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 Annals of Mathematics, 112 (1980), 485-510

 A Complete moduli space for K3
 surfaces of degree 2

 By JAYANT SHAH*

 1. Introduction

 A nonsingular, projective surface, V, over C is called a K3 surface if

 H'(V, o,) - 0 and the canonical divisor class of V is trivial. It is called a
 K3 surface of degree 2 if V carries a line bundle L with L * L = 2. V is

 said to be generic if its Picard number p( V) (= the rank of Pic ( V)) is equal

 to one.

 If L is a line bundle on a generic K3 surface V such that L * L = 2, the

 linear system I L I has no fixed components and maps V onto P2 as a double
 cover of P2, ramified over a nonsingular sextic curve [7]. Conversely, there
 exists a unique sextic double plane V corresponding to a given sextic curve;

 the minimal desingularization of V is a K3 surface if and only if the singu-

 larities of V consist of isolated, rational double points. The points corre-

 sponding to nonsingular sextic double planes form an open, dense subset U.
 in the moduli space of K3 surfaces of degree 2. The object of this paper is

 to describe a completion O9R of U, such that OR contains the moduli space of

 K3 surfaces of degree 2 as an open subset U. Let us call a two-dimensional,

 projective scheme V a (singular) K3 surface if it can be deformed into a

 nonsingular K3 surface. We will associate with each point on the boundary

 of U in (R, a unique, singular, K3 surface.

 We construct ',R via the geometric invariant theory [8]. Let mD be the

 quotient of the space Hs" of semistable sextic curves by PGL3. Let f: H6s3OR

 be the quotient morphism. We recall (Proposition 2.1, ? 2) that if f: X--

 Spec C [[t]] is a flat, projective morphism such that the generic geometric
 fiber of f is isomorphic to a nonsingular sextic double plane, then there exists

 a flat, projective morphism f': X' -- Spec C [[t]] and a map p: Spec C [[t]]
 Spec C [[t]] such that (i) the generic fiber of f' and the generic fiber of the
 pull-back of f via p are isomorphic and (ii) the geometric fibers of f' are
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 486 JAYANT SHAH

 double planes ramified over semistable sextic curves belonging to minimal

 orbits. Let (9Jl0 be the open subset of 911 representing the sextic curves

 which do not have either a multiple component or a point of multiplicity > 4

 or consecutive triple points. On0 represents sextic double planes whose

 singularities consist of isolated rational double points and hence `lRo repre-

 sents nonsingular K3 surfaces which carry a line bundle L of degree 2 such

 that the linear system I L I has no fixed components. There is a unique point

 a in OR - OR, such that the unique closed orbit, 0, in V-'(a) is the orbit of
 a sextic curve consisting of a nonsingular quadric with multiplicity three.

 The sextic double planes corresponding to the points in Ol - a have only

 insignificant limit singularities [12]. If a one-parameter family of nonsingular

 projective surfaces specializes to a sextic double plane with only insignificant

 limit singularities, the mixed Hodge structure of the sextic double plane

 determines the Hodge components of the limit mixed Hodge structure of

 the family. We classify such sextic double planes according to their mixed

 Hodge structure (S 3). Moreover, we show that a point x in OR - 'DUO - a
 cannot correspond to a nonsingular K3 surface (Proposition 3.1). We

 associate with x, the sextic double plane which is ramified over a sextic

 curve belonging to the unique closed orbit in fV-(x).
 The point a represents all the semistable sextic double planes which

 have significant limit singularities. The occurrence of these surfaces reflects

 the fact that `oR cannot represent all K3 surfaces of degree 2 because some

 K3 surfaces carry a line bundle L of degree 2 which is ample, but not very

 ample. If V is such a K3 surface, then I L I has a fixed component, D, which
 is a nonsingular rational curve. I L - D is linearly equivalent to 2C where
 C is a nonsingular, elliptic curve [7]. L I maps V onto P. Consider a family
 of K3 surfaces, f:X-> SpecC[[t]] such that f is smooth and its generic
 geometric fiber is a generic K3 surface of degree 2. Let S2 be a line bundle

 on X such that S induces an ample line bundle of degree 2 on the geometric

 fibers of f. Let X, be the fiber of f over the closed point of Spec C [It]]. Let

 Lo be the restriction of S to X0. Suppose that Lo is not very ample and let

 D be the fixed component of I Lo 1. Let ps: X---+ P2 x Spec C [It]] be the rational
 map defined by 2. X must be blown up along D in order to extend qd, to a

 morphism q'4: X'--> P2 x Spec C [It]I. Let

 X ' Y

 CPE

 D, x, Spc C Rt
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 A COMPLETE MODULI SPACE 487

 be the Stein factorization. Y is a double cover of P2 x Spec C [[t] whose
 branch locus is a family of sextic curves specializing to a nonsingular conic

 with multiplicity three. Thus, all K3 surfaces carrying a line bundle

 which is ample, but not very ample, are represented by a single point a in

 enR. Therefore, the space Olk must be blown up at 6. This is done, in effect,

 by blowing up HSs along 0,. Instead of actually working with 0, we
 proceed as follows (S 5). Fix a point Q on 0. Let GQ denote the stabilizer
 group of Q in PGL3. We define a GQ-invariant subspace, M, of H6, which is

 'normal' to 0O at Q. Let CT' be the categorical quotient of MSS by GQ. Let a

 be the image of Q in d'. We show that there is a canonical map d'->'fin which

 is etale at a. We now blow up MSS at Q. (The blow-up is defined by a weight

 filtration.) The action of GQ extends to the blown-up MSS and thus induces

 a blow-up of d' at a and, hence, of a)1 at a. In P5, let ?? denote a cone over

 a rational, normal, quartic curve contained in a hyperplane. The points

 on the exceptional divisor in the blown-up O.f)R correspond to double covers

 of ??, ramified over the vertex and a section of ?" by a cubic hypersurface

 in P, which does not pass through the vertex. The moduli space N1 of such

 surfaces is constructed in Section 4. The semistable surfaces have, in this

 case, only insignificant limit singularities. We prove (Theorem 6.1) that if

 f: X Spec C [[t]] is a family of sextic double planes such that the generic
 geometric fiber of f is nonsingular and the singular fiber of f is triply rami-

 fied over a nonsingular conic, then there exists a flat, projective morphism,

 f': X' --> Spec C [[t]] and a map p: Spec C [[t]] -> Spec C [[t]] such that (i) the
 generic fiber of f and the generic fiber of the pull-back of f via p are

 isomorphic and (ii) the fiber of f over the closed point of Spec C [[t]] is a
 double cover of ??, has insignificant limit singularities and belongs to a

 minimal orbit. Among the double covers of ??, only the surfaces whose

 singularities consist of rational double points correspond to elliptic K3

 surfaces carrying an ample line bundle of degree 2 which is not very ample.

 The remaining surfaces cannot correspond to nonsingular K3 surfaces.

 The surjectivity of the period map for K3 surfaces of degree 2 follows

 as a corollary to our construction.

 A preliminary version of these results was announced in [13]. An

 analysis of K3 surfaces of degree 4 by the technique described in this paper

 will appear elsewhere [14].

 E. Horikawa has analyzed sextic double planes in order to prove the

 surjectivity of the period map in this case [6]. My work differs from

 Horikawa's in two respects. To show that the points in OR - - a cannot
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 488 JAYANT SHAH

 correspond to nonsingular K3 surfaces, Horikawa relies on Borel's extension

 theorem for the period map. Secondly, Horikawa does not construct the

 actual blow-up ORk of OR, but proves a slightly weaker version of our

 Theorem 6.1 by direct computations. We prove the theorem by applying

 the geometric invariant theory.

 I want to take this opportunity to express my thanks to my thesis

 adviser, Professor Michael Artin.

 2. Stability of sextic curves

 We recall some facts from the geometric invariant theory [8]. Let X be
 a projective scheme over an algebraically closed field k of characteristic zero.

 Let G be a reductive algebraic group acting on X. Fix a G-linearized, ample

 invertible sheaf on X. Let XSs (respectively, XS) be the set of semistable

 (respectively, stable) points of X. Then, a universal categorical quotient

 f?: X~s -> Y of X~s by G exists. Y is a projective scheme and b is an affine,
 universally submersive (consequently, surjective) morphism. Moreover,

 there is an open set Y0 c Y such that Xs tff'( Y0) and such that the restric-

 tion {j: Xs -- Y0 is a universal geometric quotient of Xs by G.

 Let R be a discrete valuation ring over k with an algebraically closed

 residue field and let t be a local parameter in R. Let S= Spec R, o = the closed

 point of S and = the generic point of S. For n > 1, let pa: S-> S be the map

 which takes t to to. Let f be a i-valued point of Y0. Then, there exists an

 integer n > 0 and a section g: Xs such that the following diagram

 X

 where pa: is the restriction of pX, to i, commutes. The section g is unique
 in the following sense. Given another positive integer n' and another

 section g' such that the analogous diagram commutes, there exists an integer

 m such that n and n' divide m and such that the pull-back of g via pmn and

 the pull-back of g' via p belong to the same orbit. This follows from the

 fact that the geometric fibers of t? contain exactly one orbit.

 We get only fiberwise uniqueness when we consider sections of f.

 Recall that every geometric fiber of Ij contains a unique closed orbit, called

 the minimal orbit, and it lies in the closure of every orbit in the fiber.

 PROPOSITION 2.1. Let f: S -> Y be a map such that f(Q) e Y0. There
 exists a positive integer n and a map g: S -> Xs such that the following
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 A COMPLETE MODULI SPACE 489

 diagram

 XSS

 (la S ' f 'Y

 commutes. Moreover, we may assume that g(o) is a point in a minimal

 orbit.

 Proof. Let X, = X"s x, S and let US: X, -> S be the canonical morphism.
 ts is submersive; that is, a subset U in S is open if and only if Us '( U) is open

 in X . In particular, 0y'(o) is not open and UsQ() is not closed. Therefore,
 there exists an irreducible component W in the closure of 0s1(C) such that
 the restriction map *: W -> S is surjective and hence equidimensional. It
 follows from the proof of the lemma on page 14 in [8] that there exists an

 integer n and a map g: S > W c X~s such that the above diagram commutes.

 Moreover, if x is a closed point in +-l(o), we may assume that g(o) = x. Since

 +-l(o) must contain the minimal orbit in t -'(f (o)), the proposition follows.
 Q.E.D.

 Remark 2.2. Let R = k[[t]]. If two sections, g and g', satisfy the
 conclusion of Proposition 2.1, they do not necessarily belong to a common

 orbit, even after they are pulled back over some extension pm. The trouble

 lies with positive-dimensional stabilizer groups of semistable points. Let G.
 denote the stabilizer of g(o) which is a point in a minimal orbit. Assume

 that G. is of positive dimension. Let x: Spec k [t, tj] -> G. be a nontrivial

 one-parameter subgroup of G,. For a suitable integer m, X transforms g o pm
 into a map g': S -- X~s such that g'(o) = g(o). However, X cannot extend to

 an S-valued point of G,.

 Let H6 = I HO(P2, op,(6))l = the space of plane sextic curves. Consider
 the canonical action of PGL3 on H6. In his book [8], Mumford has given

 explicit stability computations for plane quartic curves. We use his method

 and notation for determining semistable sextic curves. We assume that by

 a suitable choice of coordinates, a given one-parameter subgroup X of PGL,

 is diagonalized and has the form

 tro 0 0

 o trl o

 o o tr2j

 such that ?? = 0 and r o > X ? r .. We then denote X by the triple (r., rl, r2).
 We use also the following notation:
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 490 JAYANT SHAH

 i, j: positive integers,

 a, al, a2, a3: complex numbers,
 f( ..): a form of degree i in variables indicated in parentheses,

 XO, xl, x2: homogeneous coordinates in P2,

 x =xJ1/XO: Y- X2/XOh

 We define a weight filtration on C [x, y] by assigning to x weight 1 and to y

 weight 2. We describe the sextics by means of their homogeneous equation

 F(xo, x1, x2) = 0 or the inhomogeneous equation f(x, y) - 0.
 We first describe the unstable sextics. These are determined by con-

 sidering all one-parameter subgroups X and the corresponding sets Hi- =

 {p e H6: f(p, x) <O}. The two maximal sets are as follows:

 (a) aO3 =the coefficient of y3 in f(x, y) # 0. Let (ro, r1, r2) = (4i + j, i,

 -5i - j). H7-: f(x, y) = y3 + terms of weight >6, that is, the sextics which
 have a line as a component and have a triple point on that line such that

 the triple point remains a triple point with a threefold tangent under a

 quadratic transformation.

 (b) a03 = 0. Let (r0,, 12)= (5i - j, -i, j - 4i), i > j/3 > 0.

 Hi-: f(x, y) = y3f1(x, y) + f5(x, y) + f6(X, y) ,

 that is, the sextics with either a quadruple point which has a threefold or a

 fourfold tangent or a singular point of multiplicity ? 5.

 Next, we determine the semistable sextics and their minimal orbits.

 A closed point p in H6S is stable if and only if f-1(f(p)) consists of the
 minimal orbit. If 0 and O' are two orbits in H6Ss such that O' c( the closure

 O of 0 in H6Ss, then, there exist a one-parameter subgroup, x: Spec C [t, tj']
 PGL3, a point p in 0 and a point p' in O' such that limp"(t) = p' and fe(p)

 fe(p') = 0 where , is the numerical function defined on H6 by X [8]. For
 each one-parameter subgroup x, let Hi = {p e H6: fe(p) 0 0} and Hi = the

 points in Hi which are fixed under the action of x. Let HlS = H, H2Ss and
 IHis s Hi D H2Ss. If p e Hi, then lim-Opl(t) e Hi. A semistable point p does not
 belong to a minimal orbit in HS- if and only if there exists a one-parameter

 subgroup X such that p e Hs - f_2Ss and such that p and lime -opit) do not
 belong to the same orbit. If we partially order the sets HiSs by the relation:

 HRS~s > Hss if and only if HSs D H2S and for every point p e Hf, the

 closure of the orbit of p in HJSs contains a point of Hisls;

 then, in order to determine the minimal orbits in H.S, it is enough to
 determine all the maximal sets H2S. These are as follows where we have
 parametrized HRSs and HY~s by polynomials f and f respectively.
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 A COMPLETE MODULI SPACE 491

 1. ro r 1
 f y2f' where f' is a polynomial in x, y of degree ?4. H2Ss consists of

 sextics which have a line as a component with multiplicity 2.

 f y2f' where f' is a polynomial in x of degree ? 4.

 2. r, 0.

 f a1y2 + a2y2x2 + a3yx4 + a~x6 + terms of weight >6. If a, = 0, the
 sextic belongs to Case 5 below. If a, # 0, the sextic has consecutive triple

 points at the origin, x = y = 0.

 f = ay3 + a2y2x2 + a3yx4 + asX6. If a, = 0, the sextic has a quadruple
 point at the origin and belongs to Case 5 below. If a3 = a, = 0, the sextic
 has a double line and belongs to Case 4 below.

 3. r, - r2.

 f f4(x, y) + f5(x, y) + f6(x, y). The sextics have a quadruple point at

 the origin.

 f f(x, y).
 4. ro r # r2, r, > 0; let (ro, r1, 1'2) = (4i + j, i, - i - j).

 f ay3 + X2y2 + terms of weight >6.

 f X2y2. The sextic consists of three distinct lines, each with multi-
 plicity 2.

 5. 70r, r# r2, r,< 0; let (ro,rl, r2) = (5 - j, -i, j - 4), i > j/3 >0.
 f y 2f2(x, y) + f5(x, y) + f6(x, y) such that f2(x, 0) # 0. The sextics

 have a quadruple point which has a tangent of multiplicity equal to 2.

 ff= x2y2

 From the above lists, we conclude the following theorems.

 THEOREM 2.3. A sextic curve C is properly stable if and only if the

 following conditions are satisfied:

 (i) C does not have a multiple line as a component.

 (ii) C does not have consecutive triple points.

 (iii) C does not have a point of multiplicity ? 4.

 THEOREM 2.4. The semistable sextic curves belonging to minimal orbits
 are as follows.

 Group I. Reduced sextics which have neither consecutive triple points
 nor a point of multiplicity ?4.

 Group II. A sextic curve defined by one of the following equations:

 (1 ) (X0X2 + ax)(x0X2 + a2x1)(x0X2 + a3x1) = 0 where a1, a2, a3 are distinct
 complex numbers.
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 492 JAYANT SHAH

 (2) x2f4(X, X1) = 0 where f,(xo, xl) has no multiple factors.
 (3 ) (X.X2 + ? 2f2(Xo, X1, X2) = 0 such that the quadric curves defined

 by the equations XOX2 + XI 0 and f2(xo, x1, x2) = 0 intersect in four distinct
 points.

 ( A42) f l(x, X1 X2) = 0 where f3(xo, xi, x2) - 0 defines a nonsingular
 curve.

 Group III. A sextic curve defined by one of the following equations:

 ( 1 ) (FX? ? x2(XOx2 + axD = 0 where a # 1.
 (2)XO2X2X2 = O.

 Group IV. The sextic curve defined by the equation (xox, + X2)3 = 0.

 Remark 2.5. Let R = C[It], S = SpecR, o = the closed point of Sand
 the generic point of S. Let g: X > S be a family of sextic curves such

 that the generic geometric fiber is smooth. Let xo be a coordinate in P2 and
 let A = the complement of the line (xo = 0). X is a divisor on P2 x S. Let
 f = 0 be a local equation of X in A x S. Let K be the function field of P2 x S.
 Let Y be the normalization of P2 x S in K(V7f). Y is a double cover of
 P2 x S ramified over X. It is unique since P2 x S is simply connected. Let

 Y' be the normalization of P2 x S in K(Vltf ). Then, the restrictions of Y
 and Y' to P2 x 4 are the two, nonisomorphic, double covers of P2 x 4 rami-
 fied over X x ,. Y' is ramified over X U (PO x {O}). However, the normali-
 zations of the pull-backs of Y and Y' to Spec R [Vt ] are isomorphic.

 3. Monodromy of families of sextic double planes

 In this section, we explain the classification of sextic double planes

 according to the four groups of semistable sextic curves. By a family of
 surfaces over a connected scheme W, we mean a flat, projective morphism
 g: X-- W such that the geometric generic fibers of g are smooth, connected

 and two-dimensional. Let S = Spec C [[t]] and let o denote its closed point.
 If h: Y-e S is a family of surfaces over S, we let YO denote h-1(o). Let A be
 a connected, nonsingular curve over C. Let so, be a closed point of A. If

 g: X -> A is a family of surfaces over A, we let X, denote g-'(s0). A family
 of surfaces h: Ye- S is called a local modification of g at so if there exists
 a map p: S -- A such that p(o) = s. and such that the generic fiber of h and

 the generic fiber of the pull-back of g via p are isomorphic.

 PROPOSITION 3.1. Let g: X-- A be a family of sextic double planes such

 that X, is ramified over a semistable curve C belonging to a minimal orbit.

 If C belongs to Group I of sextic curves, then XO has only rational double

This content downloaded from 
������������172.58.158.163 on Sun, 05 Mar 2023 06:20:08 UTC������������� 

All use subject to https://about.jstor.org/terms



 A COMPLETE MODULI SPACE 493

 points as singularities and it is birationally a K3 surface. If C belongs
 to Group II or III of sextic curves and if h: Y -> S is a local modification

 of g at so, then every component of Yo is birationally ruled.

 Proof. The first assertion is clear. Suppose that C belongs to Group II

 or III. Let p: S > A be the map as described above. Let g': X' -> S be the

 pull-back of g via p. There exists a blow-up Y' ---> Y such that the rational

 map Y ---> X' extends to a morphism Y' > X' and such that Y' is nonsingular.

 Then Y' is a resolution of singularities of X'. Every component of Y` is

 birationally ruled since every component of XO is birationally ruled and
 since XO has only insignificant limit singularities. Q.E.D.

 For a further classification of the singular fibers, we look at the

 monodromy of a family of surfaces, g: X -- A. Let t be a local parameter

 at so. For some s > 0, let B be the disc {t: I t I < e} in A. Choose s sufficiently
 small so that g is smooth over B - so. Let s be a point in B other than sO.

 Let X, g-'(s). The fundamental group [l = , (B - so, s) acts on the

 cohomology group H2(XS, Q). Let y denote the image of I-I in Aut(H2(X8, Q));

 it is called the local monodromy group of the family at so. Let T be a

 generator of a; T is the local Picard-Lefschetz transformation at so.
 By passing to a ramified covering of A, we may assume that (i) the fiber

 XO over so is a double plane ramified over a sextic curve C which belongs to

 a minimal orbit and (ii) T is unipotent. We prove the following theorem.

 THEOREM 3.2. Let g: X - > A be a family of surfaces (not necessarily

 sextic double planes) such that the special fiber XO over so is isomorphic to a

 double plane, ramified over a sextic curve C which belongs to a minimal

 orbit and such that the local Picard-Lefschetz transformation T at so is

 unipotent. Let N -In T. Let i = the exponent of nilpotence of N; i

 min {i: N' = O}. Then,

 > = 1 if C belongs to Group I of sextic curves (see Theorem 2.4),

 i = 2 if C belongs to Group II of sextic curves,

 > = 3 if C belongs to Group III of sextic curves.

 Proof. Recall that the weight filtration of the limit mixed Hodge

 structure on H2(XS, C) is induced by N [11]. Let hm denote the dimension

 of Wm(H2(XS, C))/ Wmi(H (Xs, C)). Then, v = maxim: hm # 0}-1. We
 compute the numbers hm via the dual complex of XO which we now define.

 We give a simpler version of the construction given in [12].

 Let Z be a two-dimensional, reduced, projective scheme over C such

 that if P is a singular point of Z, then _ C l[x, y, z]]/(f) where f is one
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 494 JAYANT SHAH

 of the following elements in C[[x, y, z]]:
 fl: z2 + a where a e C [x, y] is such that the singularity at P is an

 isolated rational double point;

 f2: yZ;
 A Z2 +z2x;

 f: z2 + (y + a x2)(y + a2X2)(Y + a3X2) + terms in x, y of weight >6
 where al, a2, a3 e C, at least two ai's are distinct and where we define the

 weight of a nonzero monomial in x, y by assigning to x weight 1 and to y
 weight 2;

 f5: Z2 + (y + alx)(y + a2X)(Y + a3x)(y + a4x) + terms in x, y of degree
 >4 where al, a2, a3, a4 e C and no three ai's are the same;

 f6: an element such that the projective tangent cone of o is a plane
 cubic curve whose singularities consist of only ordinary double points.

 Let Z' = the disjoint union of the irreducible components of Z.

 Z* = a resolution of singularities of Z'.

 Let w: Z* Z be the canonical projection.
 Let A = the singular locus of Z,

 A, = the subset of A consisting of points of types f4, f5 and f6,
 A1 = the subset of A0 consisting of simple elliptic singularities (A

 singular point is a simple elliptic singularity if the exceptional divisor in

 its minimal resolution consists of a nonsingular elliptic curve.),

 2 = AA0l-

 {C} = the set of one-dimensional, irreducible components of A,

 C* = the normalization of Ci,

 C= UCi,
 C = the disjoint union II Ci,

 D = U {Di: Di an irreducible curve contained in r-j(C) such that
 the restriction of w to Di is a finite map},

 D * the disjoint union of the normalized irreducible components

 of D,

 E* = the set of nonsingular elliptic curves in w-1(A1).

 do

 Consider diagrams of the form Z, Z, where Z, and Z1 are projective
 di

 schemes over C. We denote the diagram by Z. and call it a simplicial scheme.

 We say that the simplicial scheme Z. is defined over Z if Z, and Z, are
 Z-schemes and do and d, are Z-morphisms. For a simplicial scheme Z., we

 define its dual complex as follows. Let A. denote the object obtained from

 Z. by replacing each connected component of Z, and Z, by a point.
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 A COMPLETE MODULI SPACE 495

 do

 A. Al A0
 di

 The dual complex A of Z. is the geometric realization of A., obtained from

 the topological sum (A 1 x I) II A o (where I denotes the unit interval) by
 identifying (e, 0) with do(e) and (e, 1) with dl(e) for all e E A1. We may also

 define a dual complex of Z. with coefficients by fixing an integer m and

 assigning to each vertex v E Ao0 the group Hm(Zo,, C) where Z0,v is the con-
 nected component of ZO corresponding to v, and to each edge e x I, e G Al,

 the group Hm(Ze, C) where Zi,e is the connected component of Z1 corres-
 d

 ponding to e. We thus obtain a canonical cochain complex ... O->Hm(ZO, C)
 Hm(Z1, C) --> 0 . where d = do -dl*.

 Now, let Z. Z A, I I CP and Z1 = E* I D*. Let Z. be the simplicial
 scheme

 Al
 diX

 E*

 \do

 Z*

 /do

 D*

 diX

 C*

 It is defined over Z via canonical maps Si: Zi -- Z, i 0, 1. The dual complex
 r of Z is obtained from the dual complex A by attaching a two-cell for each

 do

 point in A2 as follows. Let P e A2. Let Z., be the simplicial scheme Z1, p Z2,
 dl

 where Zi,P = Si '(P). Let A, be the dual complex of Z.P. The canonical
 morphism Z*p -> Z. induces a map of dual complexes, XP: A P-> A . If P is

 an isolated singularity, A p is just a point. Attach a two-cell by collapsing

 its boundary onto Xp( A P). If P is not an isolated singularity, A p is homeo-
 morphic to a circle. Attach a two-cell via Xp by identifying its boundary

 with A p. Note that A -Skr- 1-skeletonof r. Let C*(SklrF, 'C1) denote
 the cochain complex

 d
 * 0 Hl(Z0, C)- Hl(Zl C) - 0

 dim O dim I

 Let h'(Sklr, FC`) denote the dimension of the ith cohomology group of the
 cochain complex. Let hi(r, C) -the dimension of Ht(r, C).
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 The cohomology of the scheme Z carries mixed Hodge structure [4].

 Let hm(Z) denote the dimension of Wm(H2(Z, C))/ Wmi,(H2(Z, C)). It follows

 from Section 1 in [12] that ho(Z) = h2(r, C) and h,(Z) = h1(SkJ, 7XC').
 Now let Z be the special fiber XO. By Theorem 2 in [12], hi = ho

 hO(X0) = h2(r, C) and h, = h, = h,(Xo)= h(Skl, SX). Let Xo' the disjoint
 union of the normalized irreducible components of X. and X*= the minimal

 resolution of singularities of X.". Let Cm denote the direct sum of m copies
 of C. We retain the rest of the notation from above.

 Group I: F is just a point.

 Group II:

 (1) A = Al = two simple elliptic double points, Q, and Q.. Let Ei
 the exceptional divisor in XO* over Qi. XO* is birationally a ruled surface

 with the base curve isomorphic to E, and E2.

 IF: * El KE.,
 Q, x,,* Q,

 C*(Sk1r X1): ' * * ? C C4 -*

 d diagonal map h1(Sk'F, X"-{) - 2 .

 (2 ) AO = A,. A, consists of a single point, Q. C consists of a non-
 singular rational curve and D is a nonsingular elliptic curve. Let E denote

 the exceptional divisor above Q. XO* is birationally a ruled surface with the

 base curve isomorphic to D and E.

 E D
 F:
 Q I C

 C*(SkL, X'C): . , C2 d C4 - .
 d - diagonal map. hl(Sk1F, 9XK") - 2 .

 (3 ) AO is empty. A consists of a nonsingular, rational curve C. D is

 a nonsingular, elliptic curve. X,* is a rational surface.

 I': . D
 X* C

 C*(SklrF 7'C'): ... 0 * C2 0 , hl(Sk1F, l)C=)2 .
 dim 1

 ( 4 ) X. consists of two irreducible components, X' and X.', each
 isomorphic to P2. X' and X"' intersect in a nonsingular elliptic curve C. D

 consists of two connected components, D' and D", each isomorphic to C.
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 A COMPLETE MODULI SPACE 497

 F:  X D' C "
 XI' C X0

 C2d 4 C'*(S kF,A-CE): lo ) 2 d C4 - 0**

 d = diagonal map. h1(Sk1F, X'K) = 2 .

 Group III:

 (1 ) A = 4 two points, Q, and Q2, each of type f4. C consists of a

 nonsingular, rational curve while D* consists of two curves, D' and D",

 each isomorphic to C. X& is a rational surface.

 D'

 Sk1C:

 Xo D" C

 F is obtained from Sk, F by attaching two 2-cells so that F is homeomorphic

 to a sphere. C*((Sk1F, X l) is trivial.

 (2 ) AO = A = three points, Q1, Q2, and Q3, each of type]f. C* consists
 of three nonsingular rational curves and D* is an unramified double cover

 of C*. X. consists of two irreducible components, X' and X"', each isomor-
 phic to P2.

 C;*

 F is obtained from Sk, r by attaching three 2-cells so that r is homeomorphic

 to a sphere. C*(SkF, ACE) is trivial. Theorem 3.2 is now proved.

 Remark 3.3. If Xo is triply ramified over a nonsingular conic, then XO
 does not determine the exponent of nilpotence v. In fact, v may be 1, 2 or

 3 depending on the choice of the family specializing to Xo (see Theorem 6.1).

 4. K3 surfaces which are double covers of Y0

 Let X be a nonsingular K3 surface carrying a nonsingular curve E of

 genus 1 and a nonsingular rational curve F such that E * F = 1. Let L =

 o,(2E + F). We have the following description [7, 10]. L is a line bundle
 of degree 2 such that F is the fixed component of the linear system l L 1. i L i
 maps X onto P1, giving X the structure of an elliptic surface with a section.

 The linear system l2L I does not have a fixed component and maps X onto ??,
 a cone in P5 over a rational normal quartic curve contained in a hyperplane.
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 The morphism X -> 1 defined by L I factors as follows:

 where w is the contraction of all the nonsingular rational curves, D, such

 that D * L = 0. The singularities of X* consist of isolated, rational double

 points and wT is the minimal resolution of these singularities. X* is also the

 normalization of ?? in the function field of X. X* is a double cover of ?,
 ramified over the vertex of ?? and a section of ?? by a cubic hypersurface in

 P., not passing through the vertex. Conversely, if B is such a section of ??4
 by a cubic hypersurface, there exists a unique double cover of ?4, ramified

 over B and the vertex such that the double cover is normal over the vertex

 (see Appendix).

 We construct a moduli space L1 of such K3 surfaces via the geometric

 invariant theory. Since the group of automorphisms of ?? is notreductive,

 we adopt a somewhat round about construction.

 Let 9 denote the group of automorphisms of ??4. c GU * GL2/1u where
 G. - H?(P1, 2p,(4)), where the action of GL2 on GU is induced by the canonical
 action of GL, on H'(P1, o,,1j)) and 1a4 = the matrices in GL, of the form
 aI, a' = 1 I = the identity matrix [5]. The action of 9 on ?? extends to

 an action of P5 and op5(1) admits a 9-linearization as follows. Let A

 HO(P5, op5(l)) H0(?, ooj(1)). Let 0 denote the subspace of A consisting of
 sections which vanish at the vertex of ?4. Let sO. denote the exceptional

 divisor in the minimal resolution of singularity ?4 -?4. The action of q
 extends canonically to an action on ?4 which preserves s.. Pick a basis
 {qO, q1, ... q5} of A such that {q1, *., q5} is a basis of 0. GU acts on A via
 matrices of the form

 where c is a 5-dimensional row-vector and 15 is the 5 x 5 identity matrix.

 GL2 acts on 0 via the canonical isomorphism 0 HP(P1, o?p(4)) induced by
 restriction of 0 to sOO. By letting GL2 act trivially on C * qO, we obtain an

 action of GL, on A. Since ft4 acts trivially on H0(P1, o?p(4)), we get an action
 of 9 on A. Note that GU identifies with the unipotent subgroup of 9 and
 thus does not depend on the choice of qO.

 Let Gr denote GL2/u," and let Gm denote its center. Gm equals T2/[t4 where

 T, is the center of GL, and hence Gm is isomorphic with the one-dimensional

 multiplicative group. Let G, denote the image of SL2 in Gr. G, SL2/,", where

 it2 = +1. Consider the isogeny T2 x SL, - GL2. j-1(P4) = P4 X P2. Hence,
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 Gm x PGL2 (T2 X SL2)/(ta4 X tk2) GL2/,a4

 and Gr is isomorphic to the direct product Gm x G8.

 Let B = Ho(?2, oo(2)) and D = Ho(1?, oo(3)). Both B and D have

 9-invariant filtration which is induced by the order of vanishing of their

 elements on s.. Since Gr is reductive, we actually get a Gr-invariant
 decomposition of B and D as follows. Let CF = the elements of B whose

 order of vanishing on s. is 2 and i = the elements of D whose order of
 vanishing on s,. is 3. Then,

 B C *qO 23 q0 * e EC FD and D C * q1 E3 q . * eD q0 * .C D H- .
 Moreover, we have a canonical, Gr-linear identification of 0, CF and ; with

 H0(P1, o?p(4)), HO(P1, op,(8)) and H0(P1, op,(12)) respectively, by restriction to
 sOO. We also have p-linear surjections Symm2(0) --> C and Symm3(0) -,
 where Symmk (V) denotes kth symmetric tensor product of a vector space V.

 Given a vector space V, we let V* denote its dual and let A, denote the
 affine space corresponding to V. A, = Spec Symm (V*) where Symm (V*)
 @k?0 Symmk (V*).

 Let Do the elements of D which vanish at the vertex of 10. Let

 1 D I = D - Do 1. A closed point of I D Ix is uniquely represented by an
 element f of D which is of the form qO + q820 + q0q5 + i where 8 e 0, 5G e C

 and e e. D Ix is isomorphic with the affine A? x A. x AE. Let g be a closed
 point of GU which acts trivially on 0 and takes q0 to q0 + 00. g transforms
 f into

 q' + (8 + 300)qO ? (0 + 2000 + 382)qo + (d + 005 + 828 + 83)

 Therefore, we have a GU-invariant morphism G: A, x A., x A.--A, x A2 which

 takes the closed point corresponding to a vector (8, 0, $) to the closed point
 corresponding to the vector (0 _ 02/3, 0 - 08/3 + 208/27). We also have a
 GU-invariant section of ,G defined by the canonical inclusion CF (D c 0 D

 LEMMA 4.1. The morphism S defines a geometric quotient of Ae x A. x A.
 by GU.

 Proof. We apply Proposition 0.2 of [8]. Let k be an algebraically closed

 field over C. Let f = qO + qO2 + q0q + ? represent a k-valued point of

 A,, x A, x A, where 8 e 0 Ic, kq e e (Dc k and $ e 2 (g1 k. But, under the

 action of a k-valued point of GU which takes q0 to q0 - 8/3, f is transformed
 into an element of CF (3 1. Q.E.D.

 Next, we consider the action of Gr on A, x A-. Let g be a closed point

 of Gm. Now g transforms an element (0, $) of CF D " into (a25 , a3i). Let
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 Q = Symm (CF* E *) so that A, x A, = Spec Q. Grade Q by assigning weight
 2 to CF* and weight 3 to *. Proj Q is a geometric quotient of A,, x A. - (O 0)
 by Gm. The action of G. descends to an action on Proj Q such that the pro-

 jection As, x A, - (0, 0) -> Proj Q commutes with the action of G8. It remains
 to determine the set (Proj Q)ss of the semistable points of Proj Q in order to

 form a compact quotient.

 Proj Q contains G8-invariant projective spaces I CF I and I 1. Let
 pr1: Proj Q? IC I and Pr2: Proj Q ---> be the rational maps defined by the
 canonical projections. If w e Proj Q. for i = 1, 2, let Pri(w) denote the empty

 set if Pr, is not defined at w. If w E E4F1 (respectively, 1 ), let iv- denote its
 restriction to sOO.

 PROPOSITION 4.2. Let w e Proj Q. Then w is stable if and only if s.
 does not have a point p such that for i = 1, 2, p has multiplicity > 2(i + 1)

 in prj(w). Also w is strictly semistable (that is, semistable, but not stable)
 if and only if there exists a point p in sO. such that for i 1, 2, p has

 multiplicity = 2(i + 1) in Pri(W) if Pri(W) is not empty; w is strictly semi-
 stable and belongs to a minimal orbit if and only if sOO has two distinct

 points such that for i = 1, 2, each has multiplicity = 2(i + 1) in Pri(W) if
 Pri(W) is not empty.

 Proof. Let Qi denote the graded piece of weight i in Q, and let Q'=

 ED0 Q6j, Q' = D05 Symm3" (4*) and Q? = ,0 Symm2i (E*). Let V = Spec Q',

 V1 = Spec Q' and Ve = Spec Q! be the respective affine cones.

 Proj Q' Proj Q, ProjQ' 141 and Proj? Ai 27

 Let X be a one-parameter subgroup of G,. Choose coordinates so that the
 action of X on V. and V- is diagonalized. We now apply Proposition 2.3 of

 [8] to determine the numerical function fe(w, x). If w is either in C FDI or in
 1 1 1, then clearly, its stability may be determined by considering the action

 of G. on these subspaces. If w is neither in C FD I nor in 1 1, then, since Q6
 Symm3(4F*) E) Symm2(6*),

 flt(w, X) = max {/1(prl(W), x), !te(Pr2(W), X)}

 Now, 1(1 is G,-isomorphic to IHO(P1, o,,(8))l such that the G.-linearization
 of V, is induced by that of o,,(8). If w' is a closed point in ICFD and p0, p,,
 are respectively the attractive and the repulsive fixed points of the action

 of X on P1, then fe(w', X) > 0 (respectively, =0, respectively, <0) if the

 multiplicity of pOO in w' is less than (respectively, equal to, respectively,

 greater than) 4. Let X be parametrized by t and let wo' = lim,-ow"t). If
 [e(w', X) 0, then both po and pOO have multiplicity equal to 4 in ivT'. A
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 similar argument applies to a point in 1 . The proposition follows.

 Q.E.D.

 Let ('1, ,) denote a universal categorical quotient of (Proj Q)ss by G,.

 THEOREM 4.3. Let co be a closed point of Al. Let w be a closed point in

 the minimal orbit above co in (Proj Q)SS. Let B be the corresponding divisor

 on ?'. Let X be a double cover of I4, ramified over the vertex and B such
 that X is normal over the vertex. Then, X has only insignificant limit

 singularities and it is one of the surfaces listed below:

 Case 1: B is reduced.

 (i) If w is stable, Xhas at most rational double points as singularities.

 If v is the exponent of nilpotence of a one-parameter family of surfaces

 specializing to X, then v = 1.

 (ii) If w is strictly semistable, the singularities of X consist of two

 simple elliptic double points; v = 2.

 Case 2: B has a component of multiplicity 2. B has an equation of the

 form (q0 + 0)2(q0 - 20) 0 0 such that the restriction 8 of 6 to so determines
 a semistable divisor of degree 4 on sOO. Let s' and s" be the divisors on 04

 defined by the equations q0 + 8 = 0 and q0 - 20 respectively. X has a

 nodal curve over s'.

 (i) If w is stable, then i is stable so that s' and s" intersect transversely

 in four distinct points; = 2.

 (ii) If w is strictly semistable, then 0 is strictly semistable. Hence s'

 and s" are tangent to each other at two distinct points; v = 3.

 Proof. Let p: 14 P, be the canonical projection, obtained by projecting
 ?4 from its vertex. Let 1 be a fiber of 14. We have isomorphisms 0

 HO(24Y, o4(41)), 4F H?(14, 0'4(81)) and d HO(4, o,4(121)). Let b be a closed
 point of B. Choose a basis {u, v} of Ho(24, o'4(1)) such that u vanishes at b.
 Let lo and loo denote the divisors defined by the equations u 0 0 and v = 0

 respectively. Let qO0 be a nonzero element in Ho(z4, o 4(s"))j. Let x = u/v
 and y = qo/q,0. Let Pi(u, v) denote a homogeneous polynomial of degree i in
 variable u, v. Let pi(x) = Pi(u/v, 1).

 B is defined by an equation of the form f = q, + q0q + $ 0 such that

 either 0 has multiplicity <4 at b or $ has multiplicity <6 at b. In the affine
 4- so - lO B is defined by an equation of the form Y3 + yp8(X) + pA2(X)
 such that either x5 I p8(x) or X7 t P12(X). Over 4 - sco - 1,0 X is defined by
 an equation of the form z2 y ' + yp8(x) + p12(x)

 Suppose that B is reduced. Then, the singularity of X above b is a
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 non-rational double point if and only if B has consecutive triple points at b.

 Since the y2-term is missing in the equation of B, if b is a triple point, it

 must have coordinates x = y = 0. Therefore, B has consecutive triple points

 at b if and only if x4 p8(x) and x6 p,2(x). But if x4 p8(x) and x6 p,2(x), then w
 is not stable. Since w belongs to a minimal orbit, we may choose the basis

 {u, v} such that p8(x) = a'x4 and p,2(x) = a'x. This proves Case 1.

 Suppose that B has a multiple component. Since the y2-term is missing,

 f cannot be of the form (qO + 8)'. Hence, f= (qO + 0)2(qo-20) = q -3q 02-203
 such that if w is stable, then the restriction a does not have multiplicity >2

 at any point of sOO and if w is strictly semistable, the equation a = 0 defines

 a divisor consisting of two distinct points, each with multiplicity equal to

 2. It is now easy to check Case 2. Q.E.D.

 5. Moduli of K3 surfaces of degree 2

 In this section, we construct a blow-up nR -> Oil with center a such that

 the exceptional divisor is isomorphic with ")I. Let H2 denote the space

 IHO(P2, o02(2)) . Let G denote the group PGL3. Let HS` = the space of
 nonsingular (therefore, semistable) conies. Fix Q e H2Ss. Let C be the corres-

 ponding conic in P2. Let P, c--P2 be an embedding, mapping P1 onto C. The
 action of PGL2 extends via this embedding to an action on P2. PGL2, in fact,

 may be identified with GQ, the isotropy group of Q in G. Since o,,(2m) is
 PGL2-linear for m > 1, o 2(m) is GQ-linear. Let q be a nonzero element of

 HO(P2, o,2(2)) which vanishes on C. Since GQ is a semisimple group, there
 exists a unique, GQ-invariant decomposition H0(P2, Q!2(2)) C * q E e such
 that e HI(P1, o?p(4)). In turn, we get unique, GQ-invariant decompositions

 HO(P2, oP2(4)) C. q2E q * E6D 1 and

 HO(P2, o2 (6)) C * ( q 2* e@ q * D E
 such that

 F HI(P1, opl(8)) and ` HO(P1, op,(12)) .
 Let Q also denote the closed point of H6S- corresponding to the sextic

 which consists of C with multiplicity three. Let M denote the projective

 subspace of H6 corresponding to the vector space C * q3 3 q * D 3 m. M is

 invariant under GQ and has a GQ-invariant decomposition into subspaces, Q,

 I q(D I and I = I which span M.

 Let A = the affine in M, consisting of points with nonzero q3-coordinate.

 A closed point of A corresponds to an element of H0(P2, oP2(6)) which can be

 written uniquely as q3 + qq5 + e where 0 E $ and ~ e E.a. A is GQ-invariant,
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 contained in HSs and isomorphic with A, x At. Let uQ: GQ x A -> A denote
 the action of GQ on A. Let d denote the universal categorical quotient of

 A by GQ. Let z: A ->d denote the quotient morphism. Let a = D (Q).
 Consider the canonical diagram

 A Hfss

 1 1

 PROPOSITION 5.1. The morphism X is e'tale at a.

 Proof. Via the action of G on H2, H6 and H2 x H6, we obtain a com-

 mutative diagram

 G x A > Hss

 G x Q x A > HSs x HSs

 1 j3 1
 G x Q A H2S

 If we let G act on itself from the left via multiplication, the above diagram

 is also equivariant under the action of G. Let Z denote the image of 32.

 The proposition will follow from Proposition 5.2 below if we show that

 (i) There is a unique map j: Z --i d such that (Z, j) is the universal
 categorical quotient of Z by G, and

 (ii) The canonical projection j: Z -> HSs is etale in a neighborhood of

 /32 (G x Q x Q).
 To prove the first statement, consider the GQ-actions

 (1G r) mut.
 (a) G x GQ F G x GQ -4 G where r is the morphism defining the

 inverse,

 (b) uQ:GQ x A -> A and

 (c) GQ X Q -> Q.
 These actions define actions of GQ on G x A, G x Q x A and G x Q such

 that the morphisms S , 2, 83 factor through these actions. (H2s, /3) is the
 geometric quotient of G x Q by GQ. Apply Proposition 0.2 in [8] to /32. Let

 k be an algebraically closed field and let x and y be k-valued points of H2Ss

 and HSs respectively. Suppose that the fiber of 82 over (x, y) is not empty.

 Let (g1, Q, w1) and (g2, Q, w2) be two points lying above the point (x, y).

 There exists a k-valued point g0 of GQ such that g9gO' = g2. Then, Y g2w2 =
 g1wI g2g9w1 and hence g9w1 = W2. It follows that (Z, 2) is the geometric
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 quotient of G x Q x A by GQ. Since the projection G x Q x A (d is
 constant on the GQ-orbits, there is a unique map j: Z d C so that we have a
 commutative diagram

 G x A 32 Z

 { Pr2 3

 A -a

 where /32, Pr2 and z are quotient morphisms. (Pr2 is the projection on the
 second factor and (A, Pr2) is the geometric quotient of G x A by G.)
 Therefore, a morphism f: Z -o Y which is equivariant under the action of G

 on Z is equivalent to a morphism g: G x A -i Y which is equivariant under
 the action of G and GQ. Such a g is equivalent to a GQ-invariant morphism

 h: A -> Y. Finally, h is equivalent to a morphism d_ -> Y. This proves
 Statement (i).

 The projection Z -> HSs is equivariant under the action of G. By

 homogeneity under G, it follows that Z is a vector bundle over HSs with

 fibers isomorphic to A. Moreover, by homogeneity, it is enough to show

 that the projection j is etale at Q x Q. But, j maps Q x A and 32(G x Q x Q)

 isomorphically into H6s. Therefore, it is enough to show that A and

 ,31(G x Q) intersect transversely at Q. Let 0O = the orbit of Q in HSs and

 let hi: G -- HSs be the map which takes g to g Q. do maps the tangent

 vector space T0 of G at the identity surjectively onto the tangent vector
 space of 0O at Q. The kernel of do equals the tangent vector space of GQ at

 the identity. Let v e T,. v induces a derivation of the homogeneous
 coordinate ring of P2 under which the image of q3 is 3q2dq. Therefore ds/(v)
 is a vector along A if and only if dq 0 O. But, if dq = 0, then, the infini-

 tesimal automorphism of HJSs induced by v fixes Q and therefore, d/S(v) = 0.

 Q.E.D.

 PROPOSITION 5.2. Let X be an algebraic scheme over an algebraically

 closed field k of characteristic zero. Let G* be a reductive algebraic group

 acting on X. Suppose that wc: X -> Y is the universal categorical quotient

 of X by G* and that w is affine. Let V be an invariant closed subset of X

 and let W= wc(V). Then

 (i) W is closed and it is the universal categorical quotient of V by G*.

 (ii) Suppose that X is integral and that W = a minimal orbit in X.

 Let V be the completion of X along V and let W be the completion of Y

 along W. Then, the canonical map RC: V--> W is the categorical quotient of
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 Vby G*.

 Pr oof. Since w is affine, we are immediately reduced to the case where

 X = Spec R. Let Ro = the subring of invariants so that Y = Spec R. Let
 J be an invariant ideal in R. Then, R/(J n Ro) is the ring of invariants in
 R/J (Statement 3 on page 29 in [8]). This proves (i). If W is a minimal

 orbit, then V is a closed point of Y and J nR0 is a maximal ideal in R, Let

 Jo = J n RI. Let J = JoR. Note that J c J. Recall that for any ideal I c R0,
 (IR) n Ro I. Therefore, Jn n Ro = (JojR) n Ro = Jon. Let (Jn)o = Jn n Ro.
 We have a projective system of commutative diagrams:

 R/in >>R/Jn

 J
 RO/Jon Ro/(Jn)o

 Therefore, we have a commutative diagram of complete rings:

 (R, {Jn})N - (R, {Jn})N

 fRo - (Row {JOn})^- > (Ro, {(Jn)O}) = 1R

 where the superscript ^- denotes the completion with respect to the

 indicated filtration and the rings of invariants of the rings in the top row

 are the ones directly below. R0 is integral since R is. Therefore,

 nf., (Jr), = 0. A theorem of Chevalley asserts that the topology induced
 by the maximal ideal in a local ring is the weakest Hausdorff topology

 induced by a filtration (Ch. VIII, S 5, Theorem 13 in [16]). Therefore, for
 any integer n > 1, there exists an integer m such that (Jm)O c Jo" and hence,

 the completions Ro and 'k are isomorphic. Q.E.D.

 We now define a blow-up of 'A by blowing up i at a. The coordinate

 ring of A is isomorphic with Q = Symm ($* D =*). Grade Q by assigning
 weight 2 to IV and weight 3 to =*. Then Q = ( Qi where Q, is the graded
 piece of weight i. Let Q be the graded ring @koQk where Q =
 If we regard Q as an ungraded ring, Q' is a graded algebra over Q. Let

 A = Proj Q' and let z: A-> A be the canonical projection. wr is an isomor-

 phism everywhere except over the point Q in A. The exceptional divisor E

 is isomorphic to Proj Q where we regard Q as a graded ring. Since the

 blow-up is equivariant with respect to the action of GQ, GQ acts on A. We

 consider the stability of the points of A via the action of GQ on Spec Q'.
 Let A = (z * )-(). If y is a closed point of A - A, the closure of its

 orbit lies in A - A since A - A o(A - A) AP - A- Q) and the closure of
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 the orbit of w(y) is contained in A - r-1(a). y is semistable since wr(y) is.

 Suppose that y e A - E. Then 11(y) lies in r-1(a) - Q and Q lies in the closure

 of the orbit of wr(y). That is, there exists a one-parameter subgroup X(t) of

 GQ such that limto(w(y4))1't) = Q. Therefore, 11(y) is represented by a sextic
 form q3 + qs + + such that lim (0,()"(t) = (0, 0). In other words, (I, d)
 represents an unstable point of Proj Q. There exists a positive integer m

 such that (I i)"t) =(t ioit, t3met) where lim 0(0t, et) = ( 0) # (0, 0) and
 [e(0Q0, 20), x) > 0. Therefore, y is unstable. Hence, Ass Ess. It remains to
 consider the points in E. But the ring Q is isomorphic with the ring Q of

 the previous section with isomorphic group actions. Therefore, the stability

 of the points of E is described by Proposition 4.2 via the identifications

 H0(P1, Qp1(8)) and S HO(P1, op,(12)). Let (d denote the categorical
 quotient of ASs by GQ. d is a blow-up of (d and induces a blow-up Oil of OlR.

 By Propositions 5.2, the exceptional divisor in d above a is the categorical

 quotient of ESs and hence, it is isomorphic with 07R.

 6. Degenerations of K3 surfaces of degree 2

 In view of Proposition 2.1, Theorem 2.4 and Theorem 3.2, we only need

 to prove.

 THEOREM 6.1. Let S = Spec Cj[[t]]. Let f: X ->S be a family of sextic
 double planes such that the generic geometric fiber of f is nonsingular and

 the special fiber X0 over the closed point, o, of S is a sextic double plane,

 triply ramified over a nonsingular conic. Then, there exists a flat, pro-

 jective morphism, f': X'--> S and a map p: S -> S such that

 (i) the generic fiber of f' and the generic fiber of the pull-back of f via

 p are isomorphic;

 (ii) The special fiber X0' of f' over o is a double cover of Ad and

 (iii) X0' is one of the surfaces listed in Theorem 4.3.

 Proof. The theorem is proved as follows. We embed P2 x S in P5 x S

 via the linear system H?(P2, op2(2)) ?C[[t]]. Let 93 be the ramification
 divisor of the family in P2 x S. We deform P2 x S in P5 x S under the

 action of a one-parameter subgroup, x, of the stabilizer of Ad in PGL, such

 that we obtain a deformation of the Veronese surface into ??. Here, ?? is a

 cone over the embedding of C in a hyperplane in P5 as a rational normal

 quartic curve. If X is chosen appropriately, q, is modified under the action

 of X into a family of curves, '3', which specializes to a curve B' on At. B'

 does not pass the through the vertex of ?? and corresponds to a point in

 (Proj Q)s. Finally, X' is obtained as a double cover ramified over 'IY and
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 the vertex of Y.

 Step I: Deformation of P2 in P5. Consider the embedding e: P2->P, via the
 linear system H2. Let W e(P2). W is well-known to be projectively Cohen-

 Macaulay.' Let D = c(C). D is a rational normal quartic curve contained in

 the hyperplane defined by the equation q = 0. The action of GQ on P2 extends

 to an action on P5 under which D is invariant. Choose a basis {q1, * * *, q5} of

 E. Let R denote the graded ring C[q, ql, *.*, q5]. For a given positive

 integer n, let XA, be the one-parameter subgroup of PGL6 which acts on R

 via the transformations: q |- tVq and for 1 < i < 5, qj e- qj. Note that D is
 invariant under XI and that XI, commutes with GQ. Let I be the ideal of W
 in R. Let I, be the ideal in R ?& C [[t]] obtained by replacing q by tnq in the
 elements of I. Let 10 be the scheme over S defined by the ideal It. Let I1

 be the ideal of the fiber of X over o. The generators for I, are obtained by
 putting q = 0 in the generators for I. Since the hyperplane q = 0 cuts out

 the rational quartic curve D on W, I, defines the xn x GQ-invariant cone, 4
 over D with its vertex at the point with coordinates q, = q, - - * * = q5 0.
 Thus X X GQ c the stabilizer Y'. Y' is projectively normal [2]. Therefore,

 Ah is flat over S by Proposition III-4.3 and Proposition V-3.5 in [1].

 Step II: Lifting of H0(P2, op2(6)) to H0(P5, op,(3)). Let J' be the kernel
 of the X. x GQ-invariant restriction r': Symm2E -> H0(?, olo(2)). Let $' be
 the XI, x GQ-invariant complement of J' in Symm2E. Similarly, let J" be
 the kernel of the restriction r": Symm3e -> H0(Y', oo(3)) and let at be the

 XI x GQ-invariant complement of J". We have a X, x GQ-invariant isomor-
 phism

 C q3 2 * e H q * V - H I ' ,0(3))

 which induces the Gr-invariant decomposition of H0(?, ?50(3)) described in
 Section 4. Moreover, the GQ-linear restrictions $' -> $ and Go ` are

 isomorphisms since they are isomorphisms when both sides are restricted

 to the rational quartic curve D. The GQ-linear restriction

 C *q3 3 q2 * e _ q * qe -k ' > Ho( W. oW(3)) -> H?(P2, !2p2(6))

 is an isomorphism which induces the GQ-invariant decomposition of H?(P2,

 1 This follows from a general result of M. Hochster and J. L. Roberts. (See "Rings of
 Invariants of reductive groups acting on regular rings are Cohen-Macaulay", Adv. in Math.
 13 (1974), 115-175.) One may prove the assertion directly as follows. The homogeneous

 coordinate ring of W is the ring of invariants in C[x0,xl,x2] under the involution which
 sends each variable to its negative. It is enough to show that the ring of invariants, gRo,
 in the ring =RC[[x0,xl,x2]] under the involution is Cohen-Macaulay. But this follows from
 (i) the invariant elements x0, xx2, form a regular sequence in fR and (ii) for any ideal JcR0,

 (J- R) fn 7Ro0=J.
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 op2(6)) described at the beginning of this section.

 Step III: Modification of 'I. The family f: X-> S induces a map i: S-> Cf

 such that 9(o) = a. Thus map it lifts uniquely to a map u: S --> C. There

 exists a map p: S -> S such that the composition u * p lifts to a map v: S -> ASS

 and such that v(o) belongs to a minimal orbit. Let v: S A be the projec-

 tion of v. Then v corresponds to a family of sextic forms *(t) = q3 + tlnqt + t3net

 where n >0, O.t e $?C[[t]], it E G?C[[t]] such that limt-0 (Ot, et) = (Oo, 20) # 0
 and defines a semistable point of Proj Q, belonging to a minimal orbit.

 Moreover, by choosing p appropriately, we may assume that n is even.

 Now lift at to an element st of $'? C [[t]] and et to an element Ot of
 &' ? C[[t]]. The equation *'(t) = q3 + t2nqo + t3 0 0 defines a family of
 cubic hypersurfaces in P5. Under the action of Xn, the family transforms
 into a new family which is defined by the equation *"(t) = q3 + q(f -4- Vf = 0.

 Let 'J3' be the divisor on It defined by the equation *"(t) 0. Let B' be the

 fiber of 93' over the closed point of S. B' is a section of ?? by the cubic
 hypersurface defined by the equation q3 + q(O + to = 0 where (O , 2f)
 limt-0(O, et) # 0. It follows that B' does not pass through the vertex of YO
 and is a semistable curve on Y' belonging to a minimal orbit in the sense of

 Section 4.

 Step IV. Double cover of 10. Let C e H0(P2, OP2(6)) such that r = a6 for some
 nonzero a e H?(P2, op2(1)). Let K denote the function field of 1W. X is the

 normalization of P2 x S in the field K(VlW(t)/Y). Let aq3 +-q2OA+q,+7 be the
 decomposition of (. Let I', i' be the liftings of A, $ to O' and E' respectively.

 Let If = aq3 + q20 + qs + i'. Let 17'(t) = at3nq3 + t2nq20 + tno' + I'. Note
 that 17'(0) =' # 0. Moreover, *'(t)jn't' = t3*ff"(t) and 17"-n(t) = -1'(t). Let +(t)
 and _(t) be the restrictions of *"(t) and 17'(t) to 10. Xn, induces an automor-

 phism of K which transforms *(t)/17 into t3ff+(t)/i7(t). Since n is even, the
 fields K(v/%(t)/17) and K(V-fr(t)/i7(t)) are isomorphic. Let X' be the normali-

 zation of 10 in K(-V(t)/l(t)). I claim that X' is flat over 10. Certainly,
 X' is flat over 10 except at a finite number of closed points by Proposition

 V-3.5 in [1]. Let alf be the maximal open set in 1d which does not contain the

 vertex of Y' and over which X' is flat. The equation _(t) 0 0 defines a divisor
 on qt of even multiplicity and hence the branch locus of X' in 1i1 equals

 (at n e'f. In particular, the special fiber X' is generically reduced and hence

 reduced since it satisfies the Serre property S, (V-2.2 and V-2.3 in [1]). Let

 K0 denote the function field of ??. K?(V'1(O)/1(O)) is the function field of X'.
 Let X" be the normalization of X0'. As in Section 4, X' is a double cover of

 YO ramified over the vertex and B' where B' is the reduced curve consisting
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 of those components of B' which have odd multiplicity in B'. It follows that
 X' itself is a double cover. Therefore, X' is a double cover and hence it is

 Cohen-Macaulay (Theorem VII-4.8 in [1]). Therefore, by Serre's criterion,

 X0' is normal over the vertex of ?'. Q.E.D.

 COROLLARY 6.2. Let QJ be the period space of K3 surfaces of degree 2.

 Then, to every point of 9, there corresponds a unique K3 surface.

 Proof. The uniqueness has been proved by Piatetskii-Sapiro and

 Safarevic [9]. The existence may be proved as follows. The period map

 embeds the open set in 67? corresponding to the nonsingular sextic double

 planes into ?P as an open set, U,. Let x be a point of 9. Let S = Spec[[t]].
 Let o be the closed point of S and let C be its generic point. Let f: S ->

 be a map such that f(o) = x and f(C) c U,. The restriction fc: C --> 9 lifts to
 a map g,: C > OR which then extends to a map g: S -> OR. After replacing t
 by a suitable root of t, we may assume that g determines a family of K3

 surfaces such that the generic geometric fiber is nonsingular and such that

 the special fiber is a semistable double cover of P, or Y'. Moreover, we

 may assume that the special fiber has insignificant limit singularities and

 belongs to a minimal orbit. Since the limit mixed Hodge structure of the

 family must be a pure Hodge structure, the monodromy group of the family

 must be finite. It follows from Theorems 3.2 and 4.3 that the special fiber

 must be a K3 surface with at most rational double points as singularities.

 Q.E.D.

 Appendix

 Existence and uniqueness of the double covers of ?4?

 Let B be a section of Y' by a cubic hypersurf ace in P5 which does not

 pass through the vertex of ?,?. Let Y, --> Y2 be the minimal resolution of the
 singularity of Y2. Let s,, be the exceptional curve in ?4. Let 1 be a fiber of
 the ruled surface ?4. There exists an element f in the function field K0 of
 ?4? such that the divisor of f equals B + s,. - 2Z where Z= 2s&, + 61.
 Suppose first that B is reduced. Then the normalization X* of ? in K?(V'f)
 is flat over ?4 by Proposition V-3.5 in [1]. Hence, X* is a double cover of y,

 ramified over B and s,. Let X* -* X be the contraction of the nonsingular
 rational curve in X * over sOO. Then X is the normalization of Y' in K'(V'f).

 It is a double cover of ?,?, ramified over B and the vertex. Suppose that there

 exists f' such that the normalization of Y' in Ko(VTf') is ramified over B
 and the vertex. Then the normalization of Y2 in KO(vAf/ff') is an unramified
 double cover of Yo which must be trivial since Y2 is simply connected.
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 Therefore, f = ulf ' for some u e K0. Hence, Ko(Vlf) KP (V'fi//) and X is
 unique.

 Next, suppose that B is not reduced. Let B be the reduced curve con-

 sisting of those components of B which have odd multiplicity in B. Let X'

 be the normal double cover of ??, ramified over B and the vertex. Define a

 subalgebra ox of ox, as follows. Let U be an affine in Y'. If U does not

 intersect B, let OXI ox, I . Suppose that U intersects B. We may assume
 that U does not contain the vertex. o, Iu -R[z]/(z2 + h) where R = r(U, qo)
 and h e R. Therefore, in U, B is defined by an equation of the form g2mh = 0.

 Let oxIu be the subalgebra generated by gmz.
 NORTHEASTERN UNIVERSITY, BOSTON, MASSACHUSETTS
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