--- title: polarization aliases: - polarized - principal polarization - principally polarized - PPAV - primitive polarization - quasipolarization - polarized - polarized variety - numerical polarization created: 2022-04-22T15:18 updated: 2024-01-10T11:51 --- --- - Links: - [abelian variety](Unsorted/abelian%20variety.md) - [torsor](Unsorted/torsor.md) --- # polarization Polarized variety: $(X, L)$ with $L\in \Pic(X)^\amp$. ## For AVs ![[2023-03-28.png]] ![[2023-03-28-1.png]] See [[isoduality]]. ## [@Hun96] Let $V$ be an abelian variety over $\mathbb{C}, \operatorname{End}(V)$ the endomorphism ring and $$ \operatorname{End}_{\mathbb{Q}}(V)=\operatorname{End}(V) \otimes_{\mathbf{Z}} \mathbb{Q} $$ the endomorphism algebra. A polarization, i.e., a linear equivalence class of ample divisors giving a projective embedding of $V$, gives rise to a positive involution on $\operatorname{End}_{\mathbb{Q}}(V)$, the so-called Rosati involution: $$ \begin{aligned} \varrho: \operatorname{End}_{\mathbb{Q}}(V) & \longrightarrow \operatorname{End}_{\mathbb{Q}}(V) \\ \phi & \mapsto \phi^{\varrho} . \end{aligned} $$ This can be defined, for example, by viewing the polarization as an isogeny $\mathcal{C}$ : $V \rightarrow V^{\vee}$, where $V^{\vee}$ is the dual abelian variety. The degree of this isogeny is the degree of the polarization. Then for any $\alpha \in \operatorname{End}_{\mathbb{Q}}(V)$, one sets $\alpha^{\ell}:=\mathcal{C}^{-1} \circ \alpha^{\vee} \circ \mathcal{C}$ (see $[\mathrm{Mi}], \S 17$ for a presentation along these lines). The Rosati involution gives rise to a positive definite bilinear form $(\alpha, \beta) \mapsto \operatorname{Tr}\left(\alpha \circ \beta^{\varrho}\right)$ (loc. cit. 17.3). ## For K3s - **Definition**: Let $X$ be a [K3 surface](K3%20surfaces.md) over a field $k$. The self-intersection index $(\mathcal{L}, \mathcal{L})_X$ of a line bundle $\mathcal{L}$ on $X$ will be called its **degree**. - A line bundle $\mathcal{L}$ on $X$ is called **primitive** if $\mathcal{L} \otimes \bar{k}$ is is not a positive power of a line bundle on $X_{\bar{k}}$. ![](attachments/2023-03-12polar.png) ![](attachments/2023-03-12prim-1.png) ![](attachments/2023-02-24polarization.png) ![](attachments/Pasted%20image%2020220531021814.png) ![](attachments/Pasted%20image%2020220422151846.png) ![](attachments/Pasted%20image%2020220504223900.png) ![](attachments/Pasted%20image%2020220504223916.png) # Principal polarization ![](attachments/Pasted%20image%2020220502171337.png) ![](attachments/Pasted%20image%2020220502171509.png) ![](attachments/2023-03-11poolar.png) # For topological vector spaces ![](attachments/2023-03-11polar1.png) ![](attachments/2023-03-11polar2.png) Any self-adjoint Dirac operator splits $V$ into $V^+ \oplus V^-$. See [determinant bundle](determinant%20bundle). ## Examples ![](attachments/2023-03-11polarex.png) In [Floer Theory](Unsorted/Floer%20Theory.md): ![](attachments/Pasted%20image%2020220422151943.png) ![](attachments/Pasted%20image%2020220422151958.png) ![](attachments/Pasted%20image%2020220422152035.png)