Complex Analysis Qualifying Exam 2019 Fall-Solutions Committee: Valery Alexeev, Benjamin Bakker and Jingzhi Tie

1. Show that $\int_{0}^{\infty} \frac{x^{a-1}}{1+x^{n}} d x=\frac{\pi}{n \sin \frac{a \pi}{n}}$ using complex analysis, $0<a<n$. Here n is a positive integer.

Solution. Let γ be the perimeter of the wedge-shaped region consisting of the oriented segments:

$$
\begin{aligned}
& \gamma_{1}=\{t \mid \epsilon \leq t \leq R\} \\
& \gamma_{2}=\left\{R e^{i t} \mid 0 \leq t \leq b\right\} \\
& \gamma_{3}=-\left\{t e^{2 \pi i / n} \mid \epsilon \leq t \leq R\right\} \\
& \gamma_{4}=-\left\{\epsilon e^{i t} \mid 0 \leq t \leq b\right\}
\end{aligned}
$$

Note that the function $f(z)=\frac{z^{a-1}}{1+z^{n}}$ is meromorphic and single valued in the region $0<\arg z<\frac{2 \pi}{n}$ with a single simple pole at $z=e^{\pi i / n}$ with residue

$$
\lim _{z \rightarrow e^{\pi i / n}} \frac{z^{a-1}}{1+z^{n}} \cdot\left(z-e^{\pi i / n}\right)=\lim _{z \rightarrow e^{\pi i / n}} \frac{(a-1) z^{a-2}\left(z-e^{\pi i / n}\right)+z^{a-1}}{n z^{n-1}}=-\frac{e^{a \pi i / n}}{n}
$$

Since $a<n$ we have

$$
\frac{z^{a-1}}{1+z^{n}}=o\left(R^{-1}\right) \text { on } \gamma_{2}
$$

so that $\int_{\gamma_{2}} f(z) d z \rightarrow 0$ as $R \rightarrow \infty$. Likewise, since $0<a$ we have

$$
\frac{z^{a-1}}{1+z^{n}}=o\left(\epsilon^{-1}\right) \text { on } \gamma_{4}
$$

so that $\int_{\gamma_{4}} f(z) d z \rightarrow 0$ as $\epsilon \rightarrow 0$. Finally,

$$
\int_{\gamma_{3}} f(z) d z=-e^{2 \pi i a / n} \int_{\gamma_{1}} f(z) d z
$$

Thus, using

$$
\int_{\gamma} f(z) d z=2 \pi i\left(-\frac{e^{a \pi i / n}}{n}\right)
$$

and taking the limit, we have

$$
\left(1-e^{2 \pi i a / n}\right) \int_{0}^{\infty} \frac{x^{a-1}}{1+x^{n}} d x=-\frac{2 \pi i e^{a \pi i / n}}{n}
$$

whence

$$
\int_{0}^{\infty} \frac{x^{a-1}}{1+x^{n}} d x=\frac{\pi}{n} \cdot \frac{2 i}{e^{\pi i a / n}-e^{-\pi i a / n}}=\frac{\pi}{n \sin \frac{a \pi}{n}}
$$

2. Prove that the distinct complex numbers z_{1}, z_{2} and z_{3} are the vertices of an equilateral triangle if and only if

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}
$$

Solution. Note the above condition can be written

$$
\left(z_{3}-z_{1}\right)^{2}-\left(z_{3}-z_{1}\right)\left(z_{2}-z_{1}\right)+\left(z_{2}-z_{1}\right)^{2}=0
$$

which is evidently preserved by scaling and translating. Thus we may assume $z_{1}=0$ and $z_{2}=1$, in which case the condition is $z_{3}^{2}-z_{3}+1=0$ and equivalent to $-z_{3}$ being a third root of unity which is not 1 , which is equivalent to the triangle being equilateral.
3. Let γ be piecewise smooth simple closed curve with interior Ω_{1} and exterior Ω_{2}. Assume $f^{\prime}(z)$ exists in an open set containing γ and Ω_{2} and $\lim _{z \rightarrow \infty} f(z)=A$. Show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi= \begin{cases}A, & \text { if } z \in \Omega_{1} \\ -f(z)+A, & \text { if } z \in \Omega_{2}\end{cases}
$$

Solution. Consider $g(\xi)=f(1 / \xi)$, which extends continuously and thus holomorphically over $\xi=0$. Letting γ^{\prime} be the pullback of $-\gamma$ under $h: \xi \mapsto \xi^{-1}$, we have

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi=-\frac{1}{2 \pi i} \int_{\gamma^{\prime}} \frac{g(\xi)}{\xi^{-1}-z} \frac{-d \xi}{\xi^{2}}= \begin{cases}A & \text { if } z \in \Omega_{1} \\ -f(z)+A & \text { if } z \in \Omega_{2}\end{cases}
$$

using the residue formula, as in the first case the integrand's only pole in the interior of γ^{\prime} is at 0 with residue $-A$ and in the second case at 0 and z^{-1} with residues $-A$ and $f(z)$, respectively. Note that γ^{\prime} has clockwise orientation.
4. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an injective analytic (also called univalent) function. Show that there exist complex numbers $a \neq 0$ and b such that $f(z)=a z+b$.

Solution. By the Casorati-Weierstrass theorem, if f has an essential singularity at infinity, the image of any neighborhood of infinity is dense in \mathbb{C}. As the image is also open, it follows that if f is injective, it cannot have an essential singularity at infinity, as the intersection of two open dense subsets is nonempty. Thus f and is therefore polynomial, so by the fundamental theorem of algebra, the injectivity of f implies it is degree one.
5. Find a conformal map from $D=\{z:|z|<1,|z-1 / 2|>1 / 2\}$ to the unit disk $\Delta=\{z:|z|<1\}$.

Solution. $f(z)=\frac{z-i}{z+i}$ maps the upper half-plane conformally to the unit disk Δ, and moreover maps the line $\operatorname{Im} z=1$ to the circle $|z-1 / 2|=1 / 2$. Thus, the inverse $f^{-1}(z)=i \cdot \frac{1+z}{1-z}$ maps D to the strip $0<\operatorname{Im} z<1$. The strip in turn is mapped to the upper half-plane via $g(z)=e^{\pi z}$. Thus, the required map is $f \circ g \circ f^{-1}$.
6. A holomorphic mapping $f: U \rightarrow V$ is a local bijection on U if for every $z \in U$ there exists an open disc $D \subset U$ centered at z so that $f: D \rightarrow f(D)$ is a bijection. Prove that a holomorphic map $f: U \rightarrow V$ is a local bijection if and only if $f^{\prime}(z) \neq 0$ for all $z \in U$.

Solution. We show for $z \in U, f$ is a local bijection in a neighborhood of z if and only if $f^{\prime}(z)=0$. We may and do assume $z=0$ and $f(z)=0$.
We may assume $f(z)=z^{n}+z^{n+1} g(z)$ in a neighborhood of 0 where $n \geq 1$ is the order of vanishing and g is holomorphic. Then $f^{\prime}(0)=0$ iff $n>1$. On a small enough radius r disk Δ_{r} around 0 we have $\left|z^{n+1} g(z)\right|<\frac{1}{2}\left|z^{n}\right|$, so for $|w|<r^{n} / 2$ we have

$$
\left|z^{n+1} g(z)-w\right|<r^{n}=\left|z^{n}\right|
$$

on $\partial \Delta_{r}$. By Rouché's theorem z^{n} and $f(z)-w$ have the same number of zeroes in Δ_{r}, that is, n. Thus, if $n=1$ then f is bijective on any disk contained in $f^{-1}\left(\Delta_{r / 2}\right) \cap \Delta_{r}$. Conversely, if $n>1$, then in any neighborhood of 0 we can find z_{0} with $\left|f\left(z_{0}\right)\right|<r^{n} / 2$ such that $f^{\prime}\left(z_{0}\right) \neq 0$, in which case $w=f\left(z_{0}\right)$ must have more than one preimage and f is not locally bijective.

