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Introduction

Let IHn be the n-dimensional hyperbolic space and let P be a simple polytope
in IHn. P is called an ideal polytope if all vertices of P belong to the boundary of
IHn. P is called a Coxeter polytope if all dihedral angles of P are submultiples
of π.

There is no complete classification of hyperbolic Coxeter polytopes. In [6]
Vinberg proved that there are no compact hyperbolic Coxeter polytopes in IHn

when n ≥ 30. Prokhorov [5] and Khovanskij [3] proved that there are no Coxeter
polytopes of finite volume in IHn for n ≥ 996. Examples of bounded Coxeter
polytopes are known only for n ≤ 8, and examples of finite volume non-compact
Coxeter polytopes are known only for n ≤ 19 [8] and n = 21 [1].

In this paper, we prove that no simple ideal Coxeter polytope exists in IHn

when n > 8.
The authors are grateful to the Max-Planck Institute for Mathematics in

Bonn for hospitality and excellent research conditions.

1 Preliminaries

1.1 Coxeter diagrams

It is convenient to describe Coxeter polytopes in terms of Coxeter diagrams.
A Coxeter diagram is one-dimensional simplicial complex with weighted

edges, where weights are either of the type cos π
m for some integer m ≥ 3 or

positive real numbers no less than one. We can draw edges of Coxeter diagram
by the following way:

if the weight equals cos π
m then the nodes are joined by either (m − 2)-fold

edge or simple edge labeled by m;
if the weight equals one then the nodes are joined by a bold edge;
if the weight is greater than one then the nodes are joined by a dotted edge

labeled by its weight.
A subdiagram of Coxeter diagram is a subcomplex that can be obtained by

deleting several nodes and all edges that are incident to these nodes.
Let Σ be a diagram with d nodes u1,...,ud. Define a symmetrical d×d matrix

Gr(Σ) by the following way: gii = 1; if two nodes ui and uj are adjacent then gij

equals negative weight of the edge uiuj ; if two nodes ui and uj are not adjacent
then gij equals zero.
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A Coxeter diagram Σ(P ) of Coxeter polytope P is a Coxeter diagram whose
matrix Gr(Σ) coincides with Gram matrix of P . In other words, nodes of
Coxeter diagram correspond to facets of P . Two nodes are joined by either
(m − 2)-fold edge or m-labeled edge if the corresponding dihedral angle equals
π
m . If the corresponding facets are parallel the nodes are joined by a bold edge,
and if they diverge then the nodes are joined by a dotted edge.

By signature and rank of diagram Σ we mean the signature and the rank of
the matrix Gr(Σ).

A Coxeter diagram Σ is called elliptic if the matrix Gr(Σ) is positively de-
fined. A connected Coxeter diagram Σ is called parabolic if the matrix Gr(Σ)
is degenerated, and any subdiagram of Σ is elliptic. Elliptic and connected
parabolic diagrams are exactly Coxeter diagrams of spherical and Euclidean
Coxeter simplices respectively. They were classified by Coxeter [2]. The com-
plete list of elliptic and connected parabolic diagrams is represented in Table 1.

A non-connected diagram is called parabolic if it is a disjoint union of con-
nected parabolic diagrams. A diagram is called indefinite if it contains at least
one connected component that is neither elliptic nor parabolic.

Let f be a k-dimensional face of P (by abuse of notation we write f is a

k-face of P ). If P is a simple n-dimensional polytope then α is an intersection
of exactly n − k facets. Let f1, . . . , fn−k be the facets containing f and let
v1, . . . , vn−k be the corresponding nodes of Σ(P ). Let Σf be a subdiagram of
Σ(P ) with nodes v1, . . . , vn−k. We say that Σf is the diagram of the face f .

The following properties of Σ(P ) and Σf are proved in [7].

• [cor. of Th. 2.1] the signature of Gr(Σ(P )) equals (n, 1);

• [cor. of Th. 3.1] if a k-face f is not an ideal vertex of P (i.e. f is not
a point at the boundary of IHn), then Σf is an elliptic diagram of rank
n − k;

• [cor. of Th. 3.2] if f is an ideal vertex of P then Σf is a parabolic diagram
of rank n − 1; if f is a simple ideal vertex of P then Σf is connected;

• [cor. of Th. 3.1 and Th. 3.2] any elliptic subdiagram of Σ(P ) corresponds
to a face of P ; any parabolic subdiagram of Σ(P ) is a subdiagram of the
diagram of a unique ideal vertex of P .

As a corollary, for simple ideal Coxeter polytope P ⊂ IHn we obtain:

(i) Any two non-intersecting indefinite subdiagrams of Σ(P ) are joined in
Σ(P ).

(ii) Any elliptic subdiagram of Σ(P ) contains less than n nodes;

(iii) Any parabolic subdiagram of Σ(P ) is connected and contains exactly n
nodes;
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Table 1: Connected elliptic and parabolic Coxeter diagrams are listed in left
and right columns respectively.

An (n ≥ 1)

Ã1
���
�
������������

��������������

Ãn (n ≥ 2)

Bn = Cn

B̃n (n ≥ 3)

(n ≥ 2)
C̃n (n ≥ 2)

Dn (n ≥ 4) D̃n (n ≥ 4)

G2 G̃2

F4 F̃4

E6 Ẽ6

E7 Ẽ7

E8 Ẽ8

H3

H4

Note, that a connected parabolic diagram with more than 3 nodes contains
neither bold nor k-fold edges for k > 2. Hence, a Coxeter diagram of simple
ideal Coxeter polytope in IHn, n > 3, contains only simple edges, 2-fold edges
and dotted edges.
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Notation

Let F be a k-face of P and let f1, . . . , fn−k be the facets of P containing F . Let
v1, . . . , vn−k be the corresponding nodes of Σ(P ).

• We denote by ΣF the subdiagram of Σ(P ) spanned by v1, . . . , vn−k.
• We also write ΣF = <v1, . . . , vn−k> and ΣF = <v1, Θ>, where Θ = <

v2, . . . , vn−k>. We denote by Σ\{v1, ..., vm} the subdiagram of Σ spanned by
all nodes of Σ different from v1, ..., vm.

• For elliptic and parabolic diagrams we use standard notation (see Table 1).

For example, we write ΣF = Ãn.
• Let v and u be two nodes of Σ(P ). We write

[v, u] = 0 if u and v are disjoint in Σ(P );

[v, u] = 1 if u and v are joined by a simple edge;

[v, u] = 2 if u and v are joined by a 2-fold edge;

[v, u] = ∞ if u and v are joined by a dotted edge.

1.2 Nikulin’s estimate

Let P be an n-dimensional polytope. Denote by αi, i = 0, 1, . . . , n − 1, the
number of i-faces of P . For a face f of P denote by αf

i the number of i-faces of
f (e.g. αi = αP

i ). Denote by

α
(i)
k =

1

αk

∑

dimf=k

αf
i

the average number of i-faces of a k-face of P .

Proposition 1 (Nikulin [4]). For every simple convex bounded polytope P in

IRn for i < k ≤ [n/2] the following estimate holds:

α
(i)
k <

(
n − i

n − k

)(
[n/2]

i

)
+

(
[(n+1)/2]

i

)
(
[n/2]

k

)
+

(
[(n+1)/2]

k

) .

Using this theorem for 2-faces (i = 0 and k = 2), Vinberg proved that no
compact Coxeter polytope exists in IHn, n ≥ 30.

In [3], Khovanskij proved that Nikulin’s estimate holds for edge-simple poly-
topes (a polytope is called edge-simple if any edge is the intersection of exactly
n − 1 facets). This was used by Prokhorov [5] when he proved that no Coxeter
polytope of finite volume exists in IHn for n ≥ 996.

In this paper, we study simple ideal hyperbolic Coxeter polytopes. Any
hyperbolic Coxeter polytope of finite volume is edge-simple (see [3]). Thus, we
can use Nikulin’s estimate. We consider the combinatorics of Coxeter diagrams
of simple ideal hyperbolic Coxeter polytopes and prove that such a polytope
has no triangular 2-faces and that the number of quadrilateral 2-faces of such
a polytope is relatively small. This falls into a contradiction with Nikulin’s
estimate in dimensions greater than 8.
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2 Absence of triangular 2-faces

and estimate for quadrilateral 2-faces.

Let P be a simple ideal Coxeter polytope in IHn and let V be a vertex of P .
Since P is simple, the vertex V is contained in exactly n edges V Vi, i = 1, . . . , n.
Denote by vi the node of ΣV such that ΣV Vi

= ΣV \{vi}. Denote by ui the node
of Σ(P ) such that ΣVi

= <ui, ΣV Vi
>.

Now, starting from the diagram ΣV , we want to describe all possible di-
agrams <vi, ui, ΣV Vi

>. For example, suppose that ΣV = Ãn−1, n 6= 3, 8, 9.

Then ΣV Vi
= ΣV \vi = An−1. It is easy to see, that if n 6= 3, 8, 9 then Ãn−1 is

the only parabolic diagram with n nodes containing a subdiagram An−1. Thus,

ΣVi
= Ãn−1. Note, that [vi, ui] 6= 0 and [vi, ui] 6= 1, otherwise <vi, ui, ΣV Vi

>
does not satisfy property (iii). Hence, either [vi, ui] = 2 or [vi, ui] = ∞, and
the subdiagram <vi, ui, ΣV Vi

> is one of two diagrams shown in Figure 1.

������������ ���
���
������ ���
���
������ ���� 	
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�
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PSfrag replacements

vivi

uiui

Figure 1: Two possibilities for <vi, ui, ΣV Vi
>, if ΣV = Ãn−1, n 6= 3, 8,9.

Similarly, one can list all possible diagrams <ui, vi, ΣV Vi
> for any other

type of ΣV . Recall that ΣV is one of the diagrams shown in the right column
of Table 1. A case-by-case check using properties (i)–(iii) shows the following:

Lemma 1. Suppose that n > 5. In the notation above [vi, ui] 6= 0. If [vi, ui] = 1
then, up to interchange of vi and ui, the diagram <vi, ui, ΣV Vi

> coincides with

one of the diagrams shown in Figure 2.

� ������ �������� �� ����

PSfrag replacements

vivi

uiui
a) b)

Figure 2: Two possibilities for <vi, ui, ΣV Vi
> when [vi, ui] = 1.

A node v of a diagram Σ is called a leaf of Σ if Σ contains exactly one node
joined with v.
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Lemma 2. Assume that n > 3. Then for the diagram < vi, ui, ΣV Vi
> the

following property holds: if vi is a leaf of ΣV and ui is not a leaf of ΣVi
then

ΣV = Ẽk, ΣVi
= Ãk, where k = 7 or 8. In this case <vi, ui, ΣV Vi

> is one of

the diagrams shown in Figure 3.

Proof. Consider the subdiagram ΣV Vi
. Since ΣV = <ΣV Vi

, vi> and vi is a leaf
of ΣV , ΣV Vi

is connected. Since ui is not a leaf of ΣVi
= <ΣV Vi

, ui>, there are
at least two edges joining ui with ΣV Vi

. Hence, ΣVi
contains a cycle. Combined

with (iii), this implies that ΣVi
= Ãk. Hence, ΣV Vi

= Ak. The only parabolic

diagrams with k + 1 nodes containing a subdiagram Ak are Ãk, G̃2, Ẽ7 and Ẽ8.
Since n > 3 and ΣV has at least one leaf vi, ΣV = Ẽ7 or Ẽ8.

We are left to show that [vi, ui] = 2 or [vi, ui] = ∞. This follows from
Lemma 1.

PSfrag replacements

vi vi

vi vi

ui ui

ui ui

Figure 3: Possibilities for <vi, ui, ΣV Vi
> when vi is a leaf of ΣV and ui is not a

leaf of ΣVi

Lemma 3. Let P be a simple ideal Coxeter polytope in IHn, n > 5. Then P
has no triangular 2-faces.

Proof. Suppose that UV W is a triangular 2-face of P . Then there are exactly
n + 1 facets of P containing at least one of the points U , V and W . The whole
triangle UV W is contained in exactly n − 2 of these facets. Since P is simple,
for each edge of UV W there exists a unique facet containing the edge and not
containing UV W . Denote these facets by ū, v̄ and w̄ for the edges V W, UW
and UV respectively. Denote by u, v and w the nodes of Σ(P ) corresponding
to ū, v̄ and w̄ respectively. Then ΣU = <v, w, ΣUV W >, ΣV = <u, w, ΣUV W >
and ΣW = <u, v, ΣUV W > (see Figure 4a). In particular, (iii) implies that all
these diagrams are parabolic.

Consider the edge of ΣW joining u and v. By Lemma 1, either [u, v] = 1 or
[u, v] = 2 or [u, v] = ∞.
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ū

v̄
ūiv̄i

ūj

v̄j

V

Vj

Vi

Vij

a) b)

w̄
q

U

A′

W

B′

V

Figure 4: Notation for a triange (a) and for a quadrilateral (b).

Suppose that [u, v] = ∞. Then ΣW = <u, v, ΣUV W > contains a dotted
edge, in contradiction to the fact that ΣW is parabolic. Thus, [u, v] 6= ∞ and,
similarly, [v, w] 6= ∞ and [u, w] 6= ∞.

Suppose that u is a leaf of ΣV and v is not a leaf of ΣU . Then Lemma 2 shows
that <w, ΣW > = <u, v, w, ΣUV W > is one of the diagrams shown in Figure 3.
No of these diagrams contains a node w 6= u, v, such that <u, v, ΣUV W > is
parabolic. Thus, no of these diagrams corresponds to a triangle, and we may
assume that either both u and v are the leaves of ΣV and ΣU respectively or
none of them is.

Suppose that [u, v] = 2. It follows from Table 1 and the assumption n > 5
that either u or v is a leaf of ΣW . Without loss of generality we can assume that
u is a leaf. Then it is easy to see that we have one of the diagrams shown in
Figure 5. Consider the case shown in Figure 5a. Since [u, w] 6= ∞, the diagram
<u, w, ΣUV W > = ΣV is elliptic, that is impossible by (ii). Consider the case
shown in Figure 5b. If [u, w] = 1 then <u, w, ΣUV W > = ΣV is elliptic, that is
impossible. If [u, w] = 2 then <u, v, w> is a parabolic diagram with only three
nodes in contradiction to (iii).

PSfrag replacements

uu vv

3, 4 3, 4

a) b) ww

Figure 5: Possibilities for the case [u, v] = 2.

Suppose that [u, v] = 1. By Lemma 1, ΣW = <u, v, ΣUV > coincides with
one of the diagrams shown in Figure 2 (up to interchange of u and v). It is
easy to see that ΣUV contains no node w 6= u, v such that <u, v, ΣUV \w> is a
parabolic diagram. Note that ΣUV = <w, ΣUV W > and <u, v, ΣUV \w> = <
u, v, ΣUV W> = ΣW . Thus, we have no parabolic diagram ΣW , so [u, v] 6= 1.

By Lemma 1, the case [u, v] = 0 is also impossible. There are no more
possibilities for [u, v]. Hence, no diagram ΣUV W can be constructed, and P
contains no triangular faces.
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Note that an ideal Coxeter polytope in IH5 may have a triangular 2-face.
For example, the Coxeter diagram shown in Figure 6 determines a 5-dimensional
ideal Coxeter simplex. All 2-faces of any simplex are triangles.

Figure 6: This diagram determines a 5-dimensional ideal Coxeter simplex.

Lemma 4. Let V be a vertex of simple ideal Coxeter polytope P in IHn, n > 9.
Then V belongs to at most n + 3 quadrilateral 2-faces.

Proof. Let q be a quadrilateral 2-face with vertices V, Vi, Vj and Vij . The 2-
face q belongs to n − 2 facets, each edge of q belongs to n − 1 facets and each
vertex belongs to n facets. Denote by v̄i, ūi, v̄j and ūj the facets not containing q
and containing the edges V Vj , ViVij , V Vi and VjVij respectively (see Figure 4b).
Denote by vi, ui, vj and uj the nodes of Σ(P ) corresponding to the facets v̄i, ūi, v̄j

and ūj respectively.
Then ΣV = <vi, vj , Σq >, ΣVi

= <vj , ui, Σq >, ΣVj
= <vi, uj , Σq >, and

ΣVij
= <ui, uj , Σq>. See Figure 7 for an example of a quadrilateral.

PSfrag replacements

vi vi

vi vi

vj vj

vj vj

uiui uj

uj

V

Vi Vij

Vj

Figure 7: Example of a quadrilateral

Suppose that ΣV = Ãn−1 and vi and vj are disjoint in ΣV . Since n > 8,

each of the vertices Vi, Vj , Vij are of the type Ãn−1. Consider <vi, ui, ΣV Vi
>.
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By (iii), either [vi, ui] = ∞ or [vi, ui] = 2 (cf. Figure 1). The same statement

holds for [vj , uj ]. Since ΣVij
is a parabolic diagram Ãn−1, we have [ui, uj ] = 0

(see Figure 8). Then Σ(P ) contains two disjoint indefinite subdiagrams viuiwi

and vjujwj . Thus, any quadrilateral containing V corresponds to a pair of
neighbouring nodes of ΣV , and V belongs to at most n quadrilaterals.

�����
�����
�����

�����
�����
�����

�������
�������
�������

�����
�����
�����

�� �� 	
��
PSfrag replacements

vi

ui

wi

vj

uj

wj

ki kj

Figure 8: viuiwi and vjujwj are disjoint indefinite subdiagrams.
In this diagrams ki, kj = 2 or ∞.

From now on we assume that ΣV 6= Ãn−1. Since n > 9, ΣV = B̃n−1, C̃n−1

or D̃n−1. Define a distance ρ(u, w) between two nodes u and w of connected
graph as the number of edges in the shortest path connecting u and w.

Let x be a leaf of ΣV . Denote by Σ
(5)
V (x) a connected subdiagram of ΣV

spanned by five nodes closest to x in ΣV (i.e., if vk ∈ Σ
(5)
V (x) and vl /∈ Σ

(5)
V (x)

then ρ(x, vk) ≤ ρ(x, vl). Note that for ΣV = B̃n−1, C̃n−1 and D̃n−1 when n ≥ 9

the diagram Σ
(5)
V (x) is well-defined for any leaf x of ΣV .

Denote by L(ΣV ) the set of leaves of ΣV . Define

Σ
(5)
V =

⋃

xi∈L(ΣV )

Σ
(5)
V (xi)

(see Fig. 9). It is easy to see that if n > 10 then Σ
(5)
V consists of two connected

components.

Figure 9: Subdiagram Σ
(5)
V for ΣV = B̃12.

Suppose that vi and vj do not belong to the same connected component of

Σ
(5)
V (vi or vj may lie in ΣV\Σ

(5)
V ). By the same reason as in the case ΣV = Ãn−1,

nodes vi and vj are neighbours in ΣV .

Suppose that vi and vj belong to the same connected component of Σ
(5)
V .

Suppose that vi and vj are disjoint. A straightforward check of possibilites with
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use of properties (i)–(iii) shows that if Σq is the diagram of a quadrilateral 2-

face, then the connected component of Σ
(5)
V is one of the following configurations

(up to interchange of vi and vj):

PSfrag replacements

vi

vivi vjvj
vj

Hence, the quadrilaterals containing V are encoded either by one of n − 1
pair of neighbouring nodes of ΣV or by one of two pairs of nodes for each of two

connected components of Σ
(5)
V . Thus, the number of quadrilaterals containing

A is less than or equal to 2 + 2 + (n − 1) = n + 3.

Lemma 5. Let A be a vertex of a simple ideal Coxeter polytope P in IH9. Then

A belongs to at most 15 quadrilateral 2-faces.

Proof. The existence of ΣV = Ẽ8 course a lot of possibilities for the diagram
<v, vi, ΣV Vi

>. This leads to a large number of different diagrams <v, vi, Σq>.
To observe all these possibilities we use a case-by-case check organized as follows:

Step 1. We consider the cases ΣV = Ã8, B̃8, C̃8, D̃8 and Ẽ8 separately.

Step 2. For each node vi, i = 1, ..., 9, of ΣV we list all possible diagrams <
vi, ui, ΣV Vi

> such that <ui, ΣV Vi
> is parabolic and <vi, ui, ΣV Vi

> sat-
isfies properties (i)—(iii). We call such a diagram < vi, ui, ΣV Vi

> an
edge-pattern. Clearly, any edge incident to V corresponds to some edge-
pattern <vi, ui, ΣV Vi

>.

Some nodes vi of ΣV may admit several edge-patterns <vi, ui, ΣV Vi
> (up

to 8 edge-patterns for one of the nodes of Ẽ8). Denote the edge-patterns
by (vi, ui)r, r = 1, ..., ki, where ki is the number of patterns for the node
vi of ΣV .

Step 3. For each edge-pattern (vi, ui)r we consider all edge-patterns (vj , uj)s, j 6=
i. We list all cases when vi, ui, vj , uj correspond to the facets of some
quadrilateral 2-face q (where Σq = ΣV \{vi, vj}).

Step 4. For each node vi, 1 ≤ i ≤ 9, choose an edge-pattern (vi, ui)ri
. Then

compute the total number Q(r1, . . . , r9) of quadrilaterals determined by
(vi, ui)ri

and (vj , uj)rj
for 1 ≤ i < j ≤ 9.

Step 5. Denote by Q(ΣV ) the maximal value of Q(r1, . . . , r9) for all r1, . . . , r9. It
turns out that

Q(Ã8) = 15,

Q(B̃8) = 14,

Q(C̃8) = 12,
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Q(D̃8) = 15,

Q(Ẽ8) = 14.

Thus, for any type of ΣV we obtain that V belongs to at most 15 quadrilat-
eral 2-facets.

Remark. At step 4 of the algorithm above one should check a huge number of
possibilities (more than 15000 cases for Ẽ8). This was done by computer.

3 Absence of simple ideal Coxeter polytopes

in large dimensions.

Recall that αi denotes the number of i-faces of a polytope P and α
(i)
k denotes

the average number of i-faces of k-face of P .
We will need the following lemma:

Lemma 6. Let P be an n-dimensional simple polytope and let l be the number

of vertices of P . Then
l

α2
=

2

n(n − 1)
α

(1)
2 . (1)

Proof. Denote by mi the number of i-angular 2-faces of P . Let us compute the
total number N of vertices of 2-faces. Clearly, N =

∑
i≥3

i · mi. From the other

hand, each pair of edges incident to one vertex of simple polytope determines a

2-face of the polytope. Thus, N = l n(n−1)
2 , and we obtain the following equality

l
n(n − 1)

2
=

∑

i≥3

i · mi. (2)

By definition,

α
(1)
2 =

∑
i≥3

i · mi

α2
. (3)

Combining (2) and (3), we obtain

l

α2
=

2

n(n − 1)

∑
i≥3

i · mi

α2
=

2

n(n − 1)
α

(1)
2 .

Theorem 1. There is no simple ideal Coxeter polytope in IHn for n ≥ 9.
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Proof. We use the notation from Lemma 6. Recall, that α2 =
∑
i≥3

mi. By

Lemma 3, m3 = 0. Using (3), we have

α
(1)
2 ≥

1

α2
(4m4 + 5

∑

i≥5

mi) =
1

α2
(5

∑

i≥4

mi − m4) = 5 −
m4

α2
. (4)

Consider Nikulin’s estimate for α
(1)
2 :

α
(1)
2 <

(
n − 1

n − 2

)(
[n/2]

1

)
+

(
[(n+1)/2]

1

)
(
[n/2]

2

)
+

(
[(n+1)/2]

2

) = 4
n − 1 + ε

n − 2 + ε
, (5)

where ε = 0 if n is even and ε = 1 if n is odd.
Combining (4) with (5), we obtain

5 −
m4

α2
≤ α

(1)
2 < 4

n− 1 + ε

n− 2 + ε
. (6)

Denote by l the number of vertices of P . Denote by N4 the total number of
vertices of quadrilateral 2-faces. Clearly, N4 = 4m4. By Lemmas 4 and 5 each
of l vertices is incident to at most n+6 quadrilaterals. Thus, N4 ≤ l(n+6) and
we have 4m4 ≤ l(n + 6). In view of (1) and (5), we have

m4

α2
≤

1

4

l(n + 6)

α2
=

n + 6

4

2

n(n − 1)
α

(1)
2 <

<
n + 6

2n(n − 1)

4(n − 1 + ε)

(n − 2 + ε)
= 2

n + 6

n(n − 1)

(n − 1 + ε)

(n − 2 + ε)
. (7)

Combining (6) and (7), we obtain

5−
4(n − 1 + ε)

(n − 2 + ε)
<

m4

α2
< 2

n + 6

n(n − 1)

(n − 1 + ε)

(n − 2 + ε)
.

This implies
(n − 6 + ε)n(n − 1) < 2(n + 6)(n − 1 + ε).

This is equivalent to n2 − 8n − 12 < 0 if n is even and to n2 − 8n − 7 < 0 if n
is odd. The first inequality has no solutions for n ≥ 10, and the second one has
no solutions for n ≥ 9. So, the theorem is proved.
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