
1 Chapter I Solutions

1.1 Section 1

(TODO)
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2 Chapter II Solutions

2.1 Section 1

1.16b. Given an exact sequence of sheaves 0 → F ′ → F → F ′′ → 0 over
a topological space X with F ′ flasque show that for every open U ⊂ X that
the sequence 0→ F ′(U)→ F(U)→ F ′′(U)→ 0 is exact.

Proof. Since the section functor Γ(U,−) is left exact, we only need to show
the map β :F(U) → F ′′(U) is surjective. Fix a section s ∈ F ′′(U). Given
any point P ∈ U , the sequence 0 → F ′P → FP → F ′′P → 0 is exact since
the stalk functor is exact. So there is a germ tP ∈ FP that is mapped by βP
to sP . Since these are germs of functions, there exists an open neighborhood
Ui ⊂ U and a section t ∈ F(U) with β(t)|Ui = s|Ui . Now suppose we
have two sections ti, tj ∈ F(U) whose images under β agree with s on open
neighborhoods Ui and Uj ⊂ U of P respectively. Then β(ti − tj)|Ui∩Uj = 0,
so since 0 → F ′(Ui ∩ Uj) → F(Ui ∩ Uj) → F ′′(Ui ∩ Uj), we have a section
w′ ∈ F ′(Ui ∩ Uj) that maps to ti − tj on Ui ∩ Uj. F ′ flasque gives a section
w ∈ F ′(U) that maps to w′ under restriction, and maps to ti − tj under
α : F ′(U) → F(U). Thus the sections ti and tj + α(w) agree on Ui ∩ Uj, so
we can glue them on Ui ∩ Uj to get a section t ∈ F(U) such that t|Ui = ti|Ui
and t|Uj = (tj + α(w))|Uj . Since β(α(w)) = 0, we see β(t)|Ui∪Uj = s|Ui∪Uj ,
thus extending the sections on Ui and Uj to a section mapping to s over all
Ui ∪ Uj. Then Zorn’s Lemma allows us to extend to a section t′ over all U
such that β(t) = s. Thus 0→ F ′(U)→ F(U)→ F ′′(U)→ 0 is exact.
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3 Chapter III Solutions

3.1 Section 1

3.2 Section 2

2.1a. Let X = A
1
k be the affine line over an infinite field k. Let P,Q be

distinct closed points of X, and let U = X − P,Q. Show H1(X,ZU) 6= 0.

Proof. Using the exact sequence 0 → ZU → ZX → Z{P,Q} → 0 and com-
puting cohomology gives 0 → Γ(U,ZU) → Γ(X,ZX) → Γ(X,Z{P,Q}) →
H1(X,ZU) → H1(X,ZX) → . . . A1

k irreducible implies the constant sheaf
ZX is flasque, so H1(X,ZX) = 0. Γ(X,ZX) ∼= Z and Γ(X,Z{P,Q}) ∼= Z ⊕ Z
(since P and Q are distinct, we can assign independent values at the two
points) then implies H1(X,ZU) 6= 0, as desired.

2.1b. More generally, let Y ⊆ X = Ank be the union of n+1 hyperplanes
in suitably general position, and let U = X − Y . Show that Hn(X,ZU) 6= 0.

Proof. TODO

2.2. Let X = P1
k be the projective line over an algebraically closed field

k. Show that the exact sequence 0→ O → K → K/O → 0 of (II Ex. 1.21d)
is a flasque resolution of O. Conclude from (II Ex. 1.21e) that H i(X,O) = 0
for all i > 0.

Proof. TODO
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4 Chapter IV Solutions

4.1 Section 1

1.1. Let X be a curve, and let P ∈ X be a point. Then there exists a
nonconstant rational function f ∈ K(X), which is regular everywhere except
at P .

Proof. Let X have genus g. Since X is dimension 1, there exists a point
Q ∈ X,Q 6= P . Pick an n > max{g, 2g − 2, 1}. Then for the divisor
D = n(2P − Q) of degree n, l(K − D) = 0 (1.3.4), so Riemann-Roch gives
l(D) = n + 1 − g > 1. Thus there is an effective divisor D′ such that
D′ −D = (f). Since (f) is degree 0 (II 6.10), D′ has degree n, so D′ cannot
have a zero of order large enough to kill the pole of D of order 2n. f is
regular everywhere except at P . Note we cannot control the zeros of f with
this proof.

1.2. Again let X be a curve, and let P1, P2, . . . , Pr ∈ X be points. Then
there is a rational function f ∈ K(X) having poles (of some order) at each
of the Pi, and regular elsewhere.

Proof. We have to be careful. Multiplying functions from (Ex. 1.1) may
result in zeroes cancelling poles. So proceed as follows: Fix a point Q distinct
from the Pi, and consider the divisor n(P1 + P2 + . . .+ Pr − (r − 1)Q), with
n > max{2g − 2, g}. Then similar to (Ex. 1.1), we find an effective divisor
D with D + n(r − 1)Q − nP1 − nP2 − . . . − nPr = (f). Again since (f) has
degree 0 (II 6.10), degree of D is n. Since each Pi occurs with order −n
outside of D, either D cannot have a zero at any Pi large enough to cancel
the pole, or D = nPi for some fixed i. In the former case we’re done, in the
latter use (Ex. 1.1) to get a principal divisor (g) with a pole at Pi. (fg) may
have unwanted cancellation. Suppose (g) has zeroes of order nj at some (or
none, or all) Pj. Then for α > max{nj, 1}, (fα) has poles of higher order at
Pj 6= Pi. Then the principal divisor (fαg) must have a pole at Pi, and the
zeros of (g) cannot cancel the poles at the remaining Pj of (fα), so this is
the divisor.

1.3. Let X be an integral, separated, regular, one-dimensional scheme
of finite type over k, which is not proper over k. Then X is affine.

4



Proof. Embed X → X, the closure of X(TODO - explain). Then X =
X ∪ {P1, P2, . . . , Pr}. This is a finite set since (TODO). Then use (Ex. 1.2)
to get a principal divisor (f) with poles at exactly the Pi, and this defines
a morphism f : X → P

1
k which sends the Pi to ∞, and the rest of X to

A
1. f(X) 6= pt so (II 6.8) implies f is finite. (II Ex. 5.17b) says any finite

morphism is affine, so f−1(A1) = X is affine.

1.4. Show that a separated, one-dimensional scheme of finite type over
k, none of whose irreducible components is proper over k, is affine.

Proof. (III Ex. 3.2) gives the scheme X is affine if and only if each irreducible
component is affine. Then (III Ex. 3.1) implies each irreducible component
Y is affine if and only if Yred is affine. Since irreducible and reduced imply
integral (II 3.1), we have reduced to the case X is integral, and then the
result follows from (Ex 1.3).

1.5. For an effective divisor D on a curve X of genus g, show that
dim|D| ≤ degD. Furthermore, equality holds if and only if D = 0 or g = 0.

Proof. Since D is effective, the subspaces |K −D| ⊆ |K| imply l(K −D) ≤
l(K) = g (1.3.3). Using dim|D| = l(D) − 1 (pg. 295), Riemann-Roch gives
dim|D| = degD + l(K −D)− g ≤ degD + l(K)− g = degD. Equality thus
follows if l(K −D) = l(K). Clearly we have equality for D = 0, and if g = 0
then degK = −2 and since D is effective l(K −D) = 0 = g.

Conversely, suppose we have equality, and suppose D 6= 0. P ∈ SuppD
gives |K −D| ⊆ |K −D − P | ⊆ |K| TODO

1.6. Let X be a curve of genus g. Show there is a finite morphism
f : X → P

1
k of degree ≤ g + 1.

Proof. Pick any closed point P ∈ X. Let D = (g + 1)P be a divisor.
Riemann-Roch gives l(D) = (g + 1) + 1 − g + l(K − D) = 2 + l(K − D),
or l(D)/geq2. So there exists an effective divisor (TODO) , and (II 6.8)
gives

1.7.

Proof. TODO
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1.8.

Proof. TODO

1.9.

Proof. TODO

1.10. Let X be an integral projective scheme of dimension 1 over k,
which is locally a complete intersection, and has pa = 1. Fix a point P0 ∈
Xreg. Imitate (1.3.7) to show that the map P → L(P − P0) gives a one-to-
one correspondence between the points of Xreg and the elements of the group
Pic0X. This generalizes (II, 6.11.4) and (II, Ex. 6.7).

Proof. Let D be any divisor of degree 0. We need to show there exists a
unique point P ∈ Xreg such that D ∼ P − P0. Since X satisfies (Ex. 1.9d),
we find that l(D + P0) − l(K − D − P0) = 0 + 1 − 1 = 1. Applying (Ex.
1.9d) to the divisors 0 and K, we get l(0) − l(K) = deg0 + 1 − pa and
l(K)− l(0) = degK + 1− pa. Combining we find that degK = 2pa− 2, so in
our problem degK = 0, thus deg(K −D−P0) < 0 and l(K −D) = 0, giving
l(D + P0) = 1. Then dim|D − P0| = 0, so there exists a unique effective
divisor linearly equivalent to D+P0. Since the degree is 1, this divisor must
be a single point P ∼ D+P0, or D ∼ P −P0. Note that (Ex. 1.9 c,d) implies
P ∈ Xreg.
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4.2 Section 2

2.2. Classification of Curves of Genus 2. Fix an algebraically closed
field k of characteristic 6= 2.

(a). If X is a curve of genus 2 over k, the canonical linear system |K|
determines a finite morphism f : X → P

1 of degree 2 ( Ex. 1.7). Show that
it is ramified at exactly 6 points, with ramification index 2 at each one. Note
that f is uniquely determined, up to automorphism of P1, so X determines
an (unordered) set of 6 points of P1, up to an automorphism of P1.

Proof. Hurwitz gives 2(4 − 2) = 2(0 − 2) + degR which implies degR = 6.
Since degf = 2, each ramification index eP ≤ 2, so each point in the support
of R occurs with at most degree 1. Thus the morphism is ramified at exactly
6 points, with ramification index 2 at each point.

(b). Conversely, given six distinct elements α1, . . . , α6 ∈ k, let K be the
extension of k(x) determined by the equation z2 − (x− α1) . . . (x− α6). Let
f : X → P

1 be the corresponding morphism of curves. Show that g(X) = 2,
the map f is the same as the one determined by the canonical linear system,
and f is ramified over the six points x = alphai of P1, and nowhere else. (Cf.
(II, Ex. 6.4)).

Proof. TODO

(c). Using (I, Ex. 6.6), show that if P1, P2, P3 are 3 distinct points
of P1, then there exists a unique ϕ ∈ AutP1 such that ϕ(P1) = 0, ϕ(P2) =
1, ϕ(P3) =∞. Thus in (a), if we order the six points x = αi of P1, and then
normalize by sending the first three to 0, 1,∞, respectively, we may assume
that X is ramified over 0, 1,∞, β1, β2, β3, where β1, β2, β3 are three distinct
elements of k, 6= 0, 1.

Proof.

(d). Let Σ6 be the symmetric group on 6 letters. Define an action of Σ6

on the sets of three distinct elements of k, 6= 0, 1 as follows: reorder the set
0, 1,∞, β1, β2, β3 according a given element σ ∈ Σ6, then renormalize as in
(c) so that the first three become 0, 1,∞ again. Then the last three are the
new β′1, β

′
2, β

′
3.

Proof. Nothing to do.
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(e). Summing up, conclude that there is a one-to-one correspondence
between the set of isomorphism classes of genus 2 over k, and triples of
distinct elements β1, β2, β3 of k, 6= 0, 1, modulo the action of Σ6 described in
(d). In particular, there are many non-isomorphic curves of genus 2. We say
that curves of genus 2 depend on three parameters, since they correspond to
the points of an open subset of A1

k modulo a finite group.

Proof.

2.5. Automorphisms of a Curve of Genus ≥ 2. Prove the theorem
of Hurwitz that a curve X of genus g ≥ 2 over a field k of characteristic 0
has at most 84(g − 1) automorphisms. We will see later ( Ex. 5.2) or (V
Ex. 1.11) that the group G = AutX is finite. So let G have order n. Then
G acts on the function field K(X). Let L be the fixed field. Then the field
extension L ⊆ K(X) corresponds to a finite morphism of curves f : X → Y
of degree n.

(a). If P ∈ X is a ramification point, and eP = r, show that f−1f(P )
consists of exactly n/r points, each having ramification index r. Let P1, . . . , Ps
be a maximal set of ramification points of X lying over distinct points of Y ,
and let ePi = ri. Then show that Hurwitz’s theorem implies that

(2g − 2)/n = 2g(Y )− 2 +
s∑
i=1

(1− 1/ri).

Proof. Suppose P ∈ X is ramified as in the statement, and let f(P ) = Q ∈ Y .
The local ring B = OY,Q has field of fractions L, and under characteristic 0
the extension L ⊆ K(X) is separable (and finite already). Let A = B be
the integral closure of B in K(X). Then the points over Q correspond to
the dvrs in K(X) that lie over A. Each of these dvrs is just A localized at
some maximal ideal in A. We want to show G acts transitively over these
dvrs, so for any two primes Pi and Pj we want an element σ ∈ G such that
σ(Pi) = Pj. Clearly each element in B is fixed by G, and since A is the
integral closure of B, B is the fixed field of A under the action of G. This
follows since A is the set of elements in K(X) that are integral over B, so any
element in A−B is not fixed by G, and any element in A fixed under G is in
L, hence also in B. Then from an easy problem in Atiyah-MacDonald Ch.5,
#12,13, it follows that G acts transitively, so there is a curve automorphism
taking any ramified point Pi over Q to any other ramified point Pj over Q.
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Thus each point has the same index ePi = r, and there has then to be n/r
of them since f is tamely ramified at each point (chark = 0), and (II, 6.9)
gives n = degfdegQ = degf ∗Q = deg(

∑
ePiPi), but since each ePi = r, this

implies there are n/r points over Q.
Then Hurwitz’s thoerem gives (2g−2)/n = 2g(Y )−2+1/n

∑
P∈X(eP−1).

Since there are n/ri points over Qi, each with ramification index ri, we get
1/n

∑
P∈X(eP − 1) = 1/n

∑s
i=1(n/ri)(ri − 1) =

∑s
i=1(1− 1/ri), finishing the

problem.

(b). Since g ≥ 2, the left hand side of the equation is > 0. Show that if
g(Y ) ≥ 0, x ≥ 0, ri ≥ 2, i = 1, . . . , s are integers such that

2g(Y )− 2 +
s∑
i=1

(1− 1/ri) > 0,

then the maximum value of this expression is 1/42. Conclude that n ≤
84(g − 1). See ( Ex. 5.7) for an example where this maximum is achieved.

Proof. Let gY = g(Y ). Since each term 1−1/ri is of the form n/(n+1), we get
that (∗)s >

∑s
i=1(1−1/ri) ≥ s/2. If gY ≥ 2, then 2gY −2+

∑s
i=1(1−1/ri) ≥

2 + s/2/geq2. If gY = 1, then the expression is ≥ s/2, so is greater than 1/2.
If gY = 0, then guessing gives 1/2 > 1/6 = −2 + 1/2 + 1/2 + 1/2 + 2/3 > 0
corresponding to s = 4, r1, r2, r3 = 2, r4 = 3. So any smaller value must
have gY = 0. If s ≥ 5, then the sum is ≥ −2 + 5/2 = 1/2 > 1/6, so
s ≤ 4. The only solution with s = 4 smaller than the one above giving 1/6
is −2 + 1/2 + 1/2 + 1/2 + 1/2 = 0, no solution at all. Any other changes
make the value larger than 1/6. If s < 3, (∗) gives that the expression is
< 0. Thus any better solution than the 1/6 must have s = 3. So we want to
minimize h(a, b, c) = a/(a + 1) + b/(b + 1) + c/(c + 1) − 2, where a, b, c are
positive integers and the we require h > 0. WLOG assume a ≥ b ≥ c. Then
checking possible cases: h(1, 1, c) < 0 for all c, so any solution has at most 1
entry of 1. Checking higher cases (note the expression value increases as we
pick larger numbers!): h(1, 2, 2) < 0, h(1, 2, 3) < 0, h(1, 2, 4) < 0, h(1, 2, 5) =
0, h(1, 2, 6) = 1/42, corresponding to r1 = 2, r2 = 3, r3 = 7. Any value
h(1, 2, c), c > 6 must be larger. So we check h(1, 3, 3) = 0, h(1, 3, 4) = 1/20,
and again there can be no better solution with h(1, 3, c), c > 4. Continu-
ing, h(1, 4, 4) = 1/10, so there is no better solution with h(1, b, c). Next
h(2, 2, 2) = 0, h(2, 2, 3) = 1/12, h(2, 3, 3) = 1/6 so there is no better one
starting with a = 2. h(3, 3, 3) = 1/4, and any higher starting a value will do
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worse, so the minimum 1/42 occurs at gY = 0, s = 3, r1 = 2, r2 = 3, r3 = 7.
Using part (a) gives that 1/n(2g − 2) ≥ 1/42 which is 84(g − 1) ≥ 1/42.
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4.3 Section 3

3.1. If X is a curve of genus 2, show that a divisor D is very ample ⇐⇒
degD ≥ 5.

Proof. Cor 3.2 gives degD ≥ 5 ⇒ D very ample. For the other direction,
assume D very ample. Suppose degD < 5. Then 3.1(b) implies l(D − P −
Q) = l(D) − 2 ⇒ l(D) ≥ 2. But l(D) = 2 ⇒ dim|D| = 1, so there is a
closed immersion X ↪→ P

1, so X is either a point or P1 (II, 6), contradicting
g(X) = 2. Thus l(D) > 2.

Thus there exists an effective divisor D′ ∈ |D|, and since |D′| = |D|
(proof: α ∈ |D| ⇒ α − D = (f), D − D′ = (g) ⇒ D′ − D + α − D =
(fg) ⇒ |D| ⊆ |D′|. The other way is similar.) we can apply ( Ex. 1.5)
to D′ to get dim|D| = dim|D′| ≤ degD′ = degD. If D′ = 0 then l(D) =
l(D′) = 1, contradiction. Since g 6= 0 the inequality is strict ( Ex. 1.5), so
1 < l(D)− 1 = dim|D| < degD and degD > 2. So we check cases:

If degD = 3, then D nonspecial implies (Riemann-Roch) l(D) = 2, a
contradiction. If degD = 4, then D nonspecial implies (Riemann-Roch)
l(D) = 3, so dim|D| = 2, and D gives a closed immersion X ↪→ P

2, but since
the genus of a plane curve (I Ex. 7.1) is 1/2(d − 1)(d − 2) which can never
be 2, this too is a contradiction. Thus degD ≥ 5.

3.2. Let X be a curve of degree 4.
(a). Show that the effective canonical divisors on X are exactly the

divisors X.L, where L is a line in P2.

Proof. Genus of a plane curve is g = 1/2(d − 1)(d − 2) so degree 4 gives
g(X) = 3. degK = 2g − 2 = 4. For a fixed line L ∈ P2 set D = X.L.
Bezout’s theorem says D is 4 points counted with multiplicity, so degD = 4.
Riemann-Roch gives l(D) − l(KD) = 4 + 1 − 3 = 2. Since it takes exactly
2 points of X to define any line L, dim|D| = 2 (TODO - better proof), so
l(D) = 3, and l(K −D) = 1. As in proof of ( Ex. 3.1), ( Ex. 1.5) gives that
dim|K − D| ≤ deg(K − D) = 0, and since |K − D| 6= ∅, (why? TODO),
g 6= 0 gives equality, so K −D ∼ 0, or k ∼ D.

(b). If D is any effective divisor of degree 2 on X, show that dim|D| = 0.

Proof. Take a line L defined by 2 distinct points of D if possible, else if
D = nP use (I Ex. 7.3) to get the unique line with proper intersection
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multiplicity. Let D′ = X.L, a degree 4 effective divisor by Bezout’s theorem.
Then by proof of (a), dim|D′| = 2, and 3.3.5 implies D′ very ample (why-
todo). D′−D is 2 points, and theorem 3.1b gives dim|D| = dim|D′− (D′−
D)| = dim|D′| − 2 = 0.

(c). Conclude X is not hyperelliptic.

Proof. (TODO - check thoroughly) X hyperelliptic implies there is a finite
morphism f : X → P

1 of degree 2. To give such a morphism is equivalent
to giving a base point free linear system |D| such that dim|D| = 1. So for
D′ ∈ |D|, degD′ = 2. But by part (b) 0 = dim|D′| = dim|D|, a contradiction.
So X is not hyperelliptic.

3.3. If X is a curve of genus ≥ 2 which is a complete intersection (II Ex.
8.4) in some Pn, show that the canonical divisor K is very ample. Conclude
that a curve of genus 2 can never be a complete intersection in any Pn. Cf.
(II. 7.8.5)

Proof. Let X =
⋂
Hi be the intersection of hypersurfaces as in exerciseII8.4.

Using the same exercise, ωX ∼= OX(
∑
di − n − 1) for di = degHi. Since

dimΓ(X,ωX) = g ≥ 2, ωX must have global sections, so m =
∑
di−n− 1 ≥

0. m 6= 0, since then g = 1, a contradiction. Thus ωX ∼= OX(m) with
m > 0. Composing X ↪→ P

n ↪→ P
N where the second inclusion is the m-

uple embedding gives L(K) ∼= ωX ∼= i∗OPN (1). Thus K is very ample by
definition. Note that the m-uple embedding i : Pn ↪→ P

N gives OX(m) ∼=
i∗OX(1).

By ( Ex. 1.7a), if g = 2 |K| defines a morphism X → P
1 so K is not

very ample (this cannot be an embedding), thus X cannot be a complete
intersection.

3.4. Let X be the d-uple (I Ex. 2.12) embedding of P1 in Pd, for any
d ≥ 1. We call X the rational normal curve of degree d in Pd.

(a). Show that X is projectively normal, and that its homogeneous ideal
can be generated by elements of degree 2.

Proof. TODO - was not hard... use (I Ex. 2.12)

(b). if X is any curve of degree d in Pn, with d ≤ n, which is not
contained in any Pn−1, show that in fact d = n, g(X) = 0, and x differs from
the rational normal curve of degree d only by an automorphism of Pd. Cf.
(II. 7.8.5).
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Proof. Take a hyperplane H in Pn. Then H.X consists of d points (counted
with multiplicity). These points span a hyperplane of dimension d − 1. If
d < n, then we can add any other points onX until a hyperplane of dimension
n− 1 is spanned, but this new hyperplane contains H, so H must itself have
intersected X in n − 1 points, contradicting d < n. Thus d = n. The
argument of (II. 7.8.5) gives g = 0 and the rest of the problem. (TODO -
write up)

(c). In particular, any curve of degree 2 in any Pn must be a conic in
some P2.

Proof. Since d = 2 we must have n = 2 by part b.

(d). A curve of degree 3 in any Pn must either be a plane cubic curve,
or the twisted cubic curve in P3.

Proof. If n < d, since n = 1 is impossible, we must have n = 2. Then elliptic
curves exist in P2 so this case is possible. Otherwise by part b the curve must
be the twisted cubic in P3.

3.5. Let X be a curve in P3, which is not contained in any plane.
(a). If O /∈ X is a point, such that projection from O indices a birational

morphism ϕ from X to its image in P2, show that ϕ(X) must be singular.

Proof. First note that since X is contained in no plane, ϕ(X) is contained in
no line in P2 since ϕ is projection from a point. So assume Y = ϕ(X) is not
singular. Then X is isomorphic to Y since they are birational. (I, 6). Asso-
ciate X with its image to simplify (confuse?) notation. Use the twisted exact
sequence (for n = 2 and n = 3) 0 → IX(1) → OPn(1) → OX(1) → 0, where
IX is the ideal sheaf defining X ⊆ P3, and compute the long exact sequence
of cohomology. For n = 2 or 3 we have that H0(P3, IX(1)) = 0. Indeed, if
there are any global sections of degree 1, there is a linear polynomial in the
ideal defining X, and then X is contained in a plane (n = 3) or a line (n = 2),
both contradictions. Thus we have 0→ H0(P3,OPn(1))→ H0(X,OX(1))→
H1(P3, IX(1)) → . . .. (Note the last map of H0’s is not surjective in gen-
eral. Take something not projectively normal, like the quadratic embedding
(s : t) ↪→ (s4 : s3t : st3 : t4).) Since the first term has dimension n + 1, we
get for n = 3 that dimH0(P3,OX(1)) ≥ 4. In case n = 2 if we show that
dimH1(X, IX(1)) = 0, then we get dimH0(P2,OX(1)) = 3, a contradiction.
(Note this assumes that these OX(1)’s are the same over P2 and P3, since
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the sheaf is the pullback of OPn(1). They are the same sheaf by Theorem
II 6.17 P2 ↪→ P

3, gives (TODO...)).
For n = 2, the curve is a Cartier divisor, so by Theorem II 6.9, IX ∼=

L(−D). By Theorem II 6.17 L ∈ PicPn ⇒ L ∼= OX(n), n ∈ Z. The-
orem II 6.4 gives D ∼ dH, so we combine to get sheafIX ∼= L(−D) ∼=
L(−dH) ∼= OP2(−d). Twisting, IX(1) ∼= OP2(1 − d). d = 1 ⇒ Y ∼= P

1, but
Y not in any line gives a contradiction. Thus d > 1, and H1(P2, IX(1)) ∼=
H1(P2,OP2(1)) = 0 by Theorem II 5.1b.

(b). If X has degree d and genus g, conclude that g < 1
2
(d− 1)(d− 2).

Proof. Use Theorem 3.10 to get O /∈ X such that projection from O gives a
birational morphism to the image, with at most nodes as singularities. Then
part a implies there exists at least one node, and 3.4.1 with r ≥ 1 gives the
result.

(c). TODO

Proof.

3.6. Curves of degree 4
(a). If X is a curve of degree 4 in some —PSn, show that either

(1) g = 0, in which case X is either the rational normal quartic in P4 (
Ex. 3.4) or the rational quartic curve in P3 (II. 7.8.6), or

(2) X ⊆ P2, in which case g = 3, or
(3) X ⊆ P3 and g = 1.

Proof. (1) If g = 0 then X is isomorphic to P1. X  P
2, since in P2 g =

1
2
(d − 1)(d − 2) = 3. So using ( Ex. 3.4b), X is in P3 or P4, and using the

same exercise X  P
3 implies X is the rational normal curve in P4, which

has degree 4. So it remains to show there exists a curve of genus 0 and degree
4 in P3. This is given by (II. 7.8.6).

(2) X ⊆ P2 implies g = 3 by the usual formula.
(3) Assume X ⊆ P3. ( Ex. 3.5b) gives that g < 3. and g 6= 0 since that is

covered in case (1). Taking a hyperplane H and using Riemann-Roch gives
l(H) − l(K − H) = degH + 1 − g. degH = 4 since a degree 4 curve. If
g = 2 then degK = 2g − 2 = 2, and then l(K −H) = 0 by (. 1.3.4). Then
l(H) = 4 + 1 − 2 = 3, but l(H) = dimH0(P3,OP3(1)) = 4, a contradiction.
Thus g 6= 2. (III Ex. 5.6) gives that a curve of type 2,2 has g = 1. Since
the degree of a curve of type (a, b) is a + b (think through the embedding
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and the intersection with a hyperplane - (a, b) corresponds to a lines in one
direction and b lines in the other.). Thus curves with g = 1 and degree 4
exist in P3.

(b). In the case g = 1, show that X is a complete intersection of two
irreducible quadric surfaces in P3 (I Ex. 5.11).

Proof. Taking a twisted sequence with the ideal sheaf IX gives 0→ IX(2)→

OP3(2)→ OX(2)→ 0. Then dimH0(P3,OP3(2)) = (
3 + 2

2
) = 10 (the k di-

mension of the space of degree 2 monomials in 4 variables). dimH0(X,OX(2)) =
8 since this is two hyperplanes intersecting the degree 4 curve X. Thus
dimH0(P3, IX(2)) ≥ 2. So X is contained in at least 2 irreducible quadratic
hypersurfaces. (This is also interesting for degree 3 hypersurfaces, etc...).
(TODO - why complete intersection?)

3.7. In view of Theorem 3.10, one might ask conversely, is every plane
curve with nodes a projection of a nonsingular curve in P3? Show that the
curve xy + x4 + y4 = 0 (assume chark 6= 2) gives a counterexample.

Proof. The only singularity is a node at (0,0). Suppose this curve X is
the projection of a nonsingular curve X̃ ⊆ P

3. Then 3.11.1 gives g =
1
2
(d − 1)(d − 2) − r = 1

2
(3)(2) − 1 = 2, but no such curve exists by ( Ex.

3.6a).

3.8. We say a (singular) integral curve in Pn is strange if there is a point
which lies on all the tangent lines at nonsingular points of the curve.

(a). There are many singular strange curves, e.g., the curve given para-
metrically by x = t, y = tp, z = t2p over a field of characteristic p > 0.

Proof. The curve is clearly singular at (0 : 0 : 0 : 1). (TODO) Since the
curve is given parametrically, the tangent direction at a point is ∂

∂t
(t, tp, t2p) =

(1, 0, 0). At a point (x0 : y0 : z0 : 1) on the curve, this tangent line is the
intersection of the hyperplanes y = y0w and z = z0w. Thus in P3, every
tangent line goes through (1 : 0 : 0 : 0), the point at infinity.

(b). Show, however, that if chark = 0, there aren’t even any singular
strange curves besides P1.

15



Proof. (TODO-) Idea is to reprove 3.4,3.5,3.9, but the dimension of the tan-
gent space in 3.5 may be very large, so only consider the tangent space of
the nonsingular points on the curve. Needs some more work.

3.9. Prove the following lemma of Bertini: is X is a curve of degree d in
P

3, not contained in any plane, then for almost all planes H ⊆ P3 (meaning
a Zariski open subset of the dual projective space (P3)∗), the intersection
X ∩H consists of exactly d distinct points, no three of which are collinear.

Proof. 3 points are collinear ⇐⇒ H contains a multisecant of X. There
are strictly less than d distinct points ⇐⇒ H contains a tangent line of
X. The proof of 3.5 shows TanX, the tangent space of X, is closed and
dimTanX ≤ 2. TODO

3.10. Generalize the statement that ”not every secant is a multisecant”
as follows. If X is a curve in Pn, not contained in any Pn−1, and if chark = 0,
show that for almost all choices of n − 1 points P1, P2, . . . , Pn−1 on X, the
linear space Ln−2 spanned by the Pi does not contain any further points of
X.

Proof. Let the degree of X be d. Then by ( Ex. 3.4b) if d ≤ n we have d = n
and X differs from the n-uple embedding of P1 in Pn. TODO

So assume d > n.
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4.4 Section 4

(TODO)
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4.5 Section 5

5.1. Show that a hyperelliptic curve can never be a complete intersection
in any projective space.

Proof. Every hyperelliptic curve has genus≥ 2 ( Ex. 1.7), and every complete
intersection has very ample canonical divisor ( Ex. 3.3). But the canonical
divisor of a hyperelliptic curve is not very ample by Theorem 5.2, so it
cannot be a complete intersection.

5.6. Show that a nonsingular plane curve of genus 5 has no g1
3. Show

that there are nonhyperelliptic curves of genus 6 which cannot be represented
as a nonsingular plane curve.

Proof. (TODO)
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4.6 Section 6

6.1. A rational curve of degree 4 in P3 is contained in a unique quadric
surface Q, and Q is necessarily nonsingular.

Proof. X ∼= P
1 ⇒ g(X) = 0. X ⊆ P2 ⇒ g = 1

2
(d − 1)(d − 2), but degree 4

and genus 0 contradict. Thus X * P
2.

Consider the sequence 0 → IX(2) → OP3(2) → OX(2) → 0. Take co-

homology and dimension. dimH0(P3,OP3(2)) = (
3 + 2

2
) = 10. OX(2)

corresponds to degree 2 hypersurfaces, so any intersection with X is a di-
visor consisting of 4 × 2 = 8 points, so degD = 8. Since 8 > 2g −
2 = −2, D is nonspecial, and Riemann-Roch then gives l(D) = 8 + 1 −
0 = 9, so dimH0(X,OX(2)) = l(D) = 9, thus from the exact sequence
dimH0(P3, IX(2)) ≥ 1. So X is contained in a quadratic surface Q. The
intersection of 2 quadratic surfaces is a complete intersection of degree 4,
and since X has degree 4, if X is contained in the intersection, it would be a
complete intersection and have genus (II Ex. 8.4) g = 1

2
×4(2+2−4)+1 = 1,

contradicting g(X) = 0. Thus X lies on a unique quadratic surface. Then by
( Ex. 3.6) X is the rational quartic curve in P3, so Q is nonsingular. (TODO
- not clear?)

6.2. A rational curve of degree 5 in P3 is always contained in a cubic
surface, but there are such curves not contained in any quadric surface.

Proof. Again, X ∼= P
1, so g(X) = 0. As above, consider the sequence 0 →

IX(3)→ OP3(3)→ OX(3)→ 0. Degree 3 hypersurfaces in OX(3) intersected
with X give divisors D of degree 3×5 = 15, which makes D nonspecial (15 >
2g−2 = −2). Riemann-Roch gives l(D) = 15+1−0, so dimH0(X,OX(3)) =

16. DimH0(P3,OP3(3)) = (
3 + 3

3
) = 20, so again dimH0(P3, IX(3)) ≥ 4,

and X lies on a cubic surface. To get a curve not contained in any quadratic,
use the idea in (. II)7.8.6. We embed P1 as a degree 5 curve as ϕ : (s : t) ↪→
(s5 : s4t : st4 + αs2t3 : t5) = (x : y : z : w) for some α ∈ k∗. This is degree
5 since it forms a basis for a linear subspace V ⊆ Γ(X,OX(5)). It is easy to
check it has no degree 2 relations by checking degrees of the s and t involved.
For fun it satisfies the cubic x2w − yz2 + yzw − xw2 = 0. To check it is
an embedding, we use Theorem II 7.3. Either x or w has to be nonzero.
w 6= 0⇒ x/y = s, separating points. x 6= 0⇒ y/x = t/s, separating points.
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Since Y = ϕ(X) is dimension 1, the tangent space is dimension 1 if Y is
nonsingular, so there are no tangents to separate. So we only need to check
nonsingularity. (TODO- easy?)

6.3. A curve of degree 5 and genus 2 in P3 is contained in a unique
quadric surface Q. Show that for any abstract curve X of genus 2, there
exists embeddings of degree 5 in P3 for which Q is nonsingular, and there
exists other embeddings of degree 5 for which Q is singular.

Proof. Noting OX(2) corresponds to degree 2 hypersurfaces, and that degree
of such a (nonspecial) divisor is 10 0→ IX(2)→ OP3(2)→ OX(2)→ 0 gives
dimH0(P3, IX(2)) ≥ 1. So X lies in a quadric surface Q. X cannot lie on 2,
since degQ1 ∪Q2 = 4, and X could have degree at most 4. (why - TODO).
So X lies on the unique quadric. (TODO- rest...)

6.4. Show there is no curve of degree 9 and genus 11 in P3

Proof. First we show any such curve X must lie on a quadratic surface. Con-
sider the sequence 0→ IX(2)→ OP3(2)→ OX(2)→ 0. dimH0(P3,OP3(2)) =
10, so if dimH0(X,OX(2)) < 10 then dimH0(P3, IX(2)) ≥ 1, so X lies on a
quadratic surface. OX(2) corresponds to degree 2 hypersurfaces, which will
intersect the curve X in 9 ∗ 2 = 18 points, so deg|OX(2)| = 18. For OX(2)
nonspecial, Riemann-Roch gives dimH0(X,OX(2)) = 18 + 1 − 11 = 9, so
X will lie on a quadratic hypersurface. For OX(2) special, and effective
divisor D in the linear system given by OX(2) must have Theorem 5.4
dim|D| ≤ 1

2
degD = 9, so again X will lie on a quadratic hypersurface.

Then suppose X lies on a nonsingular quadratic hypersurface of type
(a, b). Then by 6.4.1, d = 9 = a+b and g = 11 = ab−a−b+1. Substituting,
11 = a(9 − a) − a − (9 − a) + 1, or 0 = a2 − 9a + 19, which has no integer
solution. Thus X cannot lie on a nonsingular quadratic hypersurface.

X cannot lie in the product of two hyperplanes, since it will then either
be a line and have genus 0, or it will be in a plane, and then contradicts
g = 1

2
(d− 1)(d− 2) = 28 6= 11.

The only case left is X lies on a quadratic cone, but then 6.4.1 again gives
d = 2a+ 1⇒ a = 4, and then g = a2 − a⇒ g = 16− 4 = 12 6= 11.

Thus no curve exists in P3 of degree 9 and genus 11.
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5 Chapter V Solutions

5.1 Section 1
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6 Miscellaneous

First, please do not copy and post this file elsewhere, since I will update it
occasionally, and would like versions currently distributed to be up to date.
If you want to link to it from your webpage that is fine.

I solved many of the problems in Hartshorne’s book Algebraic Geometry
while studying for an advanced topics exam. After working for several months
on this book, I decided to start learning LATEX, so I decided to TEX many
of my solutions to help both tasks. Hopefully I’ll go back and put lots of
earlier solutions in here as I find time, especially since this format allows
text searching. I have most problems from chapter 1 done (and there are
also some short solutions floating around the net I found later), and I have
many solutions from chapters 2 and 3. I am currently working on chapter
4 problems, and plan to do chapter 5 after that. So if I have time and
inspiration I’ll make these available also.

Problems marked TODO I have done, but the solution needs cleaned and
typed.

Thanks to Razvan Veliche, another Purdue graduate student, who helped
solve many of these problems. Also thanks to Aijneet Dhillon, another grad
student, and recently graduated Jaydeep Chipalkatti (spelling?? - sorry) for
their help.

Note that many of the formatting and table of contents is experimental
until I get my macros designed well. I hope to get all this ironed out soon.

This file was prepared on July 28, 1999. E-mail any corrections or sug-
gestions to clomont@math.purdue.edu.

Chris Lomont, Purdue graduate student
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END OF FILE
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