
118 III. Weyl groups 

11 Affine Weyl groups 
We can pass from the Weyl group of a crystallographic root system and form an 
infinite group that has more information about the root system, and yet still pos­
sesses a structure analogous to that of the Weyl group. Notably, it has a Coxeter 
group structure. This group is called the affine Weyl group. Affine Weyl groups 
have a number of uses. They will be used in Chapter 12 to analyze subroot systems 
of crystallographic root systems. They are even useful for understanding ordinary 
Weyl groups. This will be demonstrated in § 11-6. 

11-1 The affine Weyl group 

Let .6. be a crystallographic root system. For each a E .6., we have defined the 
hyperplane 

Ha: = {t E lE I (a, t) = o} 

and the associated reflection 

2(a,x) v 
sa:,x=x--(--)a=x-(a,x)a, 

a,a 

where a V is the coroot 
v 2a 

a =--. 
(a, a) 

We now generalize these concepts. For each k E Z and a E .6., we can define the 
hyperplane 

Ha:,k = {t E lE I (a,t) = k} 

and the reflection Sa:,k in the hyperplane Ha:,k 

Observe that the case k = 0 gives the hyperplane Ha: and its associated reflection 
Sa: as discussed above. By introducing these extra reflections, the ordinary Weyl 
group can be extended to the affine Weyl group. We define the affine Weyl group 
by 

Definition: Waff(.6.) = the group generated by {s I a E .6., k E Z}. 

As we shall see in §11-3, Waff = Waff(.6.) is a Coxeter group. In the remainder 
of this section, we establish that Waff has a semidirect product decomposition in 
terms of the Weyl group Wand the coroot lattice QV. (The co root lattice was 
defined and discussed in §9-2. Here we shall be interpreting it as translations 
on lE.) 

Proposition Waff = QV )<I W. 
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11. Affine Weyl groups 

Proof We need to show: 

(i) Wand QV are subgroups ofWaff; 
(ii) Waff = QVW; 
(iii) QV n W = {o}; 
(iv) QV is normal. 
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(i): We have already shown that W C Waff. Regarding QV, any dElE defines a 
translation 

T(d): lE ----; lE 

T(d)(x) = x + d. 

Moreover, T(d)T(d') = T(d + d'). Thus QV gives a group of translations on lEo We 
have the identity 

(check the effect of RHS on Ha,k and on 0). Thus for all a E ~ and k E l, 
T(kaV) = Sa.kS;;l E Waff. In particular, {T(an, ... ,T(a(')} C Waff. So QV C 
Waff. 

(ii): This follows from the above identity (*). 
(iii): Any nonzero element of QV is an element of infinite order while W is a 

finite group. 
(iv): For any dE QV and any cp E W, we have the identity 

cpT(d)cp-l = T(cp . d). • 
The rest of this chapter will be devoted to demonstrating that Waff satisfies a 

number of properties analogous to those holding for finite Euclidean reflection 
groups. We shall show that Waff has a Coxeter group structure that is a natural ex­
tension of the Coxeter group structure ofW obtained in Chapter 6. In the process, 
we shall also show that there are precise analogues of previous structure theorems 
concerning the action of W on root systems and Weyl chambers. 

11-2 The highest root 

Let ~ C lE be an irreducible crystallographic root system and ~ = {aI, ... , af} 
a fundamental system of~. In this section, we shall explain how to choose the 
highest root ao of ~ with respect to ~. Highest refers to a partial order we can 
define on lEo Let 

Q = Zal + ... + Zae 

be the root lattice as defined in §9-2. Choose Q+ C Q by the rule 


