ be a lattice of signature $(2, n)$ for $n\geq 1$, let $\Omega_L$ be the associated period domain, let $\Orth^+(L) \leq \Orth(L)$ be the subgroup preserving $\Omega_L$ and let $\tilde \Omega_L$ be the affine cone over $\Omega_L$. Let $n\geq 3$, let $k\in \ZZ$, and let $\Gamma \leq \Orth^+(L)$ be a finite-index subgroup with $\chi: \Gamma\to \CC^*$ a character. A holomorphic functional $f: \Omega_L \to \CC$ is called a **modular form of weight $k$ and character $\chi$ for $\Gamma$** if 1. Factor of automorphy: $f(\lambda z) = \lambda^{-k} f(z)$ for any $\lambda \in \CC^*$. 2. Equivariance: $f(\gamma z) = \chi(\gamma) f(z)$ for all $\gamma\in \Gamma$.