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ALGEBRAIC DEFORMATION THEORY

W. STEPHEN PIPER

Introduction

Deformation theory dates back at least to Riemann's 1857 memoir
on abelian functions in which he studied manifolds of complex dimen-
sion one and calculated the number of parameters (called moduli) upon
which a deformation depends. Max Noether in his 1888 paper on the
moduli of algebraic surfaces was apparently the first to consider de-
formations of manifolds of higher dimension. The modern theory of
deformations of structures on manifolds was developed extensively in
papers by Frolicher-Nijenhuis [2], Kodaira-Spencer [14], [15], Kodaira-
Nirenberg-Spencer [13], and Spencer [22], [23]. The study of defor-
mations of algebraic structures was initiated by Gerstenhaber, who,
remarking that his methods extend to equationally defined algebraic
structures, devoted his work [5] to consideration of associative algebras
and graded and filtered rings.

Having the concept of deformation of algebraic structures (princi-
pally, associative algebras) and of analytic structures (principally, com-
plex analytic manifolds), we are led to seek a deformation theory of
mathematical structures in general. The present paper provides a step
towards the development of a generalized deformation theory by intro-
ducing a type of cohomology, which we call "deformation cohomology,"
in the deformation theory of algebraic structures. The deformation
cohomology is an algebraic analogue of the cohomology introduced by
Haefliger [10] in the deformation theory of structures on manifolds. The
latter is developed in greater detail in an unpublished communication
from A. Douady to D. C. Spencer. The relationship between the defor-
mation cohomology and the Hochschild cohomology, the latter reflect-
ing the infinitesimal structure, is expressed by an exact, commutative
diagram (see §§9-11).

A reasonable deformation theory for mathematical objects should
incorporate the notion of a "deformation cohomology" which in turn is
related to a cohomology reflecting the infinitesimal structure—the latter
cohomology will be called, for simplicity, "infinitesimal cohomology."

Communicated by D.C. Spencer, January 14, 1967. Research supported by the
U.S. Army Research Office, Durham, under Contract DA-31-124-ARO(D)-151 and
by the Danforth Foundation.
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Our construction of a deformation cohomology in the algebraic theory
shows that the principal features of the analytic and algebraic deforma-
tion theories can be subsumed under a general treatment, exhibiting in
compact form the obstructions to deformations. Throughout we shall
exploit the similarity between algebraic deformation theory and the an-
alytic results obtained by Spencer and others.

The principal result of the present paper, contained in §1, is the def-
inition of an algebraic cohomology theory, H^(A, A), for an associative
algebra A of formal power series in dimensions 0, 1, 2, whose second
cohomology classes represent equivalence classes of one-parameter fam-
ilies of deformations of A, or of A\ where A = A'[[t]]. This might be
called the cohomology of A with coefficients in the multiplicative group
of germs of one-parameter families of deformations of A. We shall refer
to it more briefly as the (algebraic) deformation cohomology. A sim-
ilar cohomology is defined for Lie algebras (§5) and, by means of the
deformation cohomologies, the deformation theories of associative and
Lie algebras are identified (§6). The procedure used in defining the
deformation cohomology is valid for any equationally defined algebraic
system, and one could just as easily define it for Jordan algebras, Clif-
ford algebras, commutative associative algebras, nilpotent algebras with
fixed index of nilpotence, etc. For convenience we cast our discussion
throughout in terms of associative algebras.

The basic elements of algebraic deformation theory, previously in-
troduced by Gerstenhaber, are now obtained (§§2-4) from the cocycle
condition in the deformation cohomology which is, of course, the asso-
ciativity condition on bilinear maps. Because the original definitions of
the deformation cochains and the coboundary operator in dimension 0
were formulated with the intention of demonstrating the identity of the
associative and Lie theories, it is necessary to recast these definitions
when A' is given over a field k with positive characteristic. This is done
in §7, where the equivalence of the two definitions also is shown. In-
finitesimal deformations are seen to be Hochschild second cohomology
classes of A' with coefficients in A1\ and one has a mapping p of the
deformation cohomology into the Hochschild cohomology. Our interest
focuses on determining whether p is surjective. One asks under what
circumstances a Hochschild two-cocycle can be "integrated" to a defor-
mation. There are obstructions to such an integration, at least formally,
but up to now no specific examples have been examined in detail. An
obstruction is a Hochschild third cohomology class, and in general, there
are an infinite number of obstructions. One conjectures that there are
only finitely many obstructions, which is to say that having integrated
a cocycle to sufficiently high order, we can determine an extension so
that all further obstructions are zero.

The final analogy between the analytic and algebraic theories is the
introduction and discussion in §10 of an exact commutative diagram,
which links the deformation and Hochschild cohomologies, in analogy
with the analytic case of Spencer [21].



ALGEBRAIC DEFORMATION THEORY 135

Some special aspects of obstructions are discussed in Part II, and
our main result is that there are only finitely many obstructions to
the extension of a cocycle in Z*(A,M) to Z*(A,M)[[ί]] with respect
to a given deformation of A. Deformations of the module structure of
M over A are introduced in §14. Following one of the philosophical
suggestions for a general deformation theory, we induce an infinitesimal
cohomology theory whose cochains are multilinear maps of T(A) ® M
into A. The second part concludes with an investigation of relations
between deformations of A and of M over A, and of extensions of classes
mH2(A,M).

I wish to acknowledge my indebtedness to Dr. D. C. Spencer for his
assistance and encouragement during the research for and the writing
of this paper. Sincere appreciation is also due to Dr. H. Samelson for
his comments on the manuscript.

PART I

ASSOCIATIVE ALGEBRAS

0. Notation

Let A' be a given associative algebra with underlying vector space V7,
defined over a field k. It is not necessary now to restrict attention to
algebras which are finite dimensional over fc, although this restriction
will be useful later. The multiplication of A, denoted by α, is most
often indicated simply by juxtaposition. We currently assume that the
characteristic of k is zero, as the positive case is handled separately.
Reference to an identity element of Af automatically implies that the
statement is intended only for a class of unitary algebras. The custom-
ary Hochschild [12] cohomology of A! with values in itself is denoted by
H*(A',Af), and the tensor algebra of A is designated by T(A).

The theory is developed by considering the associative algebra A =
A'®kk[[t\] of formal power series over A\ which has as underlying vector
space V = V7®*; &[[£]], where k[[i\] is the ring of formal power series over
k. We also shall use a to indicate the multiplication on A, canonically
induced from A', and 1 to designate the identity map of A, as well as
the unit of A. The double usages should not cause confusion.

A p-linear (over k) map of A into A induces a p-linear (over
map of A into A, as is seen by considering the definition of A. Now a p-
linear map of A into A is said to be "defined from A" if it is canonically
induced by a p-linear map from A to A. In the sequel we only shall be
concerned with such maps which may be said to be admissible. As we
shall not deviate from this convention, it is unnecessary to mention it
each time p-linear maps of A into A are considered. Also, we shall not
distinguish between multilinear maps from A to A and the induced
mappings of A into A.



136 W. STEPHEN PIPER

Throughout the first few sections a parallel will be developed be-
tween the theory for associative and Lie algebras, culminating in a proof
of their coincidence. We shall deal with a Lie algebra V', defined over
k with underlying vector space V and Lie multiplication Zo, denoted as
usual by [,]. H*(L',Lr) is the customary Chevalley-Eilenberg [1] coho-
mology of V', with values in the universal enveloping associative algebra
U(L') of V. We also consider L = V ®fc k[[t]] with V = V'®k k[[t}} as
underlying vector space.

1. The deformation cohomology

Consider an associative algebra A! and the extension A of Af over the
ring of formal power series k[[t]]. Define the deformation g-cochains,
denoted C%(A, A), of A with values in A, for q = 0,1,2, as follows:

C°d(A, A) = A,

C\(A, A) — the group of vector space automorphisms of A of the form

Φt(d) = 2j (Pΐ(a)tti where φo is the identity map and the ψi are

defined from Af,

, A) = the maps of A <g> A into A of the form Ft(a, b) = ^ fi(a, b)t\

where /o(α, b) = α(α, b) = ab, and the fa are defined from Af.

A differential operator D is defined on the g-cochains, q = 0,1,2.
For x G C^A, A), Dx is the vector space automorphism of A given by

/I 9 1 Λ o
= a + (xα — α#)£ + I -x a — xax + -ax \t -\

Dx(a) = exp (xt) a exp(— xt)

-x a xax +

For ΦteCj(A, A),

DΦt(a,b)=φ-1(Φa Φb),

where we abbreviate the notation, writing Φa for Φt(a). For Ft (a, b) G

(α, 6, c) = Ft(Ft(a, 6), c) - F t(α, Ft(6, c)).

Remarks. 1) The unit or distinguished element in the set Cj(A,
is α, the original multiplication of A. The unit of the group C\(A, A)
is the identity map.

2) Z2Φt = 0 (or equivalently, DΦt(a,b) = ab) holds if and only if
Φt is an algebra automorphism.

3) Ft (α, b) is an associative multiplication on A if and only if DFt =
0.
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4) Everything indicated in this section and the next can be given
in precisely the same fashion, except for D on the 0-cochains, when
the characteristic of the ground field is not zero. Even here the result
is equivalent (cf. §7). However, the later discussions for Lie algebras
would not be valid.

Proposition 1. D is a well-defined differential operator, that is,

1) D2x(a, b) = ab, 2) D2Φt (α, 6, c) = 0.

The proof is an immediate consequence of the definitions.
The cohomology of this differential complex, called the (algebraic)

deformation cohomology, is denoted H%(A, A),q = 0,1,2. It is not
defined in higher dimensions, nor, analogously, was deformation coho-
mology defined for q ̂  2 in the analytic development. Since H®(A, A)
is the center of A, it is a commutative algebra; H^(a,A) is a group
of (equivalence classes of) algebra automorphisms; and H$(A, A) is a
cohomology set with distinguished element, which is the class of α.

2. Connection with deformation theory

The cochain Φt(a) G C\(A, A) is called a germ of (vector space) auto-
morphism of A' or a one-parameter family of (vector space) automor-
phisms, and Z\{A, A) is the subgroup of algebra automorphisms of A.
An algebra automorphism Φt(a) is said to be trivial, or equivalent to
the identity, if it is an inner automorphism of A. As a consequence of
the definitions, we have

Proposition 2. The equivalence classes of germs of automorphisms
of the algebra A! are in natural one-one correspondence with the coho-
mology classes H^(A, A).

More important for our considerations is the following:

Proposition 3. The equivalence classes of deformations of the al-
gebra A! are in natural one-one correspondence with the cohomology
classes H%(A, A).

A deformation of the algebra A' [5, p. 62] is given by an element
of Z%(A, A), and two deformations Ft, Gt are said to be equivalent
if there is a (vector space) automorphism Φt{a) = a-\- Σ Ψi(a)^ °f V

such that Ft(ά,b) = Φ~1(Gt(Φa,Φb)). But this is to say that FuGt

considered as elements of Z%(A, A) are cohomologous.
We now proceed to prove that differentiation with respect to t at t =

0 maps the deformation g-cochains, q = 0,1,2, into the Hochschild q-
cochains and, moreover, this mapping takes H%(A, A) into Hq(A',A').
In general the mapping is neither injective nor surjective.

For x e H§(A, A) = Z%(A, A), Dx must be the identity automor-
phism of A, i.e., exp(tx) a exp(— tx) = a. But this is true if and
only if x lies in the center of A, or equivalently, x G Z°(A, A). Writing

dx
x = Vit\ x e Z°(A, A) implies — = v1eZ°{A',A').
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Differentiating Φt = 1+ Σ ψϊt1 at t = 0, we obtain the infinitesimal

automorphism < î. That Φ* be a cocycle in Cl(A, A) implies certain
restrictions on the ψi. Namely, for all nonnegative r,

(1) φr(a,b)=
p+q =

or equivalently, making use of the Hochschild coboundary operator δ
and introducing the cup product of Hochschild 1-cochains φ U φ(a, b) =
φ(a)φ(b), we may write (1) as

δψi = 0,

(2) δφr = - Σ VP
 U Vv r = 2'

Proposition 4. Cohomologous algebra automorphisms have Hochschild
cohomologous infinitesimal automorphisms.

Automorphisms Φt, Ψt are cohomologous if there is an x G C%(A, A)
such that

Ψ^1{Φt{a)) — Dx(a) = exp(fcr) a exp(-tx),

or equivalently, for Ψ G Z^(A, A),

Φt(a) = $t(exp(ta) a exp(—tx))

or, hence,

It is notationally simpler to allow \ to stand for exp(ίx). Thus, Φt

and Ψt are said to be equivalent if there is a χ(= exp(ίx)) € C%{A, A) =
A such that

ψ-1(Φt(a))=χaχ-1=Dx(a).

This has the further, and significant, advantage of allowing the formulas
and the theory to hold in the case characteristic k φ 0, which case is
treated in §7.

Proof of Proposition 4. If Ψt(a) = a+ Σ φi{a)t\ then Φ^ix) =

X~1-X~1ΦΛχ)χ~1t-^' . Expressing Φt(a) = Ψt{χaχ~ι) =
in powers of t, we have
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(3)
Φt(a) = χaχ 1 + {φι(χ)aχ ι+χφι(a)χ ι - χciχ 1φi{χ)χ ι)t

Recalling χ = exp(tx), we see that (3) becomes

Φt(a) = a + {xa — ax + φι(a))t -\

where y is the Hochschild 0-cochain -x, which completes the proof.
Therefore, differentiation with respect to t at t — 0 induces a map

Note that in the special case when A is a finite dimensional algebra
over k, with char k — 0, p is onto, since for given ψ\ E Z1(^4/, -4'), Φ* =

) lies in Z\{A, A) (see §4).

Proposition 5. Given Φt = l + φnt
n H in Z\(A, A), then φn e

Z1(A',A'), and if φn is cohomologous to zero, Φ± is equivalent to a one-
parameter family of algebra automorphisms Ψt = 1 + φn + i^n + 1 H

Proof Prom (2) ψ\ — = <£n_i = 0 implies that δφn = 0, and
hence φn e Z1(Af,Af). If ψn e BX{A',A'), there is a y E A! such that
<pn(α) = δy(a) = ay - ya.

Let x G C^(A, A) = A be given by x = ytn~1 and set χ = exp(xί) =
l+2/ίnH— . Then Φt(p) is cohomologous, by definition, to Φ ί(χαχ~1),
and

completing the proof.

Corollary. Hλ{Af ,Ar) = 0 implies that all automorphisms of A (or
of A!) are inner automorphisms.

A cocycle φ in Z1(Af,A/) is integrable if it lies in the image of p.
The integrability question is a function of the cohomology class. More
explicitly, we have

Proposition 6. Suppose φ e Z1(A/,A/) is integrable. Then φ is
integrable whenever φ is cohomologous to ψ.

Proof Let φ(a) = φ(a) + δβ(a) = φ(a) + aβ — βa, for some β €
C°(A, A) = A. Consider Φt(a) = Φt(x~laχ) where χ = exp(tβ), and
Φt G ρ~ι(φ)j i.e., Φt(o) has φ(a) as its infinitesimal automorphism.

Φt{μ) = χ~ιaχ + φ(χ~ιaχ) +

= a + ( - βa + aβ)t + y?(α)t H = a + < (̂α)ί + •••-.

That is, </> is the infinitesimal automorphism of Φt and is integrable.
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The requirement that DFt(a, 6, c) = Ft(Ft(a, b), c)-Ft(a, Ft(b, c)) =
0, for Ft = a 4- X] /it2, expressed in powers of £, implies that the fι

satisfy for all nonnegative r:

or equivalently, for positive r,

(5) δfi(a,b,c)=0,

(6) */ r =

p,q>0

where / p * /g(α, 6, c) = /„(/<, (α, 6), c) - /p(α, /q(6, c)) and [/p, /ς] = / p *
fq + fq* /p Differentiating F t at £ = 0, we obtain the infinitesimal
deformation /i, which by (5) is a cocycle in 2

Proposition 7. IfFt,Gt are cohomologous multiplications, thenfι,gι
are cohomologous Hochschild cocycles.

Proof. Ft ~ Gt implies there exists a 1-cochain Φt G C\ (A, A) such

that Ft(a,b) = φ-ι(Gt(Φa,Φb)), and thus

Ft(a,b) = Gt(Φα,Φ6)

= Φa Φb + ̂ l ( Φ β , Φfe)* - </>l(#α ^6)£ H

= ab 4- (αy?i (6) 4- y>i (α)6)ί 4- Qι (α, b)t - ψι (ab)t H

= α& 4- (pi(α, 6) 4- £y>i(α, 6))t H .

Therefore, /i and g\ represent the same cohomology class in H2(Af, Af),
and we have that each cohomology class in H%(A, A) determines a class

in H2(Af, A1). Denote this mapping by p = —
ot ,_n

Proposition 8. Given nontήvial Ft G Zj(A, A), Ft is equivalent
to a one-parameter family of deformations Gt = α + p n ί n + ^ n + i ί n + x 4-
• , where the first nonυanishing cochain gn is in Z2(A', Ar) and is not
cohomologous to zero.

The proof is similar to that of Proposition 5 and is omitted (cf. [5,
p. 65]).

Corollary. H2(A',A') = 0 implies there are no nontrivial deforma-
tions of A (or of Af).

Again, a cocycle f\ in Z2(Af,A') is integrable if it lies in the image
of p, and we have

Proposition 9. If fι e Z2(Af\A') is integrable, then so is any co-
cycle g\ cohomologous to f\.
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3. The deformation equation and integrability

The previous section concluded with a note on integrability, and this
concept is developed now more fully.

Given a Hochschild 2-cocycle /i, which as we shall see can be re-
garded as a tangent vector to an algebraic variety, we ask the integrabil-
ity question. When can /i be "integrated" or extended by elements of
Cj(A, A) to a deformation 2-cochain, satisfying an appropriate struc-
ture condition, which in terms of the deformation cohomology is the
condition that it be an associative algebra? This requirement paral-
lels that implied in discussions of the analytic deformation cohomology
in the manifold theory and is also realizable in terms of a deformation
equation. The deformation equation can be stated, using the Hochschild
coboundary 5, as

(7) δυ-±[υ,υ]=0,

where v has the form fit -f /2t2 +

The equivalence of determining such a v and of having Ft = OL +
Σ fϊtι £ ^JC^> A) is clear from setting υ = Σ fft1 a n c^ using the

bracket defined in the preceding section. We have

Ft e ZJ(A, A) <=> [a + υ, a + v] = 0,

and

0 = [α + v, a + v] = 2[v, a] + [v, v]

implies

Sv = -[v, v] = v * v ,

which is, of course, the same as (6).

A "deformation equation" can be stated also in the case of automor-
phisms. Expressing Φt = 1 + ]Γ φtf by 1 4- ω, the condition that Φt

be an (associative) algebra automorphism is that Φt(ab) = Φt(a)Φt(b),
i.e., Φt e Z\{A, A), and thus

ab + ω(ab) = (α + ω(a))(b + ω(b))

= ab + aω(b) 4- ω(a)b + ω(a)ω(b),

from which δω -f ω U ω = 0.
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Given /i e Z2(A',A') and /< e C 2 μ', ,4 ') , 1 < i < n, satisfying (6)
for all r < n, we say /i is integrated up to order n — 1. The integration
equation may be stated recursively. Can we find fn € C2(Af ,Af) such
that

(8) % =

>, g > n

This is to ask whether ωn = J^ fp*fq is cohomologous to zero.

The class of ωn is said to be the nth obstruction to the integration
of /i Obstructions are Hochschild 3-cohomology classes, as proven
by Gerstenhaber [5]. Should it be the case that H3(A',Af) = 0, all
obstructions vanish and the formal question of integration is settled in
the affirmative. By formal in this context one means that, yes, an fn

with the requisite property does exist for each n. The cocycle f\ is said
to be integrated when an appropriate fn has been chosen, for each n > 1.
The primary obstruction (equal to the class of ω2 = fi * fi) depends
only upon the Hochschild class of /i, while the higher obstructions {ωn}
depend upon the choice of /2, , / n - i , as well as upon f\.

4. Integration of infinitesimal automorphisms

The integration question considered in this section asks to what extent
is the differentiation map p : H}(A, A) —> Hι(A',A') onto. That
is, given an infinitesimal automorphism φ in Zι(A',A'), can we find
an associative algebra automorphism Φt = 1 + Σ Ψ^% m ^<i(̂ > A)

such that ψ\ — ψΊ The answer to be proven shortly is easily stated.
Yes, p is onto when k has characteristic zero. The following proof also
holds for algebras with positive characteristic p, when p > 2g, where
the qth iterate of φ is the zero map. The more general case of positive
characteristic is not considered here, except to note the existence of
actual obstructions for the group algebra of Zp.

Given φ e Z1(Af

1A
f), define

φι{ά) = φ(a), φ-2(a) = ^

( ( ) ) etc.

Lemma 1. By the associativity of the composition of automorphisms,

(9) φi(φj(a))

The proof is straightforward as one quickly sees that the numerical
coefficients involved are simply the binomial coefficients.
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Consider Φt = 1 4- Σ Ψ^% -> where the ψι are as given above. Then

Φt = e**.

Proposition 10. etφ belongs to Z\{A, A), i.e., is an algebra auto-
morphism.

The necessary and sufficient condition that Φt = etφ be an algebra
automorphism is that

(10) φr(ab)=

The proof proceeds by induction. Observe that (10) is trivial for r = 0
and holds for r = 1, as ψ\ = φ e Zι(A',Ar). Assume (10) holds for all
r <; n - 1. Then,

φn(ab) =

=

=

-φi(φn-i(ab)

1
n

1

(iΔ

r+s=n-i

Σ (
r+s=n-1

VιVαJ ~r aΨn

1
n

'•<-<•

r + l)

r -\- i

*))<*

1

n

5 = n —

y
2-

(^i(^r(α)^s(6))

-h^r(α)(^i((^s(6))

n *-^
i+j=n-l

, \P ~τ~ Q.)Ψp\a)Ψq\P)

- °
q.e.d.

Given ψi, - ,φn in Cλ(A\ Af) satisfying

(11) δψr = Σ φp U φq, for r = 1, •

the Hochschild class of ]Γ ^ P U y?g is called the (n-f l) t / ι obstruc-

tion to the integration of </?i. If and only if this class is the zero coho-
mology class, there exists <£>n+i such that δφn+ι = ^ φp U φq.

P,Q>0

We just have proven that given ψ\ we can pick y?f in order to obtain
a global algebra automorphism with infinitesimal ψ\. However, given
ψii"' iψn satisfying (11), there may or may not be a global automor-

n

phism which modulo tn + 1 is equal to 1 + Σ φ%. This is reflected in
i = l

the fact that the map πi of §10 is not onto.
Consider now the unitary group algebra over k (when characteristic

k = p) of Zp. For each prime p, a derivation of this algebra can be
exhibited which is not integrable (cf. [5, p. 89]).
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5. The Lie deformation cohomology

Consider the Lie algebra V', and L = L'[[t]]. Then define C%(L, L) = L,
and C\(L, L) to be the group of vector space automorphisms of L of the
form Φt = Σ ψit1, where φo(a) = α, and the ψi are defined from V.

Let C%(L,L) be the group of bilinear, skew-symmetric maps of L into
itself of the form Bt = Σ Bit1, where Bo{a,b) = [a, 6], £ i maps into

L, the £^ map into the universal enveloping associative algebra U(L)
of L for i > 1, and for i ^ 1, the ̂  are defined from I/.

For x G L,Dx G C\{L,L) is the inner automorphism of L deter-
mined by x. Explicitly,

= exp(αd xt)(y) =y+[x, y]t + -[x, [x,

And,

As in §1 (Proposition 1), D is a well-defined differential operator.
Consequently, DΦt = 0 if and only if Φt is a Lie algebra automor-

phism, and Bt defines a Lie multiplication (that is, satisfies the Jacobi
identity) if and only if DBt — 0. We also have

Proposition 11. The equivalence classes of deformations of the Lie
algebra L' are in natural one-one correspondence with the cohomology
classes Hj(L,L).

Everything is defined just as in the previous three sections, and the
analogues of Propositions 2-9 are immediate.

Remark. For other equationally defined algebras—commutative,
Jordan, etc.—the deformation two-coboundary would be the defining
relation, just as in the associative and Lie cases.

This completes the introduction of the algebraic analogue of the
analytic cohomology.

6. Identity of the associative and Lie theories

Theorem 1. There is a natural isomorphism between the one-parameter
automorphisms and deformations of Lie algebras and of their universal
enveloping algebras.

That is, to every deformation of a Lie (associative) algebra, one can
associate a deformation of an associative (Lie) algebra, and similarly
for automorphisms.

Let V be a Lie algebra, L = L'[[i\], and A = U(L), the uni-
versal enveloping associative algebra of L. We define a natural map
7 : H%(L,L) —> H%(A,A). By definition of A as the universal en-
veloping associative algebra of L, Lie algebra automorphisms Φt of
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L extend to unique algebra automorphisms η(Φt) of A, and 7 so de-
fined carries inner automorphisms into inner automorphisms. There-
fore, 7 : H\(L,L) —> H\{A, A). The map on the 2-level is obtained
in a similar fashion; Bt G Zj(L,L) gives a one-parameter family {Lt}
of Lie algebras deforming L, and hence one has a one-parameter fam-
ily of enveloping associative algebras {At}, which is a deformation of
A. And At = T(L)/Rt, where Rt is the ideal of T(L) generated by
Bt(a,b) — a <g) b + b ® a. This set of multiplications on A is defined to
be "y(Bf) G Z^(A, A). Equivalence of deformations is preserved, and
consequently, 7 : Hj(L,L) —> £Γj(A A).

Theorem 2. The map 7 : H%(L,L) —• -ffJ(A, -A) is injectiυe.

On the 0-level 7 is an imbedding and, for g = 1, 2, 7 takes a co-
cycle into a unique extension. As two cocycles cannot have the same
extension, 7 is injective.

As A is a filtered algebra with F\(A) = L, restricting cocycles rep-
resenting classes in H%(A, A) to Fι(A), one has a map H%(A, A) —>
H%(L,L), q = 0,1,2. Hence 7 is onto. This completes the discussion
of Theorem 1.

Further, given an associative algebra, one defines a Lie algebra
L(A) = L over the underlying vector space V of A, by introducing
the commutator bracket [α, b] = ab — ba. There is an immediate relation
between iϊJ(A, A) and H%(L,L). Moreover, Φt G Z\(A, A) is an ele-
ment of Z\(L, L), and Φt G B\{A, A) is an element of JB^(L, L). Given
Ft G ZJ(Λ A), define Bt G Zj(L,L) by βt(α,6) = Ft(a,b) - Ft(b,a).
If Ft is a coboundary, then so is Bt. As a result we have a map
iί^(A, A) —> H%(L,L), and accordingly, every deformation (automor-
phism) of an associative algebra can be considered a deformation (au-
tomorphism) of a Lie algebra.

7. The case of characteristic p φ 0

Assume Λ' has an identity element. For char k -ψ 0, C^(A, A), Cj(-A, A)
and -D1, D 2 are well defined. An alternate and equivalent definition of
C%(A, A), and D° can be given so that these are well defined as well.
Intuitively, the 0-cochains are those elements of A which give rise to
inner automorphisms of A, and the coboundary of such an element is
this inner automorphism. The definitions of §1 for 0-cochains and the
coboundary operator D° were formulated with the discussion of the
deformation cohomology of Lie algebras in mind. However, the follow-
ing formulation is independent of char k (and hence is the necessary
formulation for char k φ 0).

Let C be the set of invertible elements of A whose constant term
lies in the center of A (equivalently, of A'). With this definition for 0-
cochains, the 0-coboundary operator is conjugation, i.e., the coboundary
of x G C is the inner automorphism of A given by xax~x.
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Lemma 2. When char k = 0, every inner automorphism of A, de-
fined by conjugation by x G C C A, is equal to conjugation by an element
of A, of the form exp(tx), x G A.

In other words, the lemma says that C and C®(A, A) are isomorphic
and that the two definitions of coboundary operator are equivalent.
In each case the coboundary of a 0-cochain is an inner automorphism
defined by the 0-cochain.

We recall that x e C may be expressed in powers of t by

x = vo + v\t 4- V2t2 H , Vi € A',

where vo lies in the center of A! and is invertible. Dividing out vo does
not affect the inner automorphism Ix(a) = xax~ι, and so without loss
of generality we may take VQ to be 1, the identity element of A'.

Then x~ι has the form, in powers of t, x~ι = 1 + Σ y%tl, where

y\ = —vι, and in general,

(12) 2/r = - Σ vPy<* ~ Vr'

P,q>0

Thus,

(13) xax~ι = (1 -h υit + f2^2 H )α(l - viί 4- {v\ - v2)t2 H )

= a + (i>iα — αυi)t + (^2^ — viα^i + o^i — av2)t2 H .

Substituting in exp(tχ) the power series in t of x = J^ χ^ 2 , we have

exp(tχ) = 1 + Xot + ί χi + ^

I 1 1 3 \ o
X2 + 2X0X1 + 2 X l X o + 6 X V *

3 \ o

Therefore,

(14)

exp(fχ)α exp(-ίχ) = a +

/ 1 2 1 2 \ 9

4- ( Xiα + -χoα-Xo«Xo + ^Xo ~ aXι J t

Comparing (13) and (14), one can solve for x so that (13) = (14), by
letting

1 2
Xl =V2~-Vi,

1 3 1 1
X2 = ^3 + ^Vi - 2 V i v 2 ~ 2V2^i, etc.
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This establishes the general pattern expressing successive χι in terms
of the Vj. But this is to say that conjugation by elements of C is
equivalent to conjugation by elements of the form exp(tχ), χ € A,
completing the proof of the lemma. The modified differential operator
will be denoted by D''.

The results of §2 continue to hold for characteristic k ^ 0 when
the deformation cohomology is reinterpreted as above. No change is
required in the statement of the propositions, while the proofs need
little or no alteration. For the proof of Proposition 4, replace D by D',
and x = exp(tx) by x = vo + v\t + v<ιt2 + e C. In the proof of
Proposition 5, let x = 1 4- yt, and for Proposition 6, let x = 1 + βt
replace χ.

A similar modification for Lie algebras can be given only in special
cases, as the exponential map is essential in defining the Lie algebra
inner automorphism determined by an element of the algebra. However,
the results of §§3 and 5 pertaining to deformations (i.e., 2-cocycles) are
independent of the characteristic, and so continue to hold for positive
characteristic different from 2. Nijenhuis-Richardson [20] have devoted
several sections to discussion of the case char k = 2.

8. Deformation theory in terms of
structure constants

The associativity of an algebra A! with basis {xi, ,xn} is expressed
by

(15) (xaXβ)xΊ — xa(xβXΊ);

here and throughout this section the Greek indices run from 1 to n.
(And a is an index—not the multiplication of A'.) Writing xaXβ =
ΣCI/?X7 5 w e obtain the set of structure constants {cT^}, for the alge-
7

bra A! with respect to the given basis {#i, ,xn} Associativity is
expressed in terms of structure constants by

(16) Σ C ^ C e 7

A deformation of the multiplication on A' is given by

(17) Ft(xa, Xβ) = XaXβ

Set cΊJt) = cΊ

aβ + £ f?(xa, Xβ)t\ and write fi(xa, Xβ) for cΊ

aβ.

The associativity condition (16) becomes in terms of the coefficients of
powers of t, for all non-negative p, q,
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(18) Σ Σ ffa"> Xβ)fϊ(Xt' Xy) ' fp(Xβ' xl)fgi.x^ xe) = 0.

Letting α^ β p = fp(xa, Xβ), where Greek indices run from 1 to n, and
Latin indices from 0 to oo, we rewrite (18) as

Σ
P+q=r ε

which is a quadratic polynomial over the ground field fc in n 3(r + 1)
variables. Denote this polynomial by ^ ' ^ 7 Then the set {g£rβ 7}
indexed by r ^ R and α, /?, 7, μ is a finite set of polynomials, which
defines an algebraic variety GR in ns(R + l)-dimensional affine space.
The set of varieties {GR} is ordered by inclusion, and GR has order
of contact R with the parameter space of Gerstenhaber at the point
c = {c^β}a,β,>y In [5] Gerstenhaber takes as the parameter space
for the deformation theory of n-dimensional associative algebras the
set of structure constants for all such algebras. This corresponds to
consideration of all n-dimensional associative algebras, each with fixed
basis.

As we are interested in deformations at the point c = {c^}α, βiΊ of
the parameter space, corresponding to A!, we take {cΊ

aβ} as our solution
to (19) for r = 0. Let {c^β^Y^β^'^'1 be a solution to (19) for
0^p + q = r'<r. Then the rth obstruction to the deformation of Af

is finding a solution to the system of polynomials

(20) £
ε

/-> (CaβpCεΊq ~ C%Ίp
 Cίεq)

This expresses the obstruction to deformation as a linear system of n4

equations in n 3 indeterminants, and for notational simplicity, (20) may
be rewritten in the form
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where the subscript r is added to the bi (corresponding to the quantity
in parentheses on the right of (20)) to indicate their dependence upon r.
The dij are independent of r (corresponding to the Hochschild cobound-
ary operator). The condition of integrability up to order r, equivalently
the vanishing of the rth obstruction, is the solvability of the system
(20) for the {X^ 7}, r fixed. This condition is expressed in terms of
linear algebra, by asking whether the rank of the (α^ ) matrix is equal
to the rank of (α^ : bi)—an affirmative answer being the necessary and
sufficient condition for solvability.

9. A diagram of algebras

The previous discussion of the deformation cohomology and the Hochschild
cohomology is incomplete in that no definite correlation between the two
was developed. The deformation cohomology, it was pointed out, gives
the automorphisms and deformations, while the Hochschild cohomology
represents the "infinitesimal" automorphisms and deformations. This
section and the next, in developing the final parallel to be discussed in
this paper, between the analytic and algebraic theories, present an ex-
act cohomology diagram linking the deformation and the infinitesimal
cohomology theories (cf. [21, p. 68]).

Consider an associative algebra A! over a field k with characteristic
zero, and let A — A7 [[£]]. For integers μ ^ — 1, we denote by Aμ the
subset of the elements of A, whose first μ + 1 terms in their power series
expansion over A! are zero. That is,

(22) Aμ = {aeA:a = bμ + 1t
μ + 1 + bμ + 2t

μ + 2 + ... , b* e A'}.

The subset Aμ is actually an ideal in A, and we may consider the
quotient Aμ = A/Aμ of A, with respect to the obvious equivalence
relation. The elements of Aμ will be referred to as μ-jets.

One then has the exact, commutative diagram.

(23)

1

ΐ
Aμ+1

T
A

ΐ
Aμ+l

T
1

1

T
—* A*

T
A
T

— • A,

T
1

The mappings involved follow immediately from the definitions. The
proofs of commutativity and exactness are straightforward.
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10. An exact cohomology diagram

From the above diagram (23) of algebras we obtain in a natural way
the exact cohomology diagram (24). (Note that there is a considerable
amount of repetition indicated in the diagram.) This section is devoted
to defining the terms and the mappings in the diagram. Diagram (24)
is just the expected exact cohomology diagram associated to the exact
diagram (23) with the modification that the Hochschild cohomology is
used where one would expect Hd(A'', Af), which is not defined. Perhaps
a deformation cohomology could be made meaningful for Ar once a Krull
topology has been introduced, enabling one to speak of μ-jets, etc. We
begin with a sequence of definitions, keeping in mind that the mappings
are induced from (23).

Λ H2(A\ A') - ^ H%{A, A^1) ^ HJ(A, A») - ^ HS(A', Af)

ΐ 7Γ2 T 7Γ2

H2(A, A) = H2(A, A)

U2 U2

J^ H\A', A') -°-> fl*(A, Λμ + 1) ̂  HJ{A, Aμ) - ^ H2(A', A')

II ΐ λ i T λ i II

^ H\A', Af) ^U Hι

d{A, A» + 1) -£* Hι

d(A, A") - ^ H2(A', Af)

ΐ TΓi T TΓi

(24)

Hl(A, A) = H1

d(A, A)

Ui Ui

J»+ H°(A', Af) - ^ H\{A, Aμ+1) -^ H\{A, Aμ) - ^ H\A', A')

II TO T O II
f, Af) - ^ H°d{A, A^1) ^ H*d{A, A») -±+ H\A', Af)

ΐ 7Γ0 ΐ 7Γ0

H°d(A, A) = H°d(A, A)

ΐ ΐ

0 0

, Aμ) = Aμ.

2. CS(A, Aμ) = Aμ.



ALGEBRAIC DEFORMATION THEORY 151

And for μ ^ 0,

3. C^(A, Aμ) = the subgroup of C\(A, A) of elements of the form

i> μ

4. Cj(A, Aμ) = the subset of C2(A, A) of elements of the form

5. C\(A, Aμ) = the quotient oίC\(A, A) by C\(A, Aμ). Explicitly, the
equivalence relation is given by

^ 1

if and only if ^ = ^ , i = 1, , μ.

6. Cj(A, Aμ) = the quotient of C%(A, A) by Cj(A, Aμ), where the
equivalence relation is

Ft = a

if and only if fa = git i = 1, , μ.

Note that C\{A, A0) = {1}, CJ(A, A0) = {a}, and Cj(A, Ao) =
Cq

d(A,A), q = l,2.
We define two differential operators as follows. On C%(A, Aμ),q =

0,1,2, Dμ is the restriction of the deformation coboundary operator D.
This gives a differential complex, and, taking the cohomology complex,
we obtain H%(A, Aμ),q = 0,1,2. The cohomology groups may be de-
scribed as

H%(A, Aμ) = Aμn {the center of A}. Recall H%(A, A) = the center
of A

H\(A, Aμ) = the cohomology classes of algebra isomorphisms of A
of the

form Φt = 1 + Σ ΨiP

, Aμ) = the cohomology classes of multiplications on A of the
form

i > μ

The second differential operator Dμ is defined on representatives of
C 2 ( A , J 4 " ) , Q = 0, 1,2, by

i) considering x — x0 + x\t + + xn^
μ + ^ μ + i ^ μ + 1 + in

C2(A A), let z = xo + xit H h x μ ί μ . Then x = z + y, y e Aμ, and
define

(25) Dμx = £)z ,
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ii) considering Φt = 1 + Σ Ψi? e Cd(A> A)i d e n n e

(26) £>μΦt(α, 6) = DΦt(a, b) = Φ'ι{Φa Φ&) modulo

iii) considering Ft = α + Σ / ^ e Cj(A, A), define

(27) D^F t = ί)F t = ^[F t ,F t ] modulo(tμ + 1).

Observe that
i) Dμx = 0 if and only if z lies in the center of A.
ii) Z)μΦ = 0 if and only if DμΦ(a, b) represents the trivial automor-

phism of Aμ\ that is, is of the form ab + φμ+ιtμ +λ H . This implies
that

(28) δφr = -
p q
P,q>0

iii) DμFt = 0 if and only if i[Fί, Ft] has the form
gμ+2tμ + 2 + , which implies that

(29) 5 / r =

We shall refer to Ft as a multiplication modulo tμJrl.
It follows immediately from the definitions that Dμ Dμ = 0, and

that Dμ is a well-defined differential operator on the cochains Cj(Λ, ^4μ),
0, 1, 2, as the definitions are independent of the choice of representa-
tive elements of the equivalence classes. Cocycles in Z\(A, Aμ) and
Zj(^4, Aμ) will be referred to as μ-jets of automorphism and of defor-
mation, respectively.

As the proof of the exactness and commutativity of diagram (24)
follows immediately from the mappings involved, it suffices to give ex-
plicit description of these mappings. The mappings are described most
easily by representatives and/or on cocycles. It is a simple exercise to
see that they are well-defined on the appropriate cohomology classes.

The mapping p2 is the (μ + l)th obstruction map defined on a rep-
resentative by

p2(Ft =a+J2fit
i) is the class of ^ fP*fq-

Similarly, p1 is the (μ + l)th obstruction to the integration of an infini-
tesimal automorphism.

Defined on cocycles, the maps, TO, τi, T2, ô> î? L2 &fe inclusions.
The mapping σ2 is induced from the map of cocycles given by
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Similarly, σ1 and σ° are induced from the maps of cocycles given
respectively by

An element of H%(A, Aμ) may be represented by

Ft = a + / μ + i ί μ + 1 + , where -[Ft,Ft] = 0.

Define p2{Ft) to be the class of / μ + i, which by Proposition 8 is a
cocycle. If / μ + i G B2(^4', A7), then P2(ίi) = 0? and JFi represents
an element of H%(A, A μ + i ) . Thus p2 is well-defined on cohomology
classes. Analogously, p\ and po are defined respectively from the maps

The connecting homomorphism λi is defined on representatives of
the μ-jets of automorphism by

(30) λι(Φt)(a, b) — Φ~ι(Φa - Φ\j) ,

where Φt = 1 + £ ψit* and {Φt} e Z\(A, Aμ). To prove that λi is well

defined on Z\{A, Aμ), we must show that Φ~1(ΦaΦb) and Φ"1(Φa-Φb)
are cohomologous in Z%(A, Aμ), when Φ — Ψ = 0 modulo tμ +ι. Letting

We have then to prove the existence of a Δ = 1 4- Σ σϊt% s u c n t n a t

(31) Δt(Ft(a, b)) = Gt(Δt(a),Δt(b)).

The reader may verify that Δt — Ψ~1(Φt) satisfies (31).

11. Consequences of the diagram

Let HS(A', Af) be the zero group. Then for all μ, Hj(A, AμJrl) - A
£Γ|(^4, Aμ) is onto, stating that every class of deformation cochains
satisfying the associativity condition up to order μ also satisfies it up
to order μ + 1. As μ runs from 1 to oc, this says that all obstructions
vanish.

Suppose H2(A', A') — 0. It was observed as a corollary to Proposi-
tion 8 that under this assumption Af is rigid, i.e., H^{A, A) = 0. This
result also follows immediately from (24). From the third row we have
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0 —» HJ(A, Aμ + 1) - ^ HJ(A, Aμ) —> 0

and by recursion

~ H2

d(A,Aμ)

for nonnegative μ and η. Setting μ = 0,

H%(A, Aη) ~ H%(A, A) ,

which implies H%(A, A) = 0.

We further observe that

0 —> HJ(A, A» + 1) — #J(A

is exact for all μ ^ 0, and composing injections,

2 + J, A")

is exact for all nonnegative μ and 7?. In particular, as Cj(Λ, ^o) =
CJ(A A), fΓj(A, A0) = 0, and therefore H$(A, A*) = 0 for all η^Q.
This also implies the rigidity.

Similar observations can be made about the vanishing of Hι(A'', A;)
and H2(A\ Ar) with respect to automorphisms.

The diagram (24) was expressed for arbitrary nonnegative μ. Spe-
cializing to μ — 0, we obtain the isomorphisms

#J(A A1) ~ tf2^, A') ,

PART II

FINITELY MANY OBSTRUCTIONS AND THE

DEFORMATION OF MODULES

The twofold object of Part II is i) to show that there are only finitely
many obstructions to the extension of a Hochschild second cohomology
class in H2(A, M), where M is a two-sided module over an associa-
tive algebra A. The proof will be seen to rest on a certain linearity
condition—a condition which fails when discussing deformations of A.
And ii) to develop the theory of deformations of two-sided modules over
associative algebras. The latter parallels the deformation of complex
analytic fiber bundles.

Consider M, a two-sided A-module, A being an associative algebra,
and let
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CA = C(A, A), the Hochschild cochains of A with coefficients in A,
with Hochschild coboundary 5 A- After a change from the usual grad-
ing, we shall denote this complex by A*.

CM = C(A, M), the Hochschild cochains of A with coefficients in M,
with Hochschild coboundary SM Later this complex is denoted by
M*.

12. M* is a complex over the Lie algebra complex
A*

Clearly, (CA, $A) and (CM, SM) are graded differential complexes. We
first recall the graded Lie algebra structure of (CA, SA) and then show
that (CM, SM) πiay be considered as a graded module over the graded
Lie algebra (CA, SA). It is customary to write CP(A, A) =Έoτn(Tp(A), A).
However, in discussing the graded structure it is necessary to have
deg / = p— 1, for / G CP(A, A), and similarly for the cochains C(A, M).
To simplify the notation, especially with respect to this concept of de-
gree, we write Ap for C ^ + 1 and Mp for Cjj^+1. Thus we consider the
complexes (A*, 6A) and (M*, SM)> The arguments of §13 are made eas-
ier if we know that M* is a complex over A*. This will be demonstrated
now.

For f eAp, ge Aq, [/, g] G Ap + q is given by

(32) [/,0]=/*0-(-l)Mff*/,

where

The reader may prove that the bracket so defined satisfies the Jacobi
identity and is compatible with the Hochschild coboundary operator.
Hence, (A*, 5A) is a graded Lie algebra complex, with 6A a right inner
derivation of of degree 4- 1.

To give the two-sided module structure of (M*, 5M) over (A*, SA)
define ^ <g> Mq -> M p + 9 by

(33) [/,<?] = - ( - 1 Γ 0 * /, for / e Ap, geMq ,

and M 9 ® Ap -• M^+9 by

(34) [»,/]= fl*/, for/G^, ^ G M 9

In order that this structure actually be that of a two-sided module, it

is necessary that

(35) [[ft, / ] , 9] + (-1Γ+ 1[[Λ, g),f} = [h, [/, 9}) ,

(36) [/, [9,ft]] + (-ir+1[9, {f,h}} = [[/,»], A]



156 W. STEPHEN PIPER

hold for / G Ap, g G Aq, h G M*. Note carefully that there are two
different brackets appearing in equations (35) and (36). This should
cause no difficulty as / * h is not defined in general for / G ^4*, h G M*.
The following relation (37) is used in verifying (35) and (36). The proofs
are left to the reader.

(37) (/ι^)*/ + (-lΓ + 1(/ι*/)*^/ι*(^/) + (-lΓ + 1/ι*(/*5)

for/G^, geA«, heM*.

Finally, to confirm that (M*,SM) as a graded complex lies over the
graded complex (A*,<5^), it is necessary to verify, for / G Ap, g G M ς ,
that

(38) δM\f,g] = {-l)q[δAf,g] + [f,δMg],

(39) δM[gJ] = (-mδMgJ] + \g,δAf\.

One proves

(40)

(41) δMg = -g * α + (-1)% * 0,

where α is the multiplication of A, and π reflects the given A-module
structure of M. That is, π : A<S>M —• M,π : M®i4. —> M. Equations (38)
and (39) follow from the fact that the Hochschild coboundary operator
on the cochains of an algebra with values in itself is a right derivation
on the graded Lie algebra of cochains. That is,

(42) δ[f,g] = (-l)q[δf, g] + [/, δg], w h e r e feQp,ge Q\

for an arbitrary cochain complex Q of an algebra with values in itself.
The remainder of the proof of (38) and (39) may be found as a part of
Theorem 4 in [3, p. 282].

13. Finitely many obstructions

One of the outstanding problems of deformation theory is that of fi-
nitely many obstructions. One conjectures an affirmative answer in
the algebraic case. Similarly, Grauert has conjectured such an answer
for the deformation of complex analytic structures. This section deals
with an integration or extension problem in which the obstructions are
not quadratic, as in the above conjectures, but instead simply linear.
Namely, there are only finitely many obstructions to extending a class in
Hr + X(A, M). The proof suggested by Griffiths [8] relies on earlier work
by Grauert, Kodaira, and Spencer. The following discussion presented
in a series of lemmas is valid for any graded differential complex over
a graded Lie algebra, although our interest is in cochain complexes of
algebras and modules. We shall have occasion to refer to rings of formal
power series M*[[t\] and A*[[i\], the quotient field M*((£)), and A*{t},
the ideal in J4*[[£]] of formal power series with zero constant term.
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Consider Φt e Ax{t}, such that

(43)

and define δΦ : Mq[[i\] -» Mq + ι[[i\] by

= δMFt-[Φt, Ft}.

One checks that δφ-δφ = 0, and hence (M* [[£]], 5φ) is again a differential
complex.

An extension of a Hochschild (r + l)-cocycle / G M r , with respect
to Φt e Aλ{t}, is an element Ft in Mr[[t}] such that i) F o = /, ii)
δφFt = 0. The cocycle / is said to be extendible if such an extension Ft

exists. All (r + l)-coboundaries g = δh are extendible. (G< = δφh is an
extension of g). Thus, the question of extendibility depends upon the
cohomology class of / in Hr + 1 (A, M). A cohomology class is said to be
extendible if any (and therefore all) representing cocycle is extendible.

Given an extension Ft = Σ ffi% -> of / — /o» o n e has from (33) the

following set of relations :

(44)i SM/I = /I, t^P' Λ]j where we have written Φt =

p + q = i
p>0

or using (41),

Suppose one is able to find /o, , /ΛΓ-I such that (44)* is satisfied for
i = 1, , iV — 1 that is, /o can be extended up to order N — 1, then

is said to be the Nth obstruction to the extension of / = /o The
result is that there are only finitely many obstructions in the sense that
there exists an N such that if / is extendible to order N (i.e., ω^ is
cohomologous to zero), then / is extendible. This conclusion is based
on a series of four lemmas whose proofs may be found in [8].
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Denote the r-cocycles of (M*[[t]],δΦ) by Zr

φ{M). If Ft G Z%[M)
extends / G Zr + ι(A, M) (note the change in grading), then Ft is called
a jump extension if there is a Gt in Mr~ι({t)) with δφGt — Ft (i.e., Gt

oo

has the form Σ 9ft\ 9i ^ Cr (A,M), for some nonnegative N). And

/ G Z r + x (A, M) is called a jump cocycle if there is a jump extension Ft
of /. A class in Hr + 1 (A, M) is called a jump class if any representative
is a jump cocycle. Since δφg is a jump extension of δjwg, the notion of
jump class is well defined.

Lemma 3. The Nth obstruction UN to extension is in Zr + 2(A, M).

Lemma 4. ω G Zr + 2{A,M) is a jump cocycle if and only if ω is
an obstruction to extending some f in ZrJtl(A,M).

Define N(ω) to be the least integer n, such that ω is an nth ob-
struction to the extension of some / in Z r + 1 ( A , M). Given / in
Zr + 1(A, M), let N(f) be the greatest integer n such that / can be ex-
tended up to order n — 1. In other words, we can find /o = /, /i, / μ ,
satisfying (44)^ for i = 0, , μ when μ = n — 1, but not when μ = n.

Comparing the obstructions to the integration of Hochschild cocycles
in Z2{A, A) (8) and of 1-cocycles in Zλ(A, A) (11), with the obstruc-
tion (45) to the extension of a cocycle in Z r + 1 (^4,M) with respect to
Φt G ̂ { t } , we see that the obstruction is quadratic in the {fi} in the
previous cases, whereas it is linear in the {fi} in the present context.
The distinction between the situations with linear and quadratic ob-
structions is made clear in the following lemma. Because the proof does
not hold for quadratic obstructions, this lemma is not proven for the
case of algebra deformations, and we are presently unable to obtain the
statement of finitely many obstructions for algebra deformations or au-
tomorphisms. Finally, we remark that the other lemmas of this section
do hold for deformations.

Lemma 5. \) If ω is an obstruction of order N(ω) to the extension
offe Zr^1{A. Λί), N(ω) = N(f).

ii) // ω is an obstruction of order N(f) to the extension of f G
Z r + 1(A, M),N(ω)=N(f).

The first statement says that if ω is an nth obstruction to the ex-
tension of some f e Zr + 1(A, M), and if / is extendible to order n + 1,
then ω is an (n — l)th obstruction for some cocycle in Zr + ι(A, M).

Part ii) says that if / is extendible only to order n, and if ω is an
nth obstruction to the extension of /, then ω is not an mth obstruction
to the extension of any g G Zr~*~1(A, M) for m < n.

Under the assumption that i?"r + 2(^4, M) is finite dimensional, the
subset of jump classes (equal the subset of obstructions) is finite dimen-
sional over k. Let ωi, , ωs be a basis for a subset of obstructions.
To each ωi associate iPJ G ΛΓ + 1 [[£]], and G\ G Mr((t)) such that

i) φg = α;i? ϋ) δφG\ — Ψ^

iii) G\ has a pole of order N(ui) at t = 0.
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Let iVr_|_i = max{iV(u^) : 1 ^ i 5Ξ s}. Corresponding to a linear
(over k) combination ω of obstructions {ω\, ,ωs} is a linear (over k)
combination Gt of formal power series {Gj, , Gf }. Since the order of
the pole of Gt at t = 0 is not greater than the maximum of the orders
of the poles Gj, 1 = 1, , s at t = 0, iV(u ) ^Nr + 1.

Lemma 6. Suppose f G Zr + ι(A, M) has for some n ^ iVr + i an
extension of order n. Then f is extendible.

When A is finite dimensional over k and M is finite dimensional
over A, Hr~*~2(A,M) is finite dimensional, and we conclude from the
preceding four lemmas:

Theorem 3. There are only finitely many obstructions to extending
aclassinHr + ι{A,M).

Let Φt = at. Such a Φt satisfies (43), as a is the coboundary of
the identity automorphism of A, and therefore 5AOL = 0. Applying the
preceding results, we have that given / G Z r + 1 ( A , M), there exist only
finitely many obstructions to obtaining Ft = ^ fit1, /o = /, such

that δfi = (— l)rfi-ι * a. For r = 1, this becomes

δfi = Λ_i(α,6c) -/i_i(α6,c).

A more substantial result is obtained by taking Φt = Σ ψit1,

where α + J ] (£^ G Z%(A, A). In the case, (43) is just the well-

known deformation condition (6) and is satisfied. Consequently, given
/ G Z2(A, M), there are at most finitely many obstructions to the
extension of / to Ft = ^ fit1 such that

ΐ > 0

q
p>0

or more generally, given / G Z r + 1 ( A , M), there are finitely many ob-
structions to obtaining Ft = Σ fit1, where /o = /, and

(46)
P + q

p>0

14. Module cohomology

Consideration of the deformation theory for associative algebras and
Hochschild cohomology and for Lie algebras and Chevalley-Eilenberg
cohomology suggests that a well-defined deformation determines a co-
homology theory when one requires the infinitesimal deformations to be
classes. The situation for analytic structures and commutative algebras
supports this view. When certain homological hypotheses are satisfied,
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such a cohomology theory is unique. That is, knowledge of the 0- and 1-
cohomology uniquely determines the g-cohomology. We now apply this
philosophy to the case of modules. By first describing the deformation
of a two-sided module M over an algebra A, we are able to define a
cohomology, whose cochains are maps of T(A) 0 M 0 A into M, which
might be called the cohomology of M over A with values M.

Let M be a two-sided ^-module, with external operation π, and let
&t — Σ Ψi^ be a deformation of A. Then Ft — Σ $$'•> where

fo = πis called a deformation of the two-sided module structure with
respect to Φt if, for α, b € A, m e M,

(47) Ft(Φt(α,6),m) = Ft(α,Ft(6,m)),

(48) Ft(Ft(m,α),6) =F t(m,Φ t(α,6)),

(49)

where (47), (48), and (49) generalize (ab)m = a(bm), (ma)b = m(ab),
and (am)b = a(mb), respectively. We use Ft to denote the change in
both the left and the right module structure. Which multiplication is
meant at a given time will be clear from the order of the arguments.

Expanding (47)—(49) in powers of t, one obtains for all r and for p
and q ^ 0:

(50) Σ fpiVqia, 6), m) - /p(α, /,(&, m)) = 0,

(51)

(52) ^ /P(Λ(o,m),6) - fp(a,fq(m,b)) = 0.

We now wish to define the coboundary df of a homomorphism / :
A 0 M —• M as a step towards introducing the cohomology of M over
A with coefficients in A. For any homomorphism / : A 0 M —> M or
/ : M 0 4̂ —• M, define, for α, 6 G A, m G M,

(53) d/(α, m, 6) = α/(m, b) - f(am, b) + /(α, m6) - /(α, m)6.

With this definition for cf, (52) can be rewritten for nonnegative r as

(54) 4fr(α,m,6)= £ fP(fq(a,m),b) - fp(ajq(m,b))

and as a consequence, d/i(α, m, 6) = 0.
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Consider Kr = Hom(Tr(A)(g)M,M) Θ Horn (Γ r_ 1(A)®M®A,M),
and define d : Kr -* Kr + 1 by, for r = 0

df(a, m) = af(m) - f(am), df(m, b) = —f(mb) + /(m)6,

for r = 1 and / : A <g> M -> M or f :M®A-+ M

df(a, ra, b) = α/(ra, b) — /(αra, b) + /(α, ra6) — /(α, m)6;

for r > 2 define

#(«o ? ' * , ar,m) = αo/(αi, ,ar,m)

r

+ ] ζ ( — l ) * / ( α o , ••• , α i _ 2 , α i _ i α i , α i + i, ,ar,m)
i = l

+ (-l) r+1/K, ,or_i,αrm)

for / :Tr(A) ® M-> M, and

o, 5 α r _i ,m,α r ) = αo/(αi, ,α r _i,m)
r - 1

- l ) V ( α o , •• ,αt-2,αt- iβ<,βi + 2, , α r _ i , m , α r )

, , α r _ 2, α r - im, α r)

, ,α r _i ,m)α r

for / : Γ r_ i(τ4) 0 M 0 A ^ M . The differential operator d so defined
satisfies (53) when / is defined on either M<S>AoτA<S)M. The involved
computations to prove d2 = 0 are omitted. Considering the cohomology
of (K*,d), we have a cohomology theory in which the 1-cocycles are
infinitesimal deformations of the two-sided module structure of M over
A

As the Vth obstruction, which is the module cohomology class of the
righthand side of (54), to the integration of j \ is quadratic in the / ,̂ the
proof of finitely many obstruction in §13 fails for module deformations,
just as it failed for algebra deformations. It will be seen in §§15 and 16
that these two questions are not independent.

15. Compatibility of deformations

This section considers simultaneously an associative algebra A; a two-
sided A-module M; a deformation Φt = Σ Ψfi% °f M a deformation

Ft — Σ fit1 °f t n e two-sided ^4-module structure of M with respect to

Φt] and an extension Gt = Σ 9^1 °̂  a 2-cocycle g in Z2(A,M) with

respect to Φ ,̂ as in §13. The result of this section is that we obtain in a
natural way an algebra and a deformation of this algebra when Ft and
Gt satisfy a relation expressing compatibility.
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First, recall the deformation conditions, for all r ^ 0, where p, q ^ 0,

(55) Σ φP{φq(a,b),c - φp(a, φq(b,c)) = 0,
p + q = r

(56) Y2 fp(φq(ai b)> m) ~ /p(α ' fq(b' m)) = °>

(57)
p-\-q — r

(58) £ / > , /g(m, 6)) - /p(/,(α, m), 6) = 0,

(59) 7T*#r(a,6,c)+ ^ 9P(o.,φq(b,c))-gp(φq(a,b),c)=0.

Equation (55) is the deformation condition for the algebra A. Equa-
tions (56) and (57) give the conditions for the deformation of the left
and right module structure of M over A with respect to the algebra de-
formation Φt, while (58) is the two-sided module deformation relation.
Equation (59) is the same as (46) for r = 1.

Consider the vector space direct sum of A and M, denoted by A+M,
where a multiplication on A + M is given by

(60) Φt(xux2) = (Φt(a1,a2), Ft(a1,m2) + Ft(m1,a2) + Gt{aua2)),

and Xi = at + m i5 a,i e A,mi e M for i = 1,2. In order that
#ί(#i,#2) = Σ Ψi{χι^χ2)tι be an associative multiplication, it is nec-

essary and sufficient that

(61)

5Z i,α2))
p, ς ^

satisfy the associative deformation condition (55).

Theorem 4. #t defined by (60) gives a deformation of the algebra
(A 4- M)g, which has multiplication given by

(α, m)(a', mf) — (aa\ am' + ma' + #(α, α7)),

if and only if the extension of g G Z2(^4,M) zs compatible, in the sense
of (66), with the deformation of the module structure.

The significance of the compatibility requirement will be made clear
in the course of the proof, which is a straightforward verification of (55),
using (61). One has
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/

q
p, q, r, s ^ 0

p+q+r+ s =
p, ς, r, s ^ 0

The summation on each of the first five lines of the right-hand side
of equation (62) is over all pairs of nonnegative integers whose sum does
not exceed μ. Therefore, we may apply formulas (55)—(59), 0 ^ r ^ μ,
to show that terms in the first four of these lines vanish pairwise, and
that the fifth line vanishes together with the terms in the sixth line for
which 5 = 0. We are left with

(63)

- fs(ai,gq(a2,a3)).
r=Qs+q=r

s>0

In the hypotheses at the beginning of the section no statement was
made about any relationship between the extension (i.e., deformation)
of g and the law of multiplication A&M-+M, which was made to
depend, via the deformation Fu upon t. That such a connection or
compatibility condition is needed is made clear in the present theorem,
which will say, when proven, that the right-hand side of (63) vanishes.
If Gt is to be a coycle, not just in Z|(M), but with respect to the entire
structure, whose multiplication at time t is given by (60), then we must
have the compatibility condition

(64) 5G t(αi,α2, α3) = Ft(aι,Gt{a2, as)) - Gt(Φt(aι, α2),α3)

+ G t(αi,Φ t(θ2,α 3))-F t(G t(αi,α 2),α 3) = 0 ,

or, in terms of coefficients of powers of ί, for all r _ 0,

(65) Σ (fp(augq(a2, as)) - gq(ψp(aι,a2),a3) + gq{auφp(a2i as))

-fP(9q(ai,a2),as)) = 0.
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The summation over the middle two terms together with the extremes
for p — 0 is zero by (50). Thus the compatibility condition (65) becomes
for r ^ 0,

(66) ^2 fp(aii9q{a2,a<3)) - fP{gq{ai,a2),a3) = 0.
p + q = r

p>0

When Gt is such that, for a given F t , (66) vanishes, Gt is said to be an
extension compatible with the deformation Ft of the module structure.
Comparing (64) and (66) completes the proof of Theorem 4.

Note that the concept of extension Gt of g G Z2(A, M), compatible
with a deformation Ft of the module structure, also means that Gt will
be an extension, as in §13, with respect to the deformation Φt of the
algebra A. While this fact is discussed more fully in the next section, we
point out now that it follows from equation (63) in the proof of Theorem
4. If Φt is a deformation of (A + M)g, then the left-hand side of (63)
is zero, as are the first and last (less the terms for s = 0) lines on the
right-hand side. The remaining lines on the right-hand side (including
the sixth line for s = 0 with the fifth) are independent of each other,
and as their sum is zero, each is zero. The fifth line together with the
5 = 0 terms of the sixth expresses the fact that Gt is an extension of g
with respect to Φt.

16. Investigation of deformations of A + M

Reversing the order of considerations in the previous section, we now
examine deformations of an extension of A by M, and ask when such
deformations induce deformation of A and of the module structure of
M over A, and extensions of g G Z2(A, M).

It is well known that the equivalence classes of singular extensions
of M by A are in one-one correspondence with the second cohomology
classes H2(A,M). Let g be a cocycle in Z2(A,M) and consider the
corresponding extension A 4- M of A, with multiplication given by

(αi, mi)(o2, ra2) = (αiα2, aλm2 + m1a2 + g(aι, α2)).

Denote this algebra by (A + M)g and let #t(#i,a;2) = Σ Φi(χiiχ2)tι

be a deformation of (A + M)g. Therefore, the φi satisfy for r _ 0

(67) ] P Φp(Φq(XU X2),X3) ~φp(Xl,φq(X2,X3)) = 0.
p+q = r

Because Ψt is bilinear and Xj = a,j +rrij, j = 1,2,

This can be expressed by
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(68) φi(xι,x2) = (α»(αi,α2) + /?i(α

Vi{ai,a2) 4- Pi(aι1m2) + σ^rai, α2) 4-

Substituting (68) into (67), we obtain, as the component in Λ, where
terms as grouped according to their arguments,

(69)
0 =

,03)) + ap(βq(a1,m2),α3) - αp(θi,7β(m2,α3))

,03) - βp(aι,σq(m2,α3)) + αp(7Q(mi,α2),α3)

,α3)) + 7p(σg(mi5

α2),03) - εp(mι,ηq(a2,α3))

4- αp(εg(rai, ra2), α3) - εp(mi, σς(m2, α3)) + ηp{μq(mι,m2), α3)

- 7P(mi, 7g(^2, α3)) 4- /3p(α9(oi, α2), m3) - βp(a1,pq(a2, m3))

4- εp(ηq(aι,α2),m3) - αp(αi,/?g(α2,m3)) 4- βp(βq(aum2),m3)

- αp(αi, εg(m2, m3)) 4- εp(pg(αi, ra2), m3) - βp(auμq(m2, m3))

+ βp(Ίq(mi, α2), m3) - ηp{mι,βq(a2, ra3)) 4- εp(σg(mi, α2), ra3)

- 7P(mi,/3ς(α2,m3)) + βp{εq(mlim2),m3) - 7P(mi,ε g(m2,m3))

4- εp(μg(mi, m2), m3) - εp(mi,

Equation (69) and the corresponding equation for the M-component
of (67) contain much information but little is accessible without further
assumptions. For all r the summation over p, # ̂  0 with p+q = r of the
terms in each row is zero, as is seen by letting first πi\ = m2 = ra3 = 0,
then πi\ — a2 = m3 = 0, etc.

Since # t gives a deformation of {A 4- Λf)p, we have /30 = 7o = ô =
μo = 0,
and αo(αi,α2) = αiα2,po(^i?^2) = αim2, σo(mi,α2) = miα2 and
7/0 = g- Assuming βp = ηp = 0 for all p, we have from (69)

(70) 2 ^ ap(aq(aι, α2), α3) — αp(αi, α g(α 2, ̂ 3)) = 0?

(71)

and additional relations involving α, ε, and σ; α, ε, and p; and ε and η.
The only relation of immediate significance is (70) which says Σ atf1

is a deformation of A induced by Ψt. Considering (71), and assuming A
has a unit, let a2 be the unit of A. Sine εo = 0 and σo (πii,α2) — mi,
(71) implies εi = 0, and recursively, εr = 0 for all r.
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Under the assumption that βp = j p = 0 for all p, we have from the
equation for the M-component of (67)

(72) δηt(aι,a2,o>s) — 2^ Vp(aq(aiia2),a>3) — Vp(a>ii&q(Q>2ja>3))

q>0

2, a3)),

(73)

= 0 ,

p+q=r

0 ^

(76)

(74)

,α3)) = ] Γ σp(σq(mi,α2),α3) - σp(mi, α ς(α 2,α 3)),

p+q=r
p, g ^ 0

(75)

] P pp(αi,pg(α2,ra3)) -p p (α g (αi,o 2 ),m 3 ),

= 0 ,

and additional relations involving μ and σ; μ and p; and μ, σ, and p.
Of course μo = 0, but it may be that for some n, μn 7̂  0. Let n be

the least such index. Setting r = 2n in (76), we see that μn defines an
associative multiplication on M. Thus it might be the case that A has
the structure of a module over the associative algebra M, not at t = 0,
but under the deformation Ψt. The assumption that εp = 0, for all p,
suffices to give (76).

Relation (73) corresponds to (58) in the previous section, where we
now distinguish between left multiplications (po) by A, and right mul-
tiplications (σo) by A. Interpreting ]Γ pit1, Σ σ^% a s deformations

of the left (respectively right) module structures of M over A, we have
from (73) that they are compatible. The left-hand side of (72) equals
(59), while the right-hand side is the compatibility condition (66). But
the fact that Ψt is a deformation of (A + M)g does not imply these two
quantities are independently zero.

The assumption that μp = 0, for all p, reduces (74) and (75) to (57)
and (56), respectively, stating that Σ σitι( Σ pϊt1) give deformations

of the right (left) module structure of M over A, compatible with the
deformation ^ ait1 of A. The converse would not seem to be true.

We gather the conclusions of the preceding discussion in

Theorem 5. A deformation Ψt=Σ Φϊ? of the form (68), of(A +
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M)g for which βp = ηp = 0 for all p satisfies the following statements:

i) εp — 0 for all p.

ii) Φt induces a deformation of A.

in) Ψt induces an extension of g if and only if such an extension is com-
patible with the deformed module structure.

iv) // in addition μp = 0 for all p, Ψt induces a deformation of the two-
sided module structure of M over A compatible with the induced de-
formation of A.

v) Ψt induces an associative multiplication on M if the μp do not vanish

identically.

The development of the module deformation cohomology and dis-
cussion of an exact cohomology diagram (cf. (24)) associated to the
deformation cohomology of the central term of the exact sequence,

0 -> M -> (A + M)g -> A -> 0

for given g G Z2(A, M) is left to a later paper. The strong parallel
between this exact sequence and a similar sequence in the deformation
theory of complex analytic fiber bundles will be discussed in that paper.
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