Part II

Algebraic Geometry

Year

 $\begin{array}{c} 2010 \\ 2009 \end{array}$

Paper 1, Section II

25I Algebraic Geometry

Let k be an algebraically closed field and let $V \subset \mathbb{A}^n_k$ be a non-empty affine variety. Show that V is a finite union of irreducible subvarieties.

Let V_1 and V_2 be subvarieties of \mathbb{A}^n_k given by the vanishing loci of ideals I_1 and I_2 respectively. Prove the following assertions.

- (i) The variety $V_1 \cap V_2$ is equal to the vanishing locus of the ideal $I_1 + I_2$.
- (ii) The variety $V_1 \cup V_2$ is equal to the vanishing locus of the ideal $I_1 \cap I_2$.

Decompose the vanishing locus

$$\mathbb{V}(X^2 + Y^2 - 1, X^2 - Z^2 - 1) \subset \mathbb{A}^3_{\mathbb{C}}.$$

into irreducible components.

Let $V \subset \mathbb{A}^3_k$ be the union of the three coordinate axes. Let W be the union of three distinct lines through the point (0,0) in \mathbb{A}^2_k . Prove that W is not isomorphic to V.

Paper 2, Section II

25I Algebraic Geometry

Let k be an algebraically closed field and $n \ge 1$. Exhibit GL(n,k) as an open subset of affine space $\mathbb{A}_k^{n^2}$. Deduce that GL(n,k) is smooth. Prove that it is also irreducible.

Prove that GL(n,k) is isomorphic to a closed subvariety in an affine space.

Show that the matrix multiplication map

$$GL(n,k) \times GL(n,k) \to GL(n,k)$$

that sends a pair of matrices to their product is a morphism.

Prove that any morphism from \mathbb{A}^n_k to $\mathbb{A}^1_k \setminus \{0\}$ is constant.

Prove that for $n \ge 2$ any morphism from \mathbb{P}^n_k to \mathbb{P}^1_k is constant.

Paper 3, Section II

24I Algebraic Geometry

In this question, all varieties are over an algebraically closed field k of characteristic zero.

What does it mean for a projective variety to be *smooth*? Give an example of a smooth affine variety $X \subset \mathbb{A}^n_k$ whose projective closure $\overline{X} \subset \mathbb{P}^n_k$ is not smooth.

What is the *genus* of a smooth projective curve? Let $X \subset \mathbb{P}^4_k$ be the hypersurface $V(X_0^3 + X_1^3 + X_2^3 + X_3^3 + X_4^3)$. Prove that X contains a smooth curve of genus 1.

Let $C \subset \mathbb{P}^2_k$ be an irreducible curve of degree 2. Prove that C is isomorphic to \mathbb{P}^1_k .

We define a generalized conic in \mathbb{P}^2_k to be the vanishing locus of a non-zero homogeneous quadratic polynomial in 3 variables. Show that there is a bijection between the set of generalized conics in \mathbb{P}^2_k and the projective space \mathbb{P}^5_k , which maps the conic V(f) to the point whose coordinates are the coefficients of f.

- (i) Let $R^{\circ} \subset \mathbb{P}^5_k$ be the subset of conics that consist of unions of two distinct lines. Prove that R° is not Zariski closed, and calculate its dimension.
- (ii) Let I be the homogeneous ideal of polynomials vanishing on R° . Determine generators for the ideal I.

Paper 4, Section II

24I Algebraic Geometry

Let C be a smooth irreducible projective algebraic curve over an algebraically closed field.

Let D be an effective divisor on C. Prove that the vector space L(D) of rational functions with poles bounded by D is finite dimensional.

Let D and E be linearly equivalent divisors on C. Exhibit an isomorphism between the vector spaces L(D) and L(E).

What is a *canonical divisor* on C? State the Riemann–Roch theorem and use it to calculate the degree of a canonical divisor in terms of the genus of C.

Prove that the canonical divisor on a smooth cubic plane curve is linearly equivalent to the zero divisor.

Paper 1, Section II

25F Algebraic Geometry

Let k be an algebraically closed field of characteristic zero. Prove that an affine variety $V \subset \mathbb{A}^n_k$ is irreducible if and only if the associated ideal I(V) of polynomials that vanish on V is prime.

Prove that the variety $\mathbb{V}(y^2 - x^3) \subset \mathbb{A}^2_k$ is irreducible.

State what it means for an affine variety over k to be *smooth* and determine whether or not $\mathbb{V}(y^2-x^3)$ is smooth.

Paper 2, Section II

24F Algebraic Geometry

Let k be an algebraically closed field of characteristic not equal to 2 and let $V \subset \mathbb{P}^3_k$ be a nonsingular quadric surface.

- (a) Prove that V is birational to \mathbb{P}^2_k .
- (b) Prove that there exists a pair of disjoint lines on V.
- (c) Prove that the affine variety $W=\mathbb{V}(xyz-1)\subset\mathbb{A}^3_k$ does not contain any lines.

Paper 3, Section II

24F Algebraic Geometry

(i) Suppose f(x,y) = 0 is an affine equation whose projective completion is a smooth projective curve. Give a basis for the vector space of holomorphic differential forms on this curve. [You are not required to prove your assertion.]

Let $C \subset \mathbb{P}^2$ be the plane curve given by the vanishing of the polynomial

$$X_0^4 - X_1^4 - X_2^4 = 0$$

over the complex numbers.

- (ii) Prove that C is nonsingular.
- (iii) Let ℓ be a line in \mathbb{P}^2 and define D to be the divisor $\ell \cap C$. Prove that D is a canonical divisor on C.
 - (iv) Calculate the minimum degree d such that there exists a non-constant map

$$C \to \mathbb{P}^1$$

of degree d.

[You may use any results from the lectures provided that they are stated clearly.]

Paper 4, Section II

24F Algebraic Geometry

Let P_0, \ldots, P_n be a basis for the homogeneous polynomials of degree n in variables Z_0 and Z_1 . Then the image of the map $\mathbb{P}^1 \to \mathbb{P}^n$ given by

$$[Z_0, Z_1] \mapsto [P_0(Z_0, Z_1), \dots, P_n(Z_0, Z_1)]$$

is called a rational normal curve.

Let p_1, \ldots, p_{n+3} be a collection of points in general linear position in \mathbb{P}^n . Prove that there exists a unique rational normal curve in \mathbb{P}^n passing through these points.

Choose a basis of homogeneous polynomials of degree 3 as above, and give generators for the homogeneous ideal of the corresponding rational normal curve.

Paper 4, Section II

24F Algebraic Geometry

(a) Let $X \subseteq \mathbb{P}^2$ be a smooth projective plane curve, defined by a homogeneous polynomial F(x, y, z) of degree d over the complex numbers \mathbb{C} .

3

- (i) Define the divisor $[X \cap H]$, where H is a hyperplane in \mathbb{P}^2 not contained in X, and prove that it has degree d.
- (ii) Give (without proof) an expression for the degree of \mathcal{K}_X in terms of d.
- (iii) Show that X does not have genus 2.
- (b) Let X be a smooth projective curve of genus g over the complex numbers $\mathbb C.$ For $p\in X$ let

 $G(p) = \{n \in \mathbb{N} \mid \text{ there is } no \ f \in k(X) \text{ with } v_p(f) = n, \text{ and } v_q(f) \leqslant 0 \text{ for all } q \neq p\}.$

- (i) Define $\ell(D)$, for a divisor D.
- (ii) Show that for all $p \in X$,

$$\ell(np) = \begin{cases} \ell((n-1)p) & \text{for } n \in G(p) \\ \ell((n-1)p) + 1 & \text{otherwise.} \end{cases}$$

- (iii) Show that G(p) has exactly g elements. [Hint: What happens for large n?]
- (iv) Now suppose that X has genus 2. Show that $G(p) = \{1, 2\}$ or $G(p) = \{1, 3\}$.

[In this question \mathbb{N} denotes the set of positive integers.]

Paper 3, Section II

24F Algebraic Geometry

Let $W \subseteq \mathbb{A}^2$ be the curve defined by the equation $y^3 = x^4 + 1$ over the complex numbers \mathbb{C} , and let $X \subseteq \mathbb{P}^2$ be its closure.

- (a) Show X is smooth.
- (b) Determine the ramification points of the map $X \to \mathbb{P}^1$ defined by

$$(x:y:z) \mapsto (x:z).$$

Using this, determine the Euler characteristic and genus of X, stating clearly any theorems that you are using.

(c) Let $\omega = \frac{dx}{y^2} \in \mathcal{K}_X$. Compute $\nu_p(\omega)$ for all $p \in X$, and determine a basis for $\mathcal{L}(\mathcal{K}_X)$.

Paper 2, Section II

24F Algebraic Geometry

(a) Let A be a commutative algebra over a field k, and $p:A\to k$ a k-linear homomorphism. Define Der(A,p), the derivations of A centered in p, and define the tangent space T_pA in terms of this.

Show directly from your definition that if $f \in A$ is not a zero divisor and $p(f) \neq 0$, then the natural map $T_pA[\frac{1}{f}] \to T_pA$ is an isomorphism.

(b) Suppose k is an algebraically closed field and $\lambda_i \in k$ for $1 \leq i \leq r$. Let

$$X = \{(x, y) \in \mathbb{A}^2 \mid x \neq 0, y \neq 0, y^2 = (x - \lambda_1) \cdots (x - \lambda_r)\}.$$

Find a surjective map $X \to \mathbb{A}^1$. Justify your answer.

Paper 1, Section II

25F Algebraic Geometry

(a) Let k be an algebraically closed field of characteristic 0. Consider the algebraic variety $V \subset \mathbb{A}^3$ defined over k by the polynomials

$$xy$$
, $y^2 - z^3 + xz$, and $x(x + y + 2z + 1)$.

Determine

- (i) the irreducible components of V,
- (ii) the tangent space at each point of V,
- (iii) for each irreducible component, the smooth points of that component, and
- (iv) the dimensions of the irreducible components.
- (b) Let $L\supseteq K$ be a finite extension of fields, and $\dim_K L=n$. Identify L with \mathbb{A}^n over K and show that

$$U = \{ \alpha \in L \mid K[\alpha] = L \}$$

is the complement in \mathbb{A}^n of the vanishing set of some polynomial. [You need not show that U is non-empty. You may assume that $K[\alpha] = L$ if and only if $1, \alpha, \ldots, \alpha^{n-1}$ form a basis of L over K.]

Paper 4, Section II

24I Algebraic Geometry

State a theorem which describes the canonical divisor of a smooth plane curve C in terms of the divisor of a hyperplane section. Express the degree of the canonical divisor K_C and the genus of C in terms of the degree of C. [You need not prove these statements.]

From now on, we work over \mathbb{C} . Consider the curve in \mathbf{A}^2 defined by the equation

$$y + x^3 + xy^3 = 0.$$

Let C be its projective completion. Show that C is smooth.

Compute the genus of C by applying the Riemann–Hurwitz theorem to the morphism $C \to \mathbf{P}^1$ induced from the rational map $(x,y) \mapsto y$. [You may assume that the discriminant of $x^3 + ax + b$ is $-4a^3 - 27b^2$.]

Paper 3, Section II

24I Algebraic Geometry

- (a) State the Riemann–Roch theorem.
- (b) Let E be a smooth projective curve of genus 1 over an algebraically closed field k, with char $k \neq 2, 3$. Show that there exists an isomorphism from E to the plane cubic in \mathbf{P}^2 defined by the equation

$$y^2 = (x - \lambda_1)(x - \lambda_2)(x - \lambda_3),$$

for some distinct $\lambda_1, \lambda_2, \lambda_3 \in k$.

(c) Let Q be the point at infinity on E. Show that the map $E \to Cl^0(E)$, $P \mapsto [P-Q]$ is an isomorphism.

Describe how this defines a group structure on E. Denote addition by \square . Determine all the points $P \in E$ with $P \square P = Q$ in terms of the equation of the plane curve in part (b).

Paper 2, Section II

24I Algebraic Geometry

(a) Let $X \subseteq \mathbf{A}^n$ be an affine algebraic variety defined over the field k.

Define the tangent space T_pX for $p \in X$, and the dimension of X in terms of T_pX .

Suppose that k is an algebraically closed field with char k > 0. Show directly from your definition that if X = Z(f), where $f \in k[x_1, \ldots, x_n]$ is irreducible, then dim X = n-1.

[Any form of the Nullstellensatz may be used if you state it clearly.]

(b) Suppose that $\operatorname{char} k = 0$, and let W be the vector space of homogeneous polynomials of degree d in 3 variables over k. Show that

$$U = \{(f, p) \in W \times k^3 \mid Z(f-1) \text{ is a smooth surface at } p\}$$

is a non-empty Zariski open subset of $W \times k^3$.

Paper 1, Section II

25I Algebraic Geometry

(a) Let k be an uncountable field, $\mathcal{M}\subseteq k[x_1,\ldots,x_n]$ a maximal ideal and $A=k[x_1,\ldots,x_n]/\mathcal{M}$.

Show that every element of A is algebraic over k.

- (b) Now assume that k is algebraically closed. Suppose that $J \subset k[x_1, \ldots, x_n]$ is an ideal, and that $f \in k[x_1, \ldots, x_n]$ vanishes on Z(J). Using the result of part (a) or otherwise, show that $f^N \in J$ for some $N \ge 1$.
- (c) Let $f: X \to Y$ be a morphism of affine algebraic varieties. Show $\overline{f(X)} = Y$ if and only if the map $f^*: k[Y] \to k[X]$ is injective.

Suppose now that $\overline{f(X)} = Y$, and that X and Y are irreducible. Define the dimension of X, dim X, and show dim $X \ge \dim Y$. [You may use whichever definition of dim X you find most convenient.]

Paper 2, Section II

22I Algebraic Geometry

Let k be an algebraically closed field of any characteristic.

- (a) Define what it means for a variety X to be non-singular at a point $P \in X$.
- (b) Let $X \subseteq \mathbb{P}^n$ be a hypersurface Z(f) for $f \in k[x_0, \dots, x_n]$ an irreducible homogeneous polynomial. Show that the set of singular points of X is Z(I), where $I \subseteq k[x_0, \dots, x_n]$ is the ideal generated by $\partial f/\partial x_0, \dots, \partial f/\partial x_n$.
- (c) Consider the projective plane curve corresponding to the affine curve in \mathbb{A}^2 given by the equation

$$x^4 + x^2y^2 + y^2 + 1 = 0.$$

Find the singular points of this projective curve if char $k \neq 2$. What goes wrong if char k = 2?

Paper 3, Section II

22I Algebraic Geometry

- (a) Define what it means to give a rational map between algebraic varieties. Define a birational map.
- (b) Let

$$X = Z(y^2 - x^2(x - 1)) \subseteq \mathbb{A}^2.$$

Define a birational map from X to \mathbb{A}^1 . [Hint: Consider lines through the origin.]

(c) Let $Y \subseteq \mathbb{A}^3$ be the surface given by the equation

$$x_1^2 x_2 + x_2^2 x_3 + x_3^2 x_1 = 0.$$

Consider the blow-up $X \subseteq \mathbb{A}^3 \times \mathbb{P}^2$ of \mathbb{A}^3 at the origin, i.e. the subvariety of $\mathbb{A}^3 \times \mathbb{P}^2$ defined by the equations $x_i y_j = x_j y_i$ for $1 \le i < j \le 3$, with y_1, y_2, y_3 coordinates on \mathbb{P}^2 . Let $\varphi : X \to \mathbb{A}^3$ be the projection and $E = \varphi^{-1}(0)$. Recall that the proper transform \widetilde{Y} of Y is the closure of $\varphi^{-1}(Y) \setminus E$ in X. Give equations for \widetilde{Y} , and describe the fibres of the morphism $\varphi|_{\widetilde{Y}} : \widetilde{Y} \to Y$.

Paper 4, Section II 23I Algebraic Geometry

- (a) Let X and Y be non-singular projective curves over a field k and let $\varphi: X \to Y$ be a non-constant morphism. Define the ramification degree e_P of φ at a point $P \in X$.
- (b) Suppose char $k \neq 2$. Let X = Z(f) be the plane cubic with $f = x_0 x_2^2 x_1^3 + x_0^2 x_1$, and let $Y = \mathbb{P}^1$. Explain how the projection

$$(x_0:x_1:x_2)\mapsto (x_0:x_1)$$

defines a morphism $\varphi: X \to Y$. Determine the degree of φ and the ramification degrees e_P for all $P \in X$.

(c) Let X be a non-singular projective curve and let $P \in X$. Show that there is a non-constant rational function on X which is regular on $X \setminus \{P\}$.

Paper 1, Section II

24I Algebraic Geometry

Let k be an algebraically closed field.

- (a) Let X and Y be varieties defined over k. Given a function $f: X \to Y$, define what it means for f to be a morphism of varieties.
- (b) If X is an affine variety, show that the coordinate ring A(X) coincides with the ring of regular functions on X. [Hint: You may assume a form of the Hilbert Nullstellensatz.]
- (c) Now suppose X and Y are affine varieties. Show that if X and Y are isomorphic, then there is an isomorphism of k-algebras $A(X) \cong A(Y)$.
- (d) Show that $Z(x^2-y^3)\subseteq \mathbb{A}^2$ is not isomorphic to \mathbb{A}^1 .

Paper 3, Section II

21H Algebraic Geometry

(a) Let X be an affine variety. Define the tangent space of X at a point P. Say what it means for the variety to be singular at P.

Define the dimension of X in terms of (i) the tangent spaces of X, and (ii) Krull dimension.

(b) Consider the ideal I generated by the set $\{y, y^2 - x^3 + xy^3\} \subseteq k[x, y]$. What is $Z(I) \subseteq \mathbb{A}^2$?

Using the generators of the ideal, calculate the tangent space of a point in Z(I). What has gone wrong? [A complete argument is not necessary.]

(c) Calculate the dimension of the tangent space at each point $p \in X$ for $X = Z(x - y^2, x - zw) \subseteq \mathbb{A}^4$, and determine the location of the singularities of X.

Paper 2, Section II

22H Algebraic Geometry

In this question we work over an algebraically closed field of characteristic zero. Let $X^o = Z(x^6 + xy^5 + y^6 - 1) \subset \mathbb{A}^2$ and let $X \subset \mathbb{P}^2$ be the closure of X^o in \mathbb{P}^2 .

- (a) Show that X is a non-singular curve.
- (b) Show that $\omega = dx/(5xy^4 + 6y^5)$ is a regular differential on X.
- (c) Compute the divisor of ω . What is the genus of X?

Paper 4, Section II

22H Algebraic Geometry

(a) Let C be a smooth projective curve, and let D be an effective divisor on C. Explain how D defines a morphism ϕ_D from C to some projective space.

State a necessary and sufficient condition on D so that the pull-back of a hyperplane via ϕ_D is an element of the linear system |D|.

State necessary and sufficient conditions for ϕ_D to be an isomorphism onto its image.

(b) Let C now have genus 2, and let K be an effective canonical divisor. Show that the morphism ϕ_K is a morphism of degree 2 from C to \mathbb{P}^1 .

Consider the divisor $K + P_1 + P_2$ for points P_i with $P_1 + P_2 \not\sim K$. Show that the linear system associated to this divisor induces a morphism ϕ from C to a quartic curve in \mathbb{P}^2 . Show furthermore that $\phi(P) = \phi(Q)$, with $P \neq Q$, if and only if $\{P, Q\} = \{P_1, P_2\}$.

[You may assume the Riemann-Roch theorem.]

Paper 1, Section II

23H Algebraic Geometry

Let k be an algebraically closed field.

- (a) Let X and Y be affine varieties defined over k. Given a map $f: X \to Y$, define what it means for f to be a morphism of affine varieties.
 - (b) Let $f: \mathbb{A}^1 \to \mathbb{A}^3$ be the map given by

$$f(t) = (t, t^2, t^3).$$

Show that f is a morphism. Show that the image of f is a closed subvariety of \mathbb{A}^3 and determine its ideal.

(c) Let $g: \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^7$ be the map given by

 $g((s_1,t_1),(s_2,t_2),(s_3,t_3)) = (s_1s_2s_3, s_1s_2t_3, s_1t_2s_3, s_1t_2t_3, t_1s_2s_3, t_1s_2t_3, t_1t_2s_3, t_1t_2t_3).$

Show that the image of g is a closed subvariety of \mathbb{P}^7 .

Paper 4, Section II

20F Algebraic Geometry

- (i) Explain how a linear system on a curve C may induce a morphism from C to projective space. What condition on the linear system is necessary to yield a morphism $f:C\to\mathbb{P}^n$ such that the pull-back of a hyperplane section is an element of the linear system? What condition is necessary to imply the morphism is an embedding?
 - (ii) State the Riemann–Roch theorem for curves.
 - (iii) Show that any divisor of degree 5 on a curve C of genus 2 induces an embedding.

Paper 3, Section II

20F Algebraic Geometry

- (i) Let X be an affine variety. Define the *tangent space* of X at a point P. Say what it means for the variety to be singular at P.
 - (ii) Find the singularities of the surface in \mathbb{P}^3 given by the equation

$$xyz + yzw + zwx + wxy = 0.$$

(iii) Consider $C = Z(x^2 - y^3) \subseteq \mathbb{A}^2$. Let $X \to \mathbb{A}^2$ be the blowup of the origin. Compute the proper transform of C in X, and show it is non-singular.

Paper 2, Section II

21F Algebraic Geometry

- (i) Define the radical of an ideal.
- (ii) Assume the following statement: If k is an algebraically closed field and $I \subseteq k[x_1,\ldots,x_n]$ is an ideal, then either I=(1) or $Z(I)\neq\emptyset$. Prove the Hilbert Nullstellensatz, namely that if $I\subseteq k[x_1,\ldots,x_n]$ with k algebraically closed, then

$$I(Z(I)) = \sqrt{I}.$$

(iii) Show that if A is a commutative ring and $I, J \subseteq A$ are ideals, then

$$\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$$
.

(iv) Is

$$\sqrt{I+J} = \sqrt{I} + \sqrt{J}$$
?

Give a proof or a counterexample.

Paper 1, Section II

21F Algebraic Geometry

Let k be an algebraically closed field.

- (i) Let X and Y be affine varieties defined over k. Given a map $f: X \to Y$, define what it means for f to be a morphism of affine varieties.
- (ii) With X, Y still affine varieties over k, show that there is a one-to-one correspondence between Hom(X,Y), the set of morphisms between X and Y, and Hom(A(Y),A(X)), the set of k-algebra homomorphisms between A(Y) and A(X).
- (iii) Let $f: \mathbb{A}^2 \to \mathbb{A}^4$ be given by $f(t, u) = (u, t, t^2, tu)$. Show that the image of f is an affine variety X, and find a set of generators for I(X).

Paper 4, Section II

23H Algebraic Geometry

Let X be a smooth projective curve of genus g > 0 over an algebraically closed field of characteristic $\neq 2$, and suppose there is a degree 2 morphism $\pi : X \to \mathbf{P}^1$. How many ramification points of π are there?

Suppose Q and R are distinct ramification points of π . Show that $Q \not\sim R$, but $2Q \sim 2R$.

Now suppose g=2. Show that every divisor of degree 2 on X is linearly equivalent to P+P' for some $P,P'\in X$, and deduce that every divisor of degree 0 is linearly equivalent to P_1-P_2 for some $P_1,P_2\in X$.

Show that the subgroup $\{[D] \in Cl^0(X) \mid 2[D] = 0\}$ of the divisor class group of X has order 16.

Paper 3, Section II

23H Algebraic Geometry

Let $f \in k[x]$ be a polynomial with distinct roots, deg f = d > 2, char k = 0, and let $C \subseteq \mathbf{P}^2$ be the projective closure of the affine curve

$$y^{d-1} = f(x).$$

Show that C is smooth, with a single point at ∞ .

Pick an appropriate $\omega \in \Omega^1_{k(C)/k}$ and compute the valuation $v_q(\omega)$ for all $q \in C$.

Hence determine $\deg \mathcal{K}_C$.

Paper 2, Section II

24H Algebraic Geometry

(i) Let k be an algebraically closed field, $n \ge 1$, and S a subset of k^n .

Let $I(S) = \{ f \in k[x_1, \dots, x_n] \mid f(p) = 0 \text{ when } p \in S \}$. Show that I(S) is an ideal, and that $k[x_1, \dots, x_n]/I(S)$ does not have any non-zero nilpotent elements.

Let $X \subseteq \mathbf{A}^n$, $Y \subseteq \mathbf{A}^m$ be affine varieties, and $\Phi : k[Y] \to k[X]$ be a k-algebra homomorphism. Show that Φ determines a map of sets from X to Y.

(ii) Let X be an irreducible affine variety. Define the dimension of X, dim X (in terms of the tangent spaces of X) and the transcendence dimension of X, tr.dim X.

State the Noether normalization theorem. Using this, or otherwise, prove that the transcendence dimension of X equals the dimension of X.

Paper 1, Section II

24H Algebraic Geometry

Let k be an algebraically closed field and $n \ge 1$. We say that $f \in k[x_1, \ldots, x_n]$ is singular at $p \in \mathbf{A}^n$ if either p is a singularity of the hypersurface $\{f = 0\}$ or f has an irreducible factor h of multiplicity strictly greater than one with h(p) = 0. Given $d \ge 1$, let $X = \{f \in k[x_1, \ldots, x_n] \mid \deg f \le d\}$ and let

$$Y = \{(f, p) \in X \times \mathbf{A}^n \mid f \text{ is singular at } p\}.$$

- (i) Show that $X \simeq \mathbf{A}^N$ for some N (you need not determine N) and that Y is a Zariski closed subvariety of $X \times \mathbf{A}^n$.
- (ii) Show that the fibres of the projection map $Y \to \mathbf{A}^n$ are linear subspaces of dimension N (n+1). Conclude that dim $Y < \dim X$.
 - (iii) Hence show that $\{f \in X \mid \deg f = d, Z(f) \text{ smooth}\}\$ is dense in X.

[You may use standard results from lectures if they are accurately quoted.]

Paper 3, Section II

23H Algebraic Geometry

Let $C \subset \mathbb{P}^2$ be the plane curve given by the polynomial

$$X_0^n - X_1^n - X_2^n$$

over the field of complex numbers, where $n \ge 3$.

- (i) Show that C is nonsingular.
- (ii) Compute the divisors of the rational functions

$$x = \frac{X_1}{X_0}, \quad y = \frac{X_2}{X_0}$$

on C.

- (iii) Consider the morphism $\phi = (X_0 : X_1) : C \to \mathbb{P}^1$. Compute its ramification points and degree.
 - (iv) Show that a basis for the space of regular differentials on C is

$$\left\{ x^i y^j \omega_0 \mid i, j \geqslant 0, \ i + j \leqslant n - 3 \right\}$$

where $\omega_0 = dx/y^{n-1}$.

Paper 4, Section II

23H Algebraic Geometry

Let C be a nonsingular projective curve, and D a divisor on C of degree d.

- (i) State the Riemann–Roch theorem for D, giving a brief explanation of each term. Deduce that if d > 2g 2 then $\ell(D) = 1 g + d$.
 - (ii) Show that, for every $P \in C$,

$$\ell(D-P) \geqslant \ell(D) - 1.$$

Deduce that $\ell(D) \leq 1 + d$. Show also that if $\ell(D) > 1$, then $\ell(D - P) = \ell(D) - 1$ for all but finitely many $P \in C$.

(iii) Deduce that for every $d\geqslant g-1$ there exists a divisor D of degree d with $\ell(D)=1-g+d.$

Paper 2, Section II

24H Algebraic Geometry

Let $V \subset \mathbb{P}^3$ be an irreducible quadric surface.

- (i) Show that if V is singular, then every nonsingular point lies in exactly one line in V, and that all the lines meet in the singular point, which is unique.
 - (ii) Show that if V is nonsingular then each point of V lies on exactly two lines of V.

Let V be nonsingular, P_0 a point of V, and $\Pi \subset \mathbb{P}^3$ a plane not containing P_0 . Show that the projection from P_0 to Π is a birational map $f: V \longrightarrow \Pi$. At what points does f fail to be regular? At what points does f^{-1} fail to be regular? Justify your answers.

Paper 1, Section II

24H Algebraic Geometry

Let $V \subset \mathbb{A}^n$ be an affine variety over an algebraically closed field k. What does it mean to say that V is *irreducible*? Show that any non-empty affine variety $V \subset \mathbb{A}^n$ is the union of a finite number of irreducible affine varieties $V_i \subset \mathbb{A}^n$.

Define the *ideal* I(V) of V. Show that I(V) is a prime ideal if and only if V is irreducible.

Assume that the base field k has characteristic zero. Determine the irreducible components of

$$V(X_1X_2, X_1X_3 + X_2^2 - 1, X_1^2(X_1 - X_3)) \subset \mathbb{A}^3$$
.

Paper 4, Section II

23I Algebraic Geometry

Let X be a smooth projective curve of genus 2, defined over the complex numbers. Show that there is a morphism $f: X \to \mathbf{P}^1$ which is a double cover, ramified at six points.

Explain briefly why X cannot be embedded into \mathbf{P}^2 .

For any positive integer n, show that there is a smooth affine plane curve which is a double cover of \mathbf{A}^1 ramified at n points.

[State clearly any theorems that you use.]

Paper 3, Section II

23I Algebraic Geometry

Let $X \subset \mathbf{P}^2(\mathbf{C})$ be the projective closure of the affine curve $y^3 = x^4 + 1$. Let ω denote the differential dx/y^2 . Show that X is smooth, and compute $v_p(\omega)$ for all $p \in X$.

Calculate the genus of X.

Paper 2, Section II

24I Algebraic Geometry

Let k be a field, J an ideal of $k[x_1, \ldots, x_n]$, and let $R = k[x_1, \ldots, x_n]/J$. Define the radical \sqrt{J} of J and show that it is also an ideal.

The Nullstellensatz says that if J is a maximal ideal, then the inclusion $k \subseteq R$ is an algebraic extension of fields. Suppose from now on that k is algebraically closed. Assuming the above statement of the Nullstellensatz, prove the following.

- (i) If J is a maximal ideal, then $J = (x_1 a_1, \dots, x_n a_n)$, for some $(a_1, \dots, a_n) \in k^n$.
- (ii) If $J \neq k[x_1, \ldots, x_n]$, then $Z(J) \neq \emptyset$, where

$$Z(J) = \{ a \in k^n \mid f(a) = 0 \text{ for all } f \in J \}.$$

(iii) For V an affine subvariety of k^n , we set

$$I(V) = \{ f \in k[x_1, \dots, x_n] \mid f(a) = 0 \text{ for all } a \in V \}.$$

Prove that J = I(V) for some affine subvariety $V \subseteq k^n$, if and only if $J = \sqrt{J}$.

[Hint. Given $f \in J$, you may wish to consider the ideal in $k[x_1, \ldots, x_n, y]$ generated by J and yf - 1.]

(iv) If A is a finitely generated algebra over k, and A does not contain nilpotent elements, then there is an affine variety $V \subseteq k^n$, for some n, with $A = k[x_1, \ldots, x_n]/I(V)$.

Assuming char(k) $\neq 2$, find \sqrt{J} when J is the ideal $(x(x-y)^2, y(x+y)^2)$ in k[x, y].

Paper 1, Section II

24I Algebraic Geometry

- (a) Let X be an affine variety, k[X] its ring of functions, and let $p \in X$. Assume k is algebraically closed. Define the tangent space T_pX at p. Prove the following assertions.
 - (i) A morphism of affine varieties $f: X \to Y$ induces a linear map

$$df: T_pX \to T_{f(p)}Y.$$

- (ii) If $g \in k[X]$ and $U := \{x \in X \mid g(x) \neq 0\}$, then U has the natural structure of an affine variety, and the natural morphism of U into X induces an isomorphism $T_pU \to T_pX$ for all $p \in U$.
- (iii) For all $s \ge 0$, the subset $\{x \in X \mid \dim T_x X \ge s\}$ is a Zariski-closed subvariety of X.
- (b) Show that the set of nilpotent 2×2 matrices

$$X = \{ x \in \text{Mat}_2(k) \, | \, x^2 = 0 \}$$

may be realised as an affine surface in A^3 , and determine its tangent space at all points $x \in X$.

Define what it means for two varieties Y_1 and Y_2 to be birationally equivalent, and show that the variety X of nilpotent 2×2 matrices is birationally equivalent to \mathbf{A}^2 .

Paper 1, Section II 24H Algebraic Geometry

- (i) Let X be an affine variety over an algebraically closed field. Define what it means for X to be *irreducible*, and show that if U is a non-empty open subset of an irreducible X, then U is dense in X.
- (ii) Show that $n \times n$ matrices with distinct eigenvalues form an affine variety, and are a Zariski open subvariety of affine space \mathbb{A}^{n^2} over an algebraically closed field.
- (iii) Let $\operatorname{char}_A(x) = \det(xI A)$ be the characteristic polynomial of A. Show that the $n \times n$ matrices A such that $\operatorname{char}_A(A) = 0$ form a Zariski closed subvariety of \mathbb{A}^{n^2} . Hence conclude that this subvariety is all of \mathbb{A}^{n^2} .

Paper 2, Section II 24H Algebraic Geometry

- (i) Let k be an algebraically closed field, and let I be an ideal in $k[x_0, \ldots, x_n]$. Define what it means for I to be homogeneous.
 - Now let $Z \subseteq \mathbb{A}^{n+1}$ be a Zariski closed subvariety invariant under $k^* = k \{0\}$; that is, if $z \in Z$ and $\lambda \in k^*$, then $\lambda z \in Z$. Show that I(Z) is a homogeneous ideal.
- (ii) Let $f \in k[x_1, \ldots, x_{n-1}]$, and let $\Gamma = \{(x, f(x)) \mid x \in \mathbb{A}^{n-1}\} \subseteq \mathbb{A}^n$ be the graph of f. Let $\overline{\Gamma}$ be the closure of Γ in \mathbb{P}^n .

Write, in terms of f, the homogeneous equations defining $\overline{\Gamma}$.

Assume that k is an algebraically closed field of characteristic zero. Now suppose n=3 and $f(x,y)=y^3-x^2\in k[x,y]$. Find the singular points of the projective surface $\overline{\Gamma}$.

Paper 3, Section II

23H Algebraic Geometry

Let X be a smooth projective curve over an algebraically closed field k of characteristic 0.

(i) Let D be a divisor on X.

Define $\mathcal{L}(D)$, and show dim $\mathcal{L}(D) \leq \deg D + 1$.

(ii) Define the space of rational differentials $\Omega^1_{k(X)/k}$.

If p is a point on X, and t a local parameter at p, show that $\Omega^1_{k(X)/k} = k(X)dt$.

Use that equality to give a definition of $v_p(\omega) \in \mathbb{Z}$, for $\omega \in \Omega^1_{k(X)/k}$, $p \in X$. [You need not show that your definition is independent of the choice of local parameter.]

Paper 4, Section II

23H Algebraic Geometry

Let X be a smooth projective curve over an algebraically closed field k.

State the Riemann–Roch theorem, briefly defining all the terms that appear.

Now suppose X has genus 1, and let $P_{\infty} \in X$.

Compute $\mathcal{L}(nP_{\infty})$ for $n \leq 6$. Show that $\phi_{3P_{\infty}}$ defines an isomorphism of X with a smooth plane curve in \mathbb{P}^2 which is defined by a polynomial of degree 3.

Paper 1, Section II

24G Algebraic Geometry

- (i) Let $X = \{(x,y) \in \mathbb{C}^2 \mid x^2 = y^3\}$. Show that X is birational to \mathbf{A}^1 , but not isomorphic to it.
- (ii) Let X be an affine variety. Define the *dimension* of X in terms of the tangent spaces of X.
- (iii) Let $f \in k[x_1, ..., x_n]$ be an irreducible polynomial, where k is an algebraically closed field of arbitrary characteristic. Show that dim Z(f) = n 1.

[You may assume the Nullstellensatz.]

Paper 2, Section II

24G Algebraic Geometry

Let $X = X_{n,m,r}$ be the set of $n \times m$ matrices of rank at most r over a field k. Show that $X_{n,m,r}$ is naturally an affine subvariety of \mathbf{A}^{nm} and that $X_{n,m,r}$ is a Zariski closed subvariety of $X_{n,m,r+1}$.

Show that if $r < \min(n, m)$, then 0 is a singular point of X.

Determine the dimension of $X_{5,2,1}$.

Paper 3, Section II

23G Algebraic Geometry

(i) Let X be a curve, and $p \in X$ be a smooth point on X. Define what a *local parameter* at p is.

Now let $f: X \dashrightarrow Y$ be a rational map to a quasi-projective variety Y. Show that if Y is projective, f extends to a morphism defined at p.

Give an example where this fails if Y is not projective, and an example of a morphism $f: \mathbb{C}^2 \setminus \{0\} \to \mathbf{P}^1$ which does not extend to 0.

(ii) Let $V=Z(X_0^8+X_1^8+X_2^8)$ and $W=Z(X_0^4+X_1^4+X_2^4)$ be curves in \mathbf{P}^2 over a field of characteristic not equal to 2. Let $\phi:V\to W$ be the map $[X_0:X_1:X_2]\mapsto [X_0^2:X_1^2:X_2^2]$. Determine the degree of ϕ , and the ramification e_p for all $p\in V$.

Paper 4, Section II

23G Algebraic Geometry

Let $E \subseteq \mathbf{P}^2$ be the projective curve obtained from the affine curve $y^2 = (x - \lambda_1)(x - \lambda_2)(x - \lambda_3)$, where the λ_i are distinct and $\lambda_1 \lambda_2 \lambda_3 \neq 0$.

- (i) Show there is a unique point at infinity, P_{∞} .
- (ii) Compute div(x), div(y).
- (iii) Show $\mathcal{L}(P_{\infty}) = k$.
- (iv) Compute $l(nP_{\infty})$ for all n.

[You may not use the Riemann–Roch theorem.]

Paper 1, Section II

24G Algebraic Geometry

Define what is meant by a rational map from a projective variety $V \subset \mathbb{P}^n$ to \mathbb{P}^m . What is a regular point of a rational map?

Consider the rational map $\phi \colon \mathbb{P}^2 \to \mathbb{P}^2$ given by

$$(X_0: X_1: X_2) \mapsto (X_1X_2: X_0X_2: X_0X_1).$$

Show that ϕ is not regular at the points (1:0:0), (0:1:0), (0:0:1) and that it is regular elsewhere, and that it is a birational map from \mathbb{P}^2 to itself.

Let $V \subset \mathbb{P}^2$ be the plane curve given by the vanishing of the polynomial $X_0^2X_1^3 + X_1^2X_2^3 + X_2^2X_0^3$ over a field of characteristic zero. Show that V is irreducible, and that ϕ determines a birational equivalence between V and a nonsingular plane quartic.

Paper 2, Section II

24G Algebraic Geometry

Let V be an irreducible variety over an algebraically closed field k. Define the tangent space of V at a point P. Show that for any integer $r \ge 0$, the set $\{P \in V \mid \dim T_{V,P} \ge r\}$ is a closed subvariety of V.

Assume that k has characteristic different from 2. Let $V = V(I) \subset \mathbb{P}^4$ be the variety given by the ideal $I = (F, G) \subset k[X_0, \dots, X_4]$, where

$$F = X_1 X_2 + X_3 X_4, \qquad G = X_0 X_1 + X_3^2 + X_4^2.$$

Determine the singular subvariety of V, and compute $\dim T_{V,P}$ at each singular point P. [You may assume that V is irreducible.]

Paper 3, Section II

23G Algebraic Geometry

Let V be a smooth projective curve, and let D be an effective divisor on V. Explain how D defines a morphism ϕ_D from V to some projective space. State the necessary and sufficient conditions for ϕ_D to be finite. State the necessary and sufficient conditions for ϕ_D to be an isomorphism onto its image.

Let V have genus 2, and let K be an effective canonical divisor. Show that the morphism ϕ_K is a morphism of degree 2 from V to \mathbb{P}^1 .

By considering the divisor $K + P_1 + P_2$ for points P_i with $P_1 + P_2 \not\sim K$, show that there exists a birational morphism from V to a singular plane quartic.

[You may assume the Riemann–Roch Theorem.]

Paper 4, Section II

23G Algebraic Geometry

State the Riemann–Roch theorem for a smooth projective curve V, and use it to outline a proof of the Riemann–Hurwitz formula for a non-constant morphism between projective nonsingular curves in characteristic zero.

Let $V \subset \mathbb{P}^2$ be a smooth projective plane cubic over an algebraically closed field k of characteristic zero, written in normal form $X_0X_2^2 = F(X_0, X_1)$ for a homogeneous cubic polynomial F, and let $P_0 = (0:0:1)$ be the point at infinity. Taking the group law on V for which P_0 is the identity element, let $P \in V$ be a point of order 3. Show that there exists a linear form $H \in k[X_0, X_1, X_2]$ such that $V \cap V(H) = \{P\}$.

Let $H_1, H_2 \in k[X_0, X_1, X_2]$ be nonzero linear forms. Suppose the lines $\{H_i = 0\}$ are distinct, do not meet at a point of V, and are nowhere tangent to V. Let $W \subset \mathbb{P}^3$ be given by the vanishing of the polynomials

$$X_0X_2^2 - F(X_0, X_1), \quad X_3^2 - H_1(X_0, X_1, X_2)H_2(X_0, X_1, X_2).$$

Show that W has genus 4. [You may assume without proof that W is an irreducible smooth curve.]