On simple ideal hyperbolic Coxeter polytopes

A. Felikson, P. Tumarkin

Introduction

Let \mathbb{H}^{n} be the n-dimensional hyperbolic space and let P be a simple polytope in $\mathbb{H}^{n} . P$ is called an ideal polytope if all vertices of P belong to the boundary of $\mathbb{H}^{n} . P$ is called a Coxeter polytope if all dihedral angles of P are submultiples of π.

There is no complete classification of hyperbolic Coxeter polytopes. In [6] Vinberg proved that there are no compact hyperbolic Coxeter polytopes in \mathbb{H}^{n} when $n \geq 30$. Prokhorov [5] and Khovanskij [3] proved that there are no Coxeter polytopes of finite volume in \mathbb{H}^{n} for $n \geq 996$. Examples of bounded Coxeter polytopes are known only for $n \leq 8$, and examples of finite volume non-compact Coxeter polytopes are known only for $n \leq 19$ [8] and $n=21$ [1].

In this paper, we prove that no simple ideal Coxeter polytope exists in H^{n} when $n>8$.

The authors are grateful to the Max-Planck Institute for Mathematics in Bonn for hospitality and excellent research conditions.

1 Preliminaries

1.1 Coxeter diagrams

It is convenient to describe Coxeter polytopes in terms of Coxeter diagrams.
A Coxeter diagram is one-dimensional simplicial complex with weighted edges, where weights are either of the type $\cos \frac{\pi}{m}$ for some integer $m \geq 3$ or positive real numbers no less than one. We can draw edges of Coxeter diagram by the following way:
if the weight equals $\cos \frac{\pi}{m}$ then the nodes are joined by either $(m-2)$-fold edge or simple edge labeled by m;
if the weight equals one then the nodes are joined by a bold edge;
if the weight is greater than one then the nodes are joined by a dotted edge labeled by its weight.

A subdiagram of Coxeter diagram is a subcomplex that can be obtained by deleting several nodes and all edges that are incident to these nodes.

Let Σ be a diagram with d nodes u_{1}, \ldots, u_{d}. Define a symmetrical $d \times d$ matrix $G r(\Sigma)$ by the following way: $g_{i i}=1$; if two nodes u_{i} and u_{j} are adjacent then $g_{i j}$ equals negative weight of the edge $u_{i} u_{j}$; if two nodes u_{i} and u_{j} are not adjacent then $g_{i j}$ equals zero.

A Coxeter diagram $\Sigma(P)$ of Coxeter polytope P is a Coxeter diagram whose matrix $\operatorname{Gr}(\Sigma)$ coincides with Gram matrix of P. In other words, nodes of Coxeter diagram correspond to facets of P. Two nodes are joined by either ($m-2$)-fold edge or m-labeled edge if the corresponding dihedral angle equals $\frac{\pi}{m}$. If the corresponding facets are parallel the nodes are joined by a bold edge, and if they diverge then the nodes are joined by a dotted edge.

By signature and rank of diagram Σ we mean the signature and the rank of the matrix $G r(\Sigma)$.

A Coxeter diagram Σ is called elliptic if the matrix $\operatorname{Gr}(\Sigma)$ is positively defined. A connected Coxeter diagram Σ is called parabolic if the matrix $\operatorname{Gr}(\Sigma)$ is degenerated, and any subdiagram of Σ is elliptic. Elliptic and connected parabolic diagrams are exactly Coxeter diagrams of spherical and Euclidean Coxeter simplices respectively. They were classified by Coxeter [2]. The complete list of elliptic and connected parabolic diagrams is represented in Table 1.

A non-connected diagram is called parabolic if it is a disjoint union of connected parabolic diagrams. A diagram is called indefinite if it contains at least one connected component that is neither elliptic nor parabolic.

Let f be a k-dimensional face of P (by abuse of notation we write f is a k-face of P). If P is a simple n-dimensional polytope then α is an intersection of exactly $n-k$ facets. Let f_{1}, \ldots, f_{n-k} be the facets containing f and let v_{1}, \ldots, v_{n-k} be the corresponding nodes of $\Sigma(P)$. Let Σ_{f} be a subdiagram of $\Sigma(P)$ with nodes v_{1}, \ldots, v_{n-k}. We say that Σ_{f} is the diagram of the face f.

The following properties of $\Sigma(P)$ and Σ_{f} are proved in [7].

- [cor. of Th. 2.1] the signature of $G r(\Sigma(P))$ equals $(n, 1)$;
- [cor. of Th. 3.1] if a k-face f is not an ideal vertex of P (i.e. f is not a point at the boundary of \mathbb{H}^{n}), then Σ_{f} is an elliptic diagram of rank $n-k$;
- [cor. of Th. 3.2] if f is an ideal vertex of P then Σ_{f} is a parabolic diagram of rank $n-1$; if f is a simple ideal vertex of P then Σ_{f} is connected;
- [cor. of Th. 3.1 and Th. 3.2] any elliptic subdiagram of $\Sigma(P)$ corresponds to a face of P; any parabolic subdiagram of $\Sigma(P)$ is a subdiagram of the diagram of a unique ideal vertex of P.

As a corollary, for simple ideal Coxeter polytope $P \subset \mathbb{H}^{n}$ we obtain:
(I) Any two non-intersecting indefinite subdiagrams of $\Sigma(P)$ are joined in $\Sigma(P)$.
(II) Any elliptic subdiagram of $\Sigma(P)$ contains less than n nodes;
(III) Any parabolic subdiagram of $\Sigma(P)$ is connected and contains exactly n nodes;

Table 1: Connected elliptic and parabolic Coxeter diagrams are listed in left and right columns respectively.

$\mathbf{A}_{\mathbf{n}}(n \geq 1)$	$\bullet \bullet \cdots \bullet \bullet$	$\begin{gathered} \widetilde{\mathbf{A}}_{\mathbf{1}} \\ \widetilde{\mathbf{A}}_{\mathbf{n}}(n \geq 2) \end{gathered}$	
$\begin{gathered} \mathbf{B}_{\mathbf{n}}=\mathbf{C}_{\mathbf{n}} \\ (n \geq 2) \end{gathered}$	$\bullet \bullet \cdots \bullet \bullet$	$\widetilde{\mathbf{B}}_{\mathbf{n}}(n \geq 3)$	$\bullet \bullet \cdots \bullet$
		$\widetilde{\mathbf{C}}_{\mathbf{n}}(n \geq 2)$	\bullet
$\mathbf{D}_{\mathbf{n}}(n \geq 4)$	$\bullet \bullet \cdots-\bullet$	$\widetilde{\mathbf{D}}_{\mathbf{n}}(n \geq 4)$	\cdots
G_{2}	¢	\widetilde{G}_{2}	-
F_{4}	$\bullet \bullet \bullet$	\widetilde{F}_{4}	
E_{6}	\ldots	\widetilde{E}_{6}	$\cdots \bullet \bullet$
E_{7}	$\bullet \bullet \cdot$	\widetilde{E}_{7}	$\cdots \cdots \cdots$
E_{8}	$\bullet \bullet \bullet \bullet \bullet \bullet$	\widetilde{E}_{8}	$\cdots \bullet \bullet \cdots$
H_{3}	-		
H_{4}	- \bullet		

Note, that a connected parabolic diagram with more than 3 nodes contains neither bold nor k-fold edges for $k>2$. Hence, a Coxeter diagram of simple ideal Coxeter polytope in $\mathbb{H}^{n}, n>3$, contains only simple edges, 2-fold edges and dotted edges.

Notation

Let F be a k-face of P and let f_{1}, \ldots, f_{n-k} be the facets of P containing F. Let v_{1}, \ldots, v_{n-k} be the corresponding nodes of $\Sigma(P)$.

- We denote by Σ_{F} the subdiagram of $\Sigma(P)$ spanned by v_{1}, \ldots, v_{n-k}.
- We also write $\Sigma_{F}=\left\langle v_{1}, \ldots, v_{n-k}\right\rangle$ and $\left.\Sigma_{F}=<v_{1}, \Theta\right\rangle$, where $\Theta=<$ $v_{2}, \ldots, v_{n-k}>$. We denote by $\Sigma \backslash\left\{v_{1}, \ldots, v_{m}\right\}$ the subdiagram of Σ spanned by all nodes of Σ different from v_{1}, \ldots, v_{m}.
- For elliptic and parabolic diagrams we use standard notation (see Table 1). For example, we write $\Sigma_{F}=\widetilde{A}_{n}$.
- Let v and u be two nodes of $\Sigma(P)$. We write
$[v, u]=0$ if u and v are disjoint in $\Sigma(P)$;
$[v, u]=1$ if u and v are joined by a simple edge;
$[v, u]=2$ if u and v are joined by a 2 -fold edge;
$[v, u]=\infty$ if u and v are joined by a dotted edge.

1.2 Nikulin's estimate

Let P be an n-dimensional polytope. Denote by $\alpha_{i}, i=0,1, \ldots, n-1$, the number of i-faces of P. For a face f of P denote by α_{i}^{f} the number of i-faces of $f\left(\right.$ e.g. $\left.\alpha_{i}=\alpha_{i}^{P}\right)$. Denote by

$$
\alpha_{k}^{(i)}=\frac{1}{\alpha_{k}} \sum_{d i m f=k} \alpha_{i}^{f}
$$

the average number of i-faces of a k-face of P.
Proposition 1 (Nikulin [4]). For every simple convex bounded polytope P in \mathbb{R}^{n} for $i<k \leq[n / 2]$ the following estimate holds:

$$
\alpha_{k}^{(i)}<\binom{n-i}{n-k} \frac{\binom{[n / 2]}{i}+\binom{[(n+1) / 2]}{i}}{\binom{[n / 2]}{k}+\binom{[(n+1) / 2]}{k}}
$$

Using this theorem for 2 -faces ($i=0$ and $k=2$), Vinberg proved that no compact Coxeter polytope exists in $\mathbb{H}^{n}, n \geq 30$.

In [3], Khovanskij proved that Nikulin's estimate holds for edge-simple polytopes (a polytope is called edge-simple if any edge is the intersection of exactly $n-1$ facets). This was used by Prokhorov [5] when he proved that no Coxeter polytope of finite volume exists in \mathbb{H}^{n} for $n \geq 996$.

In this paper, we study simple ideal hyperbolic Coxeter polytopes. Any hyperbolic Coxeter polytope of finite volume is edge-simple (see [3]). Thus, we can use Nikulin's estimate. We consider the combinatorics of Coxeter diagrams of simple ideal hyperbolic Coxeter polytopes and prove that such a polytope has no triangular 2-faces and that the number of quadrilateral 2 -faces of such a polytope is relatively small. This falls into a contradiction with Nikulin's estimate in dimensions greater than 8.

2 Absence of triangular 2-faces and estimate for quadrilateral 2 -faces.

Let P be a simple ideal Coxeter polytope in \mathbb{H}^{n} and let V be a vertex of P. Since P is simple, the vertex V is contained in exactly n edges $V V_{i}, i=1, \ldots, n$. Denote by v_{i} the node of Σ_{V} such that $\Sigma_{V V_{i}}=\Sigma_{V} \backslash\left\{v_{i}\right\}$. Denote by u_{i} the node of $\Sigma(P)$ such that $\Sigma_{V_{i}}=\left\langle u_{i}, \Sigma_{V V_{i}}\right\rangle$.

Now, starting from the diagram Σ_{V}, we want to describe all possible diagrams $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$. For example, suppose that $\Sigma_{V}=\widetilde{A}_{n-1}, n \neq 3,8,9$. Then $\Sigma_{V V_{i}}=\Sigma_{V} \backslash v_{i}=A_{n-1}$. It is easy to see, that if $n \neq 3,8,9$ then \widetilde{A}_{n-1} is the only parabolic diagram with n nodes containing a subdiagram A_{n-1}. Thus, $\Sigma_{V_{i}}=\widetilde{A}_{n-1}$. Note, that $\left[v_{i}, u_{i}\right] \neq 0$ and $\left[v_{i}, u_{i}\right] \neq 1$, otherwise $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$ does not satisfy property (III). Hence, either $\left[v_{i}, u_{i}\right]=2$ or $\left[v_{i}, u_{i}\right]=\infty$, and the subdiagram $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$ is one of two diagrams shown in Figure 1.

Figure 1: Two possibilities for $\left\langle v_{i}, u_{i}, \Sigma_{V V_{i}}\right\rangle$, if $\Sigma_{V}=\widetilde{A}_{n-1}, n \neq 3,8,9$.
Similarly, one can list all possible diagrams $<u_{i}, v_{i}, \Sigma_{V V_{i}}>$ for any other type of Σ_{V}. Recall that Σ_{V} is one of the diagrams shown in the right column of Table 1. A case-by-case check using properties (I)-(III) shows the following:

Lemma 1. Suppose that $n>5$. In the notation above $\left[v_{i}, u_{i}\right] \neq 0$. If $\left[v_{i}, u_{i}\right]=1$ then, up to interchange of v_{i} and u_{i}, the diagram $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$ coincides with one of the diagrams shown in Figure 2.

Figure 2: Two possibilities for $\left\langle v_{i}, u_{i}, \Sigma_{V V_{i}}>\right.$ when $\left[v_{i}, u_{i}\right]=1$.
A node v of a diagram Σ is called a leaf of Σ if Σ contains exactly one node joined with v.

Lemma 2. Assume that $n>3$. Then for the diagram $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$ the following property holds: if v_{i} is a leaf of Σ_{V} and u_{i} is not a leaf of $\Sigma_{V_{i}}$ then $\Sigma_{V}=\widetilde{E}_{k}, \Sigma_{V_{i}}=\widetilde{A}_{k}$, where $k=7$ or 8 . In this case $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$ is one of the diagrams shown in Figure 3.

Proof. Consider the subdiagram $\Sigma_{V V_{i}}$. Since $\Sigma_{V}=\left\langle\Sigma_{V V_{i}}, v_{i}>\right.$ and v_{i} is a leaf of $\Sigma_{V}, \Sigma_{V V_{i}}$ is connected. Since u_{i} is not a leaf of $\Sigma_{V_{i}}=\left\langle\Sigma_{V V_{i}}, u_{i}\right\rangle$, there are at least two edges joining u_{i} with $\Sigma_{V V_{i}}$. Hence, $\Sigma_{V_{i}}$ contains a cycle. Combined with (III), this implies that $\Sigma_{V_{i}}=\widetilde{A}_{k}$. Hence, $\Sigma_{V V_{i}}=A_{k}$. The only parabolic diagrams with $k+1$ nodes containing a subdiagram A_{k} are $\widetilde{A}_{k}, \widetilde{G}_{2}, \widetilde{E}_{7}$ and \widetilde{E}_{8}. Since $n>3$ and Σ_{V} has at least one leaf $v_{i}, \Sigma_{V}=\widetilde{E}_{7}$ or \widetilde{E}_{8}.

We are left to show that $\left[v_{i}, u_{i}\right]=2$ or $\left[v_{i}, u_{i}\right]=\infty$. This follows from Lemma 1.

Figure 3: Possibilities for $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$ when v_{i} is a leaf of Σ_{V} and u_{i} is not a leaf of $\Sigma_{V_{i}}$

Lemma 3. Let P be a simple ideal Coxeter polytope in $\mathbb{H}^{n}, n>5$. Then P has no triangular 2-faces.

Proof. Suppose that $U V W$ is a triangular 2-face of P. Then there are exactly $n+1$ facets of P containing at least one of the points U, V and W. The whole triangle $U V W$ is contained in exactly $n-2$ of these facets. Since P is simple, for each edge of $U V W$ there exists a unique facet containing the edge and not containing $U V W$. Denote these facets by \bar{u}, \bar{v} and \bar{w} for the edges $V W, U W$ and $U V$ respectively. Denote by u, v and w the nodes of $\Sigma(P)$ corresponding to \bar{u}, \bar{v} and \bar{w} respectively. Then $\Sigma_{U}=\left\langle v, w, \Sigma_{U V W}\right\rangle, \Sigma_{V}=\left\langle u, w, \Sigma_{U V W}\right\rangle$ and $\Sigma_{W}=\left\langle u, v, \Sigma_{U V W}\right\rangle$ (see Figure 4a). In particular, (III) implies that all these diagrams are parabolic.

Consider the edge of Σ_{W} joining u and v. By Lemma 1 , either $[u, v]=1$ or $[u, v]=2$ or $[u, v]=\infty$.

Figure 4: Notation for a triange (a) and for a quadrilateral (b).

Suppose that $[u, v]=\infty$. Then $\Sigma_{W}=\left\langle u, v, \Sigma_{U V W}\right\rangle$ contains a dotted edge, in contradiction to the fact that Σ_{W} is parabolic. Thus, $[u, v] \neq \infty$ and, similarly, $[v, w] \neq \infty$ and $[u, w] \neq \infty$.

Suppose that u is a leaf of Σ_{V} and v is not a leaf of Σ_{U}. Then Lemma 2 shows that $\left\langle w, \Sigma_{W}\right\rangle=\left\langle u, v, w, \Sigma_{U V W}\right\rangle$ is one of the diagrams shown in Figure 3. No of these diagrams contains a node $w \neq u, v$, such that $\left\langle u, v, \Sigma_{U V W}\right\rangle$ is parabolic. Thus, no of these diagrams corresponds to a triangle, and we may assume that either both u and v are the leaves of Σ_{V} and Σ_{U} respectively or none of them is.

Suppose that $[u, v]=2$. It follows from Table 1 and the assumption $n>5$ that either u or v is a leaf of Σ_{W}. Without loss of generality we can assume that u is a leaf. Then it is easy to see that we have one of the diagrams shown in Figure 5. Consider the case shown in Figure 5a. Since $[u, w] \neq \infty$, the diagram $<u, w, \Sigma_{U V W}>=\Sigma_{V}$ is elliptic, that is impossible by (II). Consider the case shown in Figure 5b. If $[u, w]=1$ then $\left\langle u, w, \Sigma_{U V W}\right\rangle=\Sigma_{V}$ is elliptic, that is impossible. If $[u, w]=2$ then $\langle u, v, w\rangle$ is a parabolic diagram with only three nodes in contradiction to (III).

Figure 5: Possibilities for the case $[u, v]=2$.
Suppose that $[u, v]=1$. By Lemma $1, \Sigma_{W}=\left\langle u, v, \Sigma_{U V}\right\rangle$ coincides with one of the diagrams shown in Figure 2 (up to interchange of u and v). It is easy to see that $\Sigma_{U V}$ contains no node $w \neq u, v$ such that $<u, v, \Sigma_{U V} \backslash w>$ is a parabolic diagram. Note that $\Sigma_{U V}=<w, \Sigma_{U V W}>$ and $<u, v, \Sigma_{U V} \backslash w>=<$ $u, v, \Sigma_{U V W}>=\Sigma_{W}$. Thus, we have no parabolic diagram Σ_{W}, so $[u, v] \neq 1$.

By Lemma 1, the case $[u, v]=0$ is also impossible. There are no more possibilities for $[u, v]$. Hence, no diagram $\Sigma_{U V W}$ can be constructed, and P contains no triangular faces.

Note that an ideal Coxeter polytope in \mathbb{H}^{5} may have a triangular 2-face. For example, the Coxeter diagram shown in Figure 6 determines a 5-dimensional ideal Coxeter simplex. All 2 -faces of any simplex are triangles.

Figure 6: This diagram determines a 5-dimensional ideal Coxeter simplex.

Lemma 4. Let V be a vertex of simple ideal Coxeter polytope P in $\mathbb{H}^{n}, n>9$. Then V belongs to at most $n+3$ quadrilateral 2-faces.
Proof. Let q be a quadrilateral 2-face with vertices V, V_{i}, V_{j} and $V_{i j}$. The 2face q belongs to $n-2$ facets, each edge of q belongs to $n-1$ facets and each vertex belongs to n facets. Denote by $\bar{v}_{i}, \bar{u}_{i}, \bar{v}_{j}$ and \bar{u}_{j} the facets not containing q and containing the edges $V V_{j}, V_{i} V_{i j}, V V_{i}$ and $V_{j} V_{i j}$ respectively (see Figure 4 b). Denote by v_{i}, u_{i}, v_{j} and u_{j} the nodes of $\Sigma(P)$ corresponding to the facets $\bar{v}_{i}, \bar{u}_{i}, \bar{v}_{j}$ and \bar{u}_{j} respectively.

Then $\left.\left.\left.\Sigma_{V}=<v_{i}, v_{j}, \Sigma_{q}\right\rangle, \Sigma_{V_{i}}=<v_{j}, u_{i}, \Sigma_{q}\right\rangle, \Sigma_{V_{j}}=<v_{i}, u_{j}, \Sigma_{q}\right\rangle$, and $\left.\Sigma_{V_{i j}}=<u_{i}, u_{j}, \Sigma_{q}\right\rangle$. See Figure 7 for an example of a quadrilateral.

Figure 7: Example of a quadrilateral
Suppose that $\Sigma_{V}=\widetilde{A}_{n-1}$ and v_{i} and v_{j} are disjoint in Σ_{V}. Since $n>8$, each of the vertices $V_{i}, V_{j}, V_{i j}$ are of the type \widetilde{A}_{n-1}. Consider $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$.

By (III), either $\left[v_{i}, u_{i}\right]=\infty$ or $\left[v_{i}, u_{i}\right]=2$ (cf. Figure 1). The same statement holds for $\left[v_{j}, u_{j}\right]$. Since $\Sigma_{V_{i j}}$ is a parabolic diagram \widetilde{A}_{n-1}, we have $\left[u_{i}, u_{j}\right]=0$ (see Figure 8). Then $\Sigma(P)$ contains two disjoint indefinite subdiagrams $v_{i} u_{i} w_{i}$ and $v_{j} u_{j} w_{j}$. Thus, any quadrilateral containing V corresponds to a pair of neighbouring nodes of Σ_{V}, and V belongs to at most n quadrilaterals.

Figure 8: $v_{i} u_{i} w_{i}$ and $v_{j} u_{j} w_{j}$ are disjoint indefinite subdiagrams. In this diagrams $k_{i}, k_{j}=2$ or ∞.

From now on we assume that $\Sigma_{V} \neq \widetilde{A}_{n-1}$. Since $n>9, \Sigma_{V}=\widetilde{B}_{n-1}, \widetilde{C}_{n-1}$ or \widetilde{D}_{n-1}. Define a distance $\rho(u, w)$ between two nodes u and w of connected graph as the number of edges in the shortest path connecting u and w.

Let x be a leaf of Σ_{V}. Denote by $\Sigma_{V}^{(5)}(x)$ a connected subdiagram of Σ_{V} spanned by five nodes closest to x in Σ_{V} (i.e., if $v_{k} \in \Sigma_{V}^{(5)}(x)$ and $v_{l} \notin \Sigma_{V}^{(5)}(x)$ then $\rho\left(x, v_{k}\right) \leq \rho\left(x, v_{l}\right)$. Note that for $\Sigma_{V}=\widetilde{B}_{n-1}, \widetilde{C}_{n-1}$ and \widetilde{D}_{n-1} when $n \geq 9$ the diagram $\Sigma_{V}^{(5)}(x)$ is well-defined for any leaf x of Σ_{V}.

Denote by $L\left(\Sigma_{V}\right)$ the set of leaves of Σ_{V}. Define

$$
\Sigma_{V}^{(5)}=\bigcup_{x_{i} \in L\left(\Sigma_{V}\right)} \Sigma_{V}^{(5)}\left(x_{i}\right)
$$

(see Fig. 9). It is easy to see that if $n>10$ then $\Sigma_{V}^{(5)}$ consists of two connected components.

Figure 9: Subdiagram $\Sigma_{V}^{(5)}$ for $\Sigma_{V}=\widetilde{B}_{12}$.
Suppose that v_{i} and v_{j} do not belong to the same connected component of $\Sigma_{V}^{(5)}\left(v_{i}\right.$ or v_{j} may lie in $\left.\Sigma_{V} \backslash \Sigma_{V}^{(5)}\right)$. By the same reason as in the case $\Sigma_{V}=\widetilde{A}_{n-1}$, nodes v_{i} and v_{j} are neighbours in Σ_{V}.

Suppose that v_{i} and v_{j} belong to the same connected component of $\Sigma_{V}^{(5)}$. Suppose that v_{i} and v_{j} are disjoint. A straightforward check of possibilites with
use of properties (I)-(III) shows that if Σ_{q} is the diagram of a quadrilateral 2face, then the connected component of $\Sigma_{V}^{(5)}$ is one of the following configurations (up to interchange of v_{i} and v_{j}):

Hence, the quadrilaterals containing V are encoded either by one of $n-1$ pair of neighbouring nodes of Σ_{V} or by one of two pairs of nodes for each of two connected components of $\Sigma_{V}^{(5)}$. Thus, the number of quadrilaterals containing A is less than or equal to $2+2+(n-1)=n+3$.

Lemma 5. Let A be a vertex of a simple ideal Coxeter polytope P in \mathbb{H}^{9}. Then A belongs to at most 15 quadrilateral 2-faces.
Proof. The existence of $\Sigma_{V}=\widetilde{E}_{8}$ course a lot of possibilities for the diagram $<v, v_{i}, \Sigma_{V V_{i}}>$. This leads to a large number of different diagrams $<v, v_{i}, \Sigma_{q}>$. To observe all these possibilities we use a case-by-case check organized as follows:
Step 1. We consider the cases $\Sigma_{V}=\widetilde{A}_{8}, \widetilde{B}_{8}, \widetilde{C}_{8}, \widetilde{D}_{8}$ and \widetilde{E}_{8} separately.
Step 2. For each node $v_{i}, i=1, \ldots, 9$, of Σ_{V} we list all possible diagrams $<$ $v_{i}, u_{i}, \Sigma_{V V_{i}}>$ such that $<u_{i}, \Sigma_{V V_{i}}>$ is parabolic and $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$ satisfies properties (I)-(III). We call such a diagram $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$ an edge-pattern. Clearly, any edge incident to V corresponds to some edgepattern $<v_{i}, u_{i}, \Sigma_{V V_{i}}>$.
Some nodes v_{i} of Σ_{V} may admit several edge-patterns $\left.<v_{i}, u_{i}, \Sigma_{V V_{i}}\right\rangle$ (up to 8 edge-patterns for one of the nodes of \widetilde{E}_{8}). Denote the edge-patterns by $\left(v_{i}, u_{i}\right)_{r}, r=1, \ldots, k_{i}$, where k_{i} is the number of patterns for the node v_{i} of Σ_{V}.

Step 3. For each edge-pattern $\left(v_{i}, u_{i}\right)_{r}$ we consider all edge-patterns $\left(v_{j}, u_{j}\right)_{s}, j \neq$ i. We list all cases when $v_{i}, u_{i}, v_{j}, u_{j}$ correspond to the facets of some quadrilateral 2-face q (where $\Sigma_{q}=\Sigma_{V} \backslash\left\{v_{i}, v_{j}\right\}$).

Step 4. For each node $v_{i}, 1 \leq i \leq 9$, choose an edge-pattern $\left(v_{i}, u_{i}\right)_{r_{i}}$. Then compute the total number $Q\left(r_{1}, \ldots, r_{9}\right)$ of quadrilaterals determined by $\left(v_{i}, u_{i}\right)_{r_{i}}$ and $\left(v_{j}, u_{j}\right)_{r_{j}}$ for $1 \leq i<j \leq 9$.

Step 5. Denote by $Q\left(\Sigma_{V}\right)$ the maximal value of $Q\left(r_{1}, \ldots, r_{9}\right)$ for all r_{1}, \ldots, r_{9}. It turns out that

$$
\begin{aligned}
& Q\left(\widetilde{A}_{8}\right)=15, \\
& Q\left(\widetilde{B}_{8}\right)=14, \\
& Q\left(\widetilde{C}_{8}\right)=12,
\end{aligned}
$$

$$
\begin{aligned}
& Q\left(\widetilde{D}_{8}\right)=15, \\
& Q\left(\widetilde{E}_{8}\right)=14 .
\end{aligned}
$$

Thus, for any type of Σ_{V} we obtain that V belongs to at most 15 quadrilateral 2-facets.

Remark. At step 4 of the algorithm above one should check a huge number of possibilities (more than 15000 cases for \widetilde{E}_{8}). This was done by computer.

3 Absence of simple ideal Coxeter polytopes in large dimensions.

Recall that α_{i} denotes the number of i-faces of a polytope P and $\alpha_{k}^{(i)}$ denotes the average number of i-faces of k-face of P.

We will need the following lemma:
Lemma 6. Let P be an n-dimensional simple polytope and let l be the number of vertices of P. Then

$$
\begin{equation*}
\frac{l}{\alpha_{2}}=\frac{2}{n(n-1)} \alpha_{2}^{(1)} \tag{1}
\end{equation*}
$$

Proof. Denote by m_{i} the number of i-angular 2-faces of P. Let us compute the total number N of vertices of 2-faces. Clearly, $N=\sum_{i \geq 3} i \cdot m_{i}$. From the other hand, each pair of edges incident to one vertex of simple polytope determines a 2 -face of the polytope. Thus, $N=l \frac{n(n-1)}{2}$, and we obtain the following equality

$$
\begin{equation*}
l \frac{n(n-1)}{2}=\sum_{i \geq 3} i \cdot m_{i} \tag{2}
\end{equation*}
$$

By definition,

$$
\begin{equation*}
\alpha_{2}^{(1)}=\frac{\sum_{i \geq 3} i \cdot m_{i}}{\alpha_{2}} . \tag{3}
\end{equation*}
$$

Combining (2) and (3), we obtain

$$
\frac{l}{\alpha_{2}}=\frac{2}{n(n-1)} \frac{\sum_{i \geq 3} i \cdot m_{i}}{\alpha_{2}}=\frac{2}{n(n-1)} \alpha_{2}^{(1)}
$$

Theorem 1. There is no simple ideal Coxeter polytope in \mathbb{H}^{n} for $n \geq 9$.

Proof. We use the notation from Lemma 6. Recall, that $\alpha_{2}=\sum_{i \geq 3} m_{i}$. By Lemma 3, $m_{3}=0$. Using (3), we have

$$
\begin{equation*}
\alpha_{2}^{(1)} \geq \frac{1}{\alpha_{2}}\left(4 m_{4}+5 \sum_{i \geq 5} m_{i}\right)=\frac{1}{\alpha_{2}}\left(5 \sum_{i \geq 4} m_{i}-m_{4}\right)=5-\frac{m_{4}}{\alpha_{2}} \tag{4}
\end{equation*}
$$

Consider Nikulin's estimate for $\alpha_{2}^{(1)}$:

$$
\begin{equation*}
\alpha_{2}^{(1)}<\binom{n-1}{n-2} \frac{\binom{[n / 2]}{1}+\binom{[(n+1) / 2]}{1}}{\binom{[n / 2]}{2}+\binom{[(n+1) / 2]}{2}}=4 \frac{n-1+\varepsilon}{n-2+\varepsilon} \tag{5}
\end{equation*}
$$

where $\varepsilon=0$ if n is even and $\varepsilon=1$ if n is odd.
Combining (4) with (5), we obtain

$$
\begin{equation*}
5-\frac{m_{4}}{\alpha_{2}} \leq \alpha_{2}^{(1)}<4 \frac{n-1+\varepsilon}{n-2+\varepsilon} \tag{6}
\end{equation*}
$$

Denote by l the number of vertices of P. Denote by N_{4} the total number of vertices of quadrilateral 2-faces. Clearly, $N_{4}=4 m_{4}$. By Lemmas 4 and 5 each of l vertices is incident to at most $n+6$ quadrilaterals. Thus, $N_{4} \leq l(n+6)$ and we have $4 m_{4} \leq l(n+6)$. In view of (1) and (5), we have

$$
\begin{align*}
\frac{m_{4}}{\alpha_{2}} \leq \frac{1}{4} \frac{l(n+6)}{\alpha_{2}} & =\frac{n+6}{4} \frac{2}{n(n-1)} \alpha_{2}^{(1)}< \\
& <\frac{n+6}{2 n(n-1)} \frac{4(n-1+\varepsilon)}{(n-2+\varepsilon)}=2 \frac{n+6}{n(n-1)} \frac{(n-1+\varepsilon)}{(n-2+\varepsilon)} \tag{7}
\end{align*}
$$

Combining (6) and (7), we obtain

$$
5-\frac{4(n-1+\varepsilon)}{(n-2+\varepsilon)}<\frac{m_{4}}{\alpha_{2}}<2 \frac{n+6}{n(n-1)} \frac{(n-1+\varepsilon)}{(n-2+\varepsilon)} .
$$

This implies

$$
(n-6+\varepsilon) n(n-1)<2(n+6)(n-1+\varepsilon)
$$

This is equivalent to $n^{2}-8 n-12<0$ if n is even and to $n^{2}-8 n-7<0$ if n is odd. The first inequality has no solutions for $n \geq 10$, and the second one has no solutions for $n \geq 9$. So, the theorem is proved.

References

[1] R. E. Borcherds, Automorphism groups of Lorentzian lattices. J. Algebra 111 (1987), no. 1, 133-153.
[2] H. S. M. Coxeter, Discrete groups generated by reflections. Ann. Math. 35 (1934), no. 3, 588-621.
[3] A. G. Khovanskij, Hyperplane sections of polyhedra, toric varieties, and discrete groups in Lobachevskij spaces. Funct. Anal. Appl. 20 (1986), 4150.
[4] V. V. Nikulin, On the classification of arithmetic groups generated by reflections in Lobachevsky spaces. Math. USSR Izv. 18 (1982).
[5] M. N. Prokhorov, The absence of discrete reflection groups with noncompact fundamental polyhedron of finite volume in Lobachevskij spaces of large dimension. Math. USSR Izv. 28 (1987), 401-411.
[6] E. B. Vinberg, The absence of crystallographic groups of reflections in Lobachevskij spaces of large dimension. Trans. Moscow Math. Soc. 47 (1985), 75-112.
[7] E. B. Vinberg, Hyperbolic reflection groups. Russian Math. Surveys 40 (1985), 31-75.
[8] E. B. Vinberg (Ed.), Geometry II, Encyclopaedia of Mathematical Sciences, Vol. 29. Springer-Verlag Berlin Heidelberg, 1993.

Independent University of Moscow, Russia
Max-Planck Institut für Mathematik Bonn, Germany
e-mail: felikson@mccme.ru pasha@mccme.ru

