--- date: 2022-01-24 18:47 modification date: Monday 24th January 2022 18:47:45 title: ring of integers aliases: [ring of integers] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags - #NT/algebraic - Refs: - #todo/add-references - Links: - [valuation](Unsorted/Valuations.md) - [absolute value](Unsorted/absolute%20value.md) - [archimedean](Unsorted/absolute%20value.md) - [number field](Unsorted/number%20field.md) --- # Ring of integers of a number field For a [number field](number%20field.md) $K\slice \QQ$, define the **ring of integers** as $$\OO_K \da \intcl_K(\ZZ).$$ More generally, for $R$ a ring, $$ \OO_R \da \intcl_{\ff(R)}(R) $$ or equivalently a [maximal order](Unsorted/order.md). # Ring of integers of a nonarchimedean field For a [nonarchimedean field](Unsorted/absolute%20value.md) with an [absolute value](Unsorted/absolute%20value.md) $\abs{\wait}$, say induced by a [valuation](Unsorted/Valuations.md), the **ring of integers** is given by the [valuation ring](valuation%20ring.md), i.e. the closed disc: $$ \OO_K \da \ts{ x\in K \st \abs{x} \leq 1} = \ts{x\in K \st v(x) \geq 0} = \bar{\DD}_K \subseteq K $$ Its units are given by the boundary sphere: $$ \OO_K\units \da \ts{x\in K \st \abs{x} = 1} = \ts{x\in K \st v(x) = 0} = \bd\bar{\DD}_K $$ This is a [local ring](Unsorted/localization%20of%20rings.md) with maximal ideal the open disc: $$ \mfm \da \ts{x\in K \st \abs{x} < 1 }= \DD_K $$ # Misc ![](attachments/Pasted%20image%2020220224124633.png)