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Exercise X.8.3. Evaluate the integral 

fc (z - 2)-1 (2z + 1)-2(3z - 1)-3dz, 

where C is the unit circle with the counterclockwise orientation. (Suggestion: 
Try to use the preceding exercise.) 

Exercise X.8.4. Evaluate the integrals 

r sinz d 
le 2z2 - 5z + 2 z, 

re 2z2 - 5z + 2 dz 
Jr smz 

where C is the unit circle with the counterclockwise orientation. 

Exercise X.8.5. Extend the residue theorem to the case where the function 
f has countably many isolated singularities in the domain G. 

X.9. Cauchy's Formula 

Let G be a domain in C, f a holomorphic function in G, and r a simple 
contour contained with its interior in G. Then 

J(zo) = ~ r f(z) dz, 
2m Jr z - zo 

zo E int r. 

This is an immediate consequence of the residue theorem: under the 
given hypotheses, the integrand in the preceding integral is holomorphic in 
G\{zo}, and its residue at zo is f(zo). 

Cauchy's formula for the n-th derivative (n = 1, 2, 3, ... ) is a conse­
quence: under the given hypothesis: 

f(n)(zo) = n! r f(z) dz 
27ri Jr (z - zo)n+l ' 

zo E int r. 

The deduction is contained in the discussion of Cauchy integrals in Section 
VII.7. 

X.10. More Definite Integrals 

The exploitation of complex integration to evaluate improper Riemann in­
tegrals has been illustrated in Sections VI.12 and VII.4. Now that we have 
further developed the theory, we can handle many additional integrals. The 
residue theorem is an especially powerful tool for this purpose. 

100 sinx 
Example 1. --dx. 

0 x 
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Figure 8. The contour f •,R for Example 1. 

This is an important integral in Fourier analysis. It is not obvious that 
the integral converges. Although the integrand is well behaved at the left 
endpoint of the interval of integration, there is potential trouble at the far 

end, because fo 00 I si~ x ldx diverges (Exercise X.10.1 below). Nevertheless, 

as we shall prove on the basis of Cauchy's theorem, the given integral does 
converge. 

For r > 0, let Sr denote the semicircle in the upper half-plane with center 
0 and radius r, oriented counterclockwise. For 0 < E < R, let rE,R denote 
the closed curve consisting of the interval [t, R] followed by the semicircle 
SR followed by the interval [-R, -t] followed by the semicircle -SE (see 

iz 
Figure 8). The function 2:_, whose imaginary part on the real axis equals 

z 
sin x, is holomorphic in C\ { 0}, a domain containing r € R and its interior. x , 
By Cauchy's theorem, 

r eiz dz = 0. 
lr,,R z 

(We are using here the general Cauchy theorem. By an argument like that 
in Section VII.5, the perverse reader could draw the same conclusion using 
only Cauchy's theorem for convex domains. Now that we have the general 
Cauchy theorem, such contortions are unnecessary.) 

ix 
On the real axis, the real part of 2:_ is cos x, an odd function (undefined 

x x 
) d h . . 1 d d . sin x f . at 0 , an t e imagmary part, as a rea y note , is --, an even unction. 

x 
The preceding equality therefore implies that 

JR sinx J eiz J eiz 
2i --dx = - -dz + -dz. 

€ x SR z s. z 

We shall now take the limit as R--+ oo and E--+ 0. 
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Consider first the integral over SR· We shall prove that it tends to 0 
as R ---+ oo. This is intuitively plausible, because, in the upper half-plane, 
leiz I is very small except in the vicinity of the real axis. Introducing the 
parametrization t f-+ Reit (0 :St :S 7r) of SR, we can write 

1 eiz dz · 11r iReit d = i e t, 
SR z 0 

and so 

11R e:z dzl :S 17r leiReit ldt 
= 11r e-Rsintdt 

= 2 fo7r/2 e-Rsintdt. 

Using the inequality sin t ~ 2t/7r (0 :S t :S 7r /2), we obtain 

Because the right side tends to 0 as R---+ oo, we can conclude that 

lim r eiz dz = 0, 
R--><X! lsR z 

as desired. 
eiz - 1 

Consider now the integral over S,. The function f(z) = has a 
z 

removable singularity at the origin; in particular, it stays bounded near the 
origin. From this, one easily concludes that 

eiz 1 
Since - = - + f(z) and 

z z 

lim r J(z)dz = 0. 
E-->0 JS< 

r ~dz = 7ri 
ls. z 

for all t: (by a straightforward calculation), we obtain 

lim r eiz dz = 7ri. 
E-->0 JS< Z 
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Combining the two limits just found with the equality ( *), we obtain 

JR. 
1. smxd 7r 
Im -- X = -. 
•-o x 2 

R-+(X) f 

In other words, 

{
00 sinx dx 

} 0 x 

7r 

2 

100 cosx 
Example 2. --4 dx. 

-oo 1 + x 

In this example we can see at the outset, using a comparison test, that 
the integral converges. (Details are left to the reader; prior knowledge of 
convergence will not be used below.) As in the preceding example, we make 
use of the function eiz, whose absolute value in the upper half-plane is 
bounded by 1. The integrand in our integral coincides on the real axis 

eiz 
with the real part of the function 1 + z4 • That function is holomorphic in 

C except for simple poles at the points errin/4 , n = 1, 3, 5, 7 (the fourth 
roots of -1). 

For R > 1, let r R denote the closed curve consisting of the interval 
[-R, R] followed by the semicircle SR (defined as in the preceding example). 

eiz 
The singularities of the function ---4 in the interior of r R are the points 

l+z 
z1 = erri/4 and z2 = e 3rri/4 . By the residue theorem, 

To evaluate the residues we use the result of Exercise VIII.12.1: if the func­
tions g and h are holomorphic in an open set containing the point zo and h 

g g(zo) 
has a simple zero at zo, then resz0 h = h'(zo). We thus have 
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(~)- exp(iz2) 
reSz=z2 4 - 3 

1 + z 4z2 

exp(-~ - ~) 
( 1 i ) 4 v'2 + v'2 

= l ( ~ -~) e-l/ v'2 (cos ~ - i sin ~). 
The residue at z2 is the negative of the complex conjugate of the residue at 
z1, so that the sum of the two residues equals 2i times the imaginary part 
of the residue at z1. The sum of the two residues therefore equals 

iv'2 -1/v'2 ( 1 . 1 ) 
4 e -cos v'2 - sm v'2 . 

It follows that 

--dz = --e-l/ 2 cos - +sin - . 1 eiz nv'2 V2( 1 1 ) 
rR 1 + z4 2 v'2 v'2 

eix 
On the real axis, the imaginary part of ---4 is an odd function. Thus, 

l+x 

1 eiz JR cosx J eiz 
--dz = --dx + --dz. 

r R 1 + z4 - R 1 + x4 s R 1 + z4 

This in combination with the preceding equality gives 

JR cosx nv'2 -l/ 12( 1 . 1 ) J eiz --dx = --e v<- cos-+sm- - --dz. 
_ R 1 + x 4 2 v'2 v'2 s R 1 + z4 

We now take the limit as R ___, oo. The absolute value of the integrand in 
1 

the integral over SR is bounded by R4 _ 1 , so the integral itself is bounded 

in absolute value by R: ~ 1 , which tends to 0 as R ___, oo. We can conclude 

that 

100 1 
Example 3. ---dx, 

O 1 + xa 
a> 1. 

As in the last example, one can see at the outset, by means of a compar­
ison test, that the integral converges, although that knowledge will not be 

required below. In the domain G = {reiO: r > 0, le - ~1 < n} we consider 

the branch of the function za that takes the value 1 at the point z = 1. We 
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Re21ri/a 

• 
0 E 

27r/a 

" . . . 
R 

Figure 9. The contour r <,R for Example 3. 

135 

1 
denote this function simply by za. The function --- is holomorphic in G 

1 + za 
except for a simple pole at the point zo = e7ri/a. 

For r > 0, let Ar denote the circular arc { reiO : 0 < () < 2;}, oriented 

counterclockwise. For 0 < E < 1 < R, let f €,R denote the closed curve con­
sisting of the interval [E, R] followed by the arc AR followed by the segment 

[Re27ri/a,Ee27ri/a] followed by the arc -A€ (see Figure 9). By the residue 

theorem, 

r - 1-dz = 21ri reSz=zo (-1-) · Jr 1 + za 1 + za 
<,R 

We can compute the residue by the same method we used in the preceding 
example. We obtain 

-e7ri/a 

a 

Thus 

i 1 -21riem/a 
--dz= 

r,,R 1 + za a 

1 JR 1 Now, the integral of --- over the interval [E, R] equals ---dx, 
1 + za € 1 + xa 

and the integral of the same function along the segment [ Ee27ri/ a, Re27ri/ a J 

equals e27ri/a JR --1-dx (as one sees by using the parametrization t r--> 
€ 1 + xa 
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te27ri/a (t::::; t:::; R)). We can therefore rewrite the preceding equality as 

( 27ri/a) JR 1 d - -27rie7ri/a 1 1 d 1 1 d 1 - e --- x - + -- z - -- z. 
E 1 + xa a A. 1 + za AR 1 + za 

We now take the limit as E ---+ 0 and R ---+ oo. The integral over AE clearly 
tends to 0 (since the integrand stays bounded). In the integral over AR, the 

1 
integrand is bounded in absolute value by R , so the integral itself is a_l 

bounded in absolute value by (~7rR ) , which tends to 0 as R---+ oo. In a a_l 
the limit we thus obtain 

( 1 - e27ri/a) roo _l_dx 
lo 1 + xa 

giving (after a short calculation) 

--dx 100 1 

o 1 + xa 

7r 
a sin~· 

Exercise X.10.1. Prove that the integral fo 00 I si: x I dx diverges. 

Exercise X.10.2. Derive the formula 

100 cosx d --- x 
_ 00 coshx 

7r 
cosh~ 

eiz 
by integrating the function --h- around the rectangle with vertices - R, R, R+ 

cos z 
7ri, -R + 7ri, and letting R---+ oo. 

100 sin2 x 1 - e2iz 
Exercise X.10.3. Evaluate --2-dx by integrating the function 2 

0 x z 
around the curves rE,R used in Example 1, and taking the limit as t: ---+ 0 
and R---+ oo. 

Exercise X.10.4. Derive the formula 

f 00 cos ax 7r -ab 

lo (x2 + b2)2dx = 4b3 (1 + ab)e ' 

Exercise X.10.5. Derive the formula 

roo xa-1 dx 

lo 1 + x2 

Exercise X.10.6. Evaluate 

2 sin ( 7r2a ) ' 

a::=: 0, b > 0. 

0 <a< 2. 

127r cos() 
----de, 

0 a - cos() 
a> 1. 
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Exercise X.10. 7. Let the function f = u +iv be holomorphic in a domain 
containing the closed unit disk. Derive the relations 

1 12rr iO + 
-2 e·e z f(eie)d() = 2f(z) - f(O), 

7r o ei - z 

~ {2rr eie + z f(eiB)d() = f(O), 
27r Jo eie - z 

From these deduce Herglotz's formula, 

1 12rr eie + z . 
f(z) = -2 .0 u(ei8 )d() + iv(O), 

7r o ei - z 

and Poisson's formula, 

1 12rr 1 - lzl2 iO 
u(z) = - I .0 12 u(e )d(), 

27r 0 ei - z 

lzl < 1, 

lzl < 1. 

lzl < 1, 

lzl < 1. 

(These formulas are of central importance in more advanced function the­
ory.) 

X.11. The Argument Principle 

Let G be a domain in C and r a simple contour contained with its interior 
in G. Let f be a holomorphic function in G without zeros on r. Then the 
number of zeros off in int r, taking into account multiplicities, equals 

_1 1 f'(z) dz. 
27ri r f(z) 

From the discussion in Section IX.3 we know that 

~ 1 f'(z) dz 
i r f(z) 

equals the increment experienced by arg f(z) as z makes one circuit of r. 
The argument principle thus states that each zero off in int r accounts for 
27r of this increment. Multiple zeros, as indicated in the statement of the 
principle, are counted as many times as required by their multiplicities. 

To establish the argument principle we first note that f can have only 
finitely many zeros in int r. In fact, the set ext r is open and contains both 
C\G and the unbounded connected component of C\r. The set C\ ext r 
is thus a closed and bounded (i.e., compact) subset of G. Since the zero set 
off has no limit points in G (see Section VII.13), there can be only finitely 
many zeros of f in C\ ext r, and thus there are only finitely many zeros of 
f in int r' as asserted. 

Suppose z1, ... , Zp are the zeros off in int r, and let m1, ... , mp be their 
respective orders. Let G1 be the domain obtained by removing from G the 
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zeros off in ext r. Then rand its interior are contained in G1, where the 
function f' / f is holomorphic except for simple poles at the points z1, ... , Zp· 

By the residue theorem, 

r f'(z) . p !' 
Jr f(z)dz = 2m~reszk(f ). 

A simple calculation (requested as Exercise VIII.12.3) shows that 

f' 
reszk ( f) = mk, 

and the desired equality follows. 

Exercise X.11.1. Evaluate 

1 1 zn-1 
- dz 
27fi c 3zn - 1 ' 

where n is a positive integer, and C is the unit circle with the counterclock­
wise orientation. 

Exercise X.11.2. (Argument principle for meromorphic functions.) Let G 
be a domain in C and r a simple contour contained with its interior in G. 
Let the function f be holomorphic in G except for isolated poles. (Such an 
f is said to be meromorphic in G.) Prove that if f has neither zeros nor 
poles on r' then 

_1 r f'(z) dz 
27fi Jr f(z) 

equals the number of zeros that f has in int r minus the number of poles 
that f has in int r, taking account of multiplicities. 

Exercise X.11.3. Let the function f be holomorphic in a domain contain­
ing the closed unit disk. Prove that the increment in arg f around the unit 
circle equals 27r times the total number of zeros of f in the closed unit disk, 
provided zeros on the unit circle are counted with one-half their multiplici­
ties. (Part of the problem is to make a reasonable definition of the increment 
in arg f.) 

X.12. Rouche's Theorem 

Let G be a domain in C, Ka compact subset of G, and f and g holomorphic 
functions in G such that lf(z) - g(z)I < lf(z)I for every point z in the 
boundary of K. Then f and g have the same number of zeros in the interior 
of K, taking into account multiplicities. 

Notice that the hypotheses imply that neither f nor g vanishes on the 
boundary of K. Roughly, the theorem states that the number of zeros a 


