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0.1. Overview

The aim of this course is to present classic results in additive and combinatorial

number theory, showing how tools from a variety of mathematical areas may be

used to solve number-theoretical problems.

We will begin by looking at classical theorems about writing natural numbers

as the sums of squares and primes. For instance, we will prove Lagrange’s theorem

that every number is the sum of four squares, and we will show that every large

integer is the sum of a bounded number of primes.

Next we will look at more general sets of integers, proving a famous theorem of

Roth: every set of integers with positive density contains three distinct elements in

arithmetic progression.

We will also look at the structure of finite sets A of integers which are almost

closed under addition in the sense that their sumset A+A := {a1 +a2 : a1, a2 ∈ A}
is relatively small. The highlight here is Freiman’s theorem, which states that any

such set has a precise combinatorial structure known as a generalised progression.

Finally, we will look at instances of the sum-product phenomenon, which says

that it is impossible for a finite set of integers to be simultaneously additively- and

multiplicatively structured. This section draws from a particularly rich set of other

mathematical areas, including graph theory, geometry and analysis. Nonetheless,

prerequisites will be minimal and we will develop what we need from scratch.

0.2. Synopsis

The classical bases. Every prime congruent to 1 modulo 4 is a sum of two

squares. Every natural number is the sum of four squares. *Discussion of sums of

three squares*. Schnirelman density. Application of Selberg’s sieve to show that

every large number is the sum of at most C primes for some fixed C.

Progressions of length 3. Basic properties of Fourier transforms. Roth’s theo-

rem that every subset of {1, . . . , N} of size at least δN contains three elements in

arithmetic progression, provided N is sufficiently large in terms of δ.

Sumsets and Freiman’s theorem. Basic sumset estimates. Additive energy and

its relation to sumsets: statement (but not proof) of the Balog-Szemerédi-Gowers

theorem. Bohr sets and Bogolyubov’s theorem. Minkowski’s second theorem (state-

ment only). Freiman’s theorem on sets with small doubling constant.

Sum-product theorems. The crossing number inequality for graphs. The Sze-

merédi-Trotter theorem on point-line incidences, and application to prove that ei-

ther |A + A| or |A · A| has size at least c|A|5/4. The Prékopa-Leindler inequality,
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quasicubes and sumsets. Proof of Bourgain and Chang’s result that either the m-

fold sumset A+A+ · · ·+A or the m-fold product set A ·A · · · ·A has size at least

|A|f(m), where f(m)→∞.

If time allows the course will conclude with a brief non-examinable discussion

of Gowers’s work on Szemerédi’s theorem for progressions of length 4 and longer,

which ties together several earlier strands in the course.

0.3. Further reading

M. Nathanson’s two books Additive Number Theory have been a significant

inspiriation for the choice of topics in this course. They cover quite a bit of the

material. Students should bear in mind that these books were written 25 years

ago, whilst this course features a number of more recent developments. The book

of T. Tao and V. Vu Additive Combinatorics is also useful, though again this book

does not cover the more recent developments.

0.4. Notation

Asymptotic notation. Throughout the course we will be using asymptotic nota-

tion. This is vital in handling the many inequalities and rough estimates we will

encounter. Here is a summary of the notation we will see. We suggest the reader not

worry too much about this now; we will gain plenty of practice with this notation.

See also the first question on Sheet 0.

• A� B means that there is an absolute constant C > 0 such that |A| 6
CB. In this notation, A and B will typically be variable quantities,

depending on some other parameter. For example, x+ 1� x for x > 1,

because |x + 1| 6 2x in this range. It is important to note that the

constant C may be different in different instances of the notation.

• A = O(B) means the same thing.

• A� B is the same as B � A.

• O(A) means some quantity bounded in magnitude by CA for some ab-

solute constant C > 0. In particular, O(1) simply means a quantity

bounded by an absolute positive constant. For example, 5x
1+x = O(1) for

x > 0.

• A = o(B) means that, for all ε > 0, |A| 6 εB as some other parameter

becomes large enough in terms of ε. The other parameter will usually be

clear from context. For example, 1
log x = o(1) (as x→∞).

• Sometimes we write o(1) by itself to be some quantity tending to zero (as

some other parameter, invariably clear from context, tends to infinity).
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• A standard thing to write in analytic number theory is something like

(0.1) τ(n)�ε n
ε.

This means that, for every ε > 0, we have τ(n) � nε, but the implied

constant can depend on ε. More precisely, there is some Cε such that

τ(n) 6 Cεn
ε for all n > 1.

In these notes, τ(n) will always denote the number of divisors of n (that is,

positive integers dividing n, including 1 and n). Then (0.1) is a true (and very

useful) statement, called the divisor bound. See Lemma A.0.3 for a proof.

We shall adopt the very standard notation

e(t) := e2πit.

One may think of this either as a function on R, periodic with period 1, or as a

function on T = R/Z; we shall not be careful in making the distinction.

For θ ∈ T we write ‖θ‖T for the distance of θ from 0. Thus, for example,

‖2/3‖T = 1/3.

Quantities. In understanding analytic number theory, it is important to develop

a robust intuitive feeling for the rough size of certain quantities. For example, one

should be absolutely clear about the fact that, for X large,

log10X ≪ e
√

logX ≪ X0.01.





CHAPTER 1

Sums of squares

In this chapter, a square will mean the square of an integer, which may be zero.

Thus the set of squares is {0, 1, 4, 9, 16, . . . }.

1.1. Sums of two squares

Theorem 1.1.1. An odd prime p is the sum of two squares if and only if p ≡
1(mod 4).

Proof. Since all squares are 0 or 1(mod 4), a sum of two squares can only ever be

0, 1 or 2 modulo 4, and in particular not 3(mod 4).

Conversely, suppose p ≡ 1(mod 4) is a prime. By basic facts about quadratic

residues, −1 is a square modulo p, and so there exist integers x, y (in fact y = 1)

with x2 + y2 = mp for some positive integer m. Suppose that m is the minimal

positive integer with this property, and assume as a hypothesis for contradiction

that m > 1. Replacing x with −x and reducing mod p if necessary, and similarly

for y, we may assume that |x|, |y| < p/2, and therefore

mp < 2(
p

2
)2,

which certainly implies that m < p. In particular, at least one of x and y is not

divisible by m. Indeed, if not then m2|x2 + y2, implying that m|p. Since we are

assuming that m 6= 1, this would force m = p, which we know not to be the case.

Pick a, b with |a|, |b| 6 m/2 and x ≡ a(modm), y ≡ b(modm). Note that

a2 + b2 > 0 since not both of x, y are multiples of m. Note furthermore that

a2 + b2 ≡ x2 + y2 ≡ 0(modm);

let us write a2 + b2 = rm, where r > 0 is an integer. Note that

rm 6 2(
m

2
)2,

and so r < m. Observing the identity

(x2 + y2)(a2 + b2) = (xa+ yb)2 + (xb− ya)2,

we have

rm2p = (xa+ yb)2 + (xb− ya)2.

5
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Now we have

xa+ yb ≡ x2 + y2 ≡ 0(modm),

and

xb− ya ≡ xy − yx ≡ 0(modm).

Therefore if we define

x′ :=
xa+ yb

m
, y′ :=

xb− ya
m

,

both x′ and y′ are integers. Furthermore

(x′)2 + (y′)2 = rp.

Since 0 < r < m, this is contrary to the supposed minimality of m. Therefore we

were wrong to assume that m > 1, and the proof is complete.

*Remarks. The “descent” argument we gave for Theorem 1.1.1 is one of the most

elementary proofs of the theorem. A somewhat different proof goes via algebraic

number theory in Q(i). It is known that the ring of integers Z[i] is a principal

ideal domain (PID), and so if the ideal (p) splits then it must be as a product

(p) = (x + iy)(x − iy) of two principal ideals, both of norm p, which then implies

that x2 + y2 = p. But there is a criterion (Dedekind’s criterion) asserting that the

factorisation of (p) in Z[i] can be read off from the factorisation of the polynomial

X2 + 1 in Fp. In particular, (p) splits if and only if X2 + 1 factors over Fp, that is

to say precisely when −1 is a quadratic residue mod p, i.e. p ≡ 1(mod 4).

Note that, although the above argument is short modulo known results, the

usual proof that Z[i] is a PID proceeds via showing that it is a Euclidean domain,

that is to say by a descent procedure quite similar to that used in the proof of

Theorem 1.1.1.

1.2. Sums of four squares

Theorem 1.2.1. Every natural number is the sum of four squares.

Proof. We note the identity

(x2
1 + x2

2 + x2
3 + x2

4)(y2
1 + y2

2 + y2
3 + y2

4) = (x1y1 + x2y2 + x3y3 + x4y4)2+

+ (x1y2 − x2y1 + x3y4 − x4y3)2 + (x1y3 − x3y1 + x4y2 − x2y4)2

+ (x1y4 − x4y1 + x2y3 − x3y2)2.(1.1)

This means that the set of numbers which are the sum of four squares is closed

under multiplication. Since 2 = 11 + 12 + 02 + 02, it suffices to show that any odd

prime p is in this set.
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Now we proceed along very similar lines to the proof of Theorem 1.1.1. First,

we claim that there is some m > 0 such that

mp = x2
1 + x2

2 + x2
3 + x2

4.

To see this, first observe that every element x of Z/pZ is a sum of two squares,

since the set S of squares (mod p) has size 1
2 (p + 1), and hence S and x − S must

intersect. Writing 1 and −1(mod p) as sums of two squares and then adding gives

a sum of four squares, not all zero, which is a multiple of p.

Assume that m is minimal with this property, and suppose as a hypothesis for

contradiction that m > 1.

Replacing xi with −xi if necessary, we may assume that |xi| < p/2 (note that p

is odd, so the inequality is indeed strict). It follows that

mp < 4(
p

2
)2 = p2,

and so 0 < m < p.

If m is even, then the xi may be grouped into two pairs in which the parities

are equal, say x1 ≡ x2(mod 2), x3 ≡ x4(mod 2). But then

1

2
mp = (

x1 + x2

2
)2 + (

x1 − x2

2
)2 + (

x3 + x4

2
)2 + (

x3 − x4

2
)2,

contrary to the minimality of m.

Suppose, then, that m is odd. Not all of the xi are divisible by m, as this would

imply m2|x2
1 + x2

2 + x2
3 + x2

4 = mp and so m|p. Since we are assuming m > 1, this

forces m = p, but we have already proved that m < p. Pick yi with |yi| < m/2 and

xi ≡ yi(modm), i = 1, . . . , 4. This is possible with strict inequality, as claimed,

since m is odd. Then y2
1 + y2

2 + y2
3 + y2

4 is positive, and also a multiple of m since

it is congruent to x2
1 + x2

2 + x2
3 + x2

4. Suppose that y2
1 + y2

2 + y2
3 + y2

4 = rm. Then

rm < 4(
m

2
)2 = m2

and so r < m. Now from (1.1), we have

rm2p = (x1y1 + x2y2 + x3y3 + x4y4)2 + . . . ,

where the . . . comprises the three other terms in (1.1). One may easily check, using

xi ≡ yi(modm), that all four of the bracketed terms are multiples of m. Therefore

rp = (
x1y1 + x2y2 + x3y3 + x4y4

m
)2 + . . . ,

with all the bracketed terms integers. Since r < m, this contradicts the supposed

minimality of m.
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1.3. Sums of three squares

Theorems about sums of three squares lie a little deeper, at least partly because

there is no analogue of the multiplicativity identity (1.1). However, any student of

number theory should certainly be aware of the main result on the topic, due to

Gauss.

Theorem 1.3.1. All numbers not of the form 4m(8k + 7) are the sum of three

squares.

1.4. *Further comments

Sums of squares have a rich theory. Sums of three squares are connected to class

numbers. Writing h(d) for the class number of the quadratic field Q(
√
d), Gauss

showed that the number of representations of d > 3 as a sum of 3 squares is ch(d),

where c = 12 if d ≡ 1, 2(mod 4), c = 24 if d ≡ 3(mod 8), and c = 0 if d ≡ 7(mod 8).

Representations by sums of squares are intimately connected to the theory of

modular forms of half integral weight. This leads to beautiful results: for example,

the number of ways to write n as a sum of four squares is 8 times the sum of the

divisors d of n with 4 - d.

A good source for more information is [3, Section 11.3], where one may find

explicit formulae for the number of representations of n as a sum of s squares,

s = 4, 6, 8, 10, 12. The formula for s = 8 is particularly clean, the number of

representations in this case being 16
∑
d|n(−1)n−dd3.



CHAPTER 2

Sums of primes

The main theorem of this chapter is the following.

Theorem 2.0.1. There is some absolute constant C such that every integer

greater than or equal to 2 is a sum of at most C primes.

We will not be concerned with obtaining a particularly good value of C, or even

an explicit value. It was shown by Helfgott in 2013 that every odd integer > 3 is a

sum of at most 3 primes, and from this is follows easily that we can take C = 4. It is

conjectured that C = 3 but this is an unsolved problem, more-or-less equivalent to

the Goldbach conjecture. Helfgott’s proof is long and it also relies on computations;

we will give a much more elementary argument, which goes back to Schnirel’man.

2.1. Bases. Schnirel’man density

Let A be an infinite set of nonnegative integers with 0 ∈ A, and let h > 1 be

an integer. Then we say that A is a basis of order h if every nonnegative integer is

the sum of h elements of A (repetitions are allowed). We say that A is a basis of

finite order if it is a basis of some order h.

If m > 1 is an integer then we write mA for the set of all sums a1 + · · · + am

with a1, . . . , am ∈ A. Thus A is a basis of order h if and only if hA = Z>0, the set

of all non-negative integers.

Let us quickly note some simple properties of the notion of basis, leaving the

(very short) proofs to the reader:

• if A is a basis of order h then it is also a basis of order h′ for any h′ > h;

• if kA is a basis of order h then A is a basis of order at most kh.

As a consequence of the main result of the last chapter, the squares (together

with 0) are a basis of order 4, but not a basis of order 3.

We will deduce Theorem 2.0.1 from the following statement.

Proposition 2.1.1. The set consisting of 0, 1 and the primes is a basis of finite

order.

The deduction of Theorem 2.0.1 is quite easy, so we give it now. Let h be such

that the set consisting of 0, 1 and the primes is a basis of order h. In particular, if

9



10 2. SUMS OF PRIMES

n is some arbitrary integer then we may write

n− 2 = p1 + · · ·+ pk + 1 + · · ·+ 1,

where the total number of primes and ones is at most h.

If there are no 1s, we have

n = p1 + · · ·+ pk + 2.

If there are 1s, we have

n = p1 + · · ·+ pk + 1 + 1 + · · ·+ 1,

where there are at least three 1s. We can replace those by 2s and 3s.

In both cases, we have written n as a sum of at most h + 1 primes, and so

Theorem 2.0.1 is true with C = h+ 1.

Our task, then, is to establish Proposition 2.0.1. We begin by formulating a

sufficient condition for an arbitrary set A containing 0 and 1 to be a basis of finite

order. Then we show how to apply our criterion to establish Proposition 2.1.1. The

sufficient condition we will give is in terms of the concept of Schnire’lman density,

which we define now.

Definition 2.1.1 (Schnirel’man density). Suppose thatA is a set of nonnegative

integers. Then the Schnirel’man density of A, σA, is defined to be the infimum of

all the quantities
1

N
|A ∩ {1, . . . , N}|

N = 1, 2, . . . .

It is convenient to write, as a shorthand,

A[N ] := A ∩ {1, . . . , N}.

Thus if A has Schnirel’man density σ = σA then |A[N ]| > σN for all N , and σ is

the least constant with this property. Note that if a set has positive Schnire’lman

density then 1 ∈ A.

Here is the key result.

Proposition 2.1.2. Suppose that A is a set containing 0 which has positive

Schnirel’man density. Then A is a basis of finite order. In fact, if the Schnirel’man

density of A is σ then A is a basis of order at most 4/σ.

We will give the proof of this a little later. The key ingredient is the following

key lemma, known as Schnirel’man’s inequality. Here, and in what follows,

A+ B := {a+ b : a ∈ A, b ∈ B}.
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(This concept, the sumset of two sets A and B, will feature heavily later in the

course.)

Lemma 2.1.1. Suppose that A and B are sets of nonnegative integers, both con-

taining 0, and with Schnirel’man densities α, β respectively. Then the Schnirel’man

density of A+ B is at least α+ β − αβ.

Proof. Fix some positive integer N . If both α and β are zero there is nothing to

prove. Suppose, then, that α > 0. In particular, 1 ∈ A.

Write down the elements of A[N ] in order,

1 = a0 < a1 < · · · < ak 6 N.

For each i = 0, . . . , k− 1, the elements of ai +B[ai+1 − ai − 1] are all in A+B and

lie strictly between ai and ai+1. Since 0 ∈ B, the elements a0, . . . , ak themselves lie

in A+B, and they are distinct from the elements just listed. Finally, the elements

ak + B[N − ak] again lie in A+ B, and they lie in the interval (ak, n].

It follows that

(2.1) (A+ B)[N ] > k + 1 +

k−1∑
i=0

|B[ai+1 − ai − 1]|+ |B[N − ak]|.

Now by the definition of Schnirel’man density we have the inequalities

|B[ai+1 − ai − 1]| > β(ai+1 − ai − 1),

|B[N − ak]| > β(N − ak).

Substituting into (2.1) gives

|(A+ B)[N ]| > k + 1 + β
( k−1∑
i=0

(ai+1 − ai − 1) +N − ak
)

= βN + (1− β)(k + 1).

In the last step we telescoped the sum over i.

However,

k + 1 = |A[N ]| > αN ;

inserting this into the bound just obtained gives

|(A+ B)[N ]| > βN + (1− β)αN = (α+ β − αβ)N,

which is what we wanted to prove.

We need to supplement this with the following, which is more effective for very

large density.
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Lemma 2.1.2. Suppose that A is a set containing 0 and with Schnirel’man den-

sity at least one half. Then 2A = A+A contains all positive integers.

Proof. Suppose that N does not lie in A+A. Then, for all k, 1 6 k 6 N , either

k or N − k must fail to lie in A. It follows that |A[N ]| < 1
2N , contrary to the

assumption on Schnirel’man density.

We turn now to the deduction of Proposition 2.1.2. For each k, write σk for the

Schnirel’man density of kA, and σ = σ1 for short. By Schnire’lman’s inequality,

applied with B = kA, we have

σk+1 > σk + σ − σkσ.

Therefore, for a given k, either σk > 1
2 or else

σk+1 > σk +
1

2
σ.

It follows that there must be some k 6 2/σ for which σk >
1
2 .

Finally, by applying Lemma 2.1.2 we see that kA + kA contains all positive

integers. This concludes the proof of Proposition 2.1.2.

To conclude this section we remark that Mann (1942) proved a stronger version

of Lemma 2.1.1. Mann showed that, under the same assumptions, the Schnirel’man

density of A+A is at least min(1, α+ β).

2.2. Primes and Schnirel’man density

In this section, we let P̃ be the set of primes augmented by 0 and 1. Our task

is to prove Proposition 2.1.1, namely to show that P̃ is a basis of finite order. It

would suffice, in view of Proposition 2.1.2, to show that P̃ has positive Schnire’lman

density. Unfortunately, such a statement is false. Indeed, as N → ∞ we have

|P[N ]|/N → 0. (By the prime number theorem, the left-hand side decays like

1/ logN .)

It turns out to be true that 2P̃ = P̃+P̃ does have positive Schnire’lman density,

and this is enough to complete the proof of Proposition 2.1.1 by the elementary

properties of bases.

Proposition 2.2.1. Let P̃ denote the set of primes, augmented by including 0

and 1. Then 2P̃ has positive Schnire’lman density.

To establish this result, it is enough to prove the following slightly weaker-

sounding claim.

Proposition 2.2.2. There is some c > 0 such that, for all N > 2, at least cN

different integers are a sum of two primes less than or equal to N .
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Proposition 2.2.2 is rather easily seen to imply Proposition 2.2.1. Indeed for

N > 2 it implies that

|2P̃[2N ]| > cN,

and so for all m > 4 we have

1

m
|2P̃[m]| > c(m− 1)

2m
>
c

4
.

(The minus 1 here comes from the possibility that m is odd.) On the other hand if

m 6 3 then, since 1 ∈ 2P̃, we have the trivial bound

1

m
|2P̃[m]| > 1

3
.

These two bounds together show that the Schnirel’man density of 2P̃ is indeed

positive, which is the statement of Proposition 2.2.1.

The remaining task in this chapter, then, is to prove Proposition 2.2.2. To do

this, denote by r(n) the number of representations of n as a sum of two primes.

Write π(X) for the number of primes less than or equal to X, and S for the set of

integers expressible as a sum of two primes, both less than or equal to N . Then we

have

(2.2) π(N)2 6
∑
n62N

r(n)1S(n);

the LHS is the number of pairs of primes (p1, p2) with p1, p2 6 N , whilst the RHS

is the number of pairs of primes (p1, p2) for which p1 + p2 6 2N and for which

there exists a pair of primes p′1, p
′
2 6 N with p′1 + p′2 = n. The first set of pairs is

contained in the second.

By the Cauchy-Schwarz inequality we have

(2.3)
∑
n62N

r(n)1S(n) 6 |S|1/2(
∑
n62N

r(n)2)1/2.

We will establish the following bound.

Proposition 2.2.3. Denote by r(n) the number of representations of n as a

sum of two primes. Then ∑
n6X

r(n)2 � X3

log4X
.

Plugging this into (2.2), (2.3) (withX = 2N) and using the lower bound π(N)�
N/ logN (for N > 2) leads to |S| � N , that is to say |S| > cN for some constant

c > 0, independent of N . This is precisely the statement of Proposition 2.2.2.

It remains, of course, to prove Proposition 2.2.3. To do this, we obtain a point-

wise upper bound on r(n), the number of ways to write n as a sum of two primes.
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Note that to obtain an asymptotic for r(n), or even a lower bound of r(n) > 0

for even n, is a famous unsolved problem: the Goldbach Conjecture. It would be

enough to show that

(2.4) r(n)� n

log2 n
,

uniformly in n. This is the bound one might naively expect: picking x 6 n at

random, x is prime with probability ∼ 1
logn , and the same is true of n−x. However,

these events are not independent, and if n is divisible by many small primes then

x being prime makes n− x more likely to be prime than a random integer.

In fact, (2.4) is not true uniformly. We instead establish (in the next section) the

following slightly weaker bound which incorporates an arithmetic factor reflecting

the dependencies hinted at in the heuristic discussion above.

Proposition 2.2.4. We have

r(n)�
∏
p|n

(1 +
1

p
) · n

log2 n
.

It is conjectured that the right-hand side is the correct order of magnitude for

r(n). The factor
∏
p|n(1 + 1

p ) is not bounded uniformly in n, because 1 + 1
p ∼ e

1/p

and the sum
∑
p p
−1 diverges. However, to deduce Proposition 2.2.3 we only need

it to be bounded in square mean. We make this deduction now.

Proof. [Proof of Proposition 2.2.3, assuming Proposition 2.2.4]. We will show that

(2.5)
∑
n6X

∏
p|n

(1 +
1

p
)2 � X.

This suffices to allow us to deduce Proposition 2.2.3 from Proposition 2.2.4. Indeed,
n

log2 n
is an increasing function of n for large n and so∑
n6X

r(n)2 �
∑
n6X

(∏
p|n

(1 +
1

p
) · n

log2 n

)2 � X2

log4X

∑
n6X

∏
p|n

(1 +
1

p
)2,

from which the required bound follows immediately from (2.5).

Now we prove (2.5). We use the fact that∏
p|n

(1 +
1

p
) 6

∑
d|n

1

d
.

In fact, the LHS is just the sum of 1
d over the squarefree divisors of n. However,∑

n6X

(
∑
d|n

1

d
)2 =

∑
d1,d26X

1

d1d2

∑
n6X

[d1,d2]|n

1 6 X
∑

d1,d26X

1

d1d2[d1, d2]
.
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Now since [d1, d2] > max(d1, d2) >
√
d1d2, we have∑

d1,d26X

1

d1d2[d1, d2]
6

∑
d1,d26X

1

d
3/2
1 d

3/2
2

= (
∑
d6X

1

d3/2
)2 � 1.

Putting these facts together gives the result.

The remaining (and most substantial) task, then, is to establish Proposition

2.2.4. We do this using a tool known as the Selberg sieve.

2.3. Selberg’s sieve

In this section we will prove an upper bound for r(N), the number of represen-

tations of N as a sum of two primes (note the change from n to N ; the latter seems

more natural for this argument, and it means we can use n as a dummy variable).

Assume throughout the section that N is even; if N is odd then clearly r(N) 6 1

(with equality if and only if N − 2 is prime).

Define

A := {n(N − n) : n 6 N}.

Let z := N1/3 (any threshold of the form z = N c with c < 1
2 would work for us,

with sharper implied constants coming from taking c close to 1
2 , but let us fix on

this choice for definiteness). If n 6 N and n and N − n are prime, then either (i)

n 6 z; (ii) N − n 6 z or (iii) n(N − n) has no prime factors 6 z. It follows that

r(N) 6 2z + S(A, z),

where S(A, z) denotes the number of elements of A with no primes factors 6 z. To

establish Proposition 2.2.4, it therefore sufficies to prove the upper bound

(2.6) S(A, z)�
∏
p|N

(1 +
1

p
) · N

log2N
.

The general problem of estimating S(A, z) (i.e., for more general sets A, and

more general parameters z) is the concern of sieve theory. The method we are

about to describe in our particular setting can be applied to a much wider selection

of problems.

For each positive integer d, write Ad for the set of elements of A which are

divisible by d. The most näıve attempt at the problem would be to use inclusion-

exclusion, computing

S(A, z) = |A| −
∑
p<z

|Ap|+
∑

p<p′<z

|App′ | − · · ·

Unfortunately, this quickly runs into difficulties due to the very large number of

terms; even small errors in the estimation of the |Ad| blow up uncontrollably. A

more subtle approach is therefore required.
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One can formulate more involved versions of the inclusion-exclusion principle

(the Brun sieve), but we will use an idea due to Selberg. Whilst allowing for a

relatively short treatment, it does appear rather magical and unmotivated at first

sight.

Before starting the details, we recall some basic concepts and notation from

elementary number theory. If a, b are positive integers then we write (a, b) for the

greatest common divisor of a, b, and [a, b] for the lowest common multiple. We

define the Möbius function µ : N → {−1, 0, 1} by µ(n) = (−1)k if n = p1 · · · pk
is a product of k distinct primes, and µ(n) = 0 otherwise. A little later, we will

be using some basic facts about Möbius inversion and Dirichlet convolution. For a

refresher on/introduction to this topic, see Appendix ??.

We turn now to the Selberg sieve. Let (λd)d6z be any real parameters subject

only to λ1 = 1. Consider then the weight

ν(n) :=
( ∑
d|n(N−n)

d6z

λd
)2
.

This weight is of course non-negative, and when n ∈ S(A, z) it equals λ2
1 = 1, since

only the term d = 1 appears in the sum. Therefore

(2.7) S(A, z) 6
∑
n6N

ν(n).

Expanding out the definition of ν and rearranging, this gives

(2.8) S(A, z) 6
∑

d1,d26z

λd1λd2 |A[d1,d2]|.

Note here that [d1, d2] denotes the lcm of d1, d2 and so

A[d1,d2] = {n 6 N : d1, d2|n(N − n)}.

We will restrict the weights λd to be supported on squarefree d (that is, λd = 0 if d

is divisible by the square of a prime). Let us now estimate the quantity |Ad| when

d is squarefree. We have

(2.9) |Ad| = ω(d)
N

d
+Rd,

where ω(d) is the number of solutions to x(N − x) ≡ 0(mod d), and

(2.10) |Rd| 6 ω(d).

The remainder term here comes from the fact that one cannot exactly divide

{1, . . . , N} into intervals of length d, and there can be an interval of length < d left
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over. Now if d is squarefree then, by the Chinese remainder theorem, we have

(2.11) ω(d) =
∏
p|d

ω(p).

By direct inspection, we have

(2.12) ω(p) =

{
2 p - N
1 p|N.

Substituting (2.9) into (2.8) yields

S(A, z) 6 N
∑

d1,d26z

λd1λd2ω([d1, d2])

[d1, d2]
+

∑
d1,d26z

|λd1 ||λd2 |ω([d1, d2])

= NQ+ E,(2.13)

where

(2.14) Q = Q((λd)d6z) :=
∑

d1,d26z

λd1λd2ω([d1, d2])

[d1, d2]
,

and

(2.15) E = E((λd)d6z) :=
∑

d1,d26z

|λd1 ||λd2 |ω([d1, d2]).

Recall that, at the moment, we have not said anything about the λd other than

that λ1 = 1 and that they are supported on squarefree d. The strategy now is to

choose the λd so as to minimize the quadratic form Q, and then hope that E is

small, at least with z chosen appropriately.

Note that with z = N1/3 this hope about E is not overly ambitious; we need

only have the crude bounds

(2.16) |λd|, ω(d) 6 N1/10

(say) in order to conclude that E � N1−1/20 (and in particular appreciably less

than the expected main term of ∼ N(logN)−2).

Minimizing the quadratic form. We turn now to the task of choosing the λd

so as to minimise Q. This looks like a rather scary prospect, but in fact Möbius

inversion allows us to diagonalise the form, which is of course very helpful.

To begin with, we rewrite Q in the form

(2.17) Q =
∑

d1,d26z

ω(d1)ω(d2)

d1d2
λd1λd2

(d1, d2)

ω((d1, d2))
.

Here, we used the fact that the λd are supported where d is squarefree, and so we

have

(2.18) ω(d1)ω(d2) = ω((d1, d2))ω([d1, d2])
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(consider the primes dividing each argument of ω, and use (2.11)). To get a handle

on this, we use a fairly standard trick. Write g(k) = k/ω(k), and observe that by

Möbius inversion (see Appendix ??) we have

(2.19) g(k) =
∑
δ|k

f(δ)

where

f(k) =
∑
δ|k

µ(
k

δ
)g(δ).

In the notation of Dirichlet convolution, g = f ∗ 1 and f = g ∗ µ. Note that

g(k) = k/ω(k) is multiplicative, and hence so is f = g ∗ µ (see Appendix ??).

Furthermore it is easy to check that f(p) = p
ω(p) − 1 when p is a prime, where of

course ω is as defined in (2.11), (2.12). Note that f(p) is never zero (when p = 2,

this is because we are assuming N odd), and so in fact f is strictly positive.

Substituting (2.19) into (2.17) and swapping the order of summation yields

(2.20) Q =
∑
δ6z

f(δ)

( ∑
δ|d,d6z

ω(d)

d
λd

)2

=
∑
δ6z

f(δ)u2
δ ,

where

uδ :=
∑

δ|d,d6z

ω(d)

d
λd.

(Here, d ranges over squarefrees.) With this change of variables, Q is indeed a

diagonal quadratic form. To minimise Q we need to express the constraint λ1 = 1

in terms of these new variables uδ. This can be achieved by applying Lemma A.0.2.

One obtains

(2.21)
ω(d)

d
λd =

∑
d|δ,δ6z

µ(
δ

d
)uδ,

where δ ranges over squarefrees. Therefore the constraint λ1 = 1 becomes simply

(2.22)
∑
δ6z

µ(δ)uδ = 1.

The minimisation of Q, as given in (2.20), subject to the constraint (2.22), is a sim-

ple matter of completing the square, or more specifically looking at the inequality

(2.23)
∑
δ6z

f(δ)(uδ −
µ(δ)

Df(δ)
)2 > 0,

where

(2.24) D = D(z) :=
∑
δ6z

µ2(δ)

f(δ)
=

∑
d6z,d squarefree

1

f(d)
.
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This shows that the minimum value of Q (as given by (2.20)) subject to the con-

straint (2.22) is 1/D, and that equality is attained when

(2.25) uδ = µ(δ)/Df(δ).

Thus we take our as yet unspecified weights λd to be the ones giving this choice

of the uδ. In view of (2.21), this means that we define

(2.26) λd :=
d

ω(d)D

∑
d|δ,δ6z

µ(δ/d)µ(δ)

f(δ)
.

Let us take stock of our current position. Our aim is to prove (2.6). Taking the

particular choice (2.26) of the λd, and z := N1/3, substituting into (2.13) gives

(2.27) S(A, z) 6 N

D
+O(N2/3 max

d6z
|λd|2ω(d)2).

Here, in estimating E, we have used

E =
∑

d1,d26z

|λd1 ||λd2 |ω([d1, d2]) 6
∑

d1,d26z

|λd1 ||λd2 |ω(d1)ω(d2) 6 z2 sup
d
|λd|2ω(d)2,

where the middle step follows from (2.18).

The two terms on the right in (2.27) have the status of main term and error

term respectively, though we have not yet shown anything rigorous about them.

To bound the main term, we will show that

(2.28) D � log2N · (
∏
p|N

(1 +
1

p
))−1.

To bound the error term, we will show that

(2.29) |λd|ω(d)�ε d
ε for all squarefree d.

The desired bound (2.6) follows very quickly by substituting (2.28) and (2.29)

into (2.27).

It remains, then, to establish (2.28) and (2.29). The proofs of these statements

are somewhat lengthy and a little technical, though instructive to work through.

They are fairly unrelated to the rest of the argument and readers may wish to skip

them.

Bounding the main term. We now prove (2.28). For the purposes of this proof,

extend ω to a completely multiplicative function by defining ω(pj) := ω(p)j . Now

if d is squarefree then

1

f(d)
=
∏
p|d

1

f(p)
=
∏
p|d

ω(p)/p

1− ω(p)
p

=
∏
p|d

∑
j>1

ω(pj)

pj
,
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by the multiplicativity of f and the geometric series formula. Therefore

(2.30) D =
∑

d6z,d squarefree

∏
p|d

∑
j>1

ω(pj)

pj
=

∑
m:rad(m)6z

ω(m)

m
>
∑
m6z

ω(m)

m
.

Here, the radical rad(m) is the product of the distinct primes dividing m, which is

of course squarefree.

Let S′ be the set of all positive integers coprime to N , and let S∗ denote the set

of all positive integers composed only of primes dividing N . Any integer m has a

unique factorisation m = m′m∗, where m′ ∈ S′ and m∗ ∈ S∗.
We claim that

(2.31) ω(m) > τ(m′).

Recall the definition (2.12) of ω(p). Thus if we write m = pa11 · · · p
ak
k , with p1, . . . , p`

being those primes not dividing N , then m′ = pa11 · · · p
a`
` and

ω(m) = 2a1+···+a` ,

whilst

τ(m′) = (a1 + 1) · · · (a` + 1).

The claimed inequality (2.31) now follows from the fact that 2a > a + 1 for all

integers a > 1.

Substituting (2.31) into (2.30) yields

(2.32) D >
∑
m6z

τ(m′)

m
.

Now observe that ∏
p|N

(1− 1

p
)−1 =

∑
t∈S∗

1

t
;

this follows by expanding (1− 1
p )−1 =

∑
j>0 p

−j and multiplying up over all primes

p dividing N . It follows from (2.32) that

D
∏
p|N

(1− 1

p
)−1 >

∑
m6z

τ(m′)

m

∑
t∈S∗

1

t
=
∑
n

1

n

∑
m6z
m|n

n/m∈S∗

τ(m′) >
∑
n6z

1

n

∑
m|n

n/m∈S∗

τ(m′).

where in the middle step we substituted n = mt. Now in the sum over m, n/m

runs exactly over the divisors of n∗, so there are τ(n∗) terms in the sum. For each

of them we have m′ = n′. It follows that∑
m|n

n/m∈S∗

τ(m′) = τ(n∗)τ(n′) = τ(n),
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and so we have proven that

(2.33) D
∏
p|N

(1− 1

p
)−1 >

∑
n6z

τ(n)

n
.

We have now almost completed the proof of (2.28). To finish it, note first that∑
n6z

τ(n)

n
>

( ∑
x6
√
z

1

x

)2

(since, by multiplying out the square, the right-hand side is
∑
n6z

τ̃(n)
n , where τ̃(n)

denotes the number of divisors d of n with d, n/d 6
√
z.) Recalling that z = N1/3,

it follows that

(2.34)
∑
n6z

τ(n)

n
� log2N.

Finally, to deduce (2.28), we use (2.33), (2.34) and the fact that∏
p|N

(1− 1

p
) =

∏
p|N

(1 +
1

p
)−1 ·

∏
p|N

(1− 1

p2
)�

∏
p|N

(1 +
1

p
)−1,

since the product
∏
p(1−

1
p2 ) converges to a positive real number (in fact to 1/ζ(2) =

6/π2).

Bounding the error term. Now we prove the estimate (2.29). From the definition

(2.26) of λd, we have

|ω(d)λd| = |
d

D

∑
d|δ,δ6z

µ(δ/d)µ(δ)

f(δ)
| 6 d

Df(d)

∑
δ′6z

δ′ squarefree

1

f(δ′)
=

d

f(d)
.

Now it is easy to check that p/f(p) 6 6, the worst case being when p = 3 and

ω(3) = 2. Therefore

|ω(d)λd| 6
d

f(d)
=
∏
p|d

p

f(p)
6 6# prime factors of d = τ(d)

log 6
log 2 .

The claim now follows from the divisor bound (Lemma A.0.3).





CHAPTER 3

Roth’s theorem on progressions of length 3

In this chapter our aim is to prove the following theorem of Roth from 1953. The

theorem is well-worth studying in its own right, but it also gives an opportunity to

introduce a key tool: the Fourier transform.

Theorem 3.0.1 (Roth’s theorem). There is an absolute constant C such that

any subset A ⊂ {1, . . . , N} with cardinality at least CN/ log logN contains a non-

trivial three-term arithmetic progression (that is to say, a triple x, x+d, x+2d with

d 6= 0).

Note, in particular, that 1/ log logN is eventually smaller than any fixed positive

constant.

Throughout this chapter we will assume that N is sufficiently large (meaning

bigger than some absolute constant which we shall not specify precisely).

3.1. The density increment strategy

Roth’s theorem proceeds via the so-called density increment strategy, and the

key proposition which drives this is the following.

Proposition 3.1.1. Suppose that 0 < α < 1 and that N > (8/α)10. Suppose

that P ⊂ Z is an arithmetic progression of length N and that A ⊂ P is a set with

cardinality at least αN . Then one of the following two alternatives holds:

(i) A contains a nontrivial 3-term progression;

(ii) There is an arithmetic progression P ′ of length N ′ > N1/5 such that,

writing A′ := A ∩ P ′ and α′ := |A′|/|P ′|, we have α′ > α+ α2

112 .

Theorem 3.0.1 follows by iterating this proposition. Set P0 := {1, . . . , N} and let

us suppose that we have a set A ⊂ P0 with |A| = αN and containing no nontrivial

3-term progression. Then we attempt to use Proposition 3.1.1 repeatedly to obtain

a sequence P0, P1, P2, . . . of progressions together with sets Ai := A ∩ Pi. The

length of Pi will be Ni > N (1/5)i and the densities αi := |Ai|/|Pi| will satisfy

αi+1 > αi + cα2
i .

Now this iteration cannot last too long: after C/α steps the density has already

doubled, after a further C/2α steps it has doubled again, and so on. Since no set

23
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can have density greater than one, there can be no more than 2C/α steps in total.

We conclude that our applications of Proposition 3.1.1 must have been invalid,

which can ony mean that the condition Ni > Cα−Ci was violated. Since

Ni > N (1/5)i > N (1/5)2C/α

and (very crudely)

αi > α,

we infer the bound

N (1/5)2C/α 6 Cα−C .

Rearranging gives

log logN 6 log log(Cα−C) +
2C

α
6
C ′

α
,

which immediately gives the claimed bound.

Remark. The most important parameter by far is the number of times we

performed the iteration, which was roughly O(1/α).

3.2. Fourier transform on Z

Let f : Z→ C be a compactly-supported function (that is, f(n) = 0 outside of

some finite interval). Then we define the Fourier transform f̂(θ) by

f̂(θ) :=
∑
n

f(n)e(−nθ).

Since f is compactly-supported, there is no issue of convergence.

A crucial fact we will need is the Parseval identity.

Proposition 3.2.1. We have∑
n

f(n)g(n) =

∫
T

f̂(θ)ĝ(θ)dθ.

Proof. This is an easy check using the definitions, as well as the fact that

(3.1)

∫
T

e(mθ)dθ =

∫ 1

0

e(mθ)dθ =

{
1 m = 0

0 m ∈ Z \ {0}.

Remark. Taking f = g gives∑
n

|f(n)|2 =

∫
T

|f̂(θ)|2dθ.
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3.3. A large Fourier coefficient

We turn now to the details of the density increment strategy. We begin with a

very simple observation, which is that we may assume without loss of generality that

P = [N ] = {1, . . . , N}. We may always reduce to this case by an affine rescaling.

We will first establish the following alternative version of Proposition 3.1.1, in

which the conclusion of part (ii) is different, asserting the existence of a large Fourier

coefficient of the function

fA := 1A − α1[N ],

the so-called balanced function of A. In the next section, we will show that a

large Fourier coefficient implies a density increment as in the original formulation

of Proposition 3.1.1.

Proposition 3.3.1. Suppose that 0 < α < 1 and that N > 4/α2. Suppose

that A ⊂ [N ] is a set with cardinality at least αN . Then one of the following two

alternatives holds:

(i) A contains a nontrivial 3-term progression;

(ii) The balanced function fA has a large Fourier coefficient: specifically,

there is some θ ∈ T such that |f̂A(θ)| > α2N/28.

Proof. If f1, f2, f3 : Z → R are three finitely-supported functions then we intro-

duce the operator

T (f1, f2, f3) :=
∑
x,d

f1(x)f2(x+ d)f3(x+ 2d).

This counts the number of 3-term progressions weighted by the functions fi. In

particular,

(3.2) T (1A, 1A, 1A) = #{number of 3-term progressions in A}.

Note carefully that this count includes “trivial” progressions with d = 0. However,

A has precisely αN trivial progressions, so if option (i) does not hold then

(3.3) T (1A, 1A, 1A) = αN 6 α3N2/4.

For the inequality on the right we used the assumption that N > 4/α2.

Note that T is a trilinear operator. Thus we may write 1A = fA + α1[N ] and

expand T (1A, 1A, 1A) as a sum of eight terms,

(3.4) T (1A, 1A, 1A) = α3T (1[N ], 1[N ], 1[N ]) + · · ·+ T (fA, fA, fA).

Each of the seven “error terms” denoted by the ellipsis · · · contains at least one

copy of fA. Let us look at the first term α3T (1[N ], 1[N ], 1[N ]). It is quite simple to

evaluate this exactly: the number of (x, d) with x, x + d, x + 2d ∈ [N ] is precisely
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the number of pairs (n1, n2) ∈ [N ]× [N ] with n1, n2 having the same parity, since

we then have, uniquely, x = n1 and d = 1
2 (n2−n1), and x+ d automatically lies in

[N ]. This is N2/2 if N is even, and (N2 + 1)/2 if N is odd, thus at least N2/2 in

all cases. Thus

α3T (1[N ], 1[N ], 1[N ]) > α3N2/2.

It follows that if option (i) does not hold (and hence we have (3.3)) then the

sum of the seven error terms in (3.4) is at least α3N2/4. Thus one of these terms

is at least α3N2/28, that is to say

(3.5) |T (f1, f2, f3)| > α3N2/28,

where each fi is either α1[N ] or fA, and at least one of them is fA.

Now we come to the key idea: there is a formula for T (f1, f2, f3) in terms of the

Fourier transform:

(3.6) T (f1, f2, f3) =

∫
T

f̂1(θ)f̂2(−2θ)f̂3(θ)dθ.

Once written down, it is very easy to check this by substituting the definition of

the Fourier transforms on the right-hand side.

Thus if (3.5) holds then

(3.7)
∣∣ ∫

T

f̂1(θ)f̂2(−2θ)f̂3(θ)dθ
∣∣ > α3N2/28.

Suppose that f3 = fA; the analysis of other possibilities is very similar. Then

sup
θ∈T
|f̂A(θ)|

∫
T

|f̂1(θ)||f̂2(−2θ)|dθ > α3N2/28.

By the Cauchy-Schwarz inequality,

(3.8) sup
θ∈T
|f̂A(θ)|

( ∫
T

|f̂1(θ)|2dθ
)1/2( ∫

T

|f̂2(θ)|dθ
)1/2

> α3N2/28.

However, by Parseval’s identity we have∫
T

|fi(θ)|2dθ =
∑
n

|fi(n)|2.

One may easily check that the RHS is α2N if fi = α1[N ] and α(1−α)N if fi = fA,

and so certainly at most αN in either case. Thus from (3.8) we obtain

sup
θ∈T
|f̂A(θ)| > α2N/28,

which is precisely option (ii) in the proposition.
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3.4. From a large Fourier coefficient to a density increment

In this section, we show how option (ii) in Proposition 3.3.1 (the balanced func-

tion fA has a large Fourier coefficient) may be replaced by option (ii) in Proposition

3.1.1 (a density increment on a progression). The crucial technical ingredient is the

following.

Here, if F : Z → C is a function and S ⊂ Z a finite set, we write diamS(F ) :=

supx,x′∈S |F (x)− F (x′)|.

Lemma 3.4.1. Suppose that θ ∈ T. Then we may partition [N ] into progressions

Pi, each of length at least N1/5, such that diamPi(e(θx)) 6 N−1/5 for all i.

Proof. Throughout this argument we will assume that N is sufficiently large.

Let Q := bN1/2c. By a well-known application of the pigeonhole principle due

to Dirichlet, there is some positive d 6 Q such that ‖dθ‖ 6 1/Q. (Consider

θ, 2θ, · · · , Qθ as elements of T; some two of these, say j1θ and j2θ, lie within 1/Q

of one another. Take d := |j1 − j2|. )

If P is any progression with common difference d and length 6 3N1/5 then, by

the triangle inequality,

diamP (e(θx)) 6 3N1/5|e(θd)− 1| 6 20N1/5/Q < N−1/5,

where here we used the inequality

|e(t)− 1| = 2| sinπt| 6 2π‖t‖R/Z.

Now observe that [N ] can be partitioned into progressions Pi with common

difference d and lengths in the range [N1/5, 3N1/5]. To do this, first partition

[N ] into progressions of common difference d, each of length ∼ N/d� N1/2. Then

proceed along each such progression from left to right, partitioning into progressions

of length dN1/5e until we have a leftover progression of length 6 N1/5. Amalgamate

this with the preceding one.

The following result, together with Proposition 3.3.1, immediately implies Propo-

sition 3.1.1, and hence completes the proof of Roth’s theorem.

Proposition 3.4.1. Suppose that |f̂A(θ)| > α2N/28, that N > (8/α)10, and let

[N ] =
⋃
i Pi be a partition as above. Then there is some i such that |A ∩ Pi| >

(α+ α2

112 )|Pi|.

Proof. Since the Pi partition [N ], we obviously have∑
i

|
∑
x∈Pi

fA(x)e(−θx)| > α2

28
N.
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By the triangle inequality and the bound |fA(x)| 6 1, the left-hand side is at most∑
i

|
∑
x∈Pi

fA(x)|+
∑
i

|Pi|diamPi(e(θx)) 6
∑
i

|
∑
x∈Pi

fA(x)|+N4/5

6
∑
i

|
∑
x∈Pi

fA(x)|+ α2

56
N,

the last step following from our assumption on N . It follows that∑
i

|
∑
x∈Pi

fA(x)| > α2

56
N.

Since
∑
x∈[N ] fA(x) = 0, we have∑

i

(
|
∑
x∈Pi

fA(x)|+
∑
x∈Pi

fA(x)
)
>
α2

56
N =

α2

56

∑
i

|Pi|,

so there must be some i such that

|
∑
x∈Pi

fA(x)|+
∑
x∈Pi

fA(x) >
α2

56
|Pi|,

which implies that ∑
x∈Pi

fA(x) >
α2

112
|Pi|,

or in other words that

|A ∩ Pi| > (α+
α2

112
)|Pi|.

This concludes the proof.



CHAPTER 4

Sumset inequalities

In this chapter we explore the notion of adding sets. There is a huge literature on

this topic, from which we isolate a few key results. All of the results we shall state

are valid for finite subsets of arbitrary abelian groups, and for brevity it is usual to

call these “additive sets”. When we are talking about more than one additive set,

we assume they are all subsets of the same group. The particular abelian group

in question will normally be clear from context (though often it does not matter).

In fact, many of the results (but not all) remain true without the assumption of

commutativity, but we shall not cover that topic in this course.

4.1. Basic notation and definitions

Let A,B be additive sets (this both A and B are finite subsets of some abelian

group). Then we write

A+B := {a+ b : a ∈ A, b ∈ B}

and

A−B := {a− b : a ∈ A, b ∈ B}.

These definitions extend in an obvious way to more than two summands, for exam-

ple

A1 + · · ·+Ak := {a1 + · · ·+ ak : ai ∈ Ai}.

If A1 = · · · = Ak = A then we usually write kA for A1 + · · · + Ak. In particular,

2A = A+A. We also write, e.g. 2A− 2A for {a1 + a2 − a3 − a4 : a1, . . . , a4 ∈ A}.

4.2. Ruzsa’s triangle inequality and covering lemma

In this section we prove two elegant results of Ruzsa about the size of sumsets.

They are surprisingly useful despite their apparent simplicity.

Lemma 4.2.1 (Ruzsa triangle inequality). Suppose that U, V,W are finite addi-

tive sets. Then

|V −W ||U | 6 |V − U ||U −W |.

Proof. We will define a map φ : (V −W )× U → (V − U)× (U −W ), and prove

that it is an injection, which implies the result. Given d ∈ V −W select a pair

29
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vd ∈ V,wd ∈W for which d = vd −wd (there may be more than one such pair, but

for each d we make a definite choice). Then define

φ(d, u) = (vd − u, u− wd)

for each d ∈ V − W and u ∈ U . To prove that φ is an injection, suppose that

(x, y) ∈ im(φ) ⊂ (V − U) × (U −W ). If φ(d, u) = (x, y) then x + y = (vd − u) +

(u − wd) = vd − wd = d, and therefore we can determine d and hence vd and wd

from (x, y). And we also determine u as u = −x+ vd (= y − wd).

Remark. If we define

d(U, V ) := log
|U − V |
|U |1/2|V |1/2

then the Ruzsa triangle inequality may be written

d(V,W ) 6 d(U, V ) + d(U,W ).

This explains the term “triangle inequality”. Note that, although the triangle

inequality is satisfied, d is not a true distance. This is because d(U, V ) = 0 neither

implies, nor is implied by, U = V .

Lemma 4.2.2 (Ruzsa’s covering lemma). Suppose that A and B are finite addi-

tive sets and that |A+B| 6 K|A|. Then B may be covered by k translates of A−A,

for some k 6 K. That is, there is a set X, |X| 6 K, such that

B ⊂ (A−A) +X.

Proof. Choose X ⊂ B maximal so that {A+x : x ∈ X} are disjoint. The union of

these sets contains exactly |A||X| elements, and all of these elements lie in A+B.

Therefore |X| 6 K. Now, if b ∈ B then A + b intersects A + x for some x ∈ X,

because of the maximality of X, and so b ∈ A−A+x. Hence, B ⊂ (A−A) +X.

4.3. Petridis’s inequality

In this section and the next we develop inequalities controlling the size of sums of

three or more sets. A beautiful way to do this was discovered surprisingly recently

by Petridis. His result is stated as Corollary 4.3.1 below. We give an elegant

rephrasing of his proof which was given by Tao on the blog of Tim Gowers.

Let B be a set in some abelian group G. Let K be a real number, and consider

the function φ on subsets of G defined by

(4.1) φ(A) := |A+B| −K|A|.
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Lemma 4.3.1. φ is submodular, that is to say it satisfies

φ(A ∪A′) + φ(A ∩A′) 6 φ(A) + φ(A′).

Proof. Write σ(A) := A+B. Observe that

σ(A ∪A′) = σ(A) ∪ σ(A′),

and that

σ(A ∩A′) ⊆ σ(A) ∩ σ(A′).

Therefore

|σ(A ∪A′)| = |σ(A) ∪ σ(A′)| = |σ(A)|+ |σ(A′)| − |σ(A) ∩ σ(A′)|

6 |σ(A)|+ |σ(A′)| − |σ(A ∩A′)|,

that is to say |σ| satisfies the submodularity property

|σ(A ∪A′)|+ |σ(A ∩A′)| 6 |σ(A)|+ |σ(A′)|.

Since the function |A| satisfies

|A ∪A′|+ |A ∩A′| = |A|+ |A′|,

the result follows immediately, since φ(A) = |σ(A)| −K|A|.

Lemma 4.3.2. Let φ be any submodular function. Suppose that A1, . . . , An are

sets with the following property: φ(Ai) = 0, and φ(Zi) > 0 for every subset Zi ⊆ Ai.
Then φ

(⋃n
i=1Ai

)
6 0.

Proof. By the assumptions and submodularity, for any i and for any set S, we

have

φ(Ai ∪ S) 6 φ(Ai ∪ S) + φ(Ai ∩ S) 6 φ(Ai) + φ(S) = φ(S).

The result then follows immediately by induction on n.

Proposition 4.3.1 (Petridis). Let A,B be sets in some abelian group. Suppose

that |A+B| = K|A| and that |Z+B| > K|Z| for all Z ⊆ A. Then, for any further

set S in the group, |A+B + S| 6 K|A+ S|.

Proof. Apply Lemma 4.3.2 with the particular function φ defined in (4.1) above.

Take the Ai to be the translates A + s of A by elements of s. It is easy to check

that the hypotheses of Lemma 4.3.2 hold. Observe that
⋃n
i=1Ai = A + S, and so

the Lemma implies that φ(A+ S) 6 0, or in other words |A+B + S| 6 K|A+ S|.

It is convenient to apply Petridis’ inequality in the following form.
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Corollary 4.3.1. Let A,B be sets in some abelian group. Suppose that |A +

B| 6 K|A|. Let X ⊆ A be a non-empty set for which the ratio |X + B|/|X| is

minimal. Then for any further set S we have

|S +X +B| 6 K|S +X|.

Proof. Apply Proposition 4.3.1 with A replaced by X.

4.4. The Plünnecke–Ruzsa inequality

The most widely applicable result about higher-order sumsets is the Plünnecke–

Ruzsa inequality.

Theorem 4.4.1 (Plünnecke–Ruzsa). Suppose that A and B are additive sets

with |A+B| 6 K|A|. Let k, ` > 0 be integers. Then |kB − `B| 6 Kk+`|A|.

The original proof was quite long and involved a fair amount of machinery from

graph theory. Nowadays, it can be deduced quickly from Petridis’s inequality.

Lemma 4.4.1. Suppose that A and B are finite additive sets for which |A+B| 6
K|A|. Then there exists X ⊂ A for which |X + kB| 6 Kk|X|.

Proof. Let X be the subset of A for which the ratio |X + B|/|X| is minimal. By

Petridis’s inequality (Corollary 4.3.1) with S = (k − 1)B, we have

|X + kB| = |X + (k − 1)B +B| 6 K|X + (k − 1)B|.

The result then follows by induction on k.

Proof. [Proof of Theorem 4.4.1]. Suppose that A and B are finite additive sets for

which |A + B| 6 K|A|. By Ruzsa’s Triangle Inequality with U, V,W replaced by

X,−kB,−`B, respectively, and then Lemma 4.4.1, we have

|kB − `B| |X| 6 |X + kB| · |X + `B| 6 Kk+`|X|2.

Thus, since X ⊂ A, |kB − `B| 6 Kk+`|X| 6 Kk+`|A|.



CHAPTER 5

Freiman’s theorem

This chapter contains one of the highlights of the course, which is a fairly com-

plete (at least qualitatively) answer to the question of what sets with small sumset

look like. Let us begin with a little context for the question.

Recall that if A is a set of integers then

A+A := {a1 + a2 : a1, a2 ∈ A}.

Suppose A has size n. How big is A+A? Trivially, it has size at most 1
2n(n+1),

that being the number of pairs (a1, a2), with (a1, a2) and (a2, a1) counted the same.

On the other hand, it has size at least 2n − 1. Writing a1 < · · · < an for the

elements of A, we have

a1 + a1 < a1 + a2 < · · · < a1 + an < a2 + an < · · · < an + an,

a listing of 2n− 1 distinct elements of A.

Equality can occur in both bounds. For example if A = {1, 2, . . . , 2n−1} then

all the sums a1 + a2 are distinct (except for the trivial relations a1 + a2 = a2 + a1).

If A = {1, . . . , n} then A+A = {2, . . . , 2n}, a set of size 2n− 1.

We say that A has doubling constant at most K if

|A+A|
|A|

6 K.

Typically, we will have in mind that K is fixed (say K = 10) and n = |A| is very

large.

Here is the basic question to be considered in this chapter.

Question 5.0.1. What is the structure of A if |A+A| 6 K|A|, for some small

K?

5.1. Generalised progressions and Freiman’s theorem

Before stating the main result, let us give some progressively more complicated

motivating examples.

Example 5.1.1 (Progression). Let A be any arithmetic progression of length n.

Then |A+A| = 2n− 1.
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Example 5.1.2 (Subsets of progressions). Let P be a progression of length Cn,

and let A ⊂ P be an arbitrary set of size n. Then |A+A| 6 2Cn.

Example 5.1.3 (2-dimensional progression). Suppose that L1L2 = n, and con-

sider a set A of the form

A := {x0 + `1x1 + `2x2 : 0 6 `1 < L1, 0 6 `2 < L2}.

If the xi are suitably widely spaced, the elements described here are all distinct and

|A| = n. In this case we say that A is proper. We have

A+A = {2x0 + `′1x1 + `′2x2 : 0 6 `′1 < 2L1 − 1, 0 6 `′2 < 2L2 − 1},

and so certainly

|A+A| 6 4|A|.

Example 5.1.4 (d-dimensional progression). The same as above, but with d

parameters L1, . . . , Ld: thus

(5.1) A = {x0 + l1x1 + · · ·+ ldxd : 0 6 li < Li}.

Now, if A is proper, we have |A+A| 6 2d|A|.

Example 5.1.5 (Subsets of multidimensional progressions). Let P be a proper

d-dimensional progression of size Cn. Let A ⊂ P be an arbitrary set of size n.

Then

|A+A| 6 |P + P | 6 2d|P | = 2dCn.

The final example gives a somewhat large class of sets with doubling constant

at most K (pick any parameters d,C with 2dC 6 K).

Freiman’s theorem is the result that the above examples are the only ones.

Theorem 5.1.1 (Freiman). Suppose that A ⊂ Z is a finite set with |A + A| 6
K|A|. Then A is contained in a generalised progression P of dimension �K 1 and

size �K |A|.

The size of a generalised progression as in (5.1) is defined to be L1 · · ·Ld. This

is at least the cardinality of the progression, but is strictly bigger than it if the

progression fails to be proper.

Freiman’s theorem states that A is contained in a proper progression of dimen-

sion at most d(K) and size at most C(K)|A|, where d(), C() are functions of K

only. In this course we will not be concerned with bounds, but the argument we

give leads to a bound for d(K) that is exponential in K, and a bound for C(K)

that is doubly exponential in K. This is quite far from the truth; in fact, it does

not require a vast amount of further effort to remove an exponential from both of

these bounds, but we will not do so here.
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Many other refinements are possible, but again we will not cover them here. For

example, one can insist that P be proper if desired.

5.2. Freiman homomorphisms

In his remarkably insightful 1966 book [5], Freiman made an attempt to treat

additive number theorey by analogy with the way Klein treated geometry: as well as

sets A,B, · · · of integers, one should study maps between them and, most particu-

larly, properties invariant under natural types of map. This was doubtless regarded

as somewhat eccentric at the time, but the notion of Freiman homomorphism is

now quite important in additive combinatorics.

Definition 5.2.1. Suppose that s > 2 is an integer. Suppose that A,B are

additive sets. Then we say that a map φ : A→ B is a Freiman s-homomorphism if

we have

φ(a1) + · · ·+ φ(as) = φ(a′1) + · · ·+ φ(a′s)

whenever

a1 + · · ·+ as = a′1 + · · ·+ a′s.

It is obvious that any group homomorphism restricts to a Freiman homomor-

phism (of arbitrary order) on any subset. However, the notion is much more general.

For example, any map whatsoever from A = {1, 10, 100, 1000} to another additive

set is a Freiman 2-homomorphism, simply because A has no nontrivial relations of

the form a1 + a2 = a′1 + a′2.

The map φ is said to be a Freiman s-isomorphism if it has an inverse φ−1 which

is also a Freiman s-homomorphism. We caution that, contrary to what is often

expected in more algebraic situations, a one-to-one Freiman homomorphism need

not be a Freiman isomorphism. For example, the obvious map

φ : {0, 1}n → (Z/2Z)n

is a Freiman homomorphism of all orders (it is induced from the natural group

homomorphism Zn → (Z/2Z)n). However, it is not a Freiman 2-isomorphism as

(Z/2Z)n contains a great many more additive relations than {0, 1}n.

The following lemma records some basic facts about Freiman isomorphisms.

Lemma 5.2.1. Suppose that A,B,C are additive sets. Let s > 2 be an integer.

Then we have the following.

(i) Suppose that φ : A→ B and ψ : B → C are Freiman s-homomorphisms.

Then so is the composition ψ ◦ φ.

(ii) Suppose that φ : A → B is a Freiman s-homomorphism. Then it is also

a Freiman s′-homomorphism for every s′ satisfying 2 6 s′ 6 s.
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(iii) Suppose that φ : A → B is a Freiman s-homomorphism and let k, l > 0

be integers. Then φ induces a Freiman s′-homomorphism φ̃ : kA− lA→
kB − lB, for any integer s′ 6 s/(k + l).

(iv) The above three statements also hold with “homo” replaced by “iso”

throughout.

(v) Suppose that P is a generalised progression and that φ : P → B is a

Freiman 2-homomorphism. Then φ(P ) is a generalised progression of the

same dimension. If φ is a Freiman 2-isomorphism, and if P is proper,

then so is φ(P ).

(vi) Let πm : Z → Z/mZ be the natural map. Then πm is a Freiman s-

isomorphism when restricted to (t, t+ m
s ] ∩ Z, for any t ∈ R.

Proof. The first four parts of this are very straightforward once one has understood

the definitions, and we will not go over them carefully in lectures. Perhaps (iii)

requires some further comment: one should define φ̃ : kA− lA→ kB − lB by

φ̃(a1 + · · ·+ ak − a′1 − · · · − a′l) = φ(a1) + · · ·+ φ(ak)− φ(a′1)− · · · − φ(a′l).

One must then check that this is well-defined and is a Freiman homomorphism of

the order claimed.

To prove (v), let φ : P → φ(P ) be a Freiman 2-homomorphism. Suppose that

P = {x0 + l1x1 + · · · + ldxd : 0 6 li < Li}. Set y0 = φ(x0), and define y1, . . . , yd

by y0 + yi = φ(x0 + xi) for i = 1, . . . , d; we claim that φ(x0 + l1x1 + · · ·+ ldxd) =

y0 + l1y1 + · · ·+ ldyd for all l1, . . . , ld satisfying 0 6 li < Li. This may be established

by induction on l1 + · · ·+ ld, noting that we have defined the yi in such a way that

it holds whenever l1 + · · ·+ ld = 0 or 1. To obtain the statement for (l1, . . . , ld) =

(1, 1, 0, . . . , 0), for example, one may use the relation

x0 + (x0 + x1 + x2) = (x0 + x1) + (x0 + x2)

to conclude that

φ(x0) + φ(x0 + x1 + x2) = φ(x0 + x1) + φ(x0 + x2)

and hence that φ(x0 + x1 + x2) = y0 + y1 + y2, as required.

Finally, we comment on (vi). Since πm is a group homomorphism, it is also a

Freiman homomorphism. Its restriction to any interval of length at most m is a

bijection. Suppose that x1, . . . , xs, x
′
1, . . . , x

′
s satisfy t < xi, x

′
i 6 t + m

s and that

πm(x1) + · · · + πm(xs) = πm(x′1) + · · · + πm(x′s), that is to say x1 + · · · + xs =

x′1 + · · · + x′s(modm). Then, since |x1 + · · · + xs − x′1 − · · · − x′s| < m, we must

have x1 + · · ·+ xs = x′1 + · · ·+ x′s.
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5.3. Ruzsa’s model lemma

In this section we prove a remarkable lemma of Imre Ruzsa. It asserts that a

subset of Z with small doubling has a large piece which is Freiman isomorphic to a

dense subset of a cyclic group Z/mZ. In that setting the tools of harmonic analysis

become much more powerful, unlike for arbitrary subsets of Z (even those of small

doubling) which could well be highly “spread out”. Here is Ruzsa’s lemma.

Proposition 5.3.1 (Ruzsa model lemma). Suppose that A ⊂ Z is a finite set

and that s > 2 is an integer. Let m > |sA− sA| be an integer. Then there is a set

A′ ⊂ A with |A′| > |A|/s which is Freiman s-isomorphic to a subset of Z/mZ.

Proof. By translating A if necessary, we may assume that A consists of positive

integers. Let q be a very large prime number. For λ ∈ (Z/qZ)×, consider the

composition φλ := γ ◦ β ◦ αλ of maps

Z
αλ−−→ Z/qZ

β−→ {1, . . . , q} γ−→ Z/mZ

where

• αλ is reduction mod q followed by multiplication by λ;

• β inverts the reduction mod q map;

• γ is the reduction mod m map.

Now αλ and γ are Freiman homomorphisms of all orders. The map β is not,

but by Proposition (5.2.1) (vi), it is a Freiman s-homomorphism on the reduction

mod q of any interval Ij := {n ∈ Z : jqs < n 6 (j+1)q
s }. Since s such intervals (with

j = 0, 1, . . . , q − 1) cover {1, . . . , q}, it follows by the pigeonhole principle that for

every λ there is a j = j(λ) such that the set

Aλ := {a ∈ A : αλ(a) ∈ Ij(λ)(mod q)}

has size at least |A|/s. By construction, φλ is a Freiman s-homomorphism when

restricted to Aλ.

Everything we have said so far holds for arbitrary λ. To complete the proof, we

now show that there exists some λ such that φλ is invertible, and its inverse is a

Freiman s-homomorphism. If this fails for some λ then this means that there is

d = a1 + · · ·+ as − a′1 − · · · − a′s 6= 0

such that

(5.2) φλ(a1) + · · ·+ φλ(as) = φλ(a′1) + · · ·+ φλ(a′s).

Here, d and the ai, a
′
i ∈ Aλ depend on λ.
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Write

x :=

s∑
i=1

β(αλ(ai))−
s∑
i=1

β(αλ(a′i)).

Then if (5.2) holds we have γ(x) = 0, that is to say x ≡ 0(modm).

Without loss of generality (switching the ai and the a′i if necessary) we may

assume that x > 0. Also, since the ai, a
′
i lie in Aλ, it follows that x ∈ s(Ij(λ) −

Ij(λ)) ⊂ (−q, q). Therefore 0 6 x < q.

Now by construction, x and λd are congruent modulo q. It therefore follows

that

x = ψ(λd),

where ψ(n) is the unique integer in {0, 1, . . . , q − 1} congruent to n modulo q.

From now on we indicate the dependence of d on λ explicitly. To summarise,

we have shown the following. If φλ|Aλ is not a Freiman s-isomorphism, then there

must be some dλ ∈ (sA− sA) \ {0} such that

ψ(λdλ) ≡ 0(modm).

To get a contradiction, Let us fix d ∈ (sA − sA) \ {0} and ask about values of

λ for which d = dλ: lacking imagination, we call them “bad for d”. If the prime q

is chosen big enough then it will not divide any element of (sA− sA) \ {0}, so d is

coprime to q.

As λ ranges over (Z/qZ)×, λd covers (Z/qZ)× uniformly, and hence the set

{ψ(λd) : λ ∈ (Z/qZ)×} coincides with {1, . . . , q − 1}. The number of elements y in

this interval for which y ≡ 0(modm) is at most (q − 1)/m. Since each d lies in the

set (sA− sA) \ {0}, it follows that the number of λ which are bad for some d is at

most
q − 1

m

(
|sA− sA| − 1) < q − 1,

the inequality being a consequence of the assumption that m > |sA− sA|.
This is a contradiction, since every λ is bad for some d (namely dλ).

In our proof of Freiman’s theorem, we will use the following corollary.

Corollary 5.3.1. Suppose that A ⊂ Z is a finite set with doubling constant

K. Then there is a prime q 6 2K16|A| and a subset A′ ⊂ A with |A′| > |A|/8 such

that A′ is Freiman 8-isomorphic to a subset of Z/qZ.

Proof. By the Plünnecke–Ruzsa inequality, Theorem 4.4.1, we have |8A − 8A| 6
K16|A|. Now by Bertrand’s postulate there is a prime q satisfying |8A − 8A| 6
q 6 2|8A− 8A|. This prime of course satisfies the bound q 6 2K16|A|, and by the
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Ruzsa model lemma there is a subset A′ ⊂ A with |A′| > |A|/8 which is Freiman

8-isomorphic to a subset of Z/qZ.

5.4. Bogolyubov’s lemma

Ruzsa’s model lemma (or, more accurately, Corollary 5.3.1) allows us to switch

attention from a set A ⊂ Z with small doubling to a dense subset of a cyclic group

Z/qZ. We now prove a lemma about the structure of such sets.

Definition 5.4.1. Suppose that R = {r1, . . . , rk} is a set of nonzero elements

of Z/qZ and that ε > 0 is a parameter. Then we define the Bohr set B(R, ε) with

frequency set R and width ε by

B(R, ε) := {x ∈ Z/qZ : ‖rix
q
‖T 6 ε for i = 1, 2, . . . , k}.

The parameter k is said to be the dimension of the Bohr set.

Proposition 5.4.1 (Bogolyubov’s lemma). Let S ⊂ Z/qZ be a set of size σq.

Then 2S − 2S contains a Bohr set of dimension at most 4/σ2 and width at least
1
10 .

In the proof, we will use the discrete Fourier transform, specifically the Fourier

transform on Z/qZ. (The Fourier transform can in fact be developed on any locally

compact abelian group, and in this way the Fourier transform on Z which featured

in Chapter 3, and the discrete Fourier transform on Z/qZ, may be considered as

special cases of the same general concept.) Here are the relevant definitions and

basic properties.

Definition 5.4.2. Let f : Z/qZ → C be a function. Then for r ∈ Z/qZ we

define the (discrete) Fourier transform

f̂(r) :=
1

q

∑
x∈Z/qZ

f(x)e(−rx/q).

Proposition 5.4.2. In the following proposition, f, g : Z/qZ → C are two

functions.

(i) We have the inversion formula

f(x) =
∑

r∈Z/qZ

f̂(r)e(rx/q).

(ii) We have the Parseval identity

1

q

∑
x∈Z/qZ

f(x)g(x) =
∑

r∈Z/qZ

f̂(r)ĝ(r).
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(iii) If the convolution f ∗ g : Z/qZ→ C is defined by

(f ∗ g)(x) :=
1

q

∑
y∈Z/qZ

f(y)g(x− y)

then f̂ ∗ g(r) = f̂(r)ĝ(r).

Proof. Once again, all of this is an easy check using the definitions, as well as the

fact that ∑
r

e(rx/q) =

{
q x = 0

0 x ∈ (Z/qZ) \ {0}.

Remark. Taking f = g in the Parseval identity gives

1

q

∑
x∈Z/qZ

|f(x)|2 =
∑

r∈Z/qZ

|f̂(r)|2.

It is worth pausing to consider what convolution “does”. If f and g are functions

supported on sets A,B ⊆ Z/qZ respectively (for instance, we could have f = 1A

and g = 1B) then f ∗ g is supported on A+B. Moreover, f ∗ g has a nice Fourier

transform, which can be very convenient for further analysis. Note carefully that

1A ∗ 1B is not the same thing as 1A+B ; the latter function puts equal weight on

every element of A + B, whereas the former weights elements x according to the

number of representations as a+ b with a ∈ A, b ∈ B.

Now we turn to the proof of Bogolyubov’s lemma, Lemma 5.4.1.

Proof. [Proof of Lemma 5.4.1] Consider the function f := 1S ∗ 1S ∗ 1−S ∗ 1−S . This

is supported on 2S − 2S, that is to say if f(x) > 0 then x ∈ 2S − 2S. Note also

that 1̂−S(r) = 1̂S(r), and so f̂(r) = |1̂S(r)|4. By the Fourier inversion formula and

the fact that f is real, we have

(5.3) f(x) =
∑
r

|1̂S(r)|4e(rx/q) =
∑
r

|1̂S(r)|4 cos(2πrx/q).

Let R be the set of all r 6= 0 for which |1̂S(r)| > σ3/2/2. By Parseval’s identity we

have

|R|σ
3

4
6
∑
r∈R
|1̂S(r)|2 6

∑
r

|1̂S(r)|2 =
1

q

∑
x∈Z/qZ

1S(x)2 = σ,

and so

(5.4) |R| 6 4/σ2.

We claim that B(R, 1
10 ) ⊂ 2S − 2S, to which end it suffices to show that f(x) > 0

for x ∈ B(R, 1
10 ). To do this, we will use the formula (5.3). We split the sum over

r into three pieces: the term r = 0, the terms with r ∈ R, and all other terms.
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Clearly

|1̂S(0)|4 = σ4.

If r ∈ R then cos(2πrx/q) > 0, so the sum of these terms is nonnegative. Finally,∑
r/∈R∪{0}

|1̂S(r)|4 cos(2πrx/q) > −
∑

r/∈R∪{0}

|1̂S(r)|4 > −σ
3

4

∑
r

|1̂S(r)|2 = −σ
4

4
,

the last step being a further application of Parseval’s identity. Combining all of

this we obtain

f(x) > σ4 + 0− σ4

4
> 0,

as required.

5.5. Generalised progressions in Bohr sets

It is by no means obvious what has been gained in proving Proposition 5.4.1.

The answer is that a Bohr set B(R, ε) has a great deal of structure, in particular

containing a large generalised progression. The key proposition is as follows.

Proposition 5.5.1. Let R ⊂ Z/qZ be a set of size k, not containing zero. Let

0 < ε < 1
2 . Then the Bohr set B(R, ε) contains a proper generalised progression of

dimension k and cardinality at least (ε/k)kq.

In the proof, we will rely on a result from the geometry of numbers, Minkowski’s

second theorem. This is stated as Proposition 5.5.2 below. The proof is not exam-

inable, but it is given in Appendix B. To even state the theorem, we need some

terminology.

A lattice Λ ⊂ Rd is a discrete and cocompact subgroup of Rd. It is a theorem

that every lattice is of the form Zv1 ⊕ Zv2 ⊕ · · · ⊕ Zvd for linearly independent

v1, . . . , vd, which are then called an integral basis for Λ. The set F := {x1v1 + · · ·+
xdvd : 0 6 xi < 1} is then called a fundamental region for Λ; note that translates

of it by Λ precisely cover Rd. Note that the vi (and hence F) are not uniquely

determined by Λ, but it turns out that the volume of F is. The determinant det(Λ)

is the volume of a fundamental region of Λ.

The statement of Minkowski’s Second Theorem also involves a centrally sym-

metric convex body K ⊂ Rd. This means a set which is convex (meaning that if

x, y ∈ K then λx+ (1− λ)y ∈ K for all λ ∈ [0, 1]) and centrally symmetric, which

means that if x ∈ K then −x ∈ K.

The geometry of numbers is, to an extent, the study of how lattices Λ interact

with convex bodies K.

Suppose we have a lattice Λ and a convex body K. We define the successive

minima λ1, . . . , λd of K with respect to Λ as follows: λj is the infimum of those
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λ for which the dilate λK contains j linearly independent elements of Λ. If K is

compact then λjK itself contains j linearly independent elements of Λ. (For each

ε > 0, (λj + ε)K contains such elements. Since these all lie in (λj + 1)K, there are

only finitely many choices, and in particular for some sequence of ε tending to zero

we may make the same choice. Since K is compact, these elements all lie in λjK.)

Proposition 5.5.2 (Minkowski’s Second Theorem). We have λ1 · · ·λd vol(K) 6

2d det(Λ).

We now turn to the proof of Proposition 5.5.1.

Proof. [Proof of Proposition 5.5.1.] Let R = {r1, . . . , rk} and consider the lattice

Λ = qZk + (r1, . . . , rk)Z.

Since q is prime, this may be written as a direct sum

qZk ⊕ {0, 1, . . . , q − 1} · (r1, . . . , rk).

Thus Λ has index q as a subgroup of qZk, and from this and the fact that det(qZk) =

qk it follows that det(Λ) = qk−1 (see Lemma B.0.1).

Take K ⊂ Rk to be the box {x : ‖x‖∞ 6 εq}. Let λ1, . . . , λk be the successive

minima of K with respect to Λ. Since K is closed, λjK contains j linearly inde-

pendent elements of Λ. We may, by choosing each element in turn, select a basis

b1, . . . ,bk for Rk with bj ∈ Λ ∩ λjK for all j. (Such a basis is called a directional

basis; we should caution that, whilst the bj are linearly independent elements of

Λ, they need not form an integral basis for Λ.) Thus bj ∈ Λ and ‖bj‖∞ 6 λjεq.

Set Lj := d1/λjke for j = 1, . . . , k. Then if 0 6 lj < Lj we have ‖ljbj‖∞ 6 εq/k

and therefore

‖l1b1 + · · ·+ lkbk‖∞ 6 εq.

Now each bi lies in Λ and hence is congruent to xi(r1, . . . , rk)(mod q) for some xi,

0 6 xi < q. Abusing notation slightly, we think of these xi as lying in Z/qZ. The

preceding observation implies that

‖ (l1x1 + · · ·+ lkxk)ri
q

‖T 6 ε

for each i, or in other words the generalised progression {l1x1 + · · ·+ lkxk : 0 6 li <

Li} is contained in the Bohr set B(R, ε).

It remains to prove a lower bound on the size of this progression and also

to establish its properness. The lower bound on the size is easy: it is at least

k−k(λ1 · · ·λk)−1 which, by Minkowski’s Second Theorem and the fact that det(Λ) =

qk−1 and vol(K) = (2εq)k, is at least (ε/k)kq.

To establish the properness, suppose that

l1x1 + · · ·+ lkxk = l′1x1 + · · ·+ l′kxk(mod q),
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where |li|, |l′i| < d1/kλie. Then the vector

b = (l1 − l′1)b1 + · · ·+ (lk − l′k)bk

lies in qZk and furthermore

‖b‖∞ 6
k∑
i=1

2b 1

λik
c‖bi‖∞ 6 2εq.

Since we are assuming that ε < 1/2 it follows that b = 0 and hence, due to the

linear independence of the bi, that li = l′i for all i. Therefore the progression is

indeed proper.

5.6. Freiman’s theorem: conclusion of the proof

In this section, we conclude the proof of Freiman’s theorem.

Proof. [Proof of Theorem 5.1.1] By Corollary 5.3.1, the corollary of Ruzsa’s model

lemma, there is a prime q 6 2K16|A| and a subset A′ ⊂ A with |A′| > |A|/8 such

that A′ is Freiman 8-isomorphic to a subset S ⊂ Z/qZ. If σ := |S|/q then we have

σ > 1
16K

−16.

By Bogolyubov’s lemma, Proposition 5.4.1, 2S − 2S contains a Bohr set of

dimension at most 210K32 and width at least 1
10 .

By Proposition 5.5.1, that Bohr set (and hence 2S − 2S) contains a proper

generalised progression P of dimension at most KO(1) and cardinality at least

exp(−KO(1))q. (We could keep track of exact constants, but this becomes a little

tedious).

Now A′ is Freiman 8-isomorphic to S, and so by Lemma 5.2.1 (iii), 2A′ − 2A′

is Freiman 2-isomorphic to 2S − 2S. The inverse of this Freiman isomorphism

restricts to a Freiman isomorphism φ : P → φ(P ) ⊂ 2A′ − 2A′. By Lemma 5.2.1

(v), Q = φ(P ) is also a proper generalised progression, of the same dimension and

size as P . Therefore we have shown that 2A − 2A contains a proper generalised

progression Q of dimension KO(1) and

(5.5) |Q| > exp(−KO(1))|A|.

To finish the argument, we apply the covering lemma, Lemma 4.2.2, to the sets

Q and A. Since

Q+A ⊂ (2A− 2A) +A = 3A− 2A,

the Plünnecke–Ruzsa inequality and (5.5) imply that

|Q+A| 6 K5|A| 6 exp(KO(1))|Q|.
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By Lemma 4.2.2, there is some set Y = {y1, . . . , ym},

(5.6) m 6 exp(KO(1)),

such that

A ⊂ (Q−Q) + Y.

Suppose that

Q = {x0 + l1x1 + · · ·+ ldxd : 0 6 li < Li}

and that

Y = {y1, . . . , ym}.

Then

(Q−Q) + Y ⊂ {x̃0 + l1x1 + · · ·+ ldxd + l′1y1 + · · ·+ l′mym, 0 6 li < 2Li, 0 6 l′j < 2}

= Q̃

where

x̃0 = −(L1x1 + · · ·+ Ldxd).

Note that Q̃ is a generalised progression of dimension d+m and that

size(Q̃) = 2d+mL1 · · ·Ld = 2d+m|Q| 6 2d+m|2A− 2A| �K |A|,

the penultimate step following since Q ⊂ 2A− 2A.

The dominant term in the bound is 2m, which is double exponential in K.



CHAPTER 6

Additive energy and Balog–Szemerédi-Gowers

In this chapter we introduce the concept of additive energy, which is closely

related to the notion of sumset and arises naturally in applications (such as in

Chapter 9).

6.1. Introduction

We have already seen the notion of an additive set having small doubling. The

next definition introduces some notation for this, and also introduces a kind of

bipartite variant of the concept which applies to pairs of sets.

Definition 6.1.1. Let A be an additive set. Then we define the doubling con-

stant

σ[A] :=
|A+A|
|A|

.

If A,B are two additive sets, we write

σ[A,B] :=
|A+B|
|A|1/2|B|1/2

.

Remark. This notation should not be confused with the notion of Schnirel’man

density, which is of course something quite different.

Note that σ[A] = σ[A,A], so one may think of the former as a shorthand for the

latter.

The notion of a set having small doubling is somehow “combinatorial” in that it

refers to the size of |A+A| and does not take account, for example, of the number

of representations. The notion has some serious shortcomings, for example being

highly sensitive to small changes to A.

In this chapter we explore the related notion of additive energy, which is more

“analytic”, more robust to small perturbations, and often arises in nature.

Definition 6.1.2. Let A be an additive set. Then we define the additive energy

E(A) to be the number of additive quadruples in A, that is to say quadruples

(a1, a2, a3, a4) ∈ A4 such that a1 +a2 = a3 +a4. We define the normalised additive

energy ω[A] to be E(A)/|A|3. More generally if A,B are two additive sets, we write

E(A,B) := #{(a, b, a′, b′) ∈ A×B ×A×B : a+ b = a′ + b′}

45
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and

ω[A,B] := |A|−3/2|B|−3/2E(A,B).

Note that 0 6 ω(A) 6 1: the upper bound here follows from the fact that three

elements of an additive quadruple uniquely determine the fourth. More generally,

0 6 ω[A,B] 6 1. This follows from the fact that E(A,B) > max(|A|2|B|, |A||B|2),

since any three elements of a quadruple (a, b, a′, b′) satisfying a+b = a′+b′ determine

the fourth. However, max(|A|2|B|, |A||B|2) > |A|3/2|B|3/2.

6.2. Basic properties. Statement of Balog-Szemerédi-Gowers

Proposition 6.2.1. We have σ[A,B]ω[A,B] > 1. In particular, if the doubling

constant of a pair A,B of additive sets is at most K, their normalised additive

energy is at least 1/K. In particular, specialising to the case A = B, we have

σ[A]ω[A] > 1.

Proof. For x ∈ A + B write r(x) for the number of pairs (a, b) ∈ A × B with

a+ b = x. Then ∑
r(x) = |A||B|,

whilst ∑
r(x)2 = E(A,B).

Moreover, r(x) is supported (that is, is nonzero) on A + B. Thus by Cauchy-

Schwartz

|A|2|B|2 =
(∑

x

r(x)
)2

6 |A+B|
∑
x

r(x)2 = |A+B|E(A,B),

which rearranges to give the stated inequality.

The converse to this kind of statement fails dramatically, as the following shows.

Example. Let n be a large even number. Let A1 = {1, . . . , n/2} and let A2 be

some arbitrary set of n/2 integers having no additive relation with A1, for instance

A2 = {10n, 102n, . . . , 10n
2/2}. Set A = A1 ∪A2, a set of size n. Then

E(A) > E(A1) >
1

10
n3,

but

|A+A| > |A2 +A2| >
1

8
n2,

since the sums of pairs in A2 are distinct apart from the relations x + y = y + x.

Thus ω[A] > 1
10 , but σ[A] grows linearly in n.

The Balog-Szemerédi-Gowers theorem is a remarkable result which nonetheless

salvages a kind of partial converse to Lemma 6.2.1. We state a bipartitie and a
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single set version of the result. Recall that by convention C is an absolute constant

which can change from line to line (but could be written in explicitly wherever it

occurs, if desired, with a bit of work).

Theorem 6.2.1 (Balog-Szemerédi-Gowers). We have the following statements.

(i) Suppose that A,B are additive sets and that ω[A,B] > 1/K. Then there

are sets A′ ⊆ A, B′ ⊆ B with |A′| > K−C |A|, |B′| > K−C |B| such that

σ[A′, B′]� KC .

(ii) Suppose that A is an additive set and that ω[A] > 1/K. Then there is a

set A′ ⊂ A with |A′| � K−C |A| such that σ[A′]� KC .

The value of C we obtain is quite reasonable in principle, but we will not be too

concerned with computing an exact value.

The remainder of the chapter is devoted to the proof of Theorem 6.2.1.

6.3. *Paths of length 2

The proof of the Balog-Szemerédi-Gowers theorem proceeds via the language

of graph theory, establishing two lemmas of interest in their own right. The first,

concerning paths of length 2, has the cleverer proof.

Lemma 6.3.1. Suppose that G is a bipartite graph on vertex set V ∪W , where

|V | = |W | = n, and with αn2 edges all of which join a vertex in V to one in W .

Let η > 0 be a further parameter. Then there is a subset V ′ ⊆ V with |V ′| > αn/2

such that between (1− η)|V ′|2 of the ordered pairs of points (v1, v2) ∈ V ′×V ′ there

are at least ηα2n/2 paths of length 2.

Proof. If x ∈ G, write N(x) for the neighbourhood of x in G, or in other words

the set of vertices in G which are joined to x by an edge. Note that, since G is

bipartite, N(v) ⊆W whenever v ∈ V and N(w) ⊆ V whenever w ∈W .

Now by a double-counting argument, we have∑
w∈W

∑
v∈V

1vw∈E(G) = αn2,

where E(G) is of course the set of edges of G. Applying Cauchy-Schwarz to this

gives ∑
w∈W

∑
v,v′∈V

1vw∈E(G)1v′w∈E(G) > α2n3,

or in other words

(6.1) Ev,v′∈V |N(v) ∩N(v′)| > α2n.

This constitutes the rather basic observation that, on average, pairs (v, v′) have

many common neighbours. Now say that two vertices v and v′ are extremely un-

friendly if |N(v)∩N(v′)| < ηα2n/2, or in other words if there are fewer than ηα2n/2



48 6. ADDITIVE ENERGY AND BALOG–SZEMERÉDI-GOWERS

paths of length two between v and v′. Write S ⊆ V × V for the set of extremely

unfriendly pairs. Manifestly, from (6.1), we have

Ev,v′∈V (η − 1(v,v′)∈S)|N(v) ∩N(v′)| > ηα2n/2.

This may be rewritten as

Ev,v′∈V (η − 1(v,v′)∈S)
∑
w∈W

1vw∈E(G)1v′w∈E(G) > ηα2n/2.

Turning the sum over W into an expectation (by dividing by |W | = n) and swapping

the order of summation, this implies that

Ew∈WEv,v′∈V (η − 1(v,v′)∈S)1v,v′∈N(w) > ηα2/2.

In particular there is a choice of w such that

Ev,v′∈V (η − 1(v,v′)∈S)1v,v′∈N(w) > ηα2/2.

Simply the fact that this expectation is greater than zero tells us that at most

a proportion η of the pairs v, v′ ∈ N(w) are extremely unfriendly. Furthermore

(ignoring the term involving S completely) we have

Ev,v′∈V 1v,v′∈N(w) > α2/2,

which implies that |N(w)| > α/
√

2. Taking V ′ := N(w), this proves the result.

Remarks. This proof looks extremely slick at first sight. However when faced

with the task of proving Lemma 6.3.1 it is not hard to develop the feeling that one

must somehow select a very “connected” subset of V . The way we have done this

is essentially by picking a random vertex w ∈ W , and taking V ′ to be the neigh-

bourhood N(w) of w in V , though this was easier to manage by using expectations

rather than starting with “pick w ∈ W uniformly at random and consider N(w)”.

This kind of technique seems to have been pioneered in this context by Gowers,

and it is called “dependent random selection”: one chooses something random (w

in this case), then makes a deterministic choice based on it (N(w)).

6.4. *Paths of length 3

Lemma 6.4.1. Suppose that G is a bipartite graph on vertex set V ∪W , where

|V | = |W | = n, and with αn2 edges all of which join a vertex in V to one in W .

Then there are subsets V ′ ⊆ V and W ′ ⊆ W with |V ′|, |W ′| > cαCn such that

between every pair v′ ∈ V ′ and w′ ∈ W ′ there are at least cαCn2 paths of length 3

in G.

Proof. Delete all edges emanating from vertices in V with degree less than αn/2;

this causes the deletion of at most αn2/2 edges in total, so at least αn2/2 remain.
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From now on if we speak of an edge we mean one of these edges. Let η > 0 be

a parameter to be chosen later. Using the preceding lemma, we may select a set

V ′ ⊆ V with |V ′| > αn/4 such that a proportion 1− η of the pairs of vertices in V ′

have at least ηα2n/8 common neighbours in W .

All vertices in V ′ have degree 0 or else degree at least αn/2, but it is conceivably

the case that some do have degree 0. However if η < 1/4 then clearly no more than

half of them do. Thus we may pass to a set V ′′ ⊆ V ′, |V ′′| > αn/8, such that every

vertex in V ′′ has degree at least αn/2 and still such that a proportion 1− η of the

pairs of vertices in V ′′ have at least ηα2n/8 common neighbours in W .

Now let us focus on W . Look at all the edges from V ′′ into W : since each vertex

in V ′′ has degree at least αn/2, and |V ′′| > αn/8, there are at least α2n2/16 of

these. It follows that there is some set W ′ ⊆ W , |W ′| > α2n/32, such that each

w ∈W ′ has at least α2n/32 neighbours in V ′′.

Before concluding, let us jump back over to the other side and effect one final

refinement of V ′′. Say that a vertex v ∈ V ′′ is sociable if there is a proportion at

least 1−2η of the other vertices v′ ∈ V ′′ are such that v and v′ have at least ηα2n/8

common neighbours. Then at least half the vertices of V ′′ are sociable: call this

set V ′′′, so that |V ′′′| > αn/16.

We now claim that for any x ∈ V ′′′ and y ∈W ′ there are many paths of length

three between x and y (in the original graph G). Indeed by the choice of W ′ there

must be at least α2n/32 elements of V ′′ adjacent to y. There must also be at least

(1 − 2η)|V ′′| vertices of V ′′ which have at least ηα2n/8 common neighbours with

x. Provided that α2n/32 > 3η|V ′′|, which will be the case if η 6 α2/96, these two

sets intersect in a set Ṽ ⊆ V ′′ of size at least η|V ′′|. Thus each element z of Ṽ is

adjacent to y, and has ηα2n/8 common neighbours with x. This clearly leads to at

least η2α2|V ′′|n/8 paths of length three between x and y.

The only constraints on η were that η 6 1/4 and that η 6 α2/96. The latter is

clearly the more severe constraint, so set η := α2/96. The lemma is proven.

6.5. Proof of Balog-Szemerédi-Gowers

In this section we deduce Theorem 6.2.1 from the paths of length 3 lemma,

Lemma 6.4.1. It is particularly important to remember during this proof that the

constant C may change from line to line.

Proof. [Proof of Theorem 6.2.1] For the majority of the proof we handle the two-

sets case (i) and the one-set case (ii) at the same time, taking A = B in the latter

case.

Suppose then that A,B are two sets in some abelian group G and that ω[A,B] >

1/K. This means that there are at least |A|3/2|B|3/2/K solutions to a1 − b1 =
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a2−b2. Note that the number of solutions to this equation is at most |A|2|B|, since

once a1, b1 and a2 are specified b2 is uniquely determined. Therefore |B| 6 K2|A|,
and similarly |A| 6 K2|B|.

Write s(x) for the number of pairs (a, b) ∈ A×B with a− b = x. Thus we have∑
x

s(x)2 > |A|3/2|B|3/2/K,

whilst by double-counting pairs (a, b) ∈ A×B we have∑
x

s(x) = |A||B|.

We claim there are at least |A|1/2|B|1/2/2K “popular” values of x for which s(x) >

|A|1/2|B|1/2/2K. To see this, let ∆ denote the set of these popular x. Then∑
x/∈∆

s(x)2 6
1

2K
|A|1/2|B|1/2

∑
x

s(x) = |A|3/2|B|3/2/2K,

so ∑
x∈∆

s(x)2 > |A|3/2|B|3/2/2K.

However, since s(x) 6 min(|A|, |B|) 6 |A|1/2|B|1/2 for every x,∑
x∈∆

s(x)2 6 |∆||A||B|.

The claim follows.

Note also, for use below, that

(6.2) |∆| 6 2K|A|1/2|B|1/2,

a bound which follows straightforwardly by double-counting pairs (a, b) ∈ A×B.

Define a bipartite graph G on vertex set A∪B by joining a ∈ A to b ∈ B by an

edge if a− b is a popular difference in the above sense, that is to say if and only if

a− b ∈ ∆. Then G has at least |A||B|/4K2 edges. Let n = max(|A|, |B|), and “pad

out” the smaller vertex class of G to obtain a new graph having n vertices in each

class. Recalling that K−2 6 |A|/|B| 6 K2, this graph has at least n2/4K4 edges.

Applying Lemma 6.4.1, we may locate sets A′ ⊆ A and B′ ⊆ B with |A′| �
K−C |A|, |B′| � K−C |B| and such that for every a′ ∈ A′ and b′ ∈ B′ there are

� K−Cn2 paths of length 3 in G between a′ and b′. This, of course, means that

there� K−Cn2 choices of a′′ ∈ A and b′′ ∈ B such that all three of a′− b′′, a′′− b′′

and a′′ − b′ lie in ∆.

Noting that a′ − b′ = (a′ − b′′) − (a′′ − b′′) + (a′′ − b′), it follows that for all

a′ ∈ A′ and b′ ∈ B′ the difference a′ − b′ can be written in � K−Cn2 ways as

x− y + z, where x, y, z ∈ ∆. These are genuinely distinct representations, since it

is easy to recover a′′ and b′′ from knowledge of a′, b′, x, y and z. However, by (6.2),
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the number of popular differences is bounded above by 2K|A|1/2|B|1/2 � Kn. It

follows that

|A′ −B′| ·K−Cn2 � (Kn)3,

which of course implies that

(6.3) |A′ −B′| � KCn.

To finish the argument, we consider parts (i) and (ii) of Theorem 6.2.1 separately.

In case (i), applying (??) together with the lower bounds |A′|, |B′| > K−2n gives

the desired upper bound |A′ +B′| � KCn� KC |A′|1/2|B′|1/2.

In case (ii), we first apply the Ruzsa triangle inequality with U = B′, V =

W = A′ to conclude from (6.3) that |A′ − A′| � KCn. From this, it follows that

|A′ +A′| � KCn, using (??) again.





CHAPTER 7

Combinatorial geometry and sum-product

Let A be a set of n integers. We have already discussed the sumset A + A at

some length. We may also introduce the product set A · A := {aa′ : a, a′ ∈ A}. A

famous conjecture of Erdős and Szemerédi is that

|A+A|+ |A ·A| > n2−o(1).

This is far from being proven, but the final result of this chapter is the non-trivial

result

|A+A|+ |A ·A| � n5/4,

which is due to Elekes. The main input in establishing this is the so-called Sze-

merédi-Trotter theorem, a result in combinatorial geometry of substantial indepen-

dent interest.

Theorem 7.0.1 (Szemerédi-Trotter). Let r > 2. Let L be a set of m lines. Then

the number of points which lie on at least r lines in L is O(mr + m2

r3 ).

There are various slightly different ways to state this theorem, a matter we

discuss on the example sheets. The proof we shall give of this uses a lemma about

crossing numbers which is also of independent interest.

7.1. Crossing number inequality

This section assumes that you are familiar with the basic language of graph

theory; if not, it should be easy to read up on the relevant definitions.

Definition 7.1.1. A drawing of a graph G is a representation of G in the

plane R2 where the vertices of G are points and the edges are “nice” simple curves

between pairs of vertices, not passing through any other vertex of the graph. A

crossing is an intersection of two edge-curves, other than at a vertex. The crossing

number cr(G) of a graph G is the least number of crossings in any drawing of G in

the plane. A graph is said to be planar if cr(G) = 0.

Remark. We will not bother to set up what “nice” means rigorously, and it does

not really matter; for example, we could take the curves to be polygonal. Note also

that crossings are counted as pairs of edge-curves which intersect, not as the actual
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points of intersection. Thus, for example, three edge-curves all intersecting at the

same point counts as three crossings.

We begin by recalling Euler’s formula. If G is a connected planar graph then

(7.1) V − E + F = 2,

where V,E, F denote the numbers of vertices, edges and faces respectively. Now if

V > 3 then every face has at least three edges, and no edge belongs to more than

two faces. Therefore, double counting edges,

3F 6 2E.

Substituting into Euler’s formula (7.1) gives E − 3V 6 −6. Considering the cases

where V = 1 or 2, one sees that certainly

(7.2) E 6 3V

in all cases. By splitting into connected components, we see that (7.2) holds for all

planar graphs, connected or not.

Remark. Formalising the details here (even defining exactly what is meant by a

face, especially in degenerate cases such as when G is a tree) is slightly subtle and

not the domain of this course. For a much fuller discussion, see the graph theory

course.

If we have a graph G then consider a drawing of G with cr(G) crossings. For

each such crossing, remove one of the edges in it. Continuing in this fashion gives

a planar graph G′ with the same vertex set as G and with E′ > E − cr(G) edges.

It follows from (7.2) that E′ 6 3V and so

(7.3) cr(G) > E − 3V.

It turns out that by a random sampling trick we can bootstrap this to the

following inequality, which is much stronger when E is relatively large in terms of

V .

Proposition 7.1.1. Suppose that E > 4V . Then cr(G) > E3

64V 2 .

Proof. Take a drawing of G with the minimal number cr(G) of crossings. Then

all crossings involve four distinct vertices: if there is some crossing involving edges

vx, vy then there is an easy procedure to reduce the number of crossings, best

described by a picture (see Figure 7.1).

Let p, 0 6 p 6 1, be a parameter to be specified later. Consider a random

subgraph G′ of G, formed by picking a random set S of vertices by selecting each

v in the vertex set of G to lie in S independently at random with probability p,
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Figure 1. Removing a crossing

and then taking G′ to be the subgraph of G induced by S: that is, include all the

edges in G between two vertices in S. Let the number of vertices and edges in G′

be V′, E′ respectively; these are of course random variables. Also, let c̃r(G′) be

the number of crossings in G′ in the drawing we have, that is to say in the drawing

induced from that on G. Note that c̃r(G′) > cr(G′), but we do not necessarily have

equality since there might be a different drawing of G′ with fewer crossings.

For each instance of this random selection we have the inequality (7.3), that is

to say

cr(G′) > E′ − 3V′.

Certainly, then

c̃r(G′) > E′ − 3V′.

We may take expectations of the three random variables appearing here and deduce,

using linearity of expectation, that

(7.4) Ec̃r(G′) > EE′ − 3EV′.

However, it is easy to see that

EV′ = pV and EE′ = p2E

(since, for each edge in G, both endpoint vertices must be selected in order for it

to be an edge in G′), and

Ec̃r(G′) = p4 cr(G)

(since, for each crossing in G, all four endpoint vertices of the two edges involved

must be selected in order for it to be a crossing in G′).
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Substituting into (7.4) gives

p4 cr(G) > p2E − 3pV.

We are free to choose any parameter p ∈ [0, 1] that we like. Choosing p = 4V/E

(noting that, by the hypothesis, p 6 1) gives the desired bound after rearranging

the terms.

7.2. The Szemerédi-Trotter theorem

In this section we prove Theorem 7.0.1.

Proof. [Proof of Theorem 7.0.1] First of all, note that Theorem 7.0.1 is trivial if

r 6 7 (say) since there are at most
(
m
2

)
points lying on two or more lines.

Suppose henceforth that r > 8. Draw a graph G as follows. The vertices of G

are the points P lying on at least r lines in L. Two vertices x, y are joined by an

edge if and only if x, y are consecutive points of P on the same line in L. Denote

by n = |P | the number of vertices in this graph; this is the quantity we wish to

bound.

Now observe that G comes with a natural drawing, that is to say the one induced

by the lines in L; in this drawing, every edge is in fact represented by a straight line

segment. Since two lines intersect in at most one point, the number of crossings in

this drawing is at most
(
m
2

)
. Therefore

(7.5) cr(G) 6

(
m

2

)
< m2.

The number of edges E is at least rn−m. To see why, count the number of edges

starting at v. Usually, v is adjacent to at least 2r other vertices. The exception is

when v is one of the two endmost points (in either direction) on one of the lines in

L, in which case we lose one adjacency. Summing over v gives at least 2rn − 2m

pairs (v, w) with vw an edge, which of course double-counts the number of edges.

Now consider Proposition 7.1.1. Either we are in a position to apply this propo-

sition, or we are not. If not, then E < 4n, so rn−m < 4n. Since r > 8, this implies

that rn/2 6 m, and so Theorem 7.0.1 holds in this case. Otherwise, E > 4n and

we may apply Proposition 7.1.1. This gives

(7.6) m2 >
(rn−m)3

64n2
.

If n 6 2m/r then again Theorem 7.0.1 holds. Otherwise, rn −m > rn/2 and so

(7.6) becomes

m2 >
(rn/2)3

64n2
,
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which immediately rearranges to n� m2/r3, and once again Theorem 7.0.1 holds.

This concludes the proof.

7.3. Sum-product

In this section we give Elekes’s bound for the sum-product problem.

Theorem 7.3.1. Suppose that A ⊂ R is a finite set of size n. Then |A+A||A ·
A| � n5/2. In particular, at least one of A+A,A ·A has cardinality � n5/4.

Proof. It clearly suffices to handle the case 0 /∈ A (otherwise remove 0 and apply

the bound to the resulting set). Consider the set of points

P := {( 1

a′
,− 1

aa′
) : a, a′ ∈ A},

and the set of lines

L := {{(x, y) ∈ R2 : ux+ vy = 1} : u ∈ A+A, v ∈ A ·A}.

Observe that |P | = n2, whilst the number m = |L| of lines is |A+A||A ·A|.
The crucial observation is now that every point of P lies on at least n of these

lines. Indeed, the point ( 1
a′ ,−

1
aa′ ) lies on the line ux+ vy = 1 when u = a′ + t and

v = at, for every t ∈ A.

It follows from Szemerédi-Trotter that

n2 � m

n
+
m2

n3
,

which implies that m� n5/2. This is the desired result.





CHAPTER 8

Some further results about set addition

In this chapter we gather together some further inequalities about sumsets and

set addition. Several of these are interesting in their own right, but the overriding

aim of the chapter is to assemble ingredients for the proof of a sum-product theorem

of Bourgain and Chang in the next chapter.

8.1. The Prékopa-Leindler inequality on the line

We begin with a simple sumset inequality for measurable subsets of R, a kind

of continuous analogue of the observation at the start of Chapter 5. Throughout

this section, µ denotes Lebesgue measure.

Lemma 8.1.1. Suppose that X,Y, Z ⊂ R are non-empty measurable sets with

X + Y ⊂ Z. Then µ(Z) > µ(X) + µ(Y ).

Proof. For any ε > 0, there are compact subsets X ′ ⊂ X and Y ⊂ Y ′ such that

µ(X ′) > µ(X)− ε and µ(Y ′) > µ(Y )− ε. (This property is the fact that Lebesgue

measure is inner regular ; however, for our discrete applications we will only apply

Lemma 8.1.1 in cases where this is clear by inspection.)

Let x := inf X ′ and y := supY ′. Since X ′, Y ′ are compact, x ∈ X ′ and y ∈ Y ′,
and therefore the two sets x+Y ′ and X ′+y both lie in Z. Note that every element

of x+Y ′ is at most x+y, whilst every element of X ′+y is at least x+y. Therefore

(x+ Y ′) ∩ (X ′ + y) is the singleton {x+ y}, which of course has measure zero, so

µ(Z) > µ((X ′ + y) ∪ (x+ Y ′)) = µ(X ′ + y) + µ(x+ Y ′)

= µ(X ′) + µ(Y ′)

> µ(X) + µ(Y )− 2ε.

Letting ε→ 0, the result follows.

Now we turn to the main topic of this section. Suppose that f, g : R→ [0,∞) are

compactly supported, piecewise continuous functions. Define the max-convolution

by

f∗g(x) := sup
y∈R

f(x− y)g(y).
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The following is a special case of a 1-dimensional version of a special case of the

so-called Prékopa-Leindler inequality

Proposition 8.1.1. Let f, g : R → [0,∞) be compactly supported, piecewise

continuous functions. Then we have the inequality

(8.1)

∫
f∗g > 2‖f‖2‖g‖2,

where the norms are the usual Lebesgue norms

‖f‖2 :=
( ∫

R

f2
)1/2

, ‖g‖2 :=
( ∫

R

g2
)1/2

.

Proof. Let λ > 0. Then if f(x − y), g(y) >
√
λ then we have f∗g(x) > λ, or in

other words

{t : f(t) >
√
λ}+ {t : g(t) >

√
λ} ⊆ {t : f∗g(t) > λ},

or equivalently

{t : f(t)2 > λ}+ {t : g(t)2 > λ} ⊆ {t : f∗g(t) > λ}.

By Lemma 8.1.1 it follows that

(8.2) µ({t : f(t)2 > λ}) + µ({t : g(t)2 > λ}) 6 µ({t : f∗g(t) > λ}),

where µ is Lebesgue measure.

Now by Fubini’s theorem, for any measurable F : R → [0,∞) we have the

“layer-cake” decomposition∫ ∞
0

µ({x : F (x) > λ})dλ =

∫
R

F (x)dx.

Applying this to (8.2) gives

(8.3) ‖f‖22 + ‖g‖22 6
∫
R

f∗g.

The desired inequality (8.1) follows immediately from this and the elementary in-

equality a2 + b2 > 2ab, applied of course with a = ‖f‖2 and b = ‖g‖2.

Remark. The last step appears wastful, and one might wonder why we did not

simply state the stronger inequality (8.3). The answer is that the form stated in

(8.1) is much more useful for applications.

8.2. A weighted discrete Prékopa–Leindler inequality

We now turn to discrete results. The main aim of this section is to establish

Proposition 8.2.1 below, which is a weighted discrete Prékopa–Leindler inequality.

The statement has clear analogies with that of Proposition 8.1.1.
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Let a, b : Z → [0,∞) be compactly supported functions. We define the max-

convolution

a∗b(n) := sup
m∈Z

a(n−m)b(m).

Proposition 8.2.1. Let a, b : Z→ [0,∞) be compactly supported functions and

let p ∈ [0, 1]. Then we have∑
n

max(pa∗b(n), (1− p)a∗b(n− 1)) > ‖a‖2‖b‖2.

Now, the norms are the discrete `2 norms given by

‖a‖2 :=
(∑

n

a(n)2
)1/2

, ‖b‖2 :=
(∑

n

b(n)2
)1/2

.

Proof. In this proof, we will use the notations ∗ and ‖ · ‖2 on both R (with

definitions as in the previous section) and on Z (with definitions as above). It

should hopefully be clear what the domain of definition of the functions we are

working with at any given point are.

By continuity we may assume that p ∈ (0, 1). Set λ := log( 1
p − 1). Apply

Proposition 8.1 with functions f, g defined by

f(x) := eλ{x}a(bxc), g(y) := eλ{y}b(byc).

Let n ∈ Z and 0 6 t < 1. Suppose that x+y = n+t. Then, since x−1 < bxc 6 x,

we have n − 2 < bxc + byc < n + 1, or in other words bxc + byc = n − 1 or n. If

bxc+ byc = n− 1 then

f(x)g(y) 6 eλ(t+1)a∗b(n− 1),

whilst if bxc+ byc = n then

f(x)g(y) 6 eλta∗b(n).

Therefore

f∗g(n+ t) 6 eλt max(a∗b(n), eλa∗b(n− 1)).

Integrating over t ∈ [0, 1) and then summing over n ∈ Z yields

(8.4)

∫
R

f∗g 6
eλ − 1

λ

∑
n

max(a∗b(n), eλa∗b(n− 1)).

On the other hand,

‖f‖22 =
e2λ − 1

2λ
‖a‖22, ‖g‖22 =

e2λ − 1

2λ
‖b‖22.

Substituting into Proposition 8.1 gives∑
n

max(a∗b(n), eλa∗b(n− 1)) > (eλ + 1)‖a‖2‖b‖2.
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Recalling the choice of λ (thus p = 1
eλ+1

), the proposition follows.

8.3. Quasicubes, binary sets and sumsets

Quasicubes. The notion of a quasicube Σ ⊆ Zd is defined inductively. When

d = 1, a quasicube is simply a set of size two. For larger d, Σ is a quasicube if

(i) π(Σ) = {x0, x1} is a set of size two, where π : Zd → Z is the coordinate

projection onto the final coordinate, and

(ii) The fibre Σi := Σ ∩ π−1(xi) (considered as a subset of Zd−1) is a qua-

sicube.

Thus, for instance, the usual cube {0, 1}d is a quasicube. Another example of a

quasicube with d = 2 is the set Σ = {(0, 0), (1, 0), (0, 1), (1, 2)}.

Binary sets. A subset of a quasicube is called a binary set (we caution that this

is not a standard term in the literature).

Theorem 8.3.1. Let A,B ⊆ Zd be finite sets and suppose that U ⊆ Zd is a

binary set. Then |A+B + U | > |A|1/2|B|1/2|U |.

Proof. We proceed by induction on d. The proof of the inductive step also proves

the base case d = 1.

Suppose that U is contained in a quasicube Σ ⊂ Zd. Suppose that π(Σ) =

{x0, x1}, where π : Zd → Z is projection onto the last coordinate. Since the

inequality is translation-invariant, we may assume that x0 = 0 and x1 = q > 0.

Suppose first that q = 1.

Let Ai := A ∩ π−1(n) be the fibre of A above n, and similarly for B. The set

U has just two fibres U0, U1 and, by the definition of quasicubes, they are both

contained in quasicubes of dimension d− 1.

Observe that the fibre of A+ B + U above n contains Ax + By + U0 whenever

x+ y = n, and Ax +By + U1 whenever x+ y = n− 1. By induction,

|Ax +By + U0| > |Ax|1/2|By|1/2|U0|,

|Ax +By + U1| > |Ax|1/2|By|1/2|U1|,

and so the fibre (A+B + U)n of A+B + U above n has size at least

max
(
|U0| max

x+y=n
|Ax|1/2|By|1/2, |U1| max

x+y=n−1
|Ax|1/2|By|1/2

)
.

This is equal to

|U |max
(
pa∗b(n) + (1− p)a∗b(n− 1)

)
,
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where p := |U0|/|U |, a(x) := |Ax|1/2 and b(y) := |By|1/2. Summing over n and

applying Proposition 8.2.1 we obtain

|A+B + U | =
∑
n

|(A+B + U)n|

> |U |
∑
n

max
(
pa∗b(n) + (1− p)a∗b(n− 1)

)
> |U |‖a‖2‖b‖2 = |U ||A|1/2|B|1/2.

This proves the result when q = 1. Suppose now that q is arbitrary, and foliate

A =
⋃
r∈Z/qZAr, B =

⋃
s∈Z/qZBs, where Ar := {a ∈ A : π(a) ≡ r(mod q)} and

similarly for Bs. Let r∗ be such that |Ar| 6 |Ar∗ | for all r, and s∗ be such that

|Bs| 6 |Bs∗ | for all s.

The sets Ar∗+Bs+U are disjoint as s varies, and so by the case q = 1 (rescaled)

we have

(8.5) |A+B + U | >
∑
s

|Ar∗ +Bs + U | > |U ||Ar∗ |1/2
∑
s

|Bs|1/2.

Similarly,

(8.6) |A+B + U | > |U ||Bs∗ |1/2
∑
r

|Ar|1/2.

Taking products of (8.5), (8.6) and using

|Ar∗ |1/2
∑
r

|Ar|1/2 >
∑
r

|Ar| = |A|,

|Bs∗ |1/2
∑
s

|Bs|1/2 >
∑
s

|Bs| = |B|,

the result follows.

8.4. Skew-dimension and the Pálvölgyi–Zhelezov Theorem

For the purposes of this section, an affine space is a subspace of Zd (for some d)

obtained by fixing the values of some possibly empty set of coordinates. Thus, for

example, {(2,−1, x3) : x3 ∈ Z} ⊂ Z3 is an affine space. If π is one of the d standard

coordinate maps on Zd, and if it restricts to a nontrivial map on V (that is, if its

image is Z rather than a singleton) then we say that π is a coordinate map on V .

In the example, there is just one coordinate map, the map π((2,−1, x3)) = x3.
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Let A be a finite subset of some affine space. As usual, the doubling constant

σ[A] is defined to be |A+A|
|A| . The weak1 Polynomial Freiman-Ruzsa conjecture is

the following statement.

Conjecture 8.4.1. Suppose that A is a finite subset of an affine space and that

σ[A] 6 K. Then there is a subset A′ ⊂ A, |A′| > K−C |A|, with dimA′ � logK.

We will give an argument of Pálvölgyi and Zhelezov which establishes a weak

variant of Conjecture 8.4.1, in which the notion of dimension is replaced by a notion

which we call the skew-dimension dim∗. We define it in the following inductive

manner.

Definition 8.4.1 (Skew dimension). Let A be a finite set in some affine space

V . If A is a singleton, define dim∗(A) = 0. Otherwise, there is some coordinate

map π : V → Z such that |π(A)| > 1; for definiteness, take π to correspond to

the coordinate with biggest index for which this is so. Then we define dim∗(A) :=

1 + maxx dim∗(π
−1(x) ∩A).

Example. Consider the set A = {(1, 0, 0), (2, 0, 0), (0, 1, 1), (0, 2, 1)} ⊂ Z3. The

coordinate map π3 is such that π3(A) = {0, 1} has size greater than 1. The fibres

are then

A0 = π−1
3 (0) ∩A = {(1, 0, 0), (2, 0, 0)} ⊂ V0 := {(x, y, 0) : x, y ∈ Z}

and

A1 = π−1
3 (1) ∩A = {(0, 1, 1), (0, 2, 1)} ⊂ V1 := {(x, y, 1) : x, y ∈ Z}.

We have π2(A0) = {0}, which has size 1. However, π1(A0) = {1, 2}. The fibres are

both singletons and so dim∗(A0) = 1. We have π2(A1) = {1, 2}, and again the fibres

are both singletons. Therefore dim∗(A1) = 1. We conclude that dim∗(A) = 2.

This example, which has 1-dimensional fibres over a 1-dimensional base (but

the fibres are “skew” to one another), should be thought of a typical example of a

set of skew-dimension 2. Note that its true (vector space) dimension is 3.

Here is the main result.

Theorem 8.4.1 (Pálvölgyi–Zhelezov). Let A be a set in some affine space, and

that σ[A] 6 K. Then there is A′ ⊂ A, |A′| > K−3|A|, with dim∗(A
′) 6 3 log2K.

Recall, from the last section, the definition of binary set. Let bin[A] denote the

size of the largest binary set in A. This invariant is connected to the doubling

1The term “weak” comes from the fact that no attempt is made to place any portion of A efficiently
inside a progression. There is a stronger version of the conjecture in which such an attempt is

made.
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constant of A, as the following result of Matolcsi, Ruzsa, Shakan and Zhelezov

shows.

Proposition 8.4.1. We have bin[A] 6 σ[A]3.

Proof. Let U be a binary set. It follows from Theorem 8.3.1 that |A + A + U | >
|U ||A|. If U ⊆ A, |A+A+ U | 6 |A+A+A| = |3A|. It follows that bin[A] 6 |3A|

|A| .

By the Plünnecke Ruzsa inequality, Theorem 4.4.1, we have |3A||A| 6 σ[A]3. The

proposition follows.

Theorem 8.4.1 is an immediate consequence of Proposition 8.4.1 and the follow-

ing proposition, which provides a link between binary sets and skew dimension.

Proposition 8.4.2. Suppose that A is a finite set in some affine space, and

that bin[A] = m. Then there is a subset A′ ⊂ A with |A′| > 1
m |A| and dim∗(A

′) 6

log2m.

Proof. We induct on this dimension of the affine space containing A. Let π :

V → Z be the coordinate map corresponding to largest index. If |π(A)| = 1,

say π(A) = {x}, then A lives in the affine space V ′ := π−1(x) ∩ V , which has

dimV ′ < dimV . In this case the inductive step is trivial. Suppose, then, that

|π(A)| > 2. For each x ∈ π(A) write Ax := π−1(x) ∩ A for the fibre of A above x.

Thus A =
⋃
xAx. Write mx for the size of the largest binary set in Ax. By the

inductive hypothesis, there is A′x ⊂ Ax, |A′x| > 1
mx
|Ax|, with dim∗(A

′
x) 6 log2mx.

We may assume that

(8.7)
1

mx
|Ax| 6

1

m
|A|

for all x, or else we may simply take A′ = A′x for any x violating this bound.

Note also that for distinct x, y ∈ π(A) the set Ax ∪ Ay (and hence A) contains

a binary set of size mx +my, and so

(8.8) mx +my 6 m.

Now let y be such that my is maximal, and set A′ :=
⋃
x 6=y A

′
x. By (8.8), we see

that if x 6= y then mx 6 m/2. Therefore

dim∗(A
′) = 1 + max

x 6=y
dim∗(A

′
x) 6 1 + max

x6=y
log2mx 6 log2m.

Moreover,

|A′| =
∑
x 6=y

|A′x| >
∑
x 6=y

1

mx
|Ax| >

1

m−my

∑
x6=y

|Ax| =
|A| − |Ay|
m−my

>
|A|
m
.

Here, we used mx 6 m−my and, in the last step, (8.7) with x = y.





CHAPTER 9

Higher sum-product theorems

In this chapter, we will be considering higher-order sumsets and product sets

of sets of integers. If A ⊂ Z is finite, and if m > 1 is an integer, we have already

defined

mA := {a1 + · · ·+ am : ai ∈ A}.

We now further define

A(m) := {a1 · · · am : ai ∈ A}.

Note that 2A = A+A and A(2) = A ·A.

We showed in Theorem 7.3.1 that if A ⊂ R then either 2A or A(2) has size

appreciably bigger than that of A, in fact size at least roughly |A|5/4. In this

section we will prove a more difficult result due to Bourgain and Chang, which

asserts that if A ⊂ Z then either mA or A(m) is much bigger than A, for large

values of m. Here is the result we will prove.

Theorem 9.0.1. Let A ⊂ Z. Then for any m either the m-fold sumset |mA|
or the m-fold product set A(m) has cardinality at least |A|b(m), where b(m) >

c logm/ log logm.

Note that it is important that A ⊂ Z; no corresponding result is currently known

for sets A ⊂ R, and this is a very interesting open question.

In the form stated in Theorem 9.0.1, the result is due to Pálvölgyi and Zhelezov;

their proof (which is the one we will give) is much easier than the original argument

of Bourgain and Chang, and leads to a stronger bound. Remark. The original bound

of Bourgain and Chang is on the order b(m)� log1/4m. The main point of these

results is that b(m)→∞, which is a highly-nontrivial fact.

9.1. Higher-order additive energies

We begin by generalising the notion of additive energy, which we introduced in

Chapter 6.

Definition 9.1.1. Let k > 2 be an integer. Given an additive set X, its

additive (2k)-energy E2k(X) is the number of (2k)-tuples (x1, . . . , x2k) ∈ X2k such

that x1 + · · ·+ xk = xk+1 + · · ·+ x2k. More generally, if X1, . . . , X2k are additive

67
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sets then we define E(X1, . . . , X2k) to be the number of solutions to x1 + · · ·+xk =

xk+1 + · · ·+ x2k with xi ∈ Xi for all i.

Thus E4(X) is the number of quadruples (x1, x2, x3, x4) such that x1 + x2 =

x3 +x4, which is what we called simply the additive energy in Chapter 6, where we

denoted it by E(X).

We will need the following inequality.

Lemma 9.1.1. Let X1, . . . , X2k ⊂ Z be finite sets. Then we have

E(X1, . . . , X2k) 6
2k∏
i=1

E2k(Xi)
1/2k.

Proof. A quick proof of this may be given using the Fourier transform and Hölder’s

inequality. For this, observe that

E(X1, . . . , X2k) =

∫ 1

0

1̂X1(θ) · · · 1̂Xk(θ)1̂Xk+1
(θ) · · · 1̂X2k

(θ)dθ,

where for any set

1̂X(θ) :=
∑
n

1X(n)e(−nθ),

as in Chapter 3. The proof involves simply substituting the definition of the Fourier

transform and using orthogonality, exactly as for the proof of (3.6).

Similarly (in fact, consequently) we have

E2k(Xi) =

∫ 1

0

|1̂Xi(θ)|2kdθ.

The stated inequality is now a consequence of Hölder’s inequality on the Fourier

side, that is to say the inequality∫ 1

0

f1 · · · f2k 6
2k∏
i=1

(

∫ 1

0

|fi|2k)1/2k.

This concludes the proof.

We will also need the following, which is essentially the higher-order version of

Proposition 6.2.1, proved in the same way.

Lemma 9.1.2. Let X be an additive set, and let k > 2 be an integer. Then

|kX| > |X|2k

E2k(X)
.

Proof. Write rk(n) for the number of tuples (x1, . . . , xk) ∈ Xk with x1 + · · ·+xk =

n. Then we have, by the Cauchy-Schwarz inequality,

|X|2k =
( ∑
n∈kX

rk(n)
)2

6 |kX|
∑
n

rk(n)2 = |kX|E2k(X).
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This concludes the proof.

9.2. A lemma of Chang

If p is a prime and m ∈ N, write vp(m) for the p-adic valuation of m, that is

to say the exponent of the largest power of p dividing m. We have the following

lemma of Mei-Chu Chang.

Lemma 9.2.1. Let p be a prime, and suppose that A ⊂ Z is a finite set. Let

Ai := {n ∈ A : vp(n) = i}. Then

E2k(A)1/k 6

(
2k

2

)∑
i

E2k(Ai)
1/k.

Proof. Since A is the disjoint union of the Ai, we have

E2k(A) =
∑

j1,...,j2k

E(Aj1 , . . . , Aj2k).

However, not all of the terms here make any contribution. For a nonzero contribu-

tion we must have

pj1n1 + · · ·+ pjknk = pjk+1nk+1 + · · ·+ pj2kn2k

for some ni coprime to p. Let j = min(j1, . . . , j2k). Dividing through by pj and

considering congruences mod p, we see that there must be two i, i′ with ji = ji′ = j.

Let us estimate the contribution in the case {i, i′} = {1, 2}; the other cases are

essentially identical. This contribution is∑
j,j3,j4,...,j2k

E(Aj , Aj , Aj3 , . . . , Aj2k) =
∑
j

E(Aj , Aj , A, . . . , A)

6
∑
j

E2k(Aj)
1/kE2k(A)(k−1)/k,

where in the last step we used Lemma 9.1.1. Summing over the
(

2k
2

)
choices of the

pair {i, i′} now gives

E2k(A) 6

(
2k

2

)
E2k(A)(k−1)/k

∑
j

E2k(Aj)
1/k,

from which the lemma follows immediately.

9.3. The Bourgain-Chang theorem

Suppose that A ⊂ N is a finite set. By the multiplicative skew-dimension of A,

we mean the skew-dimension of the image of A under the map v := (vp)p prime : N→∏
p Z. Note that since A is a finite set, only finitely many primes are relevant here,
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so we can assume the image of v is finite-dimensional. We denote the multiplicative

skew-dimension by dim×∗ (A).

Proposition 9.3.1. Suppose that A ⊂ N is a set with multiplicative skew-

dimension at most D. Then

E2k(A)1/k 6

(
2k

2

)D
|A|.

Proof. The result is almost immediate using Lemma 9.2.1 and induction on D, the

result being trivial when D = 0 (in which case A is a singleton and E2k(A) = 1). To

see this, let us consider the definition of multiplicative skew-dimension. If it is at

most D, there is (by definition) some prime p such that the fibres of the “coordinate

map” vp : A→ Z have multiplicative skew dimension at most D − 1. These fibres,

however, are precisely the Ai in the statement of Lemma 9.2.1.

Now we turn to the main result, Theorem 9.0.1.

Proof. [Proof of Theorem 9.0.1] At the expense of reducing c slightly, it suffices to

handle the case when m = 2t is a sufficiently large power of two. Set k := b t
log tc

and b := t
100 log t .

Suppose that

(9.1) |A(2t)| 6 |A|b.

Our aim is to show that

(9.2) |2tA| > |A|b,

which will conclude the proof. The assumption (9.1) implies that

t−1∏
i=0

|A(2i+1)|
|A(2i)|

6 |A|b,

so there is some i 6 t− 1 such that

(9.3) |A(2i+1)| 6 K|A(2i)|

where K = |A|b/t.
By Theorem 8.4.1, there is a set S ⊂ A(2i), |S| > K−3|A(2i)|, with dim×∗ (S) 6

3 log2K. Here dim×∗ denotes the multiplicative skew-dimension.

In the following argument, we will use the fact that if X ⊂ N has |X ·X| 6 K|X|
then |X ·X−1| 6 K2|X|, where X−1 := {x−1 : x ∈ X}. This is nothing more than

the Plünnecke-Ruzsa inequality, Theorem 4.4.1, in the case k = ` = 1, but stated

multiplicatively; note that N (with multiplication) is contained in the abelian group

Q×.
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Now we have
∑
x |A ∩ xS| = |A||S|, and the sum is supported on x ∈ AS−1.

By the multiplicative Plünnecke-Ruzsa inequality just stated, the containment S ⊂
A(2i) and (9.3), we have

|AS−1| 6 |A(2i)(A(2i))−1| 6 K2|A(2i)|.

Therefore there is some x such that

|A ∩ xS| > |A||S|
|AS−1|

> K−5|A|.

Setting A′ := A ∩ xS, we therefore have

(9.4) |A′| > K−5|A|

and

dim×∗ (A′) 6 dim×∗ (xS) = dim×∗ (S) 6 3 log2K < 5 logK,

since multiplicative skew dimension is invariant under (multiplicative) translation.

By Proposition 9.3.1, E2k(A′) 6
(

2k
2

)5k logK |A|k. Using the crude bound
(

2k
2

)
6

2k2, we may put this in the tidier form

(9.5) E2k(A′) 6 K15k log k|A|k,

Finally, applying Lemma 9.1.2 and using (9.4), (9.5) gives

|2tA| > |kA| > |kA′| > K−25k log k|A|k = |A|k−
25bk log k

t > |A|k/2 > |A|b

by the choice of b and k. This is (9.2), the bound we aimed to prove, so the proof

is finished.





APPENDIX A

Arithmetical functions

In this section, relevant mostly to the material in Chapter 2, we give a brief

refresher on the basic arithmetic functions.

An arithmetical function is simply a function f : N → C. The ones we shall

consider will be real-valued. The ones which come up in Chapter 2 are the following:

• The Möbius function µ, defined by µ(1) = 1, µ(n) = (−1)k if n = p1 · · · pk
for distinct primes pi, and µ(n) = 0 if n is divisible by the square of some

prime;

• The divisor function τ(n), defined to be the number of positive integer

divisors of n (including n itself).

Other important arithmetic functions include the Euler totient function φ(n),

the number of positive integers less than n and coprime to it.

The Möbius function µ. The first important fact we need about the Möbius

function is Möbius inversion. If f1, f2 : N → C are two arithmetic functions then

we write f1 ? f2 for their Dirichlet convolution

f1 ? f2(n) :=
∑
d|n

f1(d)f2(
n

d
).

One may easily check that this is a symmetric, associative operation.

Lemma A.0.1 (Möbius inversion). Suppose that f, g : N → C are arithmetic

functions. Then

g(n) =
∑
d|n

f(d)

for all n if and only if

f(n) =
∑
d|n

µ(
n

d
)g(d)

for all n.

Proof. In the notation of Dirichlet convolution, this states that g = f ? 1 if and

only if f = g ? µ. To prove this, the key observation to make is that

(A.1) µ ? 1 = δ,

73



74 A. ARITHMETICAL FUNCTIONS

where δ : N → C is the arithmetic function defined by δ(1) = 1 and δ(n) = 0 for

n > 1. In other words, ∑
d|n

µ(d) = 0

unless n = 1, in which case it equals 1. This may be easily checked by considering

the prime factorisation of n.

One may also observe that δ acts like an identity for Dirichlet convolution:

f = f ? δ.

Therefore if g = f ? 1 then we have g ? µ = (f ? 1) ? µ = f ? (1 ? µ) = f ? δ = f ,

whilst in the other direction, if g?µ = f then f ?1 = (g?µ)?1 = g?(µ?1) = g?δ = g.

This completes the proof.

We also need the following variant of Möbius inversion.

Lemma A.0.2. Let z > 1 be a parameter. Suppose we have two arithmetical

functions f, g : N→ C related by

(A.2) g(δ) =
∑
d6z
δ|d

f(d).

Then

(A.3) f(d) =
∑
δ6z
d|δ

µ(
δ

d
)g(δ).

Proof. Substitute (A.2) into the right hand side of (A.3). This gives∑
d′6z

f(d′)
∑
d|δ|d′

µ(
δ

d
).

(Note the condition δ 6 z has disappeared since it is automatically implied by

d′ 6 z and δ|d′). Substituting δ = kd in the inner sum, we see that∑
d|δ|d′

µ(
δ

d
) =

∑
k| d′d

µ(k) = 1d′/d=1.

This completes the proof.

Remark. All that was used about the set D := {d : d 6 z} is that it is divisor-

closed, that is to say if d ∈ D and d′|d, then d′ ∈ D. Therefore, a similar statement

holds for other divisor-closed sets.

The divisor function τ . Recall that τ(n) is the number of (positive integer)

divisors of n. If n = pa11 · · · p
ak
k is the prime factorisation of n, then

τ(n) = (a1 + 1) · · · (ak + 1);
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the divisors of n are precisely the numbers p
a′1
1 · · · p

a′k
k with 0 6 a′i 6 ai for all i.

A very important fact about the divisor function – used throughout analytic

number theory – is the divisor bound, which asserts that τ(n) grows slower than

any fixed power of n.

Lemma A.0.3 (Divisor bound). For any ε > 0 there is a constant Cε such that

τ(n) 6 Cεn
ε for all n.

Proof. Let the prime factorisation of n be pa11 · · · p
ak
k . For each fixed prime p we

have lima→∞
a+1
pεa = 0, so there is some C = C(p, ε) such that a + 1 6 C(p, ε)paε

for all natural numbers a. Moreover, since a+ 1 6 2a, we can take C(p, ε) = 1 for

p > 21/ε. It follows that

τ(n) =

k∏
i=1

(ai + 1) 6
∏
i

C(pi, ε)p
aiε
i 6 C(ε)nε,

where

C(ε) :=
∏
p

C(p, ε).

Note this is a finite constant because of the fact that C(p, ε) = 1 for p > 21/ε.

Multiplicative functions. An arithmetical function f : N→ C is multiplicative if

f(ab) = f(a)f(b) whenever a and b are coprime. Note carefully that the condition

is not that f(ab) = f(a)f(b) for all a, b; that is a stronger condition, known as

complete multiplicativity.

Both the Möbius function µ and the divisor function τ are multiplicative, but

neither is completely multiplicative.

One may check that if f, g : N→ C are two multiplicative functions, then their

Dirichlet convolution f ? g is also multiplicative. Indeed, if a and b are coprime

then

f ? g(ab) =
∑
d|ab

f(
ab

d
)g(d) =

∑
d1|a,d2|b

f(
a

d1

b

d2
)g(d1d2)

=
∑
d1|a

f(
a

d1
)g(d1)

∑
d2|b

f(
b

d2
)g(d2) = (f ? g)(a)(f ? g)(b).





APPENDIX B

Geometry of numbers

The main goal of this section is to prove Minkowski’s second theorem. First we

briefly go over some standard properties of the determinant of a lattice.

Lemma B.0.1. If q ∈ N then det(qZd) = qd. If Λ,Λ′ are two lattices with

Λ′ ⊂ Λ, then det(Λ′)/ det(Λ) = [Λ : Λ′], where the latter quantity is the index of Λ′

as a subgroup of Λ, that is to say the number of cosets of Λ′ needed to cover Λ.

Now let us recall the statement of Minkowski’s Second theorem, and let us also

state Minkowski’s first theorem. In both of these results, K ⊂ Rd is a centrally

symmetric convex body, and Λ ⊂ Rd a lattice. The successive minima of K with

respect to Λ are λ1, . . . , λd.

Theorem B.0.1 (Minkowski I). Suppose that vol(K) > 2d det(Λ). Then K

contains a nonzero point of Λ.

Theorem B.0.2 (Minkowski II). We have λ1 · · ·λd vol(K) 6 2d det(Λ).

Let us remark that Minkwoski I is a consequence of Minkowski II. To see this,

note that if vol(K) > 2d det(Λ) then Minkowski II implies that λ1 · · ·λd < 1. Since

λ1 6 · · ·λd, this implies that λ1 < 1. By the definition of λ1, it follows that K

contains at least one nonzero point of Λ.

Minkowski I is a very straightforward consequence of the following result, Blich-

feldt’s lemma, which is also an ingredient in the proof of Minkowski II.

Lemma B.0.2 (Blichfeldt’s lemma). Suppose that K ⊂ Rd, and suppose that

vol(K) > det(Λ). Then there are two distinct points x,y ∈ K with x− y ∈ Λ.

Remark. Note that here K is not required to be either centrally symmetric or

convex.

Proof. By considering the sets K ∩ B(0, R), as R → ∞, whose volumes tend to

that of K, we may assume that K lies inside some ball B(0, R). Now let us suppose

that the conclusion is false: then no translate of K contains two points of Λ, or in

other words ∑
x

1K(x− t)1Λ(x) 6 1

77
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for all t ∈ Rd. Let R′ be much bigger than R, and average this last inequality over

t lying in the ball B(0, R′) to obtain∑
x

1Λ(x)
( 1

vol(B(0, R′))

∫
B(0,R′)

1K(x− t)dt
)
6 1.

Since K ⊂ B(0, R), the inner integral equals vol(K) if ‖x‖ 6 R′−R, and therefore∑
x

1Λ(x)1B(0,R′−R)(x)dx 6
vol(B(0, R′)

vol(K)
,

and hence

(B.1)
1

vol(B(0, R′ −R))

∑
x

1Λ(x)1B(0,R′−R)(x)dx 6
vol(B(0, R′)

vol(B(0, R′ −R))
· 1

vol(K)
.

However it is “clear” by tiling with fundamental parallelepipeds that

lim
r→∞

1

vol(B(0, r))

∑
x

1Λ(x)1B(0,r)(x) =
1

det(Λ)
,

and moreover

lim
R′→∞

vol(B(0, R′)

vol(B(0, R′ −R))
= 1.

Comparing with (B.1) immediately leads to

1

det(Λ)
6

1

vol(K)
,

contrary to assumption.

Although we will not formally need it in what follows, let us pause to give the

simple deduction of Minkowski I.

Proof. [Proof of Minkowski I] By Blichfeldt’s lemma, the set 1
2K = { 1

2x : x ∈ Rd}
contains two distinct points of Λ; thus there are x,y ∈ K with 1

2 (x − y) ∈ Λ.

However, since K is convex and centrally symmetric we have 1
2 (x− y) ∈ K.

Now we turn to the proof of Minkowski II.

Proof. [Proof of Minkowski II] It is technically convenient to assume that K is

open; this we may do by passing from K to the interior K◦. Take a directional

basis b1, . . . ,bd for Λ with respect to K. Since K is open, λkK ∩ Λ is spanned

(over R) by the vectors b1, . . . ,bk−1. Indeed if it were not then we could choose

some further linearly independent vector b ∈ λkK ∩ Λ, and by the openness of K

this would in fact lie in (λk − ε)K ∩Λ for some ε > 0, contrary to the definition of

λk.

Write each given x in coordinates relative to the basis vectors bi as x1b1 + · · ·+
xdbd. We now define some rather unusual maps φj : K → K, by mapping x ∈ K
to the centre of gravity of the slice of K which contains x and is parallel to the
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subspace spanned by b1, · · · ,bj−1 (for j = 1, φ1(x) = x). Next, we define a map

φ : K → Rd by

φ(x) :=

d∑
j=1

(λj − λj−1)φj(x),

where we are operating with the convention that λ0 = 0. Let us make a few further

observations concerning the φj and φ. In coordinates we have φj(x) =
∑
i cij(x)bi,

where cij(x) = xi for i > j, and cij(x) depends only on xj , · · · , xd for i < j. It

follows that

φ(x) =

d∑
i=1

bi(λixi + ψj(xi+1, · · · , xd))

for certain continuous functions ψj . It follows easily that

(B.2) vol(φ(K)) = λ1 · · ·λd vol(K),

the Jacobian of the transformation x′i = λixi + ψi(xi+1, . . . , xd) being λ1 · · ·λd.
Suppose, as a hypothesis for contradiction, that λ1 · · ·λd vol(K) > 2d det(Λ).

By Blichfeldt’s lemma and (B.2), this means that φ(K) contains two elements φ(x)

and φ(y) which differ by an element of 2 · Λ = {2λ : λ ∈ Λ}, and this means that
1
2 (φ(x) − φ(y)) ∈ Λ. Write x =

∑
i xibi and y =

∑
i yibi, and suppose that k is

the largest index such that xk 6= yk. Then we have φi(x) = φi(y) for i > k, so that

φ(x)− φ(y)

2
=

d∑
j=1

(λj − λj−1)
(φj(x)− φj(y)

2

)
=

k∑
j=1

(λj − λj−1)
(φj(x)− φj(y)

2

)
.

This has two consequences. First of all the convexity of K implies that 1
2 (φj(x)−

φj(y)) ∈ K for all j, and hence (again by convexity) 1
2 (φ(x) − φ(y)) ∈ λkK.

Secondly we may easily evaluate the coefficient of bk when 1
2 (φ(x)−φ(y)) is written

in terms of our directional basis: it is exactly λk(xk − yk)/2. In particular this is

nonzero, which means that 1
2 (φ(x)− φ(y)) lies in Λ and λkK, but not in the span

of b1, · · · ,bk−1. This is contrary to the observation made at the start of the proof.
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