--- date: 2022-02-23 18:45 modification date: Wednesday 16th March 2022 19:29:12 title: nerve aliases: [nerve] created: 2023-03-31T16:13 updated: 2023-03-31T16:15 --- --- - Tags - #higher-algebra/simplicial - Refs: - - Links: - [geometric realization](Unsorted/geometric%20realization.md) - [bar construction](Unsorted/bar%20construction.md) - [infinity category](Unsorted/infinity%20categories.md) --- # nerve ![](attachments/Pasted%20image%2020220327014235.png) ![](attachments/Pasted%20image%2020220318002104.png) ![](attachments/Pasted%20image%2020220318002204.png) - Provides a functor to [simplicial set](simplicial%20set.md) $$\begin{align*} \nerve{\wait}: \Cat &\to \sSet \\ \cat{C} &\mapsto \nerve{\cat C} \end{align*}$$ - After application: $$\begin{align*} \nerve{\cat C}: \Delta\op &\to \Set \\ \quad [n] &\mapsto \Fun([n], \cat C) \end{align*}$$ - So $\nerve{\cat C}(\wait) = \Fun(\wait, \cat C)$ - A [simplicial set](simplicial%20set.md) whose skeleton is - $\nerve{\cat{C}}_0$: The objects of $x,y,z,\cdots \in \cat{C}$ - $\nerve{\cat{C}}_1$: Morphisms $\cat{C}(x, y), \cat{C}(y, z), \cdots$ - $\nerve{\cat{C}}_2$: Composable morphisms: - The nerve has sufficient data to reconstruct $\cat{C}$ up to isomorphism of categories. - $\nerve{\wait}: \Cat \to \sSet$ is fully faithful. - Actual statement: $\nerve{\cat{C}}$ is a Kan complex (with a unique filler for every horn) iff $\cat{C}$ is a groupoid. \begin{tikzcd} && z \\ \\ x && y \arrow["f"', from=3-1, to=3-3] \arrow["g"', from=3-3, to=1-3] \arrow["gf", from=3-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsMyxbMCwyLCJ4Il0sWzIsMiwieSJdLFsyLDAsInoiXSxbMCwxLCJmIiwyXSxbMSwyLCJnIiwyXSxbMCwyLCJnZiJdXQ==) - $\nerve{\cat{C}}_n$: tuples $f_0, f_1, \cdots, f_{n-1}$ of composable morphisms \begin{tikzcd} {x_0} && {x_1} && {x_2} && {x_3} && \cdots && {x_n} \arrow["{f_1}", from=1-3, to=1-5] \arrow["{f_2}", from=1-5, to=1-7] \arrow["{f_3}", from=1-7, to=1-9] \arrow["{f_{n-1}}", from=1-9, to=1-11] \arrow["{f_0}", from=1-1, to=1-3] \end{tikzcd} > [Link to Diagram](https://q.uiver.app/?q=WzAsNixbMiwwLCJ4XzEiXSxbNCwwLCJ4XzIiXSxbNiwwLCJ4XzMiXSxbOCwwLCJcXGNkb3RzIl0sWzEwLDAsInhfbiJdLFswLDAsInhfMCJdLFswLDEsImZfMSJdLFsxLDIsImZfMiJdLFsyLDMsImZfMyJdLFszLDQsImZfe24tMX0iXSxbNSwwLCJmXzAiXV0=) - Alternative functor definition: - Define a functor $$ \mathcal{P}: \Poset \to \Cat^{\smol} $$ which takes a [poset](poset) to its poset category, where there is a unique morphism $p\to q \iff p\leq q$. - Using the definition of a [simplicial set](simplicial%20set.md) as a functor $\Delta\op \to \Set$, define $$ \nerve{\cat C}(\wait) := \Fun(\wait, \cat{C}) \circ \mathcal{P}(\wait) = \Fun( \mathcal{P}(\wait), \cat{C}) $$ Thus $\nerve{\cat{C}}([n]) = \Fun([n], \cat{C})$ where $[n]$ is the poset category on $(\ts{0, 1, \cdots, n}, \leq)$. ## Definition: Nerve of a category Given an ordinary category $\cat{C}$, define the **nerve** of $\cat{C}$ to be the simplicial set given by $$\begin{align*} N(\cat{C})_n \da \ts{\text{Functors } F: [n] \to \cat{C}} \end{align*}.$$ where $[n]$ is the poset category on $\ts{1, 2, \cdots, n}$. So an $n\dash$simplex is a diagram of objects $X_0, \cdots, X_n \in \Ob(\cat{C})$ and a sequence of maps. This defines an $\infty\dash$category, and there is a correspondence $$\begin{align*} \Fun_{\Cat}(\cat C, \cat D) &\mapstofrom [\nerve{\cat C}, \nerve{\cat D}]_{\inftycat} .\end{align*}$$ Note that taking the nerve of a category preserves the usual categorical structure, since the objects are the 0-simplices and the morphisms are the 1-simplices. # Notes - If $\cat{C}$ has any initial or terminal objects, $\nerve{\cat C}$ is contractible..? - What does this mean? Define homotopy direct on $\sSet$, or take geometric realization to $\Top$..? - $\im \nerve{\wait} \injects \sSet$ are precisely [Segal spaces](Segal%20spaces.md) - I.e. $\nerve{\cat{C}}$ is a Segal space, regarding $\Set \injects \inftyGrpd$ as the discrete objects. - There is an adjunction: $$ \adjunction{\realize{\wait}}\nerve{\wait}{\sSet}{\Cat} .$$ - Here the [geometric realization](geometric%20realization.md) is left-adjoint to the nerve. - Note that the nerve doesn't have a right adjoint? Seemingly because it doesn't preserve colimits. ![](attachments/Pasted%20image%2020220316192948.png) ![](attachments/Pasted%20image%2020220316193843.png) ![](attachments/Pasted%20image%2020220316194846.png) ## Relative nerve ![](attachments/Pasted%20image%2020220318003354.png) # Adjunction ![](attachments/Pasted%20image%2020220505175539.png) # Coherent nerve ![](attachments/Pasted%20image%2020220505175627.png) # Cech/simplicial nerve ![](2023-03-31-74.png)