--- date: 2022-01-15 21:49 modification date: Saturday 15th January 2022 21:49:49 title: tangent bundle aliases: [tangent bundle, "tangent space", "cotangent space", "cotangent bundle", exponential, logarithm] --- Last modified date: <%+ tp.file.last_modified_date() %> --- - Tags - #todo/untagged - Refs: - #todo/add-references - Links: - [vector bundle](Unsorted/vector%20bundles.md) - [de Rham cohomology](Unsorted/algebraic%20de%20Rham%20cohomology.md) - [Riemannian metric](Unsorted/metric.md) - [Hermitian K theory](Hermitian%20K%20theory) --- # Tangent space For schemes: $\T_X = \Sch\slice k(k[\eps]\to X)$, and the tangent space of a functor $F$ is $\T_F \da F(k[\eps])$. # tangent bundle Tangent vectors: ![](attachments/Pasted%20image%2020220424180706.png) Exterior powers: ![](attachments/Pasted%20image%2020220424180803.png) - $\T_X = \spanof_k\ts{\del x_1, \cdots, \del x_n}$ and $\T_X\dual = \spanof_k \ts{dx_1, \cdots, dx_n}$. - This uses the identification $\T_{X} \cong \Der_k(C^\infty(X; \RR), \RR)$ as a space of [derivations](derivations), i.e. $D(xy) = D(x) y + x D(y)$. ![](attachments/Pasted%20image%2020220221004134.png) ![](attachments/Pasted%20image%2020220403173357.png) ![](attachments/Pasted%20image%2020220221004200.png) ![](attachments/Pasted%20image%2020220221004305.png) # Cotangent bundle ![](attachments/Pasted%20image%2020220424180722.png) There is a pointwise pairing $\globsec{\T M} \times \globsec{\T\dual M} \to C^\infty(M; \RR)$ where $v,\alpha \mapsto \alpha(v)$. # Orientability ![](attachments/Pasted%20image%2020220424181000.png) # Exponentials ![](attachments/2023-03-10exponent.png)