These notes summarize the material covered in the Spring 2013 graduate algebra course taught by S. Paul Smith. Written by Josh Swanson; any errors are likely mine.

Note: "A3" below refers to the April 3rd lecture, and similarly with May and June.

Theorem 1 (Hilbert's Basis Theorem, A1) If R is a commutative noetherian ring, so is the polynomial ring R[x].

Definition 1 A graded ring is a ring R with a direct sum decomposition (as an abelian group)

$$R = R_0 \oplus R_1 \oplus \cdots,$$

where $R_i R_j \subset R_{i+j}$ for all i, j. The elements of $\cup R_i$ are called **homogeneous**.

Remark 1 (A1) If R is a graded ring, so is its center, Z(R).

Remark 2 (A1, A3) *I* is a graded ideal if it satisfies these equivalent conditions:

- 1. I is generated by homogeneous elements.
- 2. $I = \bigoplus_{n=0}^{\infty} (I \cap R_n).$

Remark 3 (A1) If R is graded ideal, then R/I is a graded ring in such a way that $\pi: R \to R/I$ preserves degree.

Definition 2 (A3) Let R be a graded ring. A graded left R-module is a left R-module M endowed with an abelian group decomposition

$$M = \bigoplus_{n=-\infty}^{\infty} M_n$$

where $R_i \cdot M_n \subset M_{i+n}$.

Definition 3 (A3) If M and N are graded left R-modules and $f: M \to N$ is an R-module homomorphism, we say f preserves degree if $f(M_i) \subseteq N_i$.

Theorem 2 (Hilbert, A3) If G is a finite group of degree-preserving automorphisms of $\mathbb{C}[x_1, \ldots, x_n]$, then the set of G-invariant polynomials, $\mathbb{C}[x_1, \ldots, x_n]^G$, is finitely generated as a k-algebra.

Remark 4 (A3) $\mathbb{C}[x_1,\ldots,x_n]^G$ is a graded subalgebra of $\mathbb{C}[x_1,\ldots,x_n]$ because it is equal to $\bigoplus_{k=0}^{\infty} \mathbb{C}[x_1,\ldots,x_n]_k^G$, where subscript k denotes the degree k elements.

Remark 5 (A3) Because G is finite and char $\mathbb{C} = 0$, the G-invariants have a complement as a G-module:

$$\mathbb{C}[x_1,\ldots,x_n]_k = \mathbb{C}[x_1,\ldots,x_n]_k^G \oplus E,$$

where E is a G-module. Similarly,

$$\mathbb{C}[x_1,\ldots,x_n] = \mathbb{C}[x_1,\ldots,x_n]^G \oplus D$$

where D is a G-module.

Proposition 1 (A3) Let S be a commutative graded ring and R a graded subring such that $S = R \oplus K$ as R-modules for some graded R-submodule K of S. If S is a finitely generated k-algebra, then so is R.

Proposition 2 (A5) Let S be a graded quotient of the polynomial ring $k[x_1, \ldots, x_n]$ with $S_0 = k$. Let R be a graded subalgebra of S (i.e. $R = \bigoplus_{i=0}^{\infty} (R \cap S_i)$). If there exists a graded R-submodule K of S such that $S = R \oplus K$ as R-modules, then R is a finitely generated k-algebra.

Corollary 1 (A5) If $G \subseteq GL(n,k)$, let G act on automorphisms of $k[x_1, \ldots, x_n]$ by extending its action on $kx_1+kx_2+\cdots+kx_n$. If $k[x_1, \ldots, x_n]^G$ has a graded complement in $k[x_1, \ldots, x_n]$ that is a $k[x_1, \ldots, x_n]^G$ -module then $k[x_1, \ldots, x_n]^G$ is finitely generated as a k-algebra.

Proposition 3 (A5) Let $R \subseteq S$ be commutative rings and suppose $S = R \oplus K$ as R-modules for some R-submodule K of S. If S is noetherian, then so is R.

Proposition 4 (A5) Let R be an integral domain, $F = \operatorname{frac}(R)$, and $S \subseteq R$ such that $1 \in S$ and $0 \notin S$. Define

 $R[\mathcal{S}^{-1}] \coloneqq \{q \in F \mid q = xs_1^{-1} \cdots s_n^{-1} \text{ for some } x \in R, s_i \in \mathcal{S}\}.$

Then $R[S^{-1}]$ is a noetherian ring if R is noetherian.

Definition 4 (A5) Let $R \subseteq T$ be commutative domains. We say $x \in T$ is **integral over** R if it satisfies a monic polynomial over R with coefficients in R.

Remark 6 (A5) 1. Every element of R is integral over R.

- 2. \sqrt{p} is integral over \mathbb{Z} because it satisfies the monic polynomial $x^2 p = 0$.
- 3. e, π are not integral over \mathbb{Q} .

Proposition 5 (A8) Let $R \subseteq T$ be commutative domains and $x \in T$. The following are equivalent:

- 1. x is integral over R.
- 2. R[x] is a finitely generated R-module.
- 3. There exists a ring T' such that $R[x] \subseteq T' \subseteq T$ and T' is a finitely generated R-module.

Definition 5 (A8) Let $R \subseteq T$ be commutative rings. If T is a finitely generated R-module, call T a finite R-algebra.

Remark 7 (A8) If $R \subseteq S \subseteq T$, S is a finite R-algebra, and T is a finite S-algebra, then T is a finite R-algebra.

Corollary 2 (A8) Let $R \subseteq T$ be rings and $a_1, \ldots, a_n \in T$ where each a_j is integral over R. Then the ring $R[a_1, \ldots, a_n]$ is a finite R-algebra and every element in $R[a_1, \ldots, a_n]$ is integral over R.

Definition 6 (A8) Let $R \subseteq T$ be commutative domains. Say T is integral over R if every element of T is integral over R.

Corollary 3 (A8) Let $R \subseteq T$ be commutative domains such that T is a finitely generated R-algebra. Then T is integral over R if and only if T is a finite R algebra.

Theorem 3 (Noether Normalization, A8, A10) Let k be a field and $R = k[a_1, \ldots, a_n]$ a finitely generated commutative k-algebra. Then there exists $m \le n$ and algebraically independent elements $y_1, \ldots, y_m \in R$ such that R is integral over the polynomial ring $k[y_1, \ldots, y_n] \subseteq R$.

Lemma 1 (A10) Let T be a commutative domain and $R \subseteq T$ such that T is integral over R. Then T is a field if and only if R is a field.

Corollary 4 (A10) If k is a field and $k[a_1, \ldots, a_n]$ is a finitely generated k-algebra that is a field, then $\dim_k k[a_1, \ldots, a_n]$ is finite.

Theorem 4 (Hilbert's "Weak" Nullstellensatz, A10, A12) Let k be an algebraically closed field. The maximal ideals of $k[x_1, \ldots, x_n]$ are given precisely by

$$(p_1,\ldots,p_n) \leftrightarrow (x_1-p_1,\ldots,x_n-p_n),$$

for $p_i \in k$ arbitrary.

Definition 7 (A12) We write \mathbb{A}_k^n or just \mathbb{A}^n for k^n and call it affine *n*-space.

- The **Zariski topology** is defined by declaring the *closed* sets to be the zero loci of finite sets of polynomials. These are called **affine algebraic varieties**.
- If J is an ideal in $k[x_1, ..., x_n]$, then

$$V(J) \coloneqq \{ p \in \mathbb{A}^n \mid f(p) = 0, \text{ for every } f \in J \},\$$

and this is closed. Because J is finitely generated, if $J = (f_1, \ldots, f_r)$ then $V(J) = V(f_1, \ldots, f_r)$.

• If $X \subseteq \mathbb{A}^n$, we define

$$I(X) \coloneqq \{ f \in S \mid f(p) = 0 \text{ for every } p \in X \}.$$

Proposition 6 (A12) Let I, J, and $\{I_{\lambda}\}$ be ideals in $k[x_1, \ldots, x_n]$.

- 1. $I \subseteq J \Rightarrow V(I) \supseteq V(J);$
- 2. $V(0) = \mathbb{A}^n$;
- 3. $V(S) = \emptyset;$
- 4. $\cap_{\lambda} V(I_{\lambda}) = V(\Sigma_{\lambda}I_{\lambda});$
- 5. $V(I) \cup V(J) = V(IJ) = V(I \cap J)$.

Proposition 7 (A12) Let $X, Y \subseteq \mathbb{A}^n$.

- 1. $X \subseteq Y \Rightarrow I(X) \supseteq I(Y);$
- 2. $X \subseteq V(I(X))$, with equality if and only if X is a closed variety.
- 3. If J is an ideal of $k[x_1, \ldots, x_n]$, then $J \subseteq I(V(J))$.

Example 1 (A12) There are two ways for $J \not\subseteq I(V(J))$.

- 1. If J is not "reduced": \mathbb{A}^1 , $J = (x^2) \subset k[x]$. Then $(x) = I(\{0\}) = I(V(J)) \neq (x^2)$.
- 2. If k is not algebraically closed: $\mathbb{R}[x]$, $V(x^2 + 1) = \emptyset$, $I(V(x^2 + 1)) = I(\emptyset) = \mathbb{R}[x]$

Lemma 2 (A15) Let $X \subseteq \mathbb{A}^n$. Then

1. $V(I(X)) = \overline{X}$

2. If X is closed, then V(I(X)) = X.

Definition 8 (A15) If J is an ideal of a commutative ring R, its radical is

{

$$\overline{J} \coloneqq \{a \in R \mid a^n \in J \text{ for } n >> 0\}$$

Notice $J \subseteq \sqrt{J}$, J is an ideal, and $V(J) = V(\sqrt{J})$.

Theorem 5 (Hilbert's Nullstellensatz, "Strong" Form, A15) Let k be an algebraically closed field. Let $A = k[x_1, ..., x_n]$ be the polynomial ring and J an ideal in A. Then

- 1. If $J \neq A$, then $V(J) \neq \emptyset$.
- 2. $I(V(J)) = \sqrt{J}$.
- 3. There is a bijection

radical ideals}	\leftrightarrow	$\{closed \ subsets \ of \ \mathbb{A}^n\}$
$J = \sqrt{J}$	\mapsto	V(J)
I(X)	\leftarrow	$X = \overline{X}$

Definition 9 (A15, A17) If $X \subseteq \mathbb{A}^n$, define the coordinate ring of the ring of regular polynomial functions on X to be

$$\mathcal{O}(X) \coloneqq \frac{k[x_1, \dots, x_n]}{I(X)}.$$

Each element of $\mathcal{O}(X)$ is a well-defined function $f: X \to k$. If $k = \overline{k}$, there is a bijection

$$\begin{cases} \text{closed subsets of } X \end{cases} \leftrightarrow \begin{cases} \text{radical ideals in } \mathcal{O}(X) \end{cases} \\ Y \mapsto I(Y) \triangleleft \mathcal{O}(X) \end{cases}$$

Moreover, the points of X are in bijection with the maximal ideals in $\mathcal{O}(X)$.

Lemma 3 (A17) If X and Z are disjoint closed subsets of \mathbb{A}^n over $k = \overline{k}$, then there exists a function $g \in k[x_1, \ldots, x_n]$ such that g(x) = 0 for all $x \in X$ and g(z) = 1 for all $z \in Z$.

Definition 10 (A17) An ideal p in a commutative ring R is **prime** if it satisfies the following equivalent conditions:

- 1. R/p is a domain.
- 2. $xy \in p \Rightarrow$ either $x \in p$ or $y \in p$.
- 3. If I and J are ideals such that $IJ \subseteq p$, then either $I \subseteq p$ or $J \subseteq p$.

Remark 8 (A17) Let R be a domain and $x \in R$ be a non-zero non-unit. Then xR is prime $\Leftrightarrow x$ is prime. Where a non-zero, non-unit element x is prime if whenever x|yz, then x|y or x|z.

Theorem 6 (A17) Every ideal in a noetherian ring contains a finite product of primes.

Theorem 7 (A19) Let J be an ideal in a commutative noetherian ring R. Then there exists a finite number of minimal primes over J, p_1, \ldots, p_n and moreover $\sqrt{J} = p_1 \cap \cdots \cap p_n$.

Lemma 4 (A19) If $p_1 \supseteq p_2 \supseteq \cdots$ is a descending chain of prime ideals in a commutative ring, then $\bigcap_{i=1}^{\infty} p_i$ is prime.

Lemma 5 (A19) If I is an ideal in a commutative ring, then there exist minimal primes over I.

Definition 11 (A19) A topological space X is **noetherian** if every descending chain of *closed* subspaces is eventually constant.

Remark 10 (A19) Every affine algebraic variety is noetherian.

Definition 12 (A19) A topological space X is **irreducible** if it is not the union of two proper closed subspaces.

Example 2 (A19) In a commutative noetherian ring, $\sqrt{J} = p_1 \cap \ldots \cap p_n$, so $V(\sqrt{J}) = V(p_1) \cup \cdots \cup V(p_n)$.

Remark 11 (A19) If R is a UFD, $\sqrt{xR} = p_1 R \cap \cdots \cap p_n R$ where p_1, \cdots, p_n are the prime divisors of x.

Example 3 (A19) In \mathbb{A}^2 , the union of the two axes is not irreducible in the Zariski topology because $V(xy) = V(x) \cup V(y)$.

Proposition 8 (A19) Let X be a closed subvariety of \mathbb{A}^n . The following are equivalent

- 1. X is irreducible
- 2. I(X) is prime
- 3. $\mathcal{O}(X)$ is a domain

Definition 13 (A22) A function $f: X \to Y$ is a morphism (or polynomial map or regular map) if there are elements $f_1, \ldots, f_m \subseteq \mathcal{O}(X)$ such that $f(p) = (f_1(p), \ldots, f_n(p))$ for all $p \in X$.

Theorem 8 (A22) Let $X \subseteq \mathbb{A}^n$, $Y \subseteq \mathbb{A}^m$ be closed subvarieties.

1. A morphism $f: X \to Y$ induces a k-algebra homomorphism

$$f^{\sharp}: \mathcal{O}(Y) \to \mathcal{O}(X) \quad by \quad f^{\sharp}(g) \coloneqq g \circ f.$$

- 2. Every k-algebra homomorphism $\mathcal{O}(Y) \to \mathcal{O}(X)$ is of the form f^{\sharp} for some morphism $f: X \to Y$.
- 3. If $X \xrightarrow{f} Y \xrightarrow{h} Z$ are morphisms, then $(h \circ f)^{\sharp} = f^{\sharp} \circ h^{\sharp}$.
- 4. The category of affine algebraic varieties over k is anti-equivalent to the category of finitely generated reduced commutative k-algebras. (Any ring R is **reduced** if $\sqrt{0} = 0$.)

Corollary 5 (A22) Let $X \subseteq \mathbb{A}^n$ and $Y \subseteq \mathbb{A}^m$ be affine varieties. Then $X \cong Y \Leftrightarrow \mathcal{O}(X) \cong \mathcal{O}(Y)$.

Example 4 (A24) Let $C \subseteq \mathbb{A}^2$ be the curve y = f(x), for some polynomial f. Then $C \cong \mathbb{A}^1$. That is, $\mathcal{O}(C)$ is isomorphic to the polynomial ring in one variable.

Example 5 (A24) The closed sets on \mathbb{A}^1 are the finite sets and \mathbb{A}^1 . So every bijective function $f: \mathbb{A}^1 \to \mathbb{A}^1$ is a homeomorphism in the Zariski topology, but not all are morphisms. Only those of the form $x \mapsto \alpha x + \beta$, $\beta \in k$ are morphisms.

Lemma 6 (A24) If k is a field of characteristic p > 0 and R is a commutative k-algebra, the function $r \mapsto r^p$ is a k-algebra homomorphism. In particular, if char(k) = p > 0 and X is a closed subvariety of \mathbb{A}^n the function $F: X \to X$ defined by $F(a_1, \ldots, a_n) = (a_1^p, \ldots, a_n^p)$ is a morphism because $F^{\sharp}: \mathcal{O}(X) \to \mathcal{O}(X)$ is $r \mapsto r^p$. F is the **Frobenius morphism**.

Example 6 Let $C = V(y^2 - x^3)$. Define $f: \mathbb{A}^1 \to C$ by $f(\alpha) = (\alpha^2, \alpha^3)$. Although f is a morphism, its inverse $(\alpha, \beta) \mapsto \beta \alpha^{-1}$ if $\alpha \neq 0$ and $(\alpha, \beta) \mapsto 0$ if $\alpha = 0$ is not a morphism.

This is captured by f^{\sharp} : $f^{\sharp}: \mathcal{O}(C) = k[x,y]/(y^2 - x^3) \rightarrow k[t]$ by $f^{\sharp}(x) = t^2$, $f^{\sharp}(y) = t^3$, so f^{\sharp} is not surjective.

Proposition 9 (A24) Let $f: X \to Y$ be a morphism between Zariski-closed subspaces of \mathbb{A}^n and \mathbb{A}^m and $f_{\sharp}: \mathcal{O}(Y) \to \mathcal{O}(X)$ the corresponding k-algebra homomorphism.

- 1. If $Z \subseteq Y$ is closed, then $f^{-1}(Z) = V(f_{\sharp}(I(Z)))$.
- 2. f is continuous.
- 3. If $W \subseteq X$ is closed, then
 - (a) $I(f(W)) = I(\overline{f(W)}) = f_{\sharp}^{-1}(I(W))$
 - (b) $\overline{f(W)} = V(f_{\sharp}^{-1}I(W))$
- 4. $\ker(f_{\sharp}) = I(f(X))$ and $\overline{f(X)} = V(\ker(f_{\sharp}))$.
- 5. ϕ is injective $\Leftrightarrow f(x)$ is dense in Y.
- 6. The fibers $f^{-1}(y)$ for $y \in Y$ are closed.
- 7. $\mathfrak{m}_{f(X)} = \phi^{-1}(\mathfrak{m}_X)$ is the maximal ideal in $\mathcal{O}(Y)$ vanishing at f(X).

Example 7 (A24) A morphism that sends a closed set to a non-closed set: Let $C = V(xy-1) \subset \mathbb{A}^2$ and take $f: F \to \mathbb{A}^1$. Then $f^{\sharp}: \mathcal{O}(\mathbb{A}^1) = k[t] \to k[x, y]/(xy-1) = \mathcal{O}(C)$ by $t \mapsto x$. The image of f is $\mathbb{A}^1 - \{0\}$, so f(C) is not closed.

Proposition 10 (A26) Let $f: X \to Y$ be a morphism of affine varieties and $f^{\sharp}: \mathcal{O}(Y) \to \mathcal{O}(X)$. Suppose $\mathcal{O}(X)$ is a finitely generated $\mathcal{O}(Y)$ -module.

- 1. The fibers of f are finite.
- 2. If f^{\sharp} is injective, then f is surjective.
- 3. If $Z \subseteq X$ is closed, then f(Z) is closed in Y.

Lemma 7 (A26) Let R be a commutative ring.

- 1. R artinian \Rightarrow every prime ideal in R is maximal.
- 2. R noetherian and every prime ideal in R maximal \Rightarrow R is artinian.
- 3. If R is a finite dimensional k-algebra then R has only a finite number of prime ideals and they are all maximal.

Proposition 11 (A26) If $A \subseteq B$ are commutative rings and B is a finitely generated A-module and \mathfrak{p} a prime ideal in A, the there exists a prime ideal \mathfrak{q} in B such that $\mathfrak{q} \cap A = \mathfrak{p}$.

Definition 14 (A29) Let S be a multiplicatively closed subset of a commutative ring R containing 1 but not containing 0. Say $(m, s) \sim (m', s')$ if there is some $t \in S$ such that t(ms' - m's) = 0. Define $M[S^{-1}]$ to be the R-module whose elements are equivalence classes "m/s" = [(m, s)] with addition and the r-action defined as usual for fractions.

In fact, $M[S^{-1}]$ can be given an $R[S^{-1}]$ -module structure. $M[S^{-1}]$ is a localization of M. One may localize rings by viewing them as modules over themselves.

Proposition 12 (A29) If $0 \to L \to M \to N \to 0$ is an exact sequence of *R*-modules, then $0 \to L[S^{-1}] \to M[S^{-1}] \to N[S^{-1}] \to 0$ is an exact sequence of $R[S^{-1}]$ -modules. That is, localization is an exact functor.

Definition 15 (A29) If R is commutative and \mathfrak{p} is prime, then

$$R_{\mathfrak{p}} \coloneqq R[R - \mathfrak{p}]$$

is the local ring at p.

Definition 16 (A29) A commutative ring R is local if it has a unique maximal ideal.	
Lemma 8 (A29) If I is an ideal in $R[S^{-1}]$ then I is generated by $I \cap R$, i.e. $I = (I \cap R)R[S^{-1}]$.	
Lemma 9 (A29) $\mathfrak{p}R_{\mathfrak{p}}$ is the unique maximal ideal in $R_{\mathfrak{p}}$.	
Lemma 10 (A29) Let R be a commutative ring and M a non-zero finitely generated R -module. Then	there
exists a submodule $N \subseteq M$ such that M/N is a simple module.	

Lemma 11 (Nakayama, A29) Let R be a local ring with maximal ideal \mathfrak{m} . Let M be a finitely generated R-module. If $\mathfrak{m}M = M$, then M = 0.

Definition 17 (A29) Let R be a commutative ring. Its spectrum is

$$\operatorname{spec}(R) \coloneqq \{ \operatorname{all prime ideals} \}.$$

Proposition 13 (A29) The Zariski topology on spec(R) is defined by declaring that the closed subsets to be those of the form

$$V(I) \coloneqq \{ p \in \operatorname{spec}(R) \mid I \subseteq \mathfrak{p} \},\$$

as I ranges over all ideals in R. Indeed, we allow arbitrary subsets B of R in place of I; note that V(B) = V((B)).

Proposition 14 (M1) Let $\phi: R \to S$ be a ring homomorphism and define $f: \operatorname{spec}(S) \to \operatorname{spec}(R)$ by $f(\mathfrak{p}) = \phi^{-1}(\mathfrak{p}) = \{x \in R \mid \phi(x) \in \mathfrak{p}\}$. Then f is continuous with respect to the Zariski topology.

Lemma 12 (M1) The closed points in spec(R) are exactly the maximal ideals. Denote these by $\max(R)_{\Box}$

Proposition 15 (M1) Let $k = \overline{k}$ and $X \subseteq \mathbb{A}^n$ be a subvariety. The map $\Phi: X \to \operatorname{spec}(\mathcal{O}(X))$ where $\Phi(X) = \mathfrak{m}_X = \{f \in \mathcal{O}(X) \mid f(x) = 0\}$ is a homeomorphism onto its image, i.e. $X \cong \max \mathcal{O}(X)$.

Lemma 13 (M1) Let $R \subseteq S$ be an integral extension. If $V \subseteq R$ is multiplicatively closed, $0 \notin V$, and $1 \in V$, then $R[V^{-1}] \subseteq S[V^{-1}]$ is an integral extension.

Theorem 9 (Lying Over and Going Up, M3) Given $R \subseteq S$ an integral extension of domains, $\mathfrak{p} \in \operatorname{spec}(R)$, $\mathfrak{q}' \in \operatorname{spec}(S)$ such that $\mathfrak{q}' \subseteq \mathfrak{p}$, there exists $\mathfrak{q} \in \operatorname{spec}(S)$ such that $\mathfrak{q}' \subseteq \mathfrak{q}$ and $\mathfrak{q} \cap R = \mathfrak{p}$.

Corollary 6 (M3) Let $f: X \to Y$ be a morphism between irreducible affine varieties such that $\mathcal{O}(X)$ is a finitely generated $\mathcal{O}(Y)$ -module via $f^{\sharp}: \mathcal{O}(Y) \to \mathcal{O}(X)$. Suppose also that f^{\sharp} is injective. Then

- 1. If X is closed, then f(X) is closed.
- 2. Given closed subsets $Z \subseteq Y$ and $W' \subseteq X$ such that $f(W') \supseteq Z$, there exists a closed irreducible set $W \subseteq W'$ such that f(W) = Z. In particular, f is surjective.

Theorem 10 (Noether Normalization, M3) Let $X \subseteq \mathbb{A}^n$ be a closed irreducible subvariety. Noether normalization \Rightarrow there exists a polynomial ring $k[y_1, \ldots, y_n] \subseteq \mathcal{O}(X)$ such that $\mathcal{O}(X)$ is integral over $k[y_1, \ldots, y_m]$. This inclusion corresponds to a morphism $X \stackrel{f}{\to} \mathbb{A}^m$ such that

- 1. The fibers of f are finite.
- 2. f is surjective.
- 3. If X is closed, then f(X) is closed.

Definition 18 (M3) Let X be an affine variety. We call a morphism $\sigma: X \to X$ an **automorphism of** X if the corresponding homomorphism $\sigma^{\sharp}: \mathcal{O}(X) \to \mathcal{O}(X)$ is a k-algebra automorphism.

Theorem 11 (Hilbert-Noether, M6) Suppose R is a finitely generated commutative k-algebra and a domain. Suppose G is a finite group of k-algebra automorphisms of R. Take

$$R^G = \{f: f^g = f \text{ for every } g \in G\}.$$

Then

- 1. R^G is a finitely generated k-algebra.
- 2. R is a finitely generated R^G -module.

Definition 19 (M6) Let $G \subseteq Aut(X)$ be a finite group of automorphisms. Write X/G for the set of orbits. Define it as an algebraic variety to have coordinate ring

$$\mathcal{O}(X)^G = \{ f \in \mathcal{O}(X) \mid \sigma^{\sharp}(f) = f, \forall \sigma \in G \}.$$

Also define $\pi: X \to X/G$ to be the morphism corresponding to the inclusion $\mathcal{O}(X)^G \hookrightarrow \mathcal{O}(X)$.

- 1. $\pi: X \to X/G$ is surjective.
- 2. The fibers of π are exactly the G orbits, i.e. π sets up a bijection between points of X/G and the G-orbits.
- 3. The degree of π is |G|.
- 4. If $\rho: X \to Y$ is a morphism that is constant on *G*-orbits, then there is a unique morphism $\delta: X/G \to Y$ such that $\rho = \delta \circ \pi$.

Definition 20 (M6) Let $f: X \to Y$ be a morphism such that $f^{\sharp}: \mathcal{O}(Y) \to \mathcal{O}(X)$ is such that $\mathcal{O}(X)$ is a finitely generated $\mathcal{O}O(Y)$ -module. We define $k(X) \coloneqq \operatorname{frac} \mathcal{O}(X)$. Suppose also f^{\sharp} is injective, making the following diagram commute:

Since $\mathcal{O}(X)$ is a finitely generated $\mathcal{O}(Y)$ -module, k(X) is a finite dimensional k(Y)-vector space. Define $\deg(f) := [k(X) : k(Y)]$.

Theorem 12 (M6) There exists a proper closed subvariety $Z \subseteq X$ such that $[f^{-1}(y)] = \deg(f)$ for all $y \in Y - Z$.

Definition 21 (M8) $Ext_R^n(M, N)$: Let R be a ring. Suppose $0 \to N \to N' \to N'' \to 0$ and $0 \to M \to M' \to M'' \to 0$ are exact sequences of R-modules. Then there are exact sequences

$$0 \to \operatorname{Hom}_{R}(M, N) \to \operatorname{Hom}_{R}(M, N') \to \operatorname{Hom}_{R}(M, N'')$$

$$\to \operatorname{Ext}_{R}^{1}(M, N) \to \operatorname{Ext}_{R}^{1}(M, N'0 \to \operatorname{Ext}_{R}^{1}(M, N'')$$

$$\to \operatorname{Ext}_{R}^{2}(M, N) \to \cdots,$$

$$0 \to \operatorname{Hom}_{R}(M'', N) \to \operatorname{Hom}_{R}(M', N) \to \operatorname{Hom}_{R}(M, N)$$

$$\to \operatorname{Ext}_{R}^{1}(M'', N) \to \operatorname{Ext}_{R}^{1}(M', N) \to \operatorname{Ext}_{R}^{1}(M, N)$$

$$\to \operatorname{Ext}_{R}^{2}(M'', N) \to \cdots.$$

Indeed, $\operatorname{Ext}_{R}^{0}(M, N) = \operatorname{Hom}_{R}(M, N)$. If R is commutative, then $\operatorname{Ext}_{R}^{n}(M, N)$ is an R-module.

Definition 22 (M8) A projective resolution of an R-module M is an exact sequence

$$\dots \to P_n \to \dots \stackrel{\alpha_2}{\to} P_! \stackrel{\alpha_1}{\to} P_0 \stackrel{\epsilon}{\to} M \to 0,$$

where each P_i is a projective left *R*-module.

Example 8 (M8) Let $R = k[x]/(x^2)$, M = R/(x).

$$\dots \to R \xrightarrow{x} R \xrightarrow{x} R \to M \to 0.$$

Definition 23 (M8) Apply the functor $\operatorname{Hom}_R(-, N)$ to the projective resolution above to get a cochain complex

$$0 \to \operatorname{Hom}_{R}(M, N) \xrightarrow{\epsilon'} \operatorname{Hom}_{R}(P_{0}, N) \xrightarrow{\alpha_{1}} \operatorname{Hom}_{R}(P, N) \xrightarrow{\alpha_{2}} \cdots,$$

where $\alpha'_n = (-) \circ \alpha_n$. Take homology:

$$\operatorname{Ext}_{R}^{n}(M,N) \coloneqq \frac{\ker \alpha_{n+1}'}{\operatorname{im} \alpha_{n}'}.$$

(We can analogously use an injective resolution.)

Theorem 13 (M8) $\operatorname{Ext}_{R}^{n}(M,N)$ is independent of the choice of resolution.

Definition 24 (M8) A chain complex (C, d) is a sequence of abelian groups and homomorphisms

$$\cdots \to C_{n+1} \stackrel{d_{n+1}}{\to} C_n \stackrel{d_n}{\to} C_{n-1} \stackrel{\cdots}{\to}$$

such that $d^2 = 0$.

- The *n*-cycles are $Z_n(C) \coloneqq \ker d_n$,
- the *n*-boundaries are $B_n(C) := \operatorname{im} d_{n+1}$,
- and the *n*th homology groups are $H_n(C) \coloneqq \frac{Z_n(C)}{B_n(C)}$.

Definition 25 (M8) A chain map $f:(D,d') \to (C,d)$ is a collection of maps and homomorphisms $f_n: D_n \to C_n$ such that the following commutes:

$$D_n \xrightarrow{d'_n} D_{n-1}$$

$$\downarrow^{C_n} \qquad \downarrow^{f_{n-1}}$$

$$C_n \xrightarrow{d_n} C_{n-1}.$$

(This gives an abelian category of chain complexes.)

Lemma 14 (M8) If $f: D \to C$ is a chain map, it induces maps $H_n(f_n): H_n(D) \to H_n(C)$ for all n.

Definition 26 (M8) Let $f, g: D \to C$ be chain maps. We say f is **null-homotopic** if for all n there exists $s_n: D_n \to C_{n+1}$ such that $f_n = d_{n+1}s_n + s_{n-1}d_n$.

We say f is homotopic to g if f - g is null-homotopic.

Lemma 15 (M8) Homotopic maps induce the same map on homology, i.e. $f \sim g \Rightarrow H_n(f_n) = H_n(g_n)$.

Proposition 16 (M10) Let $\beta: M' \to M$ be a module homomorphism. Let $\dots \to P'_0 \to M'$ and $\dots \to P_0 \to M$ be projective resolutions. Then there exists $\widehat{\beta}: P'_{\bullet} \to P$ that "lifts" β , and $\widehat{\beta}$ is unique up to homotopy. That is,

$$\cdots \longrightarrow P'_1 \xrightarrow{d'_1} P'_0 \xrightarrow{\epsilon'} M' \longrightarrow 0 \\ \downarrow^{\exists \widehat{\beta}_1} \qquad \downarrow^{\exists \widehat{\beta}_2} \qquad \downarrow^{\beta} \\ \cdots \longrightarrow P_1 \xrightarrow{d_1} P_0 \xrightarrow{\epsilon} M \longrightarrow 0$$

Theorem 14 (M13) Let $0 \to C''_{\cdot} \xrightarrow{i} C'_{\cdot} \xrightarrow{p} C_{\cdot} \to 0$ be an exact sequence of complexes. For each n, there exists a natural homomorphism

$$\delta_n: H_n(C) \to H_{n-1}(C'')$$

defined by $\delta_n(z + B_n(C)) = i_{n-1}^{-1} d'_n P_n^{-1}(z) + B_{n-1}(C'').$

Definition 27 (M13) Isomorphism of functors Let $F, G: \mathcal{C} \to \mathcal{D}$ be functors. A **natural transformation** $\tau: F \to G$ is a collection of morphisms τ_X for $X \in Ob(\mathcal{C}), \tau_x: FX \to GX$, such that if $f: X \to Y$ is a morphism, then the diagram below commutes:

$$\begin{array}{ccc} FX & \xrightarrow{\tau_X} & GX \\ F(f) \downarrow & & \downarrow^G(f) \\ FY & \xrightarrow{\tau_Y} & GY \end{array}$$

If τ_X is an isomorphism for all $X \in \mathcal{C}$, we say that τ is a **natural isomorphism** and that F and G are **isomorphic functors**, $F \cong G$. We say \mathcal{C} and \mathcal{D} are **equivalent** if there are functors $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ such that $F \circ G \cong \operatorname{id}_{\mathcal{D}}$ and $G \circ F \cong \operatorname{id}_{\mathcal{C}}$.

Theorem 15 (M15) Let $E^n: Mod(R) \to Ab$ be a sequence of contravariant functor for $n \ge 0$ such that

1. for every short exact sequence $0 \to M \to M' \to M'' \to 0$ in Mod(R), there is a long exact sequence with natural connected homomorphisms

 $\cdots \to E^n(M'') \to E^n(M') \to E^n(M) \xrightarrow{\delta_n} E^{n+1}(M'') \to \cdots;$

- 2. there exists a right R-module N such that $E^0(-) \cong \operatorname{Hom}_R(-, N)$;
- 3. $E^n(P) = 0$ for all $n \ge 1$ and all projectives P.

If $F^n: Mod(R) \to Ab$ is another sequence of contravariant functors satisfying these conditions and $F^0(-) \cong Hom_R(-, N)$ for the same N, then $F^n \cong E^n$ for all n.

Lemma 16 (M15) Let P be an R-module. The following are equivalent.

- 1. P is projective.
- 2. $\operatorname{Ext}^{1}_{R}(P, -) = 0.$
- 3. $\operatorname{Ext}_{R}^{n}(P, -) = 0$ for all $n \ge 1$.

Definition 28 (M15) The **projective dimension** of a module M is the smallest n such that $\operatorname{Ext}_{R}^{n+i}(M, -) = 0$ for all $i \ge 0$.

Example 9 (M15) The projective dimension of M is 0 if and only if M is projective.

Definition 29 (M15) The global homological dimension of R is the smallest n such that $\text{Ext}_{R}^{n+i}(-,-) = 0$ for all $i \ge 1$.

Remark 12 (M15) • The global dimension of *R* is 0 if and only if *R* is semisimple.

- If R is a PID, then the global dimension of R is 1.
- If M is a finitely generated R-module, M is torsion if and only if the projective dimension of M is 1.
- The global dimension of $k[x_1, \ldots, x_n]$ is n.
- The projective dimension of $k[x_1, \ldots, x_n]/\mathfrak{m}$ is *n* for all maximal ideals \mathfrak{m} .
- The projective dimension of $k[x_1, \ldots, x_n]/\mathfrak{p}$ is the transcendence degree of its field of fractions, which is $n \dim V(\mathfrak{p})$, when \mathfrak{p} is prime.
- If X is an irreducible affine variety, then the global dimension of $\mathcal{O}(X)$ is finite if and only if X is "smooth".

Definition 30 (M17) Tensor products of vector spaces: given bases v_i of V and w_j of W, $v_i \otimes w_j$ is a bases for $V \otimes_k W$, where V, W are k-vector spaces. There is a linear map $V \otimes W^* \xrightarrow{\Phi} \operatorname{Hom}_k(W, V)$ given by $\Phi(v \otimes \lambda)(w) = \lambda(w)v$. This is injective, and moreover if dim $V, \dim W < \infty$, then Φ is a linear isomorphism. Moreover, $V \otimes V^* \xrightarrow{\cong} \operatorname{Hom}_k(V, V)$.

If v_i is a basis for V and λ_i is the dual basis for V^* , then $\Phi(\sum v_i \otimes \lambda_i) = \mathrm{id}_V$. If $\dim V, \dim W < \infty$, then $V \otimes W \xrightarrow{\Phi} \mathrm{Hom}_k(W^*, V)$ is an isomorphism.

Definition 31 (M17) The **double dual functor** (-) * * from finite dimensional vector spaces to itself is isomorphic to the identity functor. (There is also a single dual functor.)

Definition 32 (M17) If $T: U \to U'$ is a linear transformation, then rank(T) is the smallest n such that T factors as $U \to k^n \to U'$.

Example 10 (M17) The rank one 2×2 matrices are those of the form

$$k^2 \stackrel{(cd)}{\rightarrow} k \stackrel{(a;b)}{\rightarrow} k^2$$

Proposition 17 (M17) Let V and W be finite dimensional vector spaces and $f \in V \otimes W$. Then rank(f) is the smallest n such that $f = v_1 \otimes w_1 + \dots + v_n \otimes w_n$ for some $v_i \in V$ and $w_i \in W$.

Definition 33 (M17) Let R be any ring. Let M be a right R-module and N a left R-module. Define the **tensor product** $M \otimes_R N$ as follows. First let F be the free abelian group with basis $(m, n) \in M \times N$. Let K be the subgroup generated by elements

$$(m, n + n') - (m, n) - (m, n')$$

 $(m + m', n) - (m, n0 - (m', n))$
 $(mr, n) - (m, rn)$

for all $m, m' \in M$, $n \in N$, $r \in R$. Define $M \otimes_R N$ as an abelian group to be F/K. Write $m \otimes n$ for the coset (m, n) + K. The relations ensure \otimes is "bilinear", and $mr \otimes n = m \otimes rn$.

Example 11 (M17) • $\frac{\mathbb{Z}}{3\mathbb{Z}} \otimes_{\mathbb{Z}} \frac{\mathbb{Z}}{2\mathbb{Z}} = 0$

• More generally, if I and J are ideals in a commutative ring such that I + J = R, then

$$\frac{R}{I} \otimes_R \frac{R}{J} = 0.$$

• Even more generally,

$$\frac{R}{I}\otimes_R N\cong \frac{N}{IN}$$

Proposition 18 (M17) Let $\alpha: M \times N \to M \otimes_R N$ be the homomorphism of abelian groups $\alpha(m, n) = m \otimes n$. If $f: M \times N \to G$ is a homomorphism to an abelian group G such that

$$f(m, n + n') = f(m, n) + f(m, n')$$

$$f(m + m', n) = f(m, n) + f(m', n)$$

$$f(mr, n) = f(m, rn)$$

for all $m, m' \in M$, $n, n' \in N$, $r \in R$, then there exists a unique group homomorphism $\phi: M \otimes_R N \to G$ such that $f = \phi \circ \alpha$:

Lemma 17 (M20) Let R, S be rings.

1. For modules $(M_R, _RN_S, X_S)$, there is an isomorphism of abelian groups

$$\Phi: \operatorname{Hom}_{S}(M \otimes_{R} N, X) \xrightarrow{\cong} \operatorname{Hom}_{R}(M, \operatorname{Hom}_{S}(N, X))$$
$$\Phi(f)(m)(n) \coloneqq f(m \otimes n).$$

2. For modules $({}_{S}M_{R}, {}_{R}N, {}_{S}Y)$, there is an isomorphism of abelian groups

 $\Phi: \operatorname{Hom}_{S}(M \otimes_{R} N, Y) \xrightarrow{\cong} \operatorname{Hom}_{R}(N, \operatorname{Hom}_{S}(M, Y))$

given by

$$\Phi(f)(n)(m) \coloneqq f(m \otimes n).$$

Remark 13 (M20) If M_R , $_RN_S$, then

- $M \otimes_R N$ is a right S-module via $(m \otimes n)s = m \otimes (ns)$.
- Hom_S(N,X) is a right R-module via $\alpha \cdot r$)(n) = α (rn).

Definition 34 (M20) Let \mathcal{C}, \mathcal{D} be categories and let $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ be functors. We say F is left adjoint to G and G is right adjoint to F if there are bifunctorial isomorphisms

$$\tau_{\mathcal{C},\mathcal{D}}$$
: Hom $_{\mathcal{D}}(FC,D) \xrightarrow{\cong} \operatorname{Hom}_{\mathcal{C}}(C,GD)$

for all $C \in \mathcal{C}$ and $D \in \mathcal{D}$. That is, if $\alpha: C \to C'$ in \mathcal{C} , then the following commutes:

$$\operatorname{Hom}_{\mathcal{D}}(FC, D) \xrightarrow{\tau_{C,D}} \operatorname{Hom}_{\mathcal{C}}(C, GD)$$

$$(-) \circ F_{\alpha} \uparrow \qquad \uparrow (-) \circ \alpha$$

$$\operatorname{Hom}_{\mathcal{D}}(FC', D) \xrightarrow{\tau_{C',D}} \operatorname{Hom}_{\mathcal{C}}(C', GD),$$

and similarly if $\beta: D \to D'$.

Theorem 16 (M20) Let R and S be rings, $_RN_S$ a bimodule. Then $-\otimes_R N: \operatorname{Mod}^r(R) \to \operatorname{Mod}^r(S)$ is left adjoint to $\operatorname{Hom}_S(N, -): \operatorname{Mod}^r(S) \to \operatorname{Mod}^r(R)$ (where r indicates right-modules). The isomorphisms

$$\tau_{M,X}$$
: Hom_S(FM, X) $\xrightarrow{=}$ Hom_R(M, GX)

are the Φ 's in the previous lemma.

Proposition 19 (M20) If $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ are an adjoint pair of functors with F left adjoint to G in abelian categories, then F is right exact and G is left exact.

Example 12 (M22) If $_RN_S$, then $-\otimes_R N: \operatorname{Mod}^r R \to \operatorname{Mod}^r S$ is left adjoint to $\operatorname{Hom}_S(N, -): \operatorname{Mod}^r S \to \operatorname{Mod}^r R$. Thus $-\otimes_R N$ is right exact, and $\operatorname{Hom}_S(N, -)$ is left exact.

Lemma 18 (M22) The following are equivalent.

- 1. $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is an exact sequence of left *R*-modules
- 2. $0 \to \operatorname{Hom}_{R}(X, A) \xrightarrow{\alpha^{*}} \operatorname{Hom}_{R}(X, B) \xrightarrow{\beta^{*}} \operatorname{Hom}_{R}(X, C)$ is exact for all X.

The following are also equivalent.

- 1. $A \rightarrow B \rightarrow C \rightarrow 0$ is exact.
- 2. $0 \to \operatorname{Hom}_{R}(C, Y) \to \operatorname{Hom}_{R}(B, Y) \to \operatorname{Hom}_{R}(A, Y)$ is exact for all Y.

Lemma 19 (M22) If M is a left R-module, themap $M \xrightarrow{f} R \otimes_R M$ given by $f(m) = 1 \otimes m$ is an isomorphism of left R-modules.

Lemma 20 (Change of Rings, M22) Suppose $f: R \to S$ is a ring homomorphism. We have functors

$$f^* = S \otimes_R -: \operatorname{Mod}^{\ell} R \to \operatorname{Mod}^{\ell} S$$
$$f_* = \operatorname{Hom}_S(S, -): \operatorname{Mod}^{\ell} S \to \operatorname{Mod}^{\ell} R$$
$$f' = \operatorname{Hom}_R(S, -): \operatorname{Mod}^{\ell} R \to \operatorname{Mod}^{\ell} S,$$

where f^* is left adjoint to f_* , f_* is left adjoint to f', so f^* is right exact, f_* is exact, and f' is left exact.

Lemma 21 (M24) The map $\frac{R}{I} \otimes_R M \xrightarrow{f} \frac{M}{IM}$ given by $f([r+I] \otimes m) = [rm+IM]$ is an isomorphism. Similarly $\frac{R}{I} \otimes_R \frac{R}{I} = \frac{R}{I+I}$.

Definition 35 (M24) A left *R*-module *M* is **flat** if $0 \to X \otimes_R M \to Y \otimes_R M \to Z \otimes_R M \to 0$ is exact for all short exact sequences of right R-modules $0 \to X \to Y \to Z \to 0$, that is, if $-\otimes_R M$ is an exact functor.

Example 13 (M24) R is flat as a module over itself, since $X \cong X \otimes_R R$.

Proposition 20 (M24) \otimes distributes over (arbitrary) \oplus .

- 1. A module $N_1 \oplus N_2$ is a flat R-module if and only if N_1, N_2 are flat R-modules.
- 2. In particular, projective R-modules are flat.
- 3. If R is noetherian, every finitely generated flat R-module is projective.
- 4. More generally, finitely presented flat modules over arbitrary rings are projective.

Example 14 (M24) \mathbb{Q} is a flat \mathbb{Z} -module but is not projective.

Lemma 22 (M24) There is a natural isomorphism

$$M \otimes_R R[S^{-1}] \to M[S^{-1}]$$

given by

$$m \otimes xs^{-1} \mapsto mxs^{-1}$$
.

Lemma 23 (M29) The map $g: M \to M[S^{-1}]$ given by $g(m) = m \otimes 1$ is an *R*-module homomorphism, and $\ker g = \{m \in M \mid ms = 0 \text{ for some } s \in S\}.$

Definition 36 (M29) If R is any ring, M is a right R-module, and N is a left R-module, we define the **Tor** groups $\operatorname{Tor}_{i}^{R}(M, N)$ for $i \geq 0$ as follows. Take a projective resolution of M (by projective right R-modules), and define the Tor groups $\operatorname{Tor}_{i}^{R}(M, N)$ as the homology groups associated to the complex obtained from the projective resolution by applying the $-\otimes_R N$ functor.

Theorem 17 (M29) 1. $\operatorname{Tor}_{0}^{R}(M, N) = M \otimes_{R} N;$

- 2. $\operatorname{Tor}_{i}^{R}(M, N)$ does not depend on the choice of projective resolution;
- 3. If $0 \to X \to Y \to Z \to 0$ is an exact sequence of left R-modules, then there is a long exact sequence

$$\cdots \to \operatorname{Tor}_{n}^{R}(M, X) \to \operatorname{Tor}_{n}^{R}(M, Y) \to \operatorname{Tor}_{n}^{R}(M, Z) \to$$
$$\operatorname{Tor}_{n-1}^{R}(M, X) \to \cdots \to \operatorname{Tor}_{1}(M, Z)$$
$$M \otimes_{R} X \to M \otimes_{R} Y \to M \otimes_{R} Z \to 0.$$

- 4. If $Q \to N \to 0$ is a projective resolution of N, then $\operatorname{Tor}_{i}^{R}(M, N)$ is isomorphic to the homology group of the complex $M \otimes_{R} Q$.
- 5. If $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is an exact sequence of right R-modules, there is a long exact sequence

$$\cdots \to \operatorname{Tor}_1(C, N) \to A \otimes_R N \to B \otimes_R N \to C \otimes_R N \to 0$$

- 6. $\operatorname{Tor}_{n}^{R}(M, -) = 0$ for all $n \ge 1$ if and only if M is a flat right R-module;
- 7. $\operatorname{Tor}_{n}^{R}(-, N) = 0$ for all $n \geq 0$ if and only if N is a flat left R-module.

Remark 14 (M29) If R is commutative, M, N are projective, then $M \otimes_R N$ is projective.

Example 15 (M29) If
$$R = k[x_1, ..., x_n], k = R/(x_1, ..., x_n)$$
, then $\operatorname{Tor}_i^R(k, k) \cong k^{\binom{n}{i}}$

Definition 37 (M31) A Dedekind domain is a ring with the following properties:

- Commutative noetherian domain that is not a field;
- Integrally closed in its field of fractions;
- Every non-zero prime ideal is maximal.
- **Example 16 (M31)** 1. Rings of integers in number fields: a **number field** is a finite field extension of \mathbb{Q} . The **ring of integers** in K, sometimes written \mathcal{O}_K , is the integral closure of \mathbb{Z} in K, i.e. the set of elements of K which satisfy a monic polynomial with coefficients in \mathbb{Z} .
 - 2. If C is a "smooth" irreducible affine curve, then $\mathcal{O}(C)$ is a Dedekind domain. For instance, $y^2 = x^3$ gives $k[t^2, t^3]$. This is not a smooth curve, and the ideal (t^2, t^3) is not "generated by one and a half elements"; see below for a definition.
 - 3. If R is a domain and **p** is a minimal nonzero prime ideal, then $R_{\mathfrak{p}}$ is a Dedekind domain if and only if $\frac{\mathfrak{p}R_{\mathfrak{p}}}{(\mathfrak{p}R_{\mathfrak{p}})^2}$ is a 1-dimensional vector space over the field $\frac{R_{\mathfrak{p}}}{\mathfrak{p}R_{\mathfrak{p}}}$.

If X is a smooth affine algebraic variety of dimension n and $Y \subset X$ is an irreducible subvariety of dimension n-1 and \mathfrak{p} is the ideal I(Y), then $\mathcal{O}(X)_{\mathfrak{p}}$ is a Dedekind domain.

Definition 38 (M31) Let R be a commutative noetherian domain and K its field of fractions. A non-zero R-submodule of K is a **fractional ideal** if $xM \subset R$ for some $0 \neq x \in R$.

Remark 15 (M31) • Fractional ideals are noetherian *R*-modules.

- If M is a nonzero finitely generated R-submodule of K, then M is a fractional ideal.
- Every nonzero ideal in R is a fractional ideal.

- A product of fractional ideals is a fractional ideal.
- If M and N are fractional ideals, then $M \cap N \neq 0$.
- The set of fractional ideals forms an abelian monoid (a group except without inverses).

Definition 39 (M31) If M is a fractional ideal, we define

$$M^{-1} \coloneqq \{ x \in K \mid xM \subseteq R \}.$$

П

Note that M^{-1} is also a fractional ideal, and $MM^{-1} \subseteq R$.

Example 17 (M31) $\operatorname{Hom}_R(M, R) \cong M^{-1}$ as *R*-modules.

Proposition 21 (J3) Let \mathfrak{m} be a maximal ideal in a Dedekind domain, then $\mathfrak{m}\mathfrak{m}^{-1} = R$.

Theorem 18 (J3) Every nonzero ideal in a Dedekind domain is a product of maximal (\Leftrightarrow prime) ideals in a unique way.

Corollary 7 (J3) The set of fractional ideals for a Dedekind domain is a group under multiplication with identity R.

Definition 40 (J3) The **principal ideals** (a slight abuse of notation) in the group of fractional ideals are those generated by a single element as an R-module. In a Dedekind domain, they form a subgroup, and the quotient of of the group of fractional ideals by this subgroup is the **ideal class group** or the **Picard group** of R. The **class number** of K is the order of the ideal class group.

Proposition 22 (J3) If \mathfrak{m} is a maximal ideal in a Dedekind domain R, then $R\mathfrak{m}$ is a valuation ring. The valuation of $x \in K - \{0\}$ is the largest n such that $x \in \mathfrak{m}^n$.

Proposition 23 (J5) Let R be a Dedekind domain, \mathfrak{m} a maximal ideal, and $k = R/\mathfrak{m}$. Then

- 1. dim_k $\mathfrak{m}^n/\mathfrak{m}^{n+1} = 1$ for all $n \ge 0$ ($\mathfrak{m}^0 = R$);
- 2. If $t \in \mathfrak{m} \mathfrak{m}^2$, then $\mathfrak{m}^d = \mathfrak{m}^n + Rt^d$ for all integers $1 \leq d \leq n$.
- 3. The only ideals containing \mathfrak{m}^d are \mathfrak{m}^n for $n \leq d$.

Lemma 24 (J5) If R_1, \ldots, R_n are rings in which every ideal is principal, so is $R = R_1 \oplus \cdots \oplus R_n$.

Proposition 24 (J5) Every ideal in a Dedekind domain can be generated by "one and a half elements". This means that given an ideal I and an arbitrary element $0 \neq x \in I$, there is some element $y \in I$ such that I = (x, y).

Lemma 25 (J5) If I is a non-zero ideal in a Dedekind domain R, then R/I has finite length.

Proposition 25 (J5) Let \mathfrak{m} be a maximal ideal in a Dedekind domain R.

- 1. Rm is a PID.
- 2. If $t \in \mathfrak{m}R_{\mathfrak{m}} \mathfrak{m}^2 R_{\mathfrak{m}}$, then (t^n) for $n \geq 0$ are all the nonzero ideals of $R\mathfrak{m}$.
- 3. Rm is a valuation ring.