The above analysis shows that if Z is a 2-dimensional topological field theory, then the vector space
A = Z(S") is naturally endowed with the structure of a commutative Frobenius algebra over k. In fact,
the converse is true as well: given a commutative Frobenius algebra A, one can construct a 2-dimensional
topological field theory Z such that A = Z(S') and the multiplication and trace on A are given by evaluating
Z on a pair of pants and a disk, respectively. Moreover, Z is determined up to unique isomorphism: in other
words, the category of 2-dimensional topological field theories is eguivalent to the category of commutative

S

Theorem 1.2.16 (Baez-Dolan Cobordism Hypothesis). Let € be a symmetric monoidal n-category. Then
the evaluation functor

Z v Z(*)
determines a bijective correspondence between (isomorphism classes of) framed extended C-valued topological
field theories and (isomorphism classes of) fully dualizable objects of C.

Theorem 1.2.16 asserts that for every fully dualizable object C of a symmetric monoidal n-category C,
there is an essentially unique symmetric monoidal functor Zg : Cob::'{n) — € such that Zg(*) ~ C. In other
words, the symmetric monoidal Cob;r (n) is freely generated by a single fully dualizable object: namely, the

Frobenius algebras.

L . (=) (S s

Definition 1.1.5 (Atiyah). Let k be a field. A topological field theory of dimension n is a symmetric
monoidal functor Z : Cob(n) — Vect(k).
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Definition 1.1.12. Let k be a field. A commutative Frobenius algebra over k is a finite dimensional com-
mutative k-algebra A, together with a linear map tr : A — k such that the the bilinear form (a, b) — tr(ab)

is nondegenerate.

Definition 1.2.3. A strict 2-category is a category enriched over categories. In other words, a strict 2-

category € consists of the following data:
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e The objects of Vecty(k) are cocomplete k-linear categories: that is, k-linear categories € which are
closed under the formation of direct sums and cokernels.

category theory. For each n > 0, one can define an n-category <, X, called the fundamental n-groupoid of
X. Informally, this n-category can be described as follows:

o The objects of 7=, X are the points of X.

e Given a pair of objects =,y € X, a 1-morphism in m<, X from x to y is a path in X from x to y.

o Given a pair of objects z,y € X and a pair of l-morphisms f, g : r — v, a 2-morphism from f to g in
T« X is a homotopy of paths in X (which is required to be fixed at the common endpoints = and y).

e An n-morphism in 7<,X is given by a homotopy between homotopies between ...between paths
between points of X. Two such homotopies determined the same n-morphism in 7<,X if they are
homotopic to one another (via a homotopy which is fixed on the common boundaries).

Definition 1.3.3. A topological space X is called an n-fype if the homotopy groups (X, x) vanish for all
€ X and all k > n.

Between the theory of n-categories in general (which are difficult to describe) and the theory of n-
groupoids (which are easy to describe) there are various intermediate levels of complexity.

Definition 1.3.5. Suppose we are given a pair of nonnegative integers m < n. An (n,m)-category is an
n-category in which all k-morphisms are assumed to be invertible, for m < k < n.

Example 1.3.6. An (n,0)-category is an n-groupoid; an (n, n)-category is an n-category.

Variant 1.3.7. In Definition 1.3.5, it is convenient to allow the case n = oco: in this case, an (n, m)-category
has morphisms of all orders, but all k-morphisms are assumed to be invertible for k& > m. It is possible to
allow m = oo as well, but this case will play no role in this paper.

Taking n to oo in the formulation of Thesis 1.3.4, we obtain the following:

Thesis 1.3.8. There is a construction X — w< X which establishes a bijection between topological spaces
(up to weak homotopy equivalence) and (oo, 0)-categories (up to equivalence).

Definition Sketch 1.3.11. For n > 0, an (oo, n)-category € consists of the following data:
(1) A collection of objects X, Y, Z. ...
(2) For every pair of objects X,Y € €, an (oo, n — 1)-category Mape(X,Y) of 1-morphisms.

(3) An composition law for 1-morphisms which is associative (and unital) up to coherent isomorphism.
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Alternatively, we can characterize the space B(M,N) up to homotopy equivalence by the following
property: there exists a fiber bundle p : E — B(M, N) whose fibers are (smooth) bordisms from M to N.
This fiber bundle is universal in the following sense: for any reasonable space S, pullback of E determines a
bijective correspondence between homotopy classes of maps from S into B(M, N) and fiber bundles E' — S
whose fibers are (smooth) bordisms from M to N. In particular (taking S to consist of a single point), we
deduce that the set of path components mg B(M, N) can be identified with the collection of diffeomorphism
classes of bordisms from M to N. In other words, we have a bijection mo B(M, N') = Homgepn) (M, N).

relate to those described in §1.2. The topological category Cobt{n)uof Definition 1.4.5 should really be
regarded as an (oo, 1)-category, which may be described more informally as follows:

e The objects of Coby(n) are closed, oriented (n — 1)-manifolds.

e The l-morphisms of Coby(n) are oriented bordisms.

e The 2-morphisms of Coby(n) are orientation-preserving diffeomorphisms.

e The 3-morphisms of Cob;(n) are isotopies between diffeomorphisms.

Definition 2.1.3. The category A of combinatorial simplices is defined as follows:

e The objects of A are the nonnegative integers. For each n > 0. we let [n] denote the corresponding

object of A.

e Given a pair of integers m,n > 0, we define Homa ([m], [n]) to be the set of nonstrictly increasing maps
f:{o<l<...<m}—={0<1l<...<n}h

Let A be an arbitrary category. A simplicial object of A is a functor from A into A.

Remark 2.1.4. We will typically let A, denote a simplicial object of a category A, and A,, the value of the
functor A, when evaluated at the object [n] c A.

The most important special case of Definition 2.1.3 is the following:

Definition 2.1.5. A simplicial set is a simplicial object in the category of sets.

object consisting of a single point.
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Definition Sketch 1.4.6. Let n be a nonnegative integer. The (oo, n)-category Bord,, is described infor-
mally as follows:

e The objects of Bord,, are (-manifolds.
e The 1-morphisms of Bord,, are bordisms between (-manifolds.
e The 2-morphisms of Bord,, are bordisms between bordisms between ()-manifolds.

e The n-morphisms of Bord,, are bordisms between bordisms between ... between bordisms between

O-manifolds (in other words, n-manifolds with corners).

The (n+ 1)-morphisms of Bord,, are diffeomorphisms (which reduce to the identity on the boundaries
of the relevant manifolds).

e The (n+ 2)-morphisms of Bord,, are isotopies of diffeomorphisms.

theory.

Definition 2.1.10. Let f: X — Z and g : ¥ — Z be continuous maps of topological spaces. The homotopy
fiber product of X x£Y is the topological space

X xgz 201 5, ¥

whose points consist of triples (z.y,p), where z € X, y € Y, and p: [0,1] — Z is a continuous path from
p(0) = f(z) to p(1) = g(y)-

Definition 2.1.13. Suppose given a commutative diagram of topological spaces

W—X

L

Y — 2.

Example 2.1.21. Let X, be a Segal space, and let 4 : Xy — X be the “degeneracy map” induced by the
unique nondecreasing functor {0,1} — {0}. For every point = in X;, the morphism [4(z)] in the homotopy
category hX, coincides with the identity map id, : # — =. In particular, §(x) is invertible for each = € X.

Definition 2.1.22. Let X, be a Segal space, and let Z C X; denote the subset consisting of the invertible
elements (this is a union of path components in X;; we will consider 7 as endowed with the subspace
topology). We will say that X, is complete if the map § : Xy — Z of Example 2.1.21 is a weak homotopy
equivalence.
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Let n be a positive integer, which we regard as fixed throughout this section. In §1.4, we argued that it is
natural to replace the ordinary bordism category Cob(n) with an (oo, 1)-category Coby(n), which encodes
information about the homotopy types of diffeomorphism groups of n-manifolds. In §2.1, we introduced the
notion of a Segal space, and argued that complete Segal spaces can be regarded as representatives for (oo, 1)-
categories. Our goal in this section is to unite these two lines of thought, giving an explicit construction of

We say that this diagram is a homotepy pullback square (or a homotopy Cartesian diagram) if the composite
map
W= XxzV - Xx8Y

is a weak homotopy equivalence.

Definition 2.1.15. Let X, be a simplicial space. We say that X, is a Segal space if the following condition
is satistied:

(#) For every pair of integers m.n = (), the diagram

Ko —— Xon

¥
X, = Xy
is a homotopy pullback square.

Warning 2.1.16. Definition 2.1.15 is not completely standard. Some authors impose the additional require-
ment that the simplicial space X, be Reedy fibrant: this is a harmless technieal condition which guarantees,
among other things, that each of the maps in the diagram

Xogm —> X

!
X, —X;

is a Serre fibration
each of the maps X,

pological spaces. If we assume this condition, then X, is a Segal space if and only if
tm — Xn % x, X i5 a weak homotopy equivalence,
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Theorem 2.4.6 (Cobordism Hypothesis: Framed Version). Let € be a symmetric monoidal (oo, n)-category

with duals. Then the evaluation functor Z — Z(*) induces an

equivalence

Fun®(Bord™, @) — €.

In particular, Fun® (Bord™, €) is an (oo, 0)-category.
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Example 2.4.15. Let € be a Picard co-groupoid (see Example 2.3.18). Using Thesis 1.3.8, we can identify
€ with a topological space X. The symmetric monoidal structure on € endows X with the structure of an
E.-space: that is, it is equipped with a multiplication operation which is commutative, associative, and
unital up to coherent homotopy. The assumption that every object of € be invertible translates into the
requirement that X be grouplike: that is, the commutative monoid mp X is actually an abelian group. It

Definition 2.4.23. Let G be a topological group acting continuously on a topological space X. The
homotopy fized set X" is defined to be the space of G-equivariant maps Homea(EG, X ). where EG is as in
Notation 2.4.21.
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the Harer stability theorem). However, step (ii) has an analogue which is true in any dimension. Moreover,
it is possible to be much more precise: we can describe not just the rational cohomology of the space
2| Bord3" |, but the entire homotopy type of the classifying space | Bordy' | itself:

Theorem 2.5.7 (Galatius-Madsen-Tillmann-Weiss, [11]). Let n = 0 be an integer. Then the geometric
realization | Bord; | is homotopy equivalent to the Oth space of the spectrum X" MTSO(n). Here MTSO(n)
denotes the Thom spectrum of the wirtual bundle —(, where { is the universal rank n-vector bundle over the

classifying space BSO(n).
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(d+1) whose boundary is diffeomorphic with M [[ N. Cobordism is an equivalence relation on manifolds, and
the set of equivalence classes {1, has the structure of an abelian group (given by disjoint unions of manifolds).
In [22], Thom showed that the calculation of the groups {£1,},=¢ could be reduced to a problem of homotopy
theory. More precisely, there exists a pointed topological space X and a sequence of isomorphisms 0y ~ 73 X.
Moreover, the space X admits a direct construction in the language of algebraic topology: it is the Oth space
of what is now callled the Thom spectrum MSO.
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eration is the calculation of the universal trace (i.e., the universal target for a map Iy AR vy LMY LL] PR GHIW RG] L DA DL Yy S i &y s
out of A coequalizing left and right multiplication). The derived version of the uni- brl(:f.pru‘ncr). Recall that s.ta(:ks and. hl.gl'l(ll" stacks arise naturally from pcrformp‘lg
versal trace is the Hochschild chain complex (or the Hochschild homology), which quotlcl‘ljcs (and more (:()Hlpll(ff‘lt(!d colimits) on S(fhf!HlCS. Thus we (:(]I‘I‘[)(ft the notion
el Mb iV At 4 i £ A el A . ALt 21 of forming quotients by passing to stacks. Likewise, derived stacks arise naturally

The free loop space of a derived stack X is the internal hom £X = X st = from taking fiber products (and more complicated limits) on schemes and stacks.
Map(Sl,X ) of maps from the constant stack given by the circle S'. As a derived Thus we correct the notion of imposing an equation by passing to derived stacks.

stack, the loop space may be described explicitly as the collection of pairs of points
in X with two paths between them, or in other words, as the derived self-intersection

of the diagonal
LX ~ X xxxx X. C‘EB g jC .
problem is that passing to homotopy categories discards essential information (in um </ O (\ '
/
Presenes  colim

particular, homotopy coherent structures, homotopy limits and homotopy colimits).
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This intermediate regime between model categories and homotopy categories is
encoded by the theory of (oo, 1)-categories, or simply co-categories. The notion of
oco-category captures (roughly speaking) the notion of a category whose morphisms
form topological spaces and whose compositions and associativity properties are
defined up to coherent homotopies. Thus an important distinction between oc-

- - I . Definition 3.3.
categories and model categories or homotopy categories is that coherent homotopies

are naturally built in to all the definitions. Thus for example all functors are nat- (1) Anobject M of a stable co-category C is said to be compact if Home (M, —)
urally derived and the natural notions of limits and colimits in the co-categorical commutes with all coproducts (equivalently, with all colimits).

context correspond to homotopy limits and colimits in more traditional formula- (2) An object M of a stable symmetric monoidal oo-category C is said to be
tions. (strongly) dualizable if there is an object M"Y and unit and trace maps

, o 11— MaMY ——1
on Joyal's quasi-categories [Jo]. Namely, an co-category is a simplicial set, satisfy-
ing a weak version of the Kan condition guaranteeing the fillability of certain horns.
The underlying simplicial set plays the role of the set of objects while the fillable M i Mo MY oM e M
horns correspond to sequences of composable morphisms. The book [L2] presents

such that the composite map
is the identity.

2.1.1. Enhancing triangulated categories. The oo-categorical analogue of the ad-
ditive setting of homological algebra is the setting of stable co-categories [L3]. A
stable oc-category can be defined as an oo-category with a zero-object, closed under
finite limits and colimits, and in which pushouts and pullbacks coincide [L3, 2.4].

b 1. PO,

satisfying the appropriate conditions (since one already has an evaluation map). If
an object M & C is dualizable, then we can turn internal Hom from M into the
tensor product with MY in the sense that there is a canonical equivalence

Hom(M,—) ~ MY @ (—).

In particular, this implies that Hom(M, —) preserves colimits and M ® — preserves
limits:
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Definition 3.7. A stable category C is said to be compactly generated if there is a
small oo-category C° of compact objects C; € C whose right orthogonal vanishes:
if M e C satisfies Home (Cy, M) ~ 0, for all 4, then M ~ 0.

chains, or its spectral analogue, topological Hochschild cohomology). In the case
of algebras, Deligne’s conjecture states that the Hochschild cochain complex has
the structure of an Ey-algebra (lifting the Gerstenhaber algebra, or H, (&;)-algebra, \'/7
structure on Hochschild cohomology). There is also a cyclic version of the conjecture
which states that the Hochschild cochains for a Frobenius algebra possesses the fur-
ther structure of a framed &, or ribbon, algebra. See [T1, K1, KS1, MS, C, KS2]
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The Kontsevich conjecture (see [T2, HKV]) generalizes this picture to higher al-
gebras, asserting that the Hochschild cochains on an &,-algebra have a natural
£, 11-structure.
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