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Introduction

Let IH™ be the n-dimensional hyperbolic space and let P be a simple polytope
in IH". P is called an ideal polytope if all vertices of P belong to the boundary of
HH"™. P is called a Cozxeter polytope if all dihedral angles of P are submultiples
of .

There is no complete classification of hyperbolic Coxeter polytopes. In [6]
Vinberg proved that there are no compact hyperbolic Coxeter polytopes in IH"
when n > 30. Prokhorov [5] and Khovanskij [3] proved that there are no Coxeter
polytopes of finite volume in IH" for n > 996. Examples of bounded Coxeter
polytopes are known only for n < 8, and examples of finite volume non-compact
Coxeter polytopes are known only for n < 19 [8] and n = 21 [1].

In this paper, we prove that no simple ideal Coxeter polytope exists in IH"
when n > 8.

The authors are grateful to the Max-Planck Institute for Mathematics in
Bonn for hospitality and excellent research conditions.

1 Preliminaries

1.1 Coxeter diagrams

It is convenient to describe Coxeter polytopes in terms of Coxeter diagrams.

A Cozeter diagram is one-dimensional simplicial complex with weighted
edges, where weights are either of the type cos - for some integer m > 3 or
positive real numbers no less than one. We can draw edges of Coxeter diagram
by the following way:

if the weight equals cos I then the nodes are joined by either (m — 2)-fold
edge or simple edge labeled by m;

if the weight equals one then the nodes are joined by a bold edge;

if the weight is greater than one then the nodes are joined by a dotted edge
labeled by its weight.

A subdiagram of Coxeter diagram is a subcomplex that can be obtained by
deleting several nodes and all edges that are incident to these nodes.

Let X be a diagram with d nodes u1,...,uq. Define a symmetrical d X d matrix
Gr(X) by the following way: g;; = 1; if two nodes u; and u; are adjacent then g;;
equals negative weight of the edge u;u;; if two nodes u; and u; are not adjacent
then g;; equals zero.



A Cozeter diagram X(P) of Cozeter polytope P is a Coxeter diagram whose
matrix Gr(X) coincides with Gram matrix of P. In other words, nodes of
Coxeter diagram correspond to facets of P. Two nodes are joined by either
(m — 2)-fold edge or m-labeled edge if the corresponding dihedral angle equals
2. If the corresponding facets are parallel the nodes are joined by a bold edge,
and if they diverge then the nodes are joined by a dotted edge.

By signature and rank of diagram ¥ we mean the signature and the rank of
the matrix Gr(X).

A Coxeter diagram X is called elliptic if the matrix Gr(X) is positively de-
fined. A connected Coxeter diagram X is called parabolic if the matrix Gr(X)
is degenerated, and any subdiagram of X is elliptic. Elliptic and connected
parabolic diagrams are exactly Coxeter diagrams of spherical and Euclidean
Coxeter simplices respectively. They were classified by Coxeter [2]. The com-
plete list of elliptic and connected parabolic diagrams is represented in Table 1.

A non-connected diagram is called parabolic if it is a disjoint union of con-
nected parabolic diagrams. A diagram is called indefinite if it contains at least
one connected component that is neither elliptic nor parabolic.

Let f be a k-dimensional face of P (by abuse of notation we write f is a
k-face of P). If P is a simple n-dimensional polytope then « is an intersection
of exactly n — k facets. Let fi,..., fn—x be the facets containing f and let
V1,...,Un—k be the corresponding nodes of X(P). Let X; be a subdiagram of
Y (P) with nodes vy, ...,v,—. We say that Xy is the diagram of the face f.

The following properties of X(P) and X are proved in [7].

e [cor. of Th. 2.1] the signature of Gr(X(P)) equals (n,1);

e [cor. of Th. 3.1] if a k-face f is not an ideal vertex of P (i.e. f is not
a point at the boundary of IH"), then X is an elliptic diagram of rank
n —k;

o [cor. of Th. 3.2]if f is an ideal vertex of P then X ¢ is a parabolic diagram
of rank n — 1; if f is a simple ideal vertex of P then X ¢ is connected;

e [cor. of Th. 3.1 and Th. 3.2] any elliptic subdiagram of X(P) corresponds
to a face of P; any parabolic subdiagram of X(P) is a subdiagram of the
diagram of a unique ideal vertex of P.

As a corollary, for simple ideal Coxeter polytope P C IH™ we obtain:

(1) Any two non-intersecting indefinite subdiagrams of ¥(P) are joined in
X(P).

(11) Any elliptic subdiagram of 3(P) contains less than n nodes;

(1rr) Any parabolic subdiagram of ¥(P) is connected and contains exactly n
nodes;



Table 1: Connected elliptic and parabolic Coxeter diagrams are listed in left
and right columns respectively.

- Chn (n>2) o o oo
Gz [ =] éz [ = ]
Fy o9 o f4 o9 o o

Eg kFI*” Eg T

Hs [ =]

H,y oo oo

Note, that a connected parabolic diagram with more than 3 nodes contains
neither bold nor k-fold edges for £ > 2. Hence, a Coxeter diagram of simple
ideal Coxeter polytope in IH", n > 3, contains only simple edges, 2-fold edges
and dotted edges.



Notation

Let F be a k-face of P and let fy,..., fn—k be the facets of P containing F'. Let

V1,...,Un—k be the corresponding nodes of X(P).
e We denote by X the subdiagram of X(P) spanned by v1,. .., vp—k.
e We also write Xp = <vq,...,0p_r> and g = <v1,0>, where © = <

V2, ..., Un—>. We denote by X\ {v1,...,vn} the subdiagram of ¥ spanned by
all nodes of ¥ different from vy, ..., vy,

e For elliptic and parabolic diagrams we use standard notation (see Table 1).
For example, we write Xp = A,.

e Let v and u be two nodes of 3(P). We write

v,u] = 0 if w and v are disjoint in X(P);

v,u] = 1 if u and v are joined by a simple edge;

v,u] = 2 if u and v are joined by a 2-fold edge;

[v,4]
[v,]
[v,u]
[v,]

v,u] = oo if w and v are joined by a dotted edge.

1.2 Nikulin’s estimate

Let P be an n-dimensional polytope. Denote by «;, ¢ = 0,1,...,n — 1, the
number of i-faces of P. For a face f of P denote by a{ the number of i-faces of
f (e.g. a; = af). Denote by

; 1
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the average number of i-faces of a k-face of P.

Proposition 1 (Nikulin [4]). For every simple convex bounded polytope P in
R" for i < k <[n/2] the following estimate holds:

o< (1))

k n—k) (/2 4 ([ D720y

Using this theorem for 2-faces (i = 0 and k = 2), Vinberg proved that no
compact Coxeter polytope exists in IH", n > 30.

In [3], Khovanskij proved that Nikulin’s estimate holds for edge-simple poly-
topes (a polytope is called edge-simple if any edge is the intersection of exactly
n — 1 facets). This was used by Prokhorov [5] when he proved that no Coxeter
polytope of finite volume exists in IH™ for n > 996.

In this paper, we study simple ideal hyperbolic Coxeter polytopes. Any
hyperbolic Coxeter polytope of finite volume is edge-simple (see [3]). Thus, we
can use Nikulin’s estimate. We consider the combinatorics of Coxeter diagrams
of simple ideal hyperbolic Coxeter polytopes and prove that such a polytope
has no triangular 2-faces and that the number of quadrilateral 2-faces of such
a polytope is relatively small. This falls into a contradiction with Nikulin’s
estimate in dimensions greater than 8.




2 Absence of triangular 2-faces
and estimate for quadrilateral 2-faces.

Let P be a simple ideal Coxeter polytope in IH™ and let V be a vertex of P.
Since P is simple, the vertex V is contained in exactly n edges VV;, i =1,...,n.
Denote by v; the node of ¥y such that Xy, = 3y \{v;}. Denote by u; the node
of 3(P) such that Yy, = <u;, Sy, >.

Now, starting from the diagram Xy, we want to describe all possible di-
agrams <wv;, u;, 2yy, >. For example, suppose that Xy = A,_1, n # 3,8,9.
Then Yyy, = Xy \v; = A,—1. It is easy to see, that if n # 3,8,9 then ﬁn_l is
the only parabolic diagram with n nodes containing a subdiagram A,,_;. Thus,
Yy, = A,y Note, that [v;,u;] # 0 and [v;,u;] # 1, otherwise <v;,u;, Dy, >
does not satisfy property (111). Hence, either [v;,u;] = 2 or [v;,u;] = oo, and
the subdiagram <w;, u;, Xyy;> is one of two diagrams shown in Figure 1.

Vi U

Figure 1: Two possibilities for <v;,u;, Xyv,>, if Xy = A,—1, n # 3,8,9.

Similarly, one can list all possible diagrams <u;,v;, Xy, > for any other
type of 3y. Recall that Xy is one of the diagrams shown in the right column
of Table 1. A case-by-case check using properties (1)—(111) shows the following:

Lemma 1. Suppose that n > 5. In the notation above [v;,u;] # 0. If v, u;] =1
then, up to interchange of v; and u;, the diagram <v;,u;, Xvv,> coincides with
one of the diagrams shown in Figure 2.

a)‘il—'*...g‘:' bﬁ;—’*...{

Figure 2: Two possibilities for <v;,u;, Yyy,> when [v;, u;] = 1.

A node v of a diagram ¥ is called a leaf of 3 if 32 contains exactly one node
joined with v.



Lemma 2. Assume that n > 3. Then for the diagram <wv;,u;, Xvv, > the
following property holds: if v; is a leaf of Xv and wu; is not a leaf of Xy, then
Yy = Ek, Yy, = Ek; where k =7 or 8. In this case <v;,u;, Ly, > is one of
the diagrams shown in Figure 3.

Proof. Consider the subdiagram Xyv;,. Since ¥y = <Yyvy,,v;> and v; is a leaf
of ¥y, Xy, is connected. Since u; is not a leaf of Xy, = <Xy v,, u;>, there are
at least two edges joining u; with ¥Xyvv,. Hence, ¥y, contains a cycle. Combined
with (111), this implies that ¥y, = Ag. Hence, Syy, = Ag. The only parabolic
diagrams with k + 1 nodes containing a subdiagram A are ﬁk, ég, E; and Eg.
Since n > 3 and Xy has at least one leaf v;, Xy = E7 or Eg.

We are left to show that [v;,u;] = 2 or [v;,u;] = oco. This follows from

Lemma 1.
O

ﬁ Ujg I Us
Figure 3: Possibilities for <v;, u;, Xvv,> when v; is a leaf of ¥y and u; is not a
leaf of Xy,

Lemma 3. Let P be a simple ideal Cozeter polytope in IH™, n > 5. Then P
has no triangular 2-faces.

Proof. Suppose that UVW is a triangular 2-face of P. Then there are exactly
n + 1 facets of P containing at least one of the points U, V and W. The whole
triangle UVW is contained in exactly n — 2 of these facets. Since P is simple,
for each edge of UVW there exists a unique facet containing the edge and not
containing UVW. Denote these facets by @, and @ for the edges VW, UW
and UV respectively. Denote by u, v and w the nodes of ¥(P) corresponding
to @, v and w respectively. Then Xy = <v,w, Xpyw>, Ly = <u,w, Zyyw >
and Yy = <wu,v, Xyyw> (see Figure 4a). In particular, (111) implies that all
these diagrams are parabolic.

Consider the edge of Yy joining u and v. By Lemma 1, either [u,v] =1 or
[u,v] =2 or [u,v] = oo.



Figure 4: Notation for a triange (a) and for a quadrilateral (b).

Suppose that [u,v] = co. Then Yw = <u,v, Zyyw > contains a dotted
edge, in contradiction to the fact that Xy is parabolic. Thus, [u,v] # co and,
similarly, [v, w] # oo and [u, w] # co.

Suppose that u is a leaf of ¥y and v is not a leaf of ;. Then Lemma 2 shows
that <w, Xw> = <u,v,w, Zyyw > is one of the diagrams shown in Figure 3.
No of these diagrams contains a node w # u,v, such that <w,v,Xyyw > is
parabolic. Thus, no of these diagrams corresponds to a triangle, and we may
assume that either both u and v are the leaves of ¥y and Xy respectively or
none of them is.

Suppose that [u,v] = 2. Tt follows from Table 1 and the assumption n > 5
that either u or v is a leaf of Xyy. Without loss of generality we can assume that
w is a leaf. Then it is easy to see that we have one of the diagrams shown in
Figure 5. Consider the case shown in Figure 5a. Since [u, w] # oo, the diagram
<u,w,Xyyw> = Jy is elliptic, that is impossible by (11). Consider the case
shown in Figure 5b. If [u,w] = 1 then <u,w, Zyyw> = Ty is elliptic, that is
impossible. If [u, w] = 2 then <u,v,w> is a parabolic diagram with only three
nodes in contradiction to (IIr).

u u v
3,; 3.4
a) w b) w

Figure 5: Possibilities for the case [u,v] = 2.

Suppose that [u,v] = 1. By Lemma 1, ¥y = <u,v, Xyy > coincides with
one of the diagrams shown in Figure 2 (up to interchange of w and v). It is
easy to see that Yy contains no node w # u, v such that <u,v, Xyy \w> is a
parabolic diagram. Note that Yy = <w, Eyyw > and <u,v,Xpy\w> = <
u, v, Syyw> = L. Thus, we have no parabolic diagram Xy, so [u,v] # 1.

By Lemma 1, the case [u,v] = 0 is also impossible. There are no more
possibilities for [u,v]. Hence, no diagram Xyyw can be constructed, and P

contains no triangular faces.
O



Note that an ideal Coxeter polytope in IH® may have a triangular 2-face.
For example, the Coxeter diagram shown in Figure 6 determines a 5-dimensional
ideal Coxeter simplex. All 2-faces of any simplex are triangles.

Figure 6: This diagram determines a 5-dimensional ideal Coxeter simplex.

Lemma 4. Let V be a vertex of simple ideal Coxeter polytope P in H™, n > 9.
Then V belongs to at most n + 3 quadrilateral 2-faces.

Proof. Let ¢ be a quadrilateral 2-face with vertices V,V;,V; and V;;. The 2-
face ¢ belongs to n — 2 facets, each edge of ¢ belongs to n — 1 facets and each
vertex belongs to n facets. Denote by v;, 4;, v; and u; the facets not containing g
and containing the edges V'V;, V;Vi;, V'V, and V;Vj; respectively (see Figure 4b).
Denote by v;, u;, v; and u; the nodes of 3(P) corresponding to the facets v;, %, U;
and u; respectively.

Then Yy = <wv;,v5,3,>, By, = <vj, Ui, 5¢>, Xy, = <04, U5, Lg>, and
Yy, = <ug,uj, Xg>. See Figure 7 for an example of a quadrilateral.

U
V ’ 0

U Us Uj

B )

Figure 7: Example of a quadrilateral

Suppose that Xy = A,_; and v; and v; are disjoint in Xy . Since n > 8,
each of the vertices V;, Vj, Vi; are of the type A,_1. Consider <v;,u;, vy, >.



By (1), either [v;, u;] = oo or [v;, u;] = 2 (cf. Figure 1). The same statement
holds for [vj,u;]. Since vy, is a parabolic diagram A,_1, we have [ui, u;] =0
(see Figure 8). Then X(P) contains two disjoint indefinite subdiagrams v;u;w;
and vjujw;. Thus, any quadrilateral containing V' corresponds to a pair of
neighbouring nodes of ¥y, and V belongs to at most n quadrilaterals.

Figure 8: v;u;w; and vju;w; are disjoint indefinite subdiagrams.
In this diagrams k;, k; = 2 or co.

From now on we assume that ¥y # gn_l. Since n > 9, Xy = én_l, Ch_1
or Dy,_1. Define a distance p(u, w) between two nodes u and w of connected
graph as the number of edges in the shortest path connecting v and w.

Let  be a leaf of ¥y. Denote by ng) (z) a connected subdiagram of Xy
spanned by five nodes closest to z in Ey (i.e., if vy € Eg) (x) and v, ¢ Eg) (x)
then p(z,vr) < p(z,v;). Note that for Xy = En,l, C~'n,1 and 5,1,1 whenn > 9

the diagram Eg’)(az) is well-defined for any leaf x of Xy .

Denote by L(Xy) the set of leaves of 3y . Define

5 5
W= J sV
IiGL(Ev)

(see Fig. 9). It is easy to see that if n > 10 then ng) consists of two connected

components.
Q—I—O—Of—O—O—kﬂ—.—.—.:.

Figure 9: Subdiagram ES) for Ly = Bio.

Suppose that v; and v; do not belong to the same connected component of
Eif) (v; or vj may lie in EV\E@). By the same reason as in the case Xy = A,,_1,
nodes v; and v; are neighbours in Xy

Suppose that v; and v; belong to the same connected component of Zg)).

Suppose that v; and v; are disjoint. A straightforward check of possibilites with



use of properties (I)—(111) shows that if 3, is the diagram of a quadrilateral 2-
face, then the connected component of Eg,S )

(up to interchange of v; and v;):

—o o 0 o *——=o o o o >—0—0—0
Vi Vj V; Vj Uj

U4

is one of the following configurations

Hence, the quadrilaterals containing V' are encoded either by one of n — 1
pair of neighbouring nodes of ¥y or by one of two pairs of nodes for each of two
connected components of ng). Thus, the number of quadrilaterals containing
A is less than or equal to 2+2+4+ (n—1) =n+3.

O

Lemma 5. Let A be a vertex of a simple ideal Cozeter polytope P in IH®. Then
A belongs to at most 15 quadrilateral 2-faces.

Proof. The existence of Xy = Es course a lot of possibilities for the diagram
<v,v;, yy;,>. This leads to a large number of different diagrams <wv,v;, ¥;>.
To observe all these possibilities we use a case-by-case check organized as follows:

Step 1. We consider the cases Xy = gg, Eg, C~’8, jjg and Eg separately.

Step 2. For each node v;, i = 1,...,9, of Xy we list all possible diagrams <
Vi, s, 2y, > such that <wu;, ¥yy, > is parabolic and <wv;, u;, Xyy, > sat-
isfies properties (1)—(111). We call such a diagram <wv;,u;, Zyy, > an
edge-pattern. Clearly, any edge incident to V corresponds to some edge-
pattern <v;, u;, Xy, >.

Some nodes v; of Xy may admit several edge-patterns <v;, u;, Xy, > (up
to 8 edge-patterns for one of the nodes of Eg). Denote the edge-patterns
by (vi,u;)r, r = 1,..., k;, where k; is the number of patterns for the node
(o of Ev.

Step 3. For each edge-pattern (v;, u;), we consider all edge-patterns (v;,u;)s, j #
i. We list all cases when v;,u;,v;,u; correspond to the facets of some
quadrilateral 2-face ¢ (where ¥4 = v\ {v;,v;}).

Step 4. For each node v;, 1 < i < 9, choose an edge-pattern (v;,u;),,. Then
compute the total number Q(r1,...,79) of quadrilaterals determined by
(vi,ui)r, and (v, u ), for 1 <i <j <9.

Step 5. Denote by Q(Xy ) the maximal value of Q(r1,...,rg) for all r1,... rg. Tt
turns out that

Q(4s) = 15,
Q(Bs) = 14,
Q(Og) = 12a



Q(Ds) = 15,

Q(Es) = 14.

Thus, for any type of 3y we obtain that V' belongs to at most 15 quadrilat-
eral 2-facets.
O

Remark. At step 4 of the algorithm above one should check a huge number of
possibilities (more than 15000 cases for Fg). This was done by computer.

3 Absence of simple ideal Coxeter polytopes
in large dimensions.

Recall that a; denotes the number of i-faces of a polytope P and oz,(f) denotes
the average number of i-faces of k-face of P.
We will need the following lemma:

Lemma 6. Let P be an n-dimensional simple polytope and let | be the number

of vertices of P. Then
l 2 (1)

[ . 1
as  n(n—1) 2 (1)
Proof. Denote by m; the number of i-angular 2-faces of P. Let us compute the

total number N of vertices of 2-faces. Clearly, N = ) i-m;. From the other
i>3

hand, each pair of edges incident to one vertex of simple polytope determines a

2-face of the polytope. Thus, N =1 @, and we obtain the following equality

n(n —1) .
IT = Z 1-m;. (2)
>3
By definition,
Z i- m;
(1 _ 23
=— 3
3 o (3)

Combining (2) and (3), we obtain

— = = Qg "

a nn—1) a  nn—1)

Theorem 1. There is no simple ideal Cozeter polytope in IH"™ for n > 9.
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Proof. We use the notation from Lemma 6. Recall, that as = > m;. By

i>3
Lemma 3, mg = 0. Using (3), we have
(1) 1 1 ' _ my
Qs Za—2(4m4+52m¢)—a—(SZmz—m4)—5—a—2. 4)

i>5 2 >

Consider Nikulin’s estimate for agl):

_ [n/2] [((n+1)/2] _
;1)<<” 1)(1)"’( 1 ):4” 1+57 (5)
n—2 ([%2]) + ([(n+21)/2]) n—2+e¢

where € = 0 if n is even and € =1 if n is odd.
Combining (4) with (5), we obtain

my (1) n—1+e¢

5— — < <4——. 6
o T @2 n—2+c¢ (6)
Denote by [ the number of vertices of P. Denote by Ny the total number of

vertices of quadrilateral 2-faces. Clearly, Ny = 4my4. By Lemmas 4 and 5 each
of [ vertices is incident to at most n + 6 quadrilaterals. Thus, Ny < I(n+6) and
we have 4my < I(n+6). In view of (1) and (5), we have

4 _1ln+6) n+6 2 (1)
2z —
as T4 4 n(n—l)a2 <
n+6 4(n—1+¢) n+6 (n—1+¢)

-0 =2+  amn—Dwm-3+9 7

Combining (6) and (7), we obtain

dn—1+¢) my n+6 (n—1+¢)
(n—2+c¢) a_2<2n(n—1)(n—2+5)'

This implies
(n—6+enn—1)<2(n+6)(n—1+¢).
This is equivalent to n? —8n — 12 < 0 if n is even and to n? —8n — 7 < 0 if n

is odd. The first inequality has no solutions for n > 10, and the second one has

no solutions for n > 9. So, the theorem is proved.
O
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