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Chapter 1

Equivariant Homotopy Theory and
the Kervaire Invariant One Problem

Mike Hopkins

Notes by Chris Schommer-Pries

Abstract: This course will cover the basics of equivariant stable homotopy theory and
go through the solution of the Kervaire invariant problem.

1.1 Day One date: Aug 31, 2011

The goal is to explain the following theorem

Theorem 1.1.1 (Hill-H.-Ravenel). If M is a stably framed smooth manifold of Kervaire
invariant one, then dimM is one of 2, 6, 14, 30, 62 or 126.

This course will not be about smooth manifold. Homotopy theory provided the tools to
solve this.

Started with Pontryagin in the 1930s, with the study of maps f : Sn+k → Sn in terms of
f−1(x) for x ∈ Sn. If x is a regular value then this will be a smooth manifold, but it comes
with some extra structure. We can choose a basis at the tangent space of x, and this induces
a framing of the normal bundle of Mk = f−1(x) = M0. Such an M is what is known as a
stably framed manifold.

[[FFF pic of manifold M]]
A different choice of y ∈ Sn gives a different manifold M1. In between there is a manifold

N with ∂N = M0 t M1 as stably framed manifolds. If you push this a little farther, as
Pontryagin did, you get a 1-1 correspondence between maps Sk+n → Sn up to homotopy
(i.e. πn+kS

n) and stably framed k-manifolds (+ some conditions) up to cobordism. These
conditions are about the n and tell you your bordism is embedded in a sphere Sn+k.

Suspension gives a map πn+kS
n → πn+k+1S

n+1, and the limit is πstk S
0. We get a bijection

between this and stably framed manifolds up to cobordism.
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k = 0: We get πst0 S
0 = Z counts number of points with signs. It is the degree of the map.

k = 1, [[FFF pic with two framings on the circle]]. πst1 S
0 = Z/2. It is not completely

obvious how to get this invariant from a random framed 1-manifold.
For k = 2, Pontryagin made a very interesting argument. Let’s look at oriented surfaces.

There is S2, T 2, and higher genus surfaces. The 2-sphere bounds a disc and the disc has a
framing, so there is a framing of the 2-sphere which represents zero. Suppose we have another
framing. The there difference is a map S2 → O(n), up to homotopy. But this is zero, as was
already known in Pontryagin’s day (it is a result due to Cartan). You can use the homotopy
to construct the cobordism between any two stable framings of S2.

The next idea introduced by Pontryagin was rediscovered by Milnor in the 50’s and is not
called (stably framed) surgery. You take your framed surface, you pick an embedded circle,
cut open and glue in two discs. It takes something of genus g to genus g − 1. It lowers the
genus by one. We have to make sure this maneuver can allow an extension of the framing.
This will be true if the framed circle represents the zero class in πst1 S

0 = Z/2. So this gives
a map:

ϕ : H1(Σ;Z/2)→ Z/2

and you can do surgery if and only if there is a non-zero element X ∈ H1(Σ;Z/2) such that
φ(X) = 0.

Pontryagin then made the following argument: If genus of Σ > 0, then dimH1(Σ) > 0
and is even, hence greater then one, hence the kernel of ϕ is non-zero and so such an X
always exists.

The error is that ϕ is not linear. It is quadratic, φ(x+y) = φ(x)−φ(y) = I(x, y) = x∪y.
There are two such quadratic refinements and they are distinguished by Arfϕ ∈ Z/2. We
get πst2 S

0 ∼= Z/2, with Σ 7→ Φ(Σ) = Arfϕ.
Question: In which dimensions is every element of πstk S

0 represented by a homotopy
sphere?

Answer: It is true in all dimensions, except 2, 6, 14, 30, 62, and possibly 126.
In the 60’s Kervaire constructed an map

ϕ : H2k+1(M4k+2;Z/2)→ Z/2

which is a quadratic refinement of the intersection form, similar to the above. Here M is a
very large class of manifolds which we will be a little vague about what structure is needed.
The Kervaire invariant is Φ(M) = Arfϕ. Then if M is smooth, Φ(M) = 0 if dim M = 10
or 18. Then X is two copies of the tangent bundle of the 5-sphere glued together, and
∂X = N ∼= S9 topologically, so M = X ∪CN . Then Φ(M) = 1. Therefore M has no smooth
structure!

Question: In which dimensions can Φ(M) be non-zero for smooth stably framed M?
Answer: Only in 2, 6, 14, 30, 62, and possibly 126.
So far, this seems quite removed from homotopy theory. It was a fantastic triumph when

Brouder in 1966 showed that Φ(M) is zero unless dimM = 2j+1 − 2. It was believed that
it was non-zero in all these dimensions. Moverover, he showed that a manifold M exists if
and only if there is an element θj ∈ π2j+1−2S

0 representing h2
j at the E2-term of the Adams

spectral sequence. This identified the Kervaire invariant problem with something that had
been touched before.

We are going to show, using equivariant homotopy theory, that most of the time this
element can’t exist.
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1.2 date: Sept 2, 2011

Last time we were overviewing the history of the Kervaire invariant one problem. We ended
with Browder’s theorem, which we’ll review. If you want more, there will be some videos of
talks linked to the course website.

Theorem 1.2.1 (Browder). Unless dimM = 2j+1 − 2 Φ(M) = 0. There exists M2j+1−2

with Φ(M) = 1 if and only if there exists θj ∈ πst2j+1−2
S0 represented by h2

j in the E2-page of
the Adams spectral sequence.

Theorem 1.2.2 (Hill-H.-Ravenel). Φ(M) = 0 unless dimM = 2, 6, 14, 30, 62, and possibly
126, i.e. θj does not exist for j ≥ 7.

Ingredients of the proof: We construct a multiplicative cohomology theory Ω and we prove
the following things.

1. Detection Theorem: If θj exists then it has a non-zero image in Ω̃2j+1−2(S0) = π2j+1−2Ω.

This is like understanding a Ω-degree of the (stable) map θj : SN+2j+1−2 → SN . This
is the one place where we really use the details of h2

j and the Adams spectral sequence.

2. Gap Theorem: πiΩ = 0 for −4 < i < 0.

3. Periodicity Theorem: Ω is periodic with period 256.

These together prove the main theorem.
We are going to introduce a general technique for constructing a large family of coho-

mology theories. There will all have some periodicity and they will also have this same
gap.

Example 1.2.3. Real K-theory KO has 8-fold periodicity and there is the same gap between
-4 and 0. �

The detection theorem is the least interesting and most computational. It is where you
have to understand what h2

j is. But it is largely going through a list of already known results.
It allows you to select the cohomology theory Ω. In some way this is the part we understand
the least. Part of the problem is that we don’t have a good geometric understanding of what
the Kervaire invariant means geometrically. We will delay the discussion of the detection
theorem until later in the course.

So what about this theory Ω? When you think of Ω you should think of an analogy to
the situation for K, KO, and KR. KR is an equivariant cohomology theory for C2-actions.
It is the K-theory of complex bundles with C2 acting equivariantly by complex conjugation.
Then Ω is like KO and the analog of KR ΩO which has a C8-action. Ω is the C8-fixed points.
[[FFF Here O is for octonions... why?!!]].

We will discuss ideas in Atiyah’s paper “K-theory and reality”. This is where he constructs
KR and deduces the 8-fold periodicity of KO from this. Bott periodicity gives K̃0(X∧S2) ∼=
K0(X). The same proof implies K̃R0(X ∧ Sρ2) ∼= KR0(X) where the C2-space Sρ2 is the
1-point compactification of the regular representation. Then with a beautiful argument he
deduces the 8-fold periodicity of KO from this twisted 2-fold periodicity of KR.

By construction, ΩO(X ∧ Sρ8) ∼= Ω(X); we have a twisted 8-fold periodicity. Where ρ8 is
the 1-point compactification of the regular representation of C8. This will imply that Ω has
a 256 periodicity.
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C2 is the Galois group of C over R. The C8 is trying to be the Galois group of O over
R. Construct the action of C8 on O with fixed points R and the Hilbert basis theorem holds
as a C8-representation, i.e. O = ρ8. You can’t get this to work with algebra morphisms.
However... Fact there is an anti-automorphism σ : O→ O, unique up to inner automorphism
(conjugation). We don’t know if there is a deeper connection between ΩO and O.

A big tool we will use in this story is a way to decompose equivaraint cohomology theories
into smaller pieces. This tool is the slice tower. This is the analog of the postnikov tower.
Every space and every spectrum we have the Postnikov sections PnE → Pn−1E with fiber
an Eilenberg-MacLane spectrum Hπ ∧ Sn where π = πnE.

Let’s now think about K-theory. K → {PnK}, the associated graded is a product∏
z∈ZHZ ∧ S2n. This trivially has the same 2-periodicity. Now remember that KR was

periodic for Sρ
2
. We could build something trivial for this too,

∏
z∈ZHZ ∧ Snρ2 . Now it is

true, there is a filtration of KR whose associated graded is this trivial theory. This filtration
is really the slice tower and is an analog of the Postnikov tower. It exists for any of these
equivariant cohomology theories.

1.3 Unstable Equivariant Homotopy Theory date: Sept 7,
2011

Adam’s paper ‘prerequisites for Carlsson’s work’ is a good reference for equivariant coho-
mology. In the 80’s Carlsson proved the Segal conjecture using methods from equivariant
homotopy theory. At the time there wasn’t much known and there was some miss-information.
This paper provides background.

Spaces will be a compactly generated weak Hausdorff space. Compactly generated means
it is the colimit of its compact subspaces. Weak hausdorff means that the diagonal is closed
(using the product in compactly gen spaces; this is why it is not just Hausdorff).

Example 1.3.1. [[FFF pict]] Xn is the union of two lines glued along (∞,− 1
n ] ∪ [1

/n,∞).

There is a map Xn → Xn+1 and the colimit is not the line with two origins (the colimit is
top), it is just the line. �

[[FFF Why weak Hausdorff and not just Hausdorff?]]
Another possible notion of space is a simplicial set.
Let G be a finite group. Consider the category of spaces with a (left) G-action. We

have to decide (or at least set up notation) for what the maps are. T G has maps which
are equivariant maps. TG has maps all maps, or rather TG(X,Y ) is the G-space of maps.
T G(X,Y ) = TG(X,Y )G (fixed points).

We want the Homotopy Theory of G-spaces. There are two parts: abstract homotopy
theory (setting up the model category) and then there are things which are unique to this
theory. These we’ll call computational aspects. The first thing people needed was a good
class of spaces to work on. When this was coming into being it was already known that
CW-complexes were a good class of spaces for ordinary homotopy theory.

G-CW complex should be something built from equivariant cells. We have to decide what
is an equivariant cell.

Example 1.3.2. (1) The unit circle with Z/2 acting by flipping. Another example: (2) S1

with antipodal Z/2-action. �
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Classically a cell is a ball and we attach by gluing the boundary. Idea 1: A cell should
be the unit ball in V where V is a representation of V with a G-invariant inner product. (no
problem as G is finite). Then Example one is D(V )/S(V ) where V = σ the sign represen-
tation. Every representation has a fixed point (the origin) and so we can’t build the second
example since it has no fixed points. So we need more then just representations.

Let X• be a simplicial set with a G-action (or equivalently a simplical G-set). Then
the geometric realization of this should be a G-CW complex. They are just too nice and
combinatorial.

X ′n × ∂∆n

|skn−1X|

X ′n ×∆n

|sknX|
y

where X ′n is the G-set of non-degenerate simplices. This suggests that a G-cell should be a
space of the form S ×∆n where S is a discrete (finite) G-set and G acts trivially on ∆n.

Definition 1.3.3. A G-CW complex is a G-space built from G-cells of the form S×Dn. �

In the literature people often say cells of the form (G/H) × Dn. These are equivalent,
but this involves decomposing S into orbits and choosing a point in each orbit. Now the first
example has two 0-cells with the trivial action and a 1-cell which looks like Z/2 ×D1. The
second antipodal example has a 0-cell Z/2×D0 and a 1-cell Z/2×D1.

So now [X,Y ]G = π0T (X,Y )G is homotopy class of equivariant maps. Whitehead’s
theorem says a weak equivalence X → Y of CW-complexes is a homotopy equivalence. We
want a G-analog. The key issue is to understand what replaces the notion of homotopy
groups. What we need is a condition guaranteeing that

[S × Sn−1, X]G → [S × Sn−1, Y ]G

is a bijection.
Suppose we know it is a bijection for S1×Sn−1 and S2×Sn−1, then it is so for (S1∪S2)×

Sn−1. So we might as well suppose that S = G/H. Now T G(G/H × A,B) = T H(A,B).
In fact the restriction functor T G → T H has a left adjoint G ×H (−) and a right adjoint
T H(G,−) the space of H-equivariant maps of G into (−). So...

[G/H × Sn−1, X]G = [Sn−1, X]H = [Sn−1, XH ].

Theorem 1.3.4 (G-Whitehead Theorem). A map X → Y of G-CW complexes is an equiv-
ariant homotopy equivalence if and only if [Sk, XH ]→ [Sk, Y H ] is a bijection.

[[FFF wait! bijections on unbased maps of sphere are not the same as bijection on
homotopy groups. counter example: countble generic group (with single conj class) vs.
uncountable generic group (with single conjugacy class).]]

Definition 1.3.5. A map X → Y of G-CW complexes is a weak equivalence if for all H ⊆ G,
the maps XH → Y H is a weak equivalence. �
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The G-equivariant homotopy theory of spaces is describable in terms of the ordinary
homtopy theory of the H-fixed point spaces for all H ⊆ G.

example theorem: classical: X a CW-complex with dimX < n and Y a space such that
πiY = 0 for i ≤ n, then [X,Y ] = pt.

The equivariant version, suppose that X is a G-CW complex. Then XH is a CW complex
of dimension < n(H). Now suppose that Y is a G-space such that πiY

H = 0 for i ≤ n(H),
then [X,Y ]G = pt.

The classical things like dimension, connectivity, etc. get changed to things which depend
on a subgroup H of G. So really a homotopy group should have an index pair (i,H).

1.4 Slice Tower date: Sept 9, 2011

[[FFF absent, will add notes later.]]

1.5 date: Sept 12, 2011

Our aim is to getting to stable equivariant homotopy theory. The unstable calculations are
helpful, getting equianted with the techniques. One reason though that we are meandering
is that I want to point out a decision that had to be made in the construction of the stable
setting.

Stable homotopy via Spanier-Whitehead

You define a category where the objects are finite (pointed) CW-complexes and we have
{X,Y } = limn→∞[Sn ∧X,Sn ∧ Y ]. These are abelian groups.

– For a given X this limit is attained at a finite stage (independent of Y ).

– In the stable range of dimensions, cofibrations and fibrations are the same thing. Cofi-
bration sequences (in either X or Y ) this gives a long exact sequence. This is the sense
in which it is stable.

– There is Spanier-Whitehead duality: all objects are dualizable.

– Cohomology H∗(−) is a functor on the Spanier-Whitehead category. This is because
of the suspension isomorphism.

Equivariant Stable Homotopy

There is something called the G-Spanier-Whitehead category, where the objects are finite
G-CW complexes. And the maps... well this is the place where there is a choice to make.
There are really two viable approaches and they really have two different properties. It is a
good idea to keep these choices in mind.

{X,Y }G = lim
V→∞

[SV ∧X,SV ∧ Y ]G

where V is a representation of G.
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Example 1.5.1. How to organize the limit? Let U be a G-universe, i.e. a countably ∞-
dimensional G-inner product space in which every irreducible representation occurs with
infinite multiplicity. For example U = ⊕∞ρG. Then we can take the limit of all V ⊂ U ,
where V is G-stable and finite dimensional. If V ⊂W with compliment V ′ then

SW ∧X ∼= SV
′ ∧ SV ∧X → SV

′ ∧ SV ∧ Y ∼= SW ∧ Y

�

This is the official definition, but there are situations where we might run into a subset
of these representations.

The alternate choice:

{X,Y }G = lim
n→∞

[Sn ∧X,Sn ∧ Y ]G

where the group does not act on the suspension coordinate.
Properties:

– For a given X the limit is obtained at a finite stage. This is true in the official and
alternate versions.

– They are both stable: cofibration and fibration are the same. A cofibration in either
variable gives long exact sequences.

– There is Spanier-Whitehead duality. Everything is dualizable in the official world, but
this fails in the alternate world. (So no equivariant Poincaré duality in the alternate
world.)

– Cohomology H∗(−) is a functor on the Spanier-Whitehead category. This works in the
alternate universe, but is more tricky (and sometimes fails) in the official universe.

In the last class we talked about H∗(−;M) where M : (finG)op → Ab taking t to ⊕ and we
wanted to know if this is a functor on the G-Spanier-Whitehead category?

H∗(Y ;M) ∼= H∗+n(Sn ∧ Y ;M)→ H∗+n(Sn ∧X;M) ∼= H∗(X;M).

What about the official universe. This would work if we had:

H∗(Y ;M) ∼= H∗+V (SV ∧ Y ;M)→ H∗+V (SV ∧X;M) ∼= H∗(X;M).

but then we have to make sense of these symbols. We run into the following problem.

Problem 1.5.2. Find a space K(M,k + V ) such that ΩVK(M,k + V ) = K(M,k). We want
to de-loop be a representation.

Can we solve this problem? And the answer is not in general. For some M you can’t even
do this. For other M you can do it, but in multiple ways. There is extra data that needs to
be specified.

The correct notion is that M must be a Mackey functor. We will explain these in a later
lecture. We just wanted to point out some of the choices and decisions that needed to be
made in setting up the stable theory of equivariant homotopy theory.
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The Limit is obtained at a finite stage

We want to prove some things so this isn’t just a day at the beach. But also there are
some very important techniques which first appear in this calculation. The question: when
is [X,Y ]G → [SV ∧X,SV ∧ Y ]G an isomorphism?

Definition 1.5.3. d(X) : conj. classes of subgroups of G → Z. dH(X) = dimXH . Connec-
tivity c(Y ), if Y H is cH(Y )−1 connected. More generally, if i : A→ X, then cH(i) = cH(X,A)
is the smallest n such that πn(XH , AH) 6= 0. �

Let V be a G rep and let SV0 = (SV )H . V0 is the H-invariant part. Then dH(SV ) =
dimV0. and cH(SV ) = dimV0. Then two lectures ago we showed that [X,Y ]G∗ = 0 if
d(X) < c(Y ) for all H. ΩV Z = maps∗(S

V , Z) (non-equivariant maps with G acting by
conjugation).

The map
[X,Y ]G → [SV ∧X,SV ∧ Y ]

will be a bijection if d(X) < c(Y → ΩV SV ∧ Y ) − 1. So we need to understand c(Y →
ΩV SV ∧ Y ).

Remark 1.5.4. Non-equivariantly, c(Y → ΩnSn ∧ Y ) = 2c(Y ) (by, for example, the Serre
spectral sequence). �

For a given group H we are looking at

Y H → (ΩV SV ∧ Y )H = map(SV , SV ∧ Y )H

This later was studied, even independently of stable homotopy theory. For example in an
ordianry algebraic topology course the antipodal Z/2-action calculation is the cornerstone
calculation for the Borsuk-Ulam theorem. This was a very respectable calculation. There is
a map

Y H (ΩV SV ∧ Y )H

ΩV0SV0 ∧ Y H

2cH(Y )
?c

V = V0 ⊕W , and we have SV = SV0 ∧ SW . We also have a cofiber sequence

S(W )+ → S0 → SW

cofiber sequence in pointed G-spaces, where S(W ) is the unit sphere in W . So, this gives us
a cofiber sequence,

SV0 ∧ S(W )+ → SV0 → SV

and so now

Y H map(SV0 ∧ S(W )+, S
V ∧ Y )

(ΩV SV ∧ Y )H

ΩV0SV0 ∧ Y H

2cH(Y )

?c
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since the bottom need the connectivity of

map(SV0 ∧ S(W )+, S
V ∧ Y )

H-CW complex. Cells H/K × Dm, K ⊆ H, K fixes a point of S(W ), dimV K > dimV H ,
m ≤ dimV K . So the contribution from H/K ×Dm will have the same connectivity as

map((H/K)+∧SV0 ∧Sm, SV ∧Y )H = map(SV0 ∧Sm, SV ∧Y ) = map(SV0 ∧Sm, S(V K)∧Y H)

which has the connectivity of ΩV KSK ∧ Y K which is the connectivity of Y K .
(by some kind of induction the K stuff is under control.)

1.6 date: Sept 14, 2011

Ambitious agenda today. We’ve introduced this equivariant Spanier-Whitehead category.
The objects are G-CW complexes and

{X,Y } = colim
V

[SV ∧X,SV ∧ Y ]G

We showed last time that this stabilizes at some finite stage. What is {S0, S0}G? In non-
equivariant topology this is Z, the index of a map.

To map a map of degree d, we choose a set S with d elements, embed it in a sphere Sn,
Let BS be the collection of balls around these points. Then

Sn → Sn/(Sn rBS) ' ∨SSn → Sn

is a map of degree d.
There is an equivariant anaolg. S a finite G-set, S ⊂ SV , and now we form,

SV → SV /(SV rBS) ' ∨SV → SV

is a map of degree ‘S’.

Example 1.6.1. G = Z/2 and S has two elments and free Z/2-action. Then S ⊂ Ssign, at
north and south pole. [picture] �

More generally, suppose we have a map of G-sets p : S′ → S. Then we can choose
S′ ⊂ S × V for some representation, and we can form the Pontryagin Thom collapse

S × V/(S × V rB)→ S × V/S × V rBS′ → V/(V rBS′)

In stable homotopy we tend to avoid the notion × because it could me the product of
the spaces, or it could mean the categorical product. These are different in general. In stead
we’ll write X+ ∧ Y+. Then the above can be rewritten as:

p! : S+ ∧ SV → S′+ ∧ SV

so we get a map going the other way.
The map from before was obtained by letting S = pt, and then we get S0 → S′+ → S0,

where the last map is induced from S′ → pt.
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Proposition 1.6.2. If

T ′

T

S′

S

q

j

p

i

p

is a pullback diagram, in G-sets, then

T ′+

T+

S′+

S+

q!

j

p!

i

p

commutes.

Burnside Category of G

The objects are finite G-sets and the morphisms from S to T is the free abelian group on
the set of equivalences classes of diagrams S ← S′ → T , modulo the equivalence relation
that disjoint unions of spans are sums in the group. Two spans are equivalent if there is an
isomorphism of spans. To compose, we form the pullback.

Proposition 1.6.3. The construction described at the start of class gives a functor from
BurnG → G-Spanier-Whitehead category, sending S to S+.

The only real thing to prove is that the composition laws are compatible, but that is the
substance of the previous proposition.

Theorem 1.6.4. The functor BurnG → G − SW is fully-faithful, i.e. BurnG(S, T ) ∼=
{S+, T+}.

Example 1.6.5. S = T = pt, then BurnG(pt, pt) = Z{finite G − sets}/(t ∼ +) = A(G),
the Burnside ring of G. �

Corollary 1.6.6. {S0, S0}G = A(G).

Remark 1.6.7. Note that BurnG(S, T ) ∼= BurnG(T, S) abstractly. �

A(G) is the free abelian group on the set {G/H | H ⊂ G, representative of conjugacy class of finite subgroup}.
There is a map A(G) → Z sending S to |SH | for each conjugacy class of subgroups. Then
we get an injective ring homomorphism

A(G)→
∏

conj classH⊂G
Z.

This is an isomorphism after inverting the order of G.

Example 1.6.8. G = Z/2, A(G) ∼= Z ⊕ Z. The map A(G) → Z × Z maps S to (|S|, |SG|).
So A(Z/2) = {(x, y) | x ≡ y(mod 2). �
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Spanier-Whitehead duality

S × S ← S → pt gives us S+ ∧ S+ → S0, and the other map pt ← S → S × S gives a map
S0 → S+ ∧ S+. The claim is that this makes S+ self dual.

Definition 1.6.9. X and Y are SW duals if there are maps µ : X ∧ Y → S0 and η : S0 →
Y ∧X such that the zig-zag equations are satisfied:

(1 ∧ µ) ◦ (η ∧ 1) = 1

(µ ∧ 1) ◦ (1 ∧ η) = 1

(It is enough just to have these composites be isomorphisms.) �

Exercise 1.6.10. In this case, {A ∧X,B} ∼= {A ∧B ∧ Y }.
Exercise 1.6.11. These maps S+ ∧ S+ → S0 and S0 → S+ ∧ S+ give an SW duality of S+

with itself.

Thus we have {S+, T+} ∼= {S0, S+ ∧ T+} ∼= {T+, S+}.
There are three proofs of the main theorem. One is to prove that you have enough

transversailty and to use framed equivariant cobordisms. There is also a proof using Segal’s
Γ-spaces. There is also Tom Dieck’s book which probably uses cobordism.

proof of the main theorem. Induction on the order of G. Suppose we know the theorem for
all proper sub groups of G. Then {G/H+, S

0}G = {S0, S0}H ∼= {S0, G/H+}G by duality. So
we know the result for {S, S′} if one of S, S′ has no elements fixed by all of G. So we are
reduced the assertion that A(G)→ {S0, S0}G is an isomorphism.

Let ρ be the regular representation, ρ = 1⊕ρ, where ρ is ht reduced regular representation.
Then S(ρ) is the unit sphere, and Sρ is the one-point compactification. There is a cofibration
sequence:

S(ρ)+ → S0 → Sρ.

Get a long exact sequence, πGn (X) = {Sn, X}G.
[bell tolls].

1.7 date: Sept 16, 2011

Where were we? BurnG is the burnside category of a finite group. The objects are finite G-
sets. The maps from S to T are the group completion of spans modulo a certain equivalence
relation. We constructed a functor

BurnG → G− SW

into the Spanier-Whitehead category, which sends S×T (note: NOT the categorical product!)
to S+ ∧ T+. It is symmetric monoidal. This implied that S+ is self-dual, {S+ ∧ X,Y }G ∼=
{X,S+ ∧ Y }G.

Theorem 1.7.1. The functor BurnG → G−SW is fully-faithful, BurnG(S, T ) ∼= {S+, T+}G.
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Proof. Induction on |G|. The induction hypothesis implies that we know the result for pairs
S and T provided one of S or T has no G-fixed points. This is because then

{S+, T+}G = {S+ ∧ T+, S
0}G = ⊕α{(G/H)+, S

0}G = ⊕{S0, S0}Hα .

Recall that A(G) = Burnside ring of G = group completion of the monoid of finite G-sets.
The induction hypothesis reduces us to showing A(G)→ {S0, S0}G is an isomorphism.

There is another consequence of the induction hypothesis. Let X be a (finite) pointed
G-CW complex with no fixed points other then the base point. There is the skeletal filtration.

∨(G/H)+ ∧ S0

X(0)

∨(G/H+ ∧D1)

X(1)

y

(etc). This gives a long exact sequence in stable homotopy,

{S0,∨(G/H)+ ∧ S0}G → {S0, X(0)}G → {S0, X(1)}G → {S0,∨(G/H)+ ∧ S1}G = 0

and the second term is BurnG(pt,X0) where X(0) = X0tpt. This last group is zero because
{S0, S1}H = 0. The conclusion is thus,

BurnG(pt,X0)→ {S0, X}G

is surjective.
We are going to see this kind of argument over and over again. Study it! Once you’ve

got used to the yoga of equivariant homotopy theory, this feels like an easy proof. Here is
the great trick. We’ll formulate it systematically later on, for now it will be ad hoc. Let ρ
be the regular representation and ρ the reduced regular representation (dim = |G|− 1). Now
S(ρ) is the unit sphere and Sρ is the one point compactification. So there is a cofibration
sequence,

S(ρ)→ S0 → Sρ.

We will use this cofibration sequence. Now S(ρ) has no fixed points, so in principle we
understand it by induction. Miraculously Sρ can also be understood. Let S = (S(ρ))(0).

BurnG(pt, S)

{S0, S(ρ)+}G

A(G)

{S0, S0} {S0, Sρ}

Image of A(G) in {S0, S0}G contains the image of {S0, S(ρ)+}G.
Now {S0, Sρ}G = colim[SV , SV+ρ]G which can be computed for a large representation V .

Let V0 ⊂ V be the G-invariant elements. Then

[SV , SV+ρ]G → [SV0 , SV+ρ]G = [SV0 , SV0 ]G = Z.

Claim: This map is an isomorphism.

Proof. Suppose that we are midway in an equivaraint cell decomposition from SV0 to SV .
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∨(G/H)+ ∧ Sm−1

(SV )(m−1)SV0 SV

∨(G/H+ ∧Dm)

(SV )(m)

y

Now all the cells we are adding must have proper H. For a given H, m ≤ dimV H . So only
certain m and H occur.∏

[(G/H)+∧Sm, SV+ρ]G → [(SV )(m), SV+ρ]→ [(SV )(m−1), SV+ρ]→
∏

[(G/H)+∧Sm−1, SV+ρ]G

Now
[(G/H)+ ∧ Sm, SV+ρ]G = [Sm, SV+ρ]H = [Sm, (SV+ρ)H ].

dim(SV+ρ)H = dimV H + dim ρH > m. So this is a map of a sphere into a bigger sphere, so
this group is zero.

So now we have,

BurnG(pt, S)

{S0, S(ρ)+}G

A(G)

{S0, S0} {S0, Sρ} = Z

Now A(G) is the free abelian group on {G/H | H is a rep of a conj class of subgorup}. There
is another way to get maps to the integers.

A(G) ↪→
∏
H⊂G

Z

where each map sends S 7→ |SH |, and the product is over conjugacy classes. This is a ring
homomorphism and is an iso after inverting |G|.
Exercise 1.7.2. These maps to Z factor as A(G)→ {S0, S0} → Z, where the last map sends

[SV , SV ]G → [SV
H
, SV

H
]. Hence A(G)→ {S0, S0} is injective.

The Segal conjecture is that [BG+, S
0] = A(G)̂I (completion at the augmentation ideal).

People has solved this for cyclic groups, but no one had been able to get the general group
case. In the 80’s gunnar carlson used this method of isotropy separation to prove the Segal
conjecture for general groups.

1.8 date: Sept 19

No class on Wednesday. There are some problem sets on the course website.
SWG is the spanier whitehead category. BunG is the Burnside category. BurnG → SWG

sending S to S+.

Theorem 1.8.1. The above is fully faithful.
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In otherwords, the map from BurnG(S, T )→ {S+, T+}G is an isomorphism.
Equivariant homotopy groups [Sn, X]G is part of a contavariant additive functor from

finite G-sets to abelian groups.

πnX(S) = [Sn ∧ S+, X]

These functors are called coefficient systems. Let πstn (X)(S) = {Sn ∧ S+, X}G. This is a
contravariant additive functor

BurnG → Ab

This is called a Mackey Functor. We showed before that every coefficient system occurs as a
homotopy group, and we were even able to form an Eilenberg-MacLane space K(A,n) for A
a coefficient system.

An alternative definition of a Mackey Functor. SetG = the category of finite
G-sets. A Mackey functor is a pair of functors

M∗ : SetG → AbM∗ : (SetG)op → Ab

such that M∗(S) = M∗(S) = M(S), and for every pullback square

A

S

B

T

p

i

q

j

p

the induced square commutes:

M(A)

M(S)

M(B)

M(T )

p∗

i∗

q∗

j∗

We’ll show that every Mackey functor occurs as a stable homotopy group and in M is a
Mackey functor and we’ll show that for every representation V , K(M,n) ' ΩVK(M,n+ V )
where this later space is to be constructed. In other words we can deloop be any representa-
tion.

We won’t quite get a space X for which πstnX = M , what we will get instead is a space
X such that

S 7→ [SW ∧ S+, X]

is M for a large W . This are the 0-homotopy groups of ΩWX, but these are not the same as
stable 0-homotopy groups. Eventually we will see that there aren’t enough objects in SWG.

Suppose M is a Mackey functor. Step 1 Choose W a large representation such that
[SW , SW ]G ∼= {S0, S0}G, that is for all V , [SW , SW ]G → [SW ∧ SV , SW ∧ SV ] is a bijection.
For this W ,

[S+ ∧ SW , T+ ∧ SW ]G ∼= {S+, T+}G = BurnG(S, T )
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step 2 We can get any representatble functor be {−, T+}G. An arbitrary sum of repre-
sentable Mackey functors P occurs as {−, T}G where T is a possibly infinite discrete pointed
G-set, i.e. πst,G0 T+ = P .

step 3 Suppose M is arbitrary, then there exists

P → Q�M

where P and Q are sums of representable functors.
We can find a map SW ∧ T+ → SW ∧ U+ and we can form the mapping cone X1. Then

we get an exact sequence of Mackey functors,

[SW ∧ S+, S
W ∧ T+]G → [SW ∧ S+, S

W ∧U+]G → [SW ∧ S+, X1]G → [SW ∧ S+,ΣS
W ∧ T+]G

Claim: For any representation V , [SV , S1 ∧ SV ]G = 0.

Proof. dH(SV ) = dimV H , cH(S1 ∧ SV ) = 1 + dimV H .

Our sequence becomes

P → Q→ [SW ∧ S+, X1]G → 0

So that [SW ∧ S+, X1]G = M . By forming the cone over all maps S1 ∧ SW ∧ T+ → X1 we
can build X2 such that [S1 ∧ SW ∧ S+, X2]G = 0. This leads to K(M,W ) such that

[Sn ∧ SW ∧ S+,K(M,W )] = M if n = 0 0 else.

Using this we can form K(M,W +V +n), and define K(M,V +n) = ΩWK(M,W +V +n).
Conclusion: ΩVK(M,V + n) = K(M,n).

Non-equivariantly, the Eilenberg Maclane space K(A,n) is characterized by πn = A,
πi = 0 for i 6= n. You would like to say that K(M,W ) is characterized by

– [Si ∧ SW ∧ S+,K(M,W )] = 0 when i 6= 0 and is M when i = 0, and

– K(M,W ) is built from cells of the form SW ∧ S+ ∧Dn.

Part of the problem is that the first one is like saying the πW+i = 0 for i > 0. But we can’t
really talk about lower negative i.

Problems with SWG

1. For f ∈ {X,Y }G, we can’t form Y ∪ CX. We only get the map after smashing with
SW for sufficiently large W . all we can form is SW ∧ Y ∪CX. We would like to define
Y ∪ CX as S−W ∧ (cofibrSW ∧ Y → SW ∧X).

We could add objects S−W ∧X by defining {Y, S−W ∧X}G ∼= {SW ∧ Y,X}G.
We also need to add colimits. But we could have sequences

X0 → S−W1 ∧X1 → S−W2 ∧X2 · · ·

We could then define maps between these objects (since they are colimits).
The (homotopy) category of G-CW spectra is the category obtains from SWG by adding

S−W ∧X and colimits. In the end it all comes back to these kinds of calcualtions with SWG.
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1.9 date: Sept 23, 2011

SWG the Spanier-Whitehead category. Inadequacies

– S−V ∧X is missing.

– colimits are missing

We will construct equivariant spectra by adding these objects S−V ∧X and colimits. To do
this in a clean way, we will need to add some more machinery. First we will just start with
the naive approach and then slowly add more gadgets.

Approach 1: We want object S−V ∧ X, and we also want colimits, for example filtered
colimits colimn S

Vn ∧Xn, where the index n ranges over some represenations. This is equiv-
alent to notation colimV S

V ∧ XV . An arbitrary system like this gives you a collection of
spaces XV and a stable map in {SW ∧XV , XV⊕W }G. It is a little inconvenient to have stable
maps at this point, so it is a little nicer to look at non-stable maps. It suffices to form a more
specialized system where you have a collection XV and an unstable map SW ∧XV → XV⊕W .
We get a definition which doesn’t need to leave the realm of unstable equivariant theory:

Definition 1.9.1 (tenetitive). AG-spectrum is a colloection ofG-spaces {XV — V a rep of
G } together with maps SW ∧XV → XV⊕W satisfying some associativity. �

Imagine that X = {XV } is the colimit of S−V ∧XV . There are a couple of problems with
this. One is that there are too many V s we need to somehow restrict to a smaller class of
these V .

Remedy (May): We let U be a G-universe a countably infinite dimensional G-inner
product space, containing every fintie dimensional representation of G infinitely often. For
example U = ⊕∞ρ infinitely many copies of the permutation representation. If V ⊂W ⊂ U ,
then W − V = orthogonal compliment of V in W .

Definition 1.9.2. A G-spectrum indexed on U is a collection of spaces {XV } where V ⊆ U
is a finite G-subspace of U together with maps SW−V ∧XV → XW , which are associative in
the evident sense. �

There are lots of variations on this. For example may we just take a chain of subspaces
V .

The other approach is what is called Orthogonal Spectra. We assume all our repre-
sentations come with an inner product. O(V,W ) is the Stiefel-manifold of non-equivariant
inner product preserving maps V →W . The group G acts on O(V,W ) diagonally. A G-fixed
point is an equivariant embedding.

Write W − V for the vector bundle over O(V,W ) whose fiber over f : V ↪→ W is the
orthogonal compliment of f(V ). Let IG(V,W ) be the Thom-complex Th(O(V,W ),W − V )
= (W − V )∞. This is a family of SW−f(V ). This is a G-space.

Definition 1.9.3. An orthogonal G-spectrum X is a collection of spaces XV for every or-
thogonal G-representation, togother with G-equivariant maps IG(V,W ) ∧XV → XW , which
is associative in the obvious sense. �

Really this is defining a functor from a category to G-spaces.
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Exercise 1.9.4. Describe an orthogonal spectrum as a functor from a category IG to G-spaces
(and non-equivariant maps). Really these are enriched over G-spaces and equivariant maps.

There is an obvious notion of map in both of these approaches. For example in the
universe style, such an obvious map X → Y is just a collection of maps XV → YV making
the diagrams commute. This is a little bit wrong.

Example 1.9.5. For any G-space T , we can form a spectrum Σ∞T where (Σ∞T )V = SV ∧
T . This is supposed to give the embedding of our category SWG into spectra. Σ∞T ∼
colimS−V ∧ SV ∧ T = T . What are the naive maps Σ∞S0 → Σ∞S0? Well we get a map
f : S0 → S0 by looking at zeroth space, and the compatibility implies that this determines
all the maps. Hence we just get space maps S0 → S0, but not Stable maps! �

Fix a representation U . The define (S)W = ∗ if U 6⊆ W and SW if U ⊆ W . This object
is supposed to correspond to the object colimS−W ∧ SW = colimU⊂W S−W ∧ SW = S0.
Spectrum maps from this S into S0 are the same as G-space maps SU → SU . For U
sufficiently large this does give {S0, S0}. So we need to introduce a class of weak equivalence
so that this operation doesn’t change the spectrum. This is where we really need the model
category structure.

1.10 Model Categories date: Sept 26, 2011

Last time we introduced the category of orthogonal spectra and there were two things that
came up. One was that to get the correct notion of map we had to replace one object with
another. A model category in the sense of Quillen is a category C which is closed under
all small limits and colimits, a equipped with the following structure: three classes of maps
called cofibrations (↪→), fibrations (�), and weak equivalences ('), satisfying the following
properties:

M1 retracts of cofibrations, weak equiv, or fibration are the same.

M2 If two maps in a composition is a weak equivalence, then so is the third.

M3 Every map → admits factorizations

' '

M4 Lifting property:

'
∃
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'
∃

– [[FFF Closure under base change?]]

A model category C which is pointed (∅ ' pt) has functors Σ : hC ↔ hC : Ω. A pointed
model category is stable if these are equivalences. This implies that cofibration sequences and
fibration sequences are the same.

Example 1.10.1. We have G-spaces τG. The category is based spaces with a G-action, and
the maps are equivariant maps. A map X → Y is a weak equivalence if for all subgroups
H ⊂ G, the map of fixed point spaces XH → Y H is a weak equivalence. A map X → Y
is a fibration if XH → Y H is a Serre fibration for all H. In the proof that this is a model
category, you learn that the cofibrations are retracts of the cellular maps which are maps
obtained by attacking cells of the form:

(G/H)+ ∧ Sn−1
+ ↪→ (G/H)+ ∧Dn

+.

Maps in the homotopy category between G-CW complexes are just G-equivariant homotopy
classes of maps. �

SG is the category of equivariant orthogonal spectra. The objects are collections of spaces
XV and maps IG(V,W )∧XV → XW , satisfying the obvious associativity constraint. A map
is a collection of maps XV → YV such that for all V,W the following diagram commutes,

IG(V,W ) ∧XV

IG(V,W ) ∧ YV

XW

YW

We saw last time these maps were a little bit inadequate. The model category structure will
rectify this. We will also reformulate this as a functor category later on (when we talk about
smash product). Suppose that X ∈ SG, the stable homotopy groups πHn X for H ⊆ G and
n ∈ Z are defined as

colim
V→∞

[Sn+V , XV ]H .

Remark 1.10.2. For V >> 0 means it contains at least −n trivial representations, V =
R−n ⊕ V ′, and then Sn+V ∼= SV

′
. �

Remark 1.10.3. Call a sequence V1 ⊂ V2 ⊂ · · · of reps exhausting if every rep W of G
embedds in Vn for n >> 0. Let ιn ∈ O(Vn, Vn+1), then SVn+1−Vn ⊂ IG(Vn, Vn+1). So our
map IG(Vn, Vn+1) ∧ XVn → XVn+1 gives SVn+1−Vn ∧ XVn → XVn+1 . Using just these maps,
we may calculated πHn as this filtered colimit. The key point is the connectivity of Steiffel
manifolds. �
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More generally, let’s define a coefficient system πnX,

πnX(S) = colim
V→∞

[Sn ∧ SV ∧ S+, XV ]G.

Then

1. πnX(G/H) = πHn X.

2. Equivariant stability implies that πnX has the structure of a Mackey functor.

We make the weak equivalence the stable equivalences, those maps that induce isomor-
phisms on πn. But to do this and define the cofibrations and fibrations we need to introduces
some auxiliary model structures.

Definition 1.10.4. A map X → Y in SG is a level equivalence if for all V , XV → YV is a
weak equivalence in τG. �

Level equivalence implies stable equivalence, but not the other way around.

Example 1.10.5. T a pointed G-space, (Σ∞T )V = SV ∧ T . Fix m, then Σ∞′ = SV ∧ T
if dimV > m and is pt otherwise. Σ∞′T → Σ∞T is a stable equivalence, but not a level
equivalence. �

There is the level model structure

– X → Y is a fibration if XV → YV is a fibration in τG for all V .

– the weak equivalences are the level equivalences.

(This is like the projective model structure, but where the diagram category is enriched in
G-spaces).

There is the positive level model structure

– A map X → Y is a positive level fibration (respectively weak equivalence) if for all V
with dimG V > 0 XV → YV is a fibration (resp, weak equivalence).

This was a very good idea of Jeff Smith which comes in when we want to discuss ring spectra.
It will become clear later why we need this.

The stable model structure is obtained from the positive level model structure by localizing
at the stable equivalences. We will say more carefully what we mean by localizing in the next
class.

1.11 date: Sept 28, 2011

Equivariant Orthongal Spectra. There are a lot of things to say. We could spend the rest
of the course on the homotopy theory of equivariant orthogonal spectra, but we have other
goals. But we will spend a few lectures discussing them. We are using this to set up the
following.

– (equivariant) stable model category SG,
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– which is tensored and cotensored over G-spaces τG. Given E ∈ SG and X ∈ τG, we
get E ∧X ∈ SG and EX ∈ SG, which are adjoints.

Stable means that Σ and Ω are inverses up to weak equivalence. Equivariant stable
means that E 7→ E ∧ SV and E 7→ ES

V
= ΩVE are inverse up to weak equivalence.

(The units and counits are weak equivalences).

– Up to this point, the trivial model category 1 gives this. So we require more, there
should be a Quillen pair: Σ∞ : τG � SG : Ω∞, and for X, Y finite pointed G-CW
complexes, hSG(Σ∞X,Σ∞Y ) = {X,Y }G.

There are a lot of categories that satisfy these. We saw two, one given by choosing
universes and one by equivariant orthogonal spectra

– A symmetric monoidal structure ∧SG × SG → SG compatible with the things we’ve
written so far, E ∧X ' E ∧ Σ∞X. The unit is S0. This implies that Σ∞X ' S0 ∧X.

We have the definition; we want to prove (maybe in the following lectures):

1. equivariant stability,

2. the relation with the equivariant Spanier-Whitehead category.

A category IG. The objects are finite dimensional orthogonal G-reps V and IG(V,W ) =
Thom(O(V,W ), V −W ) (maps from V → W ) is a G-space and not a space. IG is enriched
over G-spaces. We have

IG(V,W ) ∧ IG(U, V )→ IG(U,W )

lying over O(V,W ) × O(U, V ) → O(U,W ). This is an equivariant map, so we are enriched
over τG.

The category τG is also enriched over τG.

Definition 1.11.1. An equivariant orthogonal spectrum is a functor IG → τG of categories
enriched over τG. �

What is an enriched functor? It associated to every V space XV and for every V,W a
map IG(V,W ) → τG(XV , XW ) an equivariant map of G-spaces. And also an associativity
condition for every triple of representations. Equivalently, this is the same data as

IG(V,W ) ∧XV → XW

equivariant. So SG = τ IGG is a diagram category. This highlights certain special functors, the
representable functors. Given V , we have IG(V,−). We will call this object S−V := IG(V,−).
By Yoneda, SG(S−V , E) = EV . The category SG is tensored over τG. (E ∧X)V = EV ∧X.
In particular, if A ∈ τG, then maps S−V ∧A→ E are in 1-1 correspondence with equivariant
maps A→ EV .

Let’s go back to the model structure on τG. A map X → Y is a fibration/weak equivalence
if for all H ⊆ G, XH → Y H is a Serre fibration/weak equivalence. X → Y is a fibration if and
only if it has the right lifting property with respect to the maps G/H × In−1 → (G/H)× In.
It is an acyclic fibration iff it has the right lifting property with respect to G/H × Sn−1 →
G/H ×Dn.
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The Level model structure on SG has fibrations X → Y iff XV → YV is a fibration for all
V , and similarly for weakequivalence. Being a level fibration in SG is equivalent to having
the right lifting property for

S−V ∧ (G/H × In−1)+ → S−V ∧ (G/H × In)+.

It is similar for level acyclic fibrations. In otherwords,

A =
{
S−V (G/H × In−1)+ → S−V ∧ (G/H × In)+

}
B =

{
S−V (G/H × Sn−1)+ → S−V ∧ (G/H ×Dn)+

}
Are the generating level acyclic cofibrations and cofibrations.

1.12 date: Sept 30, 2011

Last time we discussed SG as an enriched functor category, IG → τG. This highlighted
S−V , the object corepresented by V . For the next couple lectures we will focus on category
theoretical aspects, then pick up homotopy theory after. There is the canonical presentation.
Suppose we have a spectrum X. What does it mean to give a map X → Y ? It means to give
a collection of maps XV → YV such that for all V,W ,

IG(V,W ) ∧XV

IG(V,W ) ∧ YV

XW

YW

This data is equivalent to a map
∨
V S
−V ∧XV → Y such that the two maps,∨

V,W

S−W ∧ IG(V,W ) ∧XV ⇒ Y

coincide. In other words, to give a map X → Y is to give a map from the coequalizer:∨
V,W

S−W ∧ IG(V,W ) ∧XV ⇒
∨
V

S−V ∧XV

Thus X is this coequalizer. Moreover this description is functorial. (In fact it is a reflexive
coequalizer). We will call this the canonical presentation (or tautological presentation?). To
give a functor which preserves colimits, it is sufficient to define it on objects

∨
V S
−V ∧XV ,

and on these maps.
On homotopy day, we will learn how to write X (up to weak equivalence) as a filtered

colimit of S−V ∧ XV . The same exercise allows you to write every Mackey functor as a
coequalizer of representable ones. Another remark, for each V the functor τG → SG from
spaces to spectra sending K 7→ S−V ∧ K is left adjoint to the functor sending X 7→ XV .
Convention: V = {0}, then S−V = S0. Σ∞ : τG → SG is given by Σ∞K = S0 ∧K. It has a
right adjoint Ω∞.

Now we will try to make SG into a symmetric monoidal category. The monoidal product
will be ∧. What properties do we want?
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– (−) ∧ (−) commutes with colimits in each varaible. (So there is an internal hom)

– S−V ∧ S−W ∼= S−(V⊕W )

– (X ∧ Y ) ∧K ∼= X ∧ (Y ∧K) where X,Y ∈ SG and K ∈ τG.

By the canonical presentation our desires force us to take S−U ∧X to be the coequalizer∨
V,W

S−U⊕W ∧ IG(V,W ) ∧XV ⇒
∨
V

S−U⊕V ∧XV

Then Y ∧X is the coequalizer of∨
V,W

S−W ∧ IG(V,W ) ∧ YV ∧X ⇒
∨
V

S−V ∧ YV ∧X.

So the canonical presentation forces it to be given by this formula. There is a more coordinate
free/global way to say this.

IG × IG

IG

τG × τG

τG

⊕

(X,Y )

∧

Then X ∧ Y is the left Kan extension of ∧ ◦ (X,Y ) along ⊕. This is sometimes called
Day convolution. The unit for ∧ is S0. Also the functor IG → SG sending V to S−V is
symmetric monoidal. (There is also a symmetric monoidal functor IG → SG, where the later
has non-equivariant maps).
S = SG for G = 1 the trivial group.

Proposition 1.12.1. SG is equivalent to the category of objects in S equipped with a G-
action, as a symmetric monoidal category.

Example 1.12.2. X ∈ S, then X ∧ X with its Z/2-action, defined a Z/2-spectrum in
SZ/2. �

This is good for category theoretic purposes, but not so good for homotopy theoretic
purposes. It can be very useful to have both points of view.

Proof. Let I = IG with G = 1 trivial. Then IG = objects in I equipped with a G-action.
Step 1: The category of objects in S with a G-action is the same as the category of functors
from I to τG.

Step 2: I ⊂ IG as the full subcategory of those V with trivial G-action.
Step 3: By left kan extesnion we get a left adjoint S + G-action → SG. These are

equivalences of categories.

For X ∈ S we get XV and maps I(V,W ) ∧XV → XW . If we have a G-action, it acts on
on each XV , but not on I(V,W ).

The key point: if U, V are two G-reps of the same dimension, then

O(V,W )×O(V )×O(U, V )⇒ O(V,W )×O(U, V )→ O(U,W )
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is a coequalizer diagram in IG.
How to find S−V in S, where V has a non-trivial G-action. Answer: choose a U with

trivial action, so that dim(U) = dim(V ). Then we have S−U ∧ O(U, V ). In fact we have,
S−V is the coequalizer of

S−U ∧O(U,U)+ ∧O(V,U)+ ⇒ S−U ∧O(V,U)+

1.13 date: Oct 5, 2011

[[FFF Missed Oct 3, 2011 lecture. Covered: indexed tensor product]]
One more talk on category theoretic properties of the category (SG,∧, S0). Here all the

contrsuctions come down to the question of isomorphism. On friday we will start exploring
how these constructions interact with weak equivalences. There are some technical issues,
some of which will be swept under the rug. But I don’t know how big the broom is yet.

Distributive Laws

Suppose that C is a monoidal category with two monoidal structures ⊗ and ⊕. In all the
cases we will consider, ⊗ will be a left adjoint and ⊕ will be the categoric coproduct, so that
they distribute over each other. Let p : I → J , and let Γ = set of sections of p : I → J.⊗

j

(
⊕
p(i)=j

Xi) =
⊕
γ

(
⊗
j∈J

Xγ(i))

In the language of distribution laws, q : J → pt, ev : Γ×J → I, π : Γ×J → Γ, r : Γ→ pt

CI

CJ

CΓ×J

CΓ

C

p⊕∗

ev∗

π⊗∗

q⊗∗ r⊕∗

This is natural in the sets I, J , and pt, so it is automatically satisfied for covering categories
as well:

Now we will generalize slightly. Suppose we have p : I → J , and q : J → K are covering
categories (they come from the Grothendieck construction with values in finite sets). Now
we will form Γ to be the category of fiberwise sections of I → J over K. An object of Γ is
a pair (k, s) consisting of k ∈ K and s : Jk → Ik, where Ik and Jk are the fibers over k. A
section of Γ→ K is a section of p.

Γ×K J I

K

ev
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CI

CJ

CΓ×J

CΓ

CK

p⊕∗

ev∗

π⊗∗

q⊗∗ r⊕∗

We will refer to this kind of argument as working fiberwise.

Algebras

A associative (commutative) algebra in SG is an object A ∈ SG equipped with a unit S0 → A
and a multiplication map A ∧A→ A, which is unital, i.e.

S0 ∧A→ A ∧A→ A

A ∧ S0 → A ∧A→ A

are the canonical maps, and which is associative (and commutative). In any symmetric
monoidal category (C,⊗, 1) you can consider Comm(C) and Ass(C) the category of commu-
tative algebras in C and associative algebras in C. We are going to assume that C has all
limits and colimits and ⊗ distributes over the categorical sum.

We can talk about these commuative and associative algera. We can ask about limits and
colimits, adjoints, is there a free commutative/associative algebra? etc.

formal fact: Comm(C) has a coproduct, and the coproduct of commutative algebras is
given by ∧ on the underlying objects. If I is a finite set, then the I-coproduct is given by
the indexed monoidal product ⊗i∈I . The coproduct Comm(C)I → Comm(C) is left adjoint
to the diagonal functor. More generally if p : I → J is a finite map of sets, then we have an
adjunction

p∗ : Comm(C)I � Comm(C)J : p∗

This means that

Comm(C)I

Comm(C)J

CI

CJ

p∗ p⊗∗

commutes up to natural isomorphism. Thus this also commutes up to natural isomorphism
when I → J is a covering category.

So for example i : H ↪→ G, then we have an adjunction:

i∗ : SH � SG : i∗

These is also a adjunction at the level of commutative algebras:

i∗ : Comm(SH)� Comm(SG) : i∗

Thus,
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Comm(SH)

Comm(SG)

SH

SG

i∗ normG
H

[[FFF The norm was discussed last time.]] BptH ' BG/HG→ BptG. The we get

SH ' SBptH '← SBG/HG p⊗∗→ SBptG ' SG

The composite is the norm normG
H ' NG

H .
For i ∈ G/H, let Ci ⊂ G denote the coset, and Hi for the stabilizer of i. Let X ∈ SH .

Then Xi = (Ci)+ ∧H X (this is the coequalizer of (Ci)+ ∧H+ ∧X ⇒ (Ci)+ ∧X) is an object
of SHi . Then we have,

∧i∈G/HXi = NormG
H(X)

where G acts on this. Because G is permuting the factors, you can’t really break apart these
factors. But by the langauge of covering categories we can still do these calculations and
arguments.

1.14 Setting up the homotopy theory date: Oct 7th, 2011

We have an adjunction τG � SG sending K to S0 ∧K, and sending X ∈ SG to X0.

– Equivaraintly stable

– Contains SWG: If K and L are finite G CW-complexes, hoSG(S0 ∧ K,S0 ∧ L) =
{K,L}G.

Philosophy: The weak equivalences are fundamental. They determine the homotopy
theory. There are many classes of fibrations and cofibrations which will be compatible with
the weak equivalences. It is useful to be agnostic about which classes we are going to use
until we really need them.

Stable Homotopy Groups

Choose a sequence V1 ⊂ V2 ⊂ · · · of G-representations such that every G-rep W embeds in
Vi for sufficiently large i. πkX : finite G-sets → abelian groups. For S a finite G-set,

πkX(S) = colim
n→∞

[Sk ∧ SVn ∧ S+, XVn ]G

The inclusion Vn → Vn+1 gives a point in O(Vn, Vn+1), and hence a sphere SVn+1−Vn ⊂
IG(Vn, Vn+1). Then we get

SVn+1−Vn ∧XVn → IG(Vn, Vn+1) ∧XVn → XVn+1

gives the transition maps. For k ≤ 0, choose Rk ⊂ Vn and let

πkX(S) = colim
n→∞

[SVn−R
n ∧ S+, XVn ]G
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There is an alternative manifestly invariant version. JG is the category where objects are
orthogonal G-reps V . JG(V,W ) = π0(O(V,W )G).

πkX(S) = colim
V ∈JG

[Sk ∧ SV ∧ S+, XV ]G

For sufficiently large W , π0O(V,W )G = pt. This shows that these two are equivalent notions
of stable homotopy groups.

The connectivity of O(V,W )G

V = ⊕αVα where α ∈ irreps of G, and Vα is the isotypical component. Similarly W = ⊕αWα

Then
O(V,W )G =

∏
α

O(Vα,Wα)G

So we can reduce to O(Umα , U
n
α )G with Uα irreducible. There is a fibration,

O(Um−1
α , Un−1

α )G → O(Umα , U
n
α )G → O(Uα, U

n
α )G

The bottom space is Sn−1 or possibly a different (higher) dimensional sphere (depending on
the type of real representation (real, complex, quaternionic)).

Weak equivalences

A (stable) weak equivalence a map X → Y in SG is a stable weak equivalence if it induces an
isomorphism π∗X → π∗Y . This already determines hoSG. The morphisms are equivalences
classes of diagrams,

X
∼← X0 → X1

∼← X ′1 → X2
∼← X ′2 → X3 · · ·

∼← X ′m → Y

where
∼← denotes a stable weak equivalence.

Equivariantly stable

(X ∧ SV )W = XW ∧ SV and (ΩVX)W = maps(SV , XW ). X 7→ X ∧ SV and X 7→ ΩVX are
supposed to be inverse equivalences of functors on the homotopy category hoSG.

This will be a consequence of the following result.

Proposition 1.14.1. The following are equivalent.

1. X → Y is a π∗-isomorphism;

2. ΩVX → ΩV Y is a π∗-isomorphism;

3. SV ∧X → SV ∧ Y is a π∗-isomorphism;

This means we can calculate SV : hoSG � hSG : ΩV by applying them to any object.

Proposition 1.14.2. The maps X → ΩV (SV ∧X) and SV ∧ΩVX → X are π∗-isomorphisms.
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Proof of Prop. 1.14.1 . (1) ⇒ (2). We know the following is a bijection.

colim
W→∞

[Sk ∧ SW ∧ S+, XW ]G → colim
W→∞

[Sk ∧ SW ∧ S+, YW ]G

We will introduce some temporary notation. If K is a finite pointed G-CW complex, then

πk(X)(K) colim
W→∞

[Sk ∧ SW ∧K,XW ]G.

Unfortunately πkX(S) = πkX(S+) (left is a finite G-set, right is a finite pointed G-CW
complex). We will only use this notation in this lecture, and maybe the next. Please forgive
me.

Note that π∗X → π∗Y isomorphism, then for all finite pointed G-CW complexes K we
have π∗X(K)→ π∗Y (K) is an isomorphism. Now πk(Ω

VX)(S+) = (πkX)(SV ∧ S+), so (1)
⇒ (2).

We will come back to these in the next class.

Proof that X → ΩV (SV ∧X) is a weak equivalence.

πk(X)(S) = colim
W→∞

[Sk ∧ SW ∧ S+, XW ]G

→ πk(Ω
V SV ∧X)(S) colim

W→∞
[Sk ∧ SW ∧ S+,Ω

V SVXW ]G

= colim
W→∞

[Sk ∧ SW⊕V ∧ S+, S
VXW ]G

→ colim
W→∞

[Sk ∧ SW⊕V ∧ S+, XW⊕V ]G

= πk(X)(S)

It is not hard to see that this is the identity. Similarly the other composite is the identity.

X ∈ SG, then (S−V ∧ X)W = O(V ⊕ U,W )+ ∧O(U,U)+ XU where U is any G-rep with
dimU + dimV = dimW (if dimW ≥ dimV ). If dimW < dimV , then a family of pointed
spaces XU paramertized by O(V ⊕ U,W )/O(U,U) = O(V,W ). There is a family of XW−V
parametrized by O(V,W ).

1.15 date: Oct 12, 2011

We have this category τG of G-spaces and SG of equivariant orthogonal spectra. And we
have an adjunction between them. This induces an embedding of the Spanier-Whitehead
category. πkX = colimV πk+VX, and

πkX(S) = colim
V

[Sk+V ∧ S+, XV ]G

The weak equivalences are the isomorphisms on πk. Last time we had:

Proposition 1.15.1 (Prop 1.14.1). The following are equivalent.

1. X → Y is a π∗-isomorphism;

2. ΩVX → ΩV Y is a π∗-isomorphism;
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3. SV ∧X → SV ∧ Y is a π∗-isomorphism;

Moreover X → ΩV SV ∧X is a weak equivalence, and SV ΩVX → X is a weak equivalence.

We had shown that (1)⇒ (2) and (3)⇒ (1), and the first of the second set of statements.
The Key thing we will eventually show today is that (1) ⇒ (3).

Proposition 1.15.2. For all X and all V , the map S−V ∧SV ∧X → X is a weak equivalence.

Proof. We use the formula (S−V ∧ Y )W = O(V ⊕ U,W )+ ∧O(U,U) YU where U is any G-
rep with dimU + dimV = dimW . We think of this later as a family of pointed G-spaces
XU parametrized by O(V ⊕ U,W )/O(U,U) ' O(V,W ). We saw last time that O(V,W ) is
equivariantly highly connected for W >> 0. So if we choose any point of O(V,W ), i.e. an
equivariant embedding V →W , the fiber over this point mapping to the total space

XW−V → O(V ⊕ U,W )+ ∧O(U,U) XU

is an equivariant equivalnce in a given ‘range’ of dimensions.
Now applying this, for W >> 0,

πk+W (S−V ∧ SV ∧X)W = πk+W (O(V ⊕ U,W )+ ∧O(U,U) S
V ∧X)W

= πk+WS
V ∧XW−V

so πk(S
−V ∧ SV ∧X) = colimW→∞ πk+W (SW−V ∧XV ) ∼= colimW→∞ πk+W (XW ) ∼= πk(X).

The point is that this is a formal consequence of the high connectivity of the spaces in
this particular model of equivariant spectra.

Proposition 1.15.3. If K is a pointed finite G-CW complex, then hSG(S0 ∧ K,X) =
colimW [SW ∧K,XW ]G.

[[FFF Q:Why just finite? All G-CW are colimits of finite. Ans: You get a formula, but
there is a lim1-term. ]]

Corollary 1.15.4. SWG ⊆ hSG.

Proof. Apply the formula to X = S0 ∧ L for a finite G-CW complex.

Let SG and let W be the collection of weak equivalences. Then SG(X,Y ) can be defined
as the set of equivalence classes of zig-zags of maps. [[FFF Drawing on board. Somewhat
ambiguous.]] The leftward maps are weak equivalences. Modulo the equivalence relation
generated by:

– replacing composable maps by their composition.

– a
f→ b

f↔ a and a
f← b

f→ a

– identities are identities.

Claim 1.15.5. Suppose we have S a finite G-set, and X, Y such that:
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S−(V⊕W ) ∧ SV⊕W+k ∧ S+

S−V ∧ SV+k ∧ S+

X

Y

'

Then for W >> 0, the dashed arrows exist and the diagram commutes up to homotopy.

π0SG(S−V ∧ SV+k ∧ S+, Y ) = π0τ
G(SV+k ∧ S+, YV ) = [SV+k ∧ S+, YV ]G. Latter on in

the system it comes from X.
Using this claim, we can shorten zig-zags of morphisms. This implies that for any finite

G-set S, hSG(S0 ∧ S+, X) = colimW→∞ π0SG(S−W ∧ SW ∧ S+, X) = π0X(S). Now work
through an equivariant cell decomposition.

So we can see the Spanier-Whitehead category in hSG even without invoking a model
category structure.

Corollary 1.15.6. S0 ∧ S+ is self-dual. And so π0(X ∧ S+)(T ) = π0(X)(S × T ).

This implies that X → Y a weak equivalence implies that X ∧ S+ → Y ∧ S+ is a weak
equivalence. Then, working through a CW-complex structure, we learn that X ∧K → Y ∧K
is a weak equivalence for any pointed finite G-CW complex K. This uses: A sequence
A→ X → X ∪ CA gives a long exact sequence of π∗ Mackey functors.

To prove this, it suffices to show exactness just at the X term. We can apply S−V ∧ SV
to these spaces (since it is a weak equivalence). Then we can look at the individual spaces
and using the connectivity of Steifel manifolds, this follows from stability:

SW
′ ∧AW → SW

′ ∧XW → SW
′ ∧XW ∪ CAW

is a fibration sequence in a range of dimensions.
Next time we will discuss some things that come up with symmetric products. Then we

can probably black-box this machinery and start discussing the slice tower.

1.16 Families date: Oct 14, 2011

X a G-space such that XH is either ∅ or contractible for each H ⊆ G. Let’s look at all the
set F = {H ⊆ G | XH ' pt}. Then if H ∈ F ,

– H ′ ⊂ H ⇒ H ′ ∈ F

– H ∈ F ⇒ gHg−1 ∈ F .

A collection of subgroups of G satisfying these conditions is called a family. Given a family,
can we build such an X? First we try to construct an S such that SH = ∅ iff H 6∈ F . This is
easy, for example S = tH∈FG/H. To get X we can either take the infinite join with itself.
We can also form the geometric realization of the pair groupoid on S. Either way we get a
G-CW complex X satisfying this property.

We could also say that

– the space MapG(T,X) is empty or contractible. T is a finite G-set. The space is
contractible if T has a point fixed by an element of F , and empty otherwise.
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The G=cells of an G-CW complex X satisfying this condition are of the form T ×Dn where
the stabilizer group of every point of T is an element of F . This makes it easy to see that if X,
X ′ are G-CW complexes satisfying the above property, then MapG(X,X ′) is contractible.
Moreover MapG(K,X ′) is contractible if K is a G-CW-complex with such cells. So X is
characterized up to a contractible space of choices. We write X = EF .

It is common to take P = {H ( G} to be all proper subgroups. Let ρ be the reduced
regular representation. Then EP = colimn→∞ S(nnρ).

This next maneuver was made famous by Gunnar Carlson. let ẼF be the mapping cone
of EF → pt. It is the unreduced suspension of EF , and is a pointed G-CW complex.

Proposition 1.16.1. If X is a pointed Gspace and K a pointed G-CW complex, then (pointed
maps) [K, ẼP ∧X]G ∼= [KG, XG], and moreover [K, ẼP ∧X]H = 0 for H ( G.

Proof. Let T be a G-set where every element of T is stabilized by a proper subgroup if G.

T × Sn−1

L

T ×Dn

L′

Then [L′, ẼP∧X]G ∼= [L, P̃∧X]G because they differ by maps like [(T×Sn−1)+, ẼP∧X]G ∼= 0.
For example [(G/H)+, ẼP ∧X]G = [pt, ẼP ∧X]H = [pt+, (ẼP)H ∧XH ] = 0.

The result follows since K is obtained from KG by attaching cells of the form T × Dn

where all the isotropy groups of points in T are proper subgroups.

So smashing with ẼP takes you out of equivariant homotopy theory and into the ordinary
homotopy theory of the fixed points.

The Stable Category

Now X ∈ SG, the fixed point functor (−)G is given by XG ∈ S is given by restricting X to
trivial representations and then taking fixed points. π0X

G = (π0X)(pt) = hSG(S0, X). But
these have bad homotopical properties. It is not invariant under weak equivalence. Instead
XG will be the fixed points of a fibrant replacement of X (the right derived functor). Then,
for example π0(S0)G = the Burnside ring of G. This also has bad properties:

– (X ∧ Y )G 6= XG ∧ Y G.

– (S0 ∧K)G 6= S0 ∧KG.

Santa did not get your letter.

The Geometric Fixed Point Functor

ΦG(X) = (ẼP ∧X)G. This is much better behaved.

Proposition 1.16.2. The properties hold:

– ΦG(X ∧ Y ) ' ΦG(X) ∧ ΦG(Y ).

– ΦG(S−V ) ' S−V0
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This implies that ΦG(Σ∞K) ' Σ∞KG.

The canonical homotopy presentation. Let X ∈ SG, and choose V0 ⊂ V1 ⊂ · · · eventually
containing all G-reps.

S0 ∧XV0 ← S−V1 ∧ SV1−V0 ∧XV0 → SV1 ∧XV1 ← S−V2 ∧ SV2−V1 ∧XV1 → S−V2 ∧XV2 ← · · ·

Then let ˜S−Vn ∧XVn and the h-colimit of the first n-worth of this diagram. Then ˜S−Vn ∧XVn →
˜S−Vn+1 ∧XVn+1 and then,

colim
n→∞

˜S−Vn ∧XVn → X

is a weak equivalence. This canonical homotopy presentation is very useful.
For example we have,

πkẼF ∧ S−V ∧XV = colim
W→∞

[Sk+W , ẼP ∧ I(V,W ) ∧XW ]G

= colim
W→∞

[Sk+W0 , I(V0,W0) ∧XG
V ]

= πkS
−V0 ∧XG

V .

where V0,W0 are the fixed points. With more care this implies that ΦG(S−V ∧ XV ) =
S−V0 ∧XG

V .
For any X, we have ΦGX = colimn→∞ S

−(Vn)0 ∧XG
Vn

. Moreover ΦG(S−V ∧XV ∧ S−W ∧
XW ) = ΦG(S−V ∧ XV ) ∧ ΦG(S−W ∧ XW ). These properties prove the properties in the
proposition.

Isotropy Separation Sequence

(EP)+ ∧X → X → ẼP ∧X

The last space can be understood of ΦGX. The first space is built from (G/H)+ ∧X with
H proper subgroup of G, and can be understood by induction.

1.17 Symmetric Powers date: Oct 17, 2011

There are a few more technical loose ends to collect together today. Then on Wednesday we
will start the Slice Filtration. There are a lot of sneaky technical details that are going to be
swept under the rug and you are just going to have to trust that I am not lying too much.

X ∈ SG, then look at X∧n/Σn = SymnX ∈ SG. For example, the free commutative
algebra generated by X is SymX = ∨n≥0Sym

nX.
Question: If X → Y is a weak equivalence, is SymnX → SymnY a weak equivalence?

Example 1.17.1. X = S−1 ∧ S1 → S0 = Y . Is the induced map of symmetric powers a
weak equivalences? (S−1 ∧ S1)∧n = S−n ∧ Sn = S−ρn ∧ Sρn , where Σn permutes the n-basis
vectors of the permutation representation ρn of Σn (the defining representation). On the
other hand, (S0)∧n = S0 with trivial Σn-action.

(S−ρn ∧ Sρn)/Σn → (S0)/Σn = S0.
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For V >> 0, (S−ρn ∧ Sρn)V = IG(ρn, V ) ∧ Sρn , where IG(ρn, V ) is a family of SV−ρn sphere
parametrized by OG(ρn, V ). This has an action by Σn ×G, and the Σn-action is free (away
from the base point).

Already this is a little odd as one side has a free action and the other has a trivial action.
The ultimate answer is that this is not a weak equivalence. �

Let F be the family of subgroups of Σn × G consisting of all H ⊆ Σn × G such that
H ∩ Σn = {e}. Then we define EGΣn := EF . I.e. EGΣn is the total space of the universal
G-equivariant Σn-bundle.

Proposition 1.17.2. Suppose K is a pointed Σn ×G-space and the Σn-action is free away
from the base point. Then the map (EGΣn)+ ∧K → K is a Σn ×G-weak equivalence.

Proof. H ∈ Σn × G, then ((EGΣn)+ ∧ K)H = (EGΣn)H+ ∧ KH is a weak equivalence by
construction of EGΣn.

Proposition 1.17.3. If X → Y in SG is a weak equivalence, then (EGΣn)+ ∧Σn X
∧n →

(EGΣn)+ ∧Σn Y
∧n is a weak equivalence.

Proof. Suppose that S is a Σn × G-set which has free Σn-action. Then S+ ∧Σn X
∧n →

S+∧ΣnY
∧n is a weak equivalence. Therefore W ∧ΣnX

∧n →W ∧ΣnY
∧n is a weak equivalence,

where W is any Σn ×G-CW complex with free Σn-action.

Back to the example.

(EGΣn)+ ∧Σn (S−1 ∧ S1)∧n
∼→ Symn(S−1 ∧ S1)

since ((S−1 ∧ S1)∧n)V is Σn-free away from the base point.

(EGΣn)+ ∧Σn (S−1 ∧ S1)∧n

Symn(S−1 ∧ S1)

(EGΣn)+ ∧Σn (S0)∧n ' S0 ∧ (EGΣn/Σn)+

So the map in the example is

Symn(S−1 ∧ S1) ' S0 ∧ (EGΣn/Σn)+ → Symn(S0) = S0

is not a weak equivalence. This is were we need to introduce a model structure or some sort
of similar structure to compute the correct homotopically meaningful symmetric product.

Positive Stable Model Structure

– The weak equivalences are the same. The isos on π∗. We need fibrations and cofibra-
tions.

–
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A detect the fibrations: A = {S−V ∧In−1
+ → SV ∧In+ | V G 6= 0}∪{−} X → Y RLP w.r.t.

this means XV → YV is a Serre fibration, but only for those V such that V G 6= 0. [[FFF
Nevermind. We voted to skip ahead and summarize this.]]

In the summary, in the positive model structure we build cofibrant objects by attaching
cells of the form S−V ∧S+∧Sn−1 → S−V ∧S+∧Dn

+, where S is a finite G-set where V G 6= 0.
For example if K is a G-CW complex then S0 ∧ K is not cofibrant in the positive stable
model structure. But S−1 ∧ S1 ∧K is cofibrant.

Proposition 1.17.4. If X is positive stable cofibrant, then (EGΣn)+ ∧Σn X
∧n → SymnX is

a weak equivalence.

This lets you set up the homotopy theory of commutative algebras.

Proposition 1.17.5. Sym : SG � Comm(SG) : U creates a model structure on Comm(SG),
i.e. a map R→ S in Comm(SG) is a fibration or weak equivalence if and only if UR→ US
is such, in the positive stable model structure on SG.

Remark 1.17.6. Because this homotopically invariant it will be equivalent to the notion
E∞-algebras. But it is more convenient to work with commutative algebras, both conceptu-
ally and because of the relation with the norm. �

Comm(SH)

Comm(SG)

SH

SG

NG
H

U

NG
H

U

where NG
H is the left adjoint of the restriction functor. Question: Is this correct homotopi-

cally? UNG
HR
∼= NG

HUR at the level of functors, but homotopically we need to compare

NG
H ŨR to UNG

H R̃
∼= NG

HUR
∼= UNG

HR, where ŨR→ UR is a cofibrant replacement.

Proposition 1.17.7. Suppose that R ∈ Comm(SH) is cofibrant, and ŨR → UR is a cofi-
brant replacement. Then

NG
H ŨR→ NG

HUR
∼= UNG

HR

is a weak equivalence.

Example: K ∈ SG cofibrant. Then SymK is a cofibrant comm algebra, but USymK =
S0 ∨K ∨ Sym2K ∨ · · · is not cofibrant.

Proposition 1.17.8. ΦGNG
HX ' ΦHX.

Proof. Write X as a (filtered) homotopy colimit of S−Vn ∧ XVn (the canonical homotopy
presentation). Then

ΦGNG
HX ' hocolim ΦGNG

H (S−Vn ∧XVn)

' hocolim ΦGS−Ind
G
HVn ∧NG

HXVn

' hocolimS−(IndGHVn)G ∧ (NG
HXVn)G

' hocolimS−V
H
n ∧XH

Vn

' ΦHX.
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1.18 The Slice Filtration date: Oct 19,2011

Proposition 1.18.1. Suppose that M is any Mackey functor, then there exists a spectrum
HM ∈ SG with the property that πkHM = M if k = 0 and 0 otherwise. HM is characterized
up to weak equivalence by this property.

Proof. Write M as the cokernel of F1 → F0 → M where each Fi is a direct sum of repre-
sentable Mackey functors. So Fi(S) = ⊕αBurnG(S, T iα). Then Fi(S) = hSG(S0∧S+,∨αS0∧
T iα). Notation, we’ll write [X,Y ]G for hSG(X,Y ). The map F1 → F0 is realized by a map

∨S0 ∧ (T 1
α)+→ ∨S0 ∧ (T 0

α)+ → X

Let X be the cofiber. By the LES we have π0X = M , and πjX = 0 for j < 0. Now we form
a map onto π1,

∨S1 ∧ S+ → X → X1

where the wedge product is over all finite G-sets S, and all maps S1 ∧ S → X. Then X1 is
the cofiber. πiX1 = πiX if i ≤ 0, and π1X1 = 0. We continue using ∨S2 ∧ S+, etc. to get
Xk. Then we form X∞ = colimXk. We have HM = X∞. This presentation shows that
maps from HM to any other spectrum with this property is contractible, which prove the
uniqueness up to weak equivalence.

If K is a G-space, then πnHM ∧K is a homology theory. H̃n
G(K,M) = [K,Sn ∧HM ] is

a cohomology theory.
Starting with any X, if we “cone off” all maps Sm ∧ S+ → X for m > n, and repeat.

Then we get
X → Postn(X)

which is an iso on πk for k ≤ n, and πkPost
n(X) = 0 for k > n. The fiber of PostnX →

Postn−1X is (a shift of) HπnX, an equivariant Eilenberg-Maclane spectrum. This isn’t so
useful if you want to calculate the homotopy groups.

We will introduce a variation on this known as the slice tower. The main ingredient is that
we had a notion of ‘spheres’ or ‘cells’ and we had a notion of dimension. Then we can build
a tower by coning off everything of dimension greater then n. This can be a crappy tower. It
might not have an convergence properties. It is sort of formal. We will do a particular case.

G, and K ⊆ G, and let ρK be the regular representation of K. Let Ŝ(m,K) = G+ ∧K
SmρK . This is like a bouquet of spheres wedged together. It is an indexed wedge of Smρk ,
indexed by G/K.

Definition 1.18.2. The set A of slice cells (for G) is the set of all Ŝ(m,K) and Σ−1Ŝ(m,K).
The dimension of Ŝ(m,K) is m|K| and the dimension of Σ−1Ŝ(m,K) has dimension m|K|−1.
Warning Σ−2Ŝ(m,K) will not behave like something of dimension m|K| − 2. �

[[FFF Idea instead of the word ‘cells’? It is not too late!]]

Definition 1.18.3. A G-spectrum Y is slice n-null if SG(Ŝ, Y ) is equivaraintly contractible
for all Ŝ ∈ A, dim Ŝ ≥ n. We will denote this as Y < n or Y ≤ n − 1. Dually, X is
slice n-positive if SG(X,Y ) is equivariantly contractible for all Y ≤ n. We notate this as
X > n. �
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Notation: Instead of slice 0-positive, we will say slice positive. Instead of slice 0-null, we
will say slice null. SG>n is the full subcategory of all X ∈ SG with X > n, and similar for
other notations SG<n, SG≤n, etc.

Remark 1.18.4. SG>n is the smallest full subcategory of SG containing the slice cells Ŝ of
dimension > n and satisfying the properties:

– closed under weak equivalence

– closed under arbitrary wedges of objects

– If X → Y → Z is a cofiber sequence, and X,Y are in SG>n, then Z ∈ SG>n

– If X → Y → Z is a cofiber sequence, and X,Z are in SG>n, then Y ∈ SG>n

i.e. it is closed under weak equivalence, homotopy colimits, and extensions. �

The Slice Tower

X → PnX → Pn−1X, Where PnX is obtained from X be inductively killing all maps from
Ŝ → X, where Ŝ is a slice cell of dimension greater then n. We would like to say X = X0,
and then we look at all ∨Ŝ → Xk−1 → Xk, where you wedge over all Ŝ → Xk with dimension
> n. Then we would like to form the homotopy colimit X∞ of the Xk. We would like
X∞ = PnX. But we don’t quite know PnX < n. We know that [Ŝ,X∞]G = 0, but we want
[Ŝ ∧K,X∞]G = 0 for all G-CW complex K. (i.e. that SG(Ŝ,X∞)).

Proposition 1.18.5. The following are equivalent:

1. X < n

2. [Ŝ,X]G = 0 for all slice cells Ŝ of dimension > n.

We will prove this next time. It will help tell us how these slice cells behave.
PnX → X → PnX
The fiber PnnX → PnX → Pn−1X is the n-slice of X. What these are is very interesting!

Proposition 1.18.6. H ⊆ G.

1. If Ŝ is a slice cell for G, of dimension m, then Ŝ is a wedge of H-slice cells of dimension
m.

2. If Ŝ is an H-slice cell of dimension m, then G+ ∧H Ŝ is a G-slice cell of dimension m.

Let i∗ : SG → SH be induced by i : H ↪→ G. Now we can look at X ∈ SG and form the
slice tower {PnGX} and then apply i∗, or we can look at the H-slice tower of i∗X.

Proposition 1.18.7. PnHi
∗X ' i∗PnGX.

Consequence: H = 1 implies that the underlying spectrum, i∗PnX, is the Postnikov
tower of X.
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1.19 date: Oct 21, 2011

We have the problem that this part of the material was written up very carefully. The way
you tell a story and the way you write a math paper are different. Now I can’t get the story
back. On the plus side notes don’t have to be as good. You can look at the paper.

Slice cells: G+∧H SmρH of dimension m|H|, and Σ−1G+∧H SmρH of dimension m|H|−1.
H ⊂ G. and there is the restriction functor i∗H ,

G+ ∧H (−) : SH � SG : i∗H

Proposition 1.19.1. If X ∈ SG and X > n, then i∗HX > n. If Y ∈ SH , and y > n, then
G+ ∧H Y > n. And similarly for ‘>’.

Proof. X < n. We want to show that SH(Ŝ, i∗HX) is equivariantly contractible. This is the

same as showing that SH(Ŝ ∧K, i∗HX) is contractible for all K, but this is just SG(G+ ∧H
(Ŝ ∧ K), X), so we need to show that G+ ∧H (Ŝ ∧ K) is > n. This is implied if we know
G+ ∧H (Ŝ ∧ S+ ∧ St), where S is an H-set and t ≥ 0. This later follows since Ŝ ∧ S+ is a
wedge of slice cells of the same dimension.

This should be much much cleaner then I am making it.

Proposition 1.19.2. (Wirtmuller-Isomorphism) There is a natural isomorphism [X,G+∧H
Y ]G ∼= [i∗HX,Y ]H . So these are ambidextrously adjoint. (We’ve seen this in the case Y is a
G-space.)

This then implies that if Y ∈ SH and Y < n, and dim Ŝ > n, then [Ŝ, G+ ∧H Y ]G =
[i∗H Ŝ, Y ]H = 0.

Proposition 1.19.3. The following are equivalent:

1. X < n

2. [Ŝ ∧ St, X]G = 0 for all dim Ŝ > n.

3. [Ŝ,X]G = 0 for all dim Ŝ > n.

Proof. The first are easy. We will prove (3) implies (2). We will induct on |G|. Assuming
that ∀Ŝ > n, [Ŝ,X]G = 0, we have that for all H ⊂ G and T̂ > n an H-slice cell, [T̂ ,X]H =
[G+ ∧H T̂ ,X]G = 0. If H ( G, then we know the space of maps SH(Ŝ,X) is equivariantly
contractible.

This implies that all G-maps [Ŝ ∧K,X]G = 0 if K is a G-space built from cells S+ ∧Dn
+

where S has no G-fixed points and n ≥ 0. So we need to show that [Ŝ ∧St, X]G = 0 for t ≥ 0
and Ŝ > n. Now St ↪→ StρG as the fixed points. Let T → St ↪→ StρG be the fiber. StρG is
obtained from St by attaching cells induced from proper subgroups. So K = StρG/St is a
G-spectrum (space) built entirely from induced cells. For t ≥ 1, then it is build from cells
of dim > 0. Therefore T = Σ−1(StρG/St) is also built from induced cells. Equivalently, T is
the cofiber of St−1 → StρG−1. Hence [Ŝ ∧ T,X]G = 0 by the induction hypothesis. By the
cofiber sequence we get.... if Ŝ = G+ ∧K SmρK

Ŝ ∧ StρG = ... = G+ ∧K (S(m+t|G/K|)ρK ).
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Multiplicative properties of the Slice tower

From the last proof we learned that,

Proposition 1.19.4. SmρG ∧ (−) : {slice cells dim = k} → {slice cells dim = k +m|G|} is a
bijection.

Corollary 1.19.5. SmρG∧Pn+1X ' Pn+m|G|+1(SmρG∧X) and SmρG∧PnX ' Pn+m|G|(SmρG∧
X).

1.20 date: Oct 24, 2011

A set of slice cells {G+ ∧H SmρH , σ−1G+ ∧H SmρH} where H ( G, and m ∈ Z.
Suppose I have a collection C of G-spectra. Then spanC is defined to be the smallest

subcategory of SG and containing C and closed under the following:

– weak equivalences;

– arbitrary wedges;

– If X → Y → Z is a cofibration sequence, then X,Y in SpanC implies Z in SpanC;

– If X → Y → Z is a cofibration sequence, then X,Z in SpanC implies Y in SpanC.

Then SG≥n = Span{Ŝ ∈ A | dim Ŝ ≥ n}. Y ∈ SG<n ⇔ SG(Ŝ, Y ) ' pt for each dim Ŝ ≥ n.

Pn+1X → X → PnX

The first is the universal map from something ≥ n + 1, and the latter is the universal map
into something ≤ n.

Exercise 1.20.1. Suppose that there is a cofibration sequence P̃n+1X → X → P̃nX and
P̃nX ≤ n, and P̃n+1X ≥ n+ 1. Then the sequence P̃n+1X → X → P̃nX is equivalent to the
slice sequence.

PnnX = the fiber of PnX → Pn−1X and also the cofiber of Pn+1X → PnX. It is the
n-slice of X.

Slice connectivity and ordinary connectivity

If X is a filtered spectrum then GrX is the wedge of the associated graded.

Lemma 1.20.2. Suppose that Ŝ is a slice cell of dim Ŝ = n ≥ 0. Then GrŜ is a wedge of
things in {S+ ∧ Sk} where S is a finite G-set and bn/|G|c ≤ k ≤ n. If dim Ŝ = n < 0, then
GrŜ is a wedge of things in {S+ ∧ Sk} where S is a finite G-set and n ≤ k ≤ bn/|G|c.

Proof. For n ≥ 0 Ŝ = G+ ∧H SmρH or G+ ∧H σ−1SmρH , the result follows from the fact that
SmρH has an H-CW decomposition: Sm∪ higher cells up to dimH. Case n < 0 follows from
Spanier-Whitehead duality.

Corollary 1.20.3. If X ≥ n ≥ 0, then X ∈ Span{S+ ∧ Sk | bn/|G|c ≤ k ≤ n}.
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Corollary 1.20.4. X ≥ n, and n ≥ 0, then X is (bn/|G|c − 1)-connected. If X ≥ n and
n < 0, then X is (n− 1)-connected.

Example: Fix k. For n >> 0, πkX → πkP
nX.

Analyze πkP
nX for k >> n. Q: where in the slice filtration is St of S+ ∧ St, where S is

a finite G-set?
Case I: St, t ≥ 0.

Claim 1.20.5. St ≥ t.

Proof. Induct on |G|. Can assume if K ∈ Span{S+ ∧ S`} ranging over all ` ≥ t and S with
no fixed points, then K ≥ t. We have:

T → St → StρH

where T is such a cell. Thus T ≥ t, and since StρG ≥ t|G|, we get St ≥ t.

Case II: Suppose m ≤ −1, and k ≥ m, then S+∧Sk ≥ (m+1)|G|−1. (k ≥ m follows from
k = m). So we may assume that k < 0. Trick: write S+∧Sk = S−1∧S+∧S(k+1)ρG∧S−(k+1)ρG .
Where 1⊕ ρG = ρG. Now S−1 ∧ S+ ∧ S(k+1)ρG ≥ (k + 1)|G| − 1, and S−(k+1)ρG ≥ 0, and so
the bound follows.

Corollary 1.20.6. For fixed k, there exists and n, such that X < n implies that πtX = 0,
for t ≥ k.

Corollary 1.20.7. limPn+1X ' pt, colimPnX ' pt, and X ' limPnX.

The Slice Spectral Sequence

(this can be thought of as a Mackey functor values sepctral sequence, or a spectral sequence
valued Mackey functor. )

Es,t2 = πt−sP
t
tX ⇒ πt−sX.

where the differential dr : Es,tr → Es+r,t+r−1
r .

[[FFF Illustrative image.]]
It is usually displayed with x-axis = t− s. The groups of a single slice occur along slope

(−1) lines.
[[FFF Illustrative image.]] Line through the origin with slope |G| − 1. Shaded regions

show possible ranges of non-zero homotopy groups for slices.

Remark 1.20.8. P−1
−1X = (−1)-Postnikov section. P 0

0 = HM where M is a Mackey functor
all of whose restriction maps are monomorphisms. �

Next time we will prove this.
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1.21 date: Oct 26, 2011

No Class on Friday. Today is supposed to be kinda fun. We are going to try and identify
some simple slices.

Proposition 1.21.1. X ≥ 0 iff X is (−1)-connected.

Proof. S+ is a wedge of slice cells of dimension zero, when S is a finite G-set. So X (−1)-
connected ⇔ X ∈ Span{S+}.

Proposition 1.21.2. X ≥ −1 iff X is (−2)-connected.

Proof. Same: Σ−1S+ is a wedge of −1-cells.

P0X → P−1X → P−1
−1X

So the (−1)-slice of X is the (−1)-Postnikov section. So...

Corollary 1.21.3. X is a (−1)-slice iff X ' Σ−1HM where M is any Mackey functor.

To analyze X > 0, we need a

Lemma 1.21.4. X ∈ SG and for all H ( G, i∗HX > d in SH . Then EP+ ∧X > d, where
P is the family of proper subgroups and EPH is pt if H ( G and is empty for H = G.

Recall,
EP+ → S0 → ẼP

Lemma 1.21.5. ẼP ≥ |G| − 1.

Proof. SρG−1 ≥ |G| − 1. So ẼP+ ∧ SρG−1 ≥ |G| − 1. But

ẼP → ẼP ∧ SρG−1

is an equivalence of G-spaces. We deduce this by looking at the fixed point spaces. Recall:
(ẼP)H = pt if H ( G, and S0 if H = G. The version for spectra follows from the space level
equivalence.

Proposition 1.21.6. X > 0 iff X is (−1)-connected and πu0X = 0, where πu0 means π0 of
the underlying non-equivariant spectrum.

Proof. X > 0⇒ X is (−1)-connected and πu0X = 0 is easy. For the converse,

EP+ ∧X → X → ẼP

X is (−1)-connected (⇒ X ≥ 0). The later is ≥ |G|−1 ≥ 1 (the trivial group case is trivial).
By induction on |G| we can assume i∗HX > 0 for all H ( G. Hence EP+ ∧ X > 0, and
therefore X > 0.

Corollary 1.21.7. If S → S′ is a surjective map of finite G-sets, then S+ → S′+ → S′+∪CS+,
and S′+ ∪ CS+ > 0.

Proof. S′+ ∪ CS+ ≥ 0 and πu0S
′
+ ∪ CS+ = 0.
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From yesterday’s lecture, if X is a zero slice, then X = HM for some M . In fact...

Corollary 1.21.8. HM is a 0-slice iff for all surjective maps S → S′, the map M(S′) →
M(S) is a monomorphism.

Proof. Look at the slice tower. P1HM → HM → P 0HM . Let’s look at the long exact
sequence of homotopy groups.

0→ π0P1HM →M → π0P
0HM → 0

Let’s notate them as:
0→M ′ →M →M ′′ → 0.

We need to show that M ′ = 0. Now M(S′) → M(S) a mono for all S → S′ is equivalent to
M(S′) ↪→M(G× S′), as there is:

G× S′

S

S′ .

Now a digram chase proves the result (look at S → G × S). We use that M ′(G × S) =
π0P1HM(G× S) = πu0P1HM(S) = 0 since P1HM > 0.

Theorem 1.21.9. P 0
0 S

0 = HZ. (Z is the constant Mackey functor).

Proof. Let A be the Burnside Mackey functor π0S
0. Then the fiber of S0 → HA is > 0 (in

fact simply connected). So this map is an equivalence:

P 0
0 S

0 = P 0S0 → P 0HA = P 0
0HA.

So it suffices to show that P 0
0HA = HZ.

I ↪→ A→ Z

applied to the G-set G gives 0 → Z → Z. This means that for HI → HA → HZ, we
have πu0HI = 0. But also HI ≥ 0. Hence HI > 0. Hence P 0HA → P 0HZ ' HZ is an
equivalence.

Remark 1.21.10. K a G-space, then Sym∞K = ΩHZ ∧K. (equivariant Dold-Kan). �

Corollary 1.21.11. If W is a wedge of slice cells of dimension d, then W ∧HZ is a d-slice.

Proof. W = wedges of G+∧HSmρH or Σ−1G+∧HSmρH . So it suffices to check that SmρH∧HZ
is a d-slice and SmρH ∧ Σ−1HZ.

The result follows from the fact that HZ is a zero slice and Σ−1HZ is a (−1)-slice.

Corollary 1.21.12. P
m|H|
m|H|G+ ∧H SmρH = HZ ∧G+ ∧H SmρH .

Definition 1.21.13. A d-slice is cellular if it is of the form HZ ∧W , where W is a wedge
of slice cells of dimension d. We will say it is pure if W is a wedge of slice cells of the form
G+ ∧H SmρH .

A spectrum X is pure (or has pure slices) if P ddX is pure for all d. �

The main theorem that proves the Kervaire theorem is that a certain spectrum is pure.
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1.22 date: Oct 31, 2011

Recall, a cellular d-slice is HZ ∧ Ŵ , where Ŵ is a wedge of slice cells of dimension d. Here
HZ corresponds to the constant Mackey functor. Then X is pure if the slices are cellular
with wedges of the form G+ ∧H SmρH (not desuspensions of these).

Example 1.22.1. G = Z/2. Then the cellular slices are HZ∧Smρ2 , HZ∧ (Z/2)+∧Sm, and
HZ∧S(mρ2)−1. Pure only uses the first two cases. For example: real K-theory, KR, the odd
slices are contractible, and the even slices are HZ ∧ Smρ2 . It is pure. �

Suppose that X is pure, and G 6= 1. Want to study πiX for −4 < i < 0. So we need to
study pi

i
HZ ∧ (G)+ ∧H SmρH . Now

piG
i
HZ ∧ (G)+ ∧H SmρH ∼= πH ∧ SmρH

so we might as well study piG
i
HZ ∧H SmρG . This is obviously zero for m ≥ 0.

[S−i, HZ ∧ S−mρG ]G = [SmρG , Si ∧HZ]G = H̃ i
G(SmρG ;Z) = H̃ i

G(SmρG/G;Z)

for 0 < i < 4. Now SmρG = ΣmSm(ρG−1). So

S(m(ρG − 1))/G→ pt→ Sm(ρG−1)/G

The first space is connected (if G 6= Z/2), so the last space is simply connected. So

H̃ i
G(SmρG ;Z) ∼= H̃ i−m

G (Sm(ρG−1);Z) ∼= H̃ i−m(Sm(ρG−1)/G;Z)

for 0 < i < 4, we have −m < i−m < 4−m. For m ≥ 2, H0, and H1 are both zero by simple
connectivity. The higher groups are also zero. This also applies when m = 1. So the only
remaining case is when m = 1, for H2. By simple connectivity, H2(SρG−1;Z) injects into
H2(SρG−1;Q). If G is finite, then H2(SρG−1/G;Q) = H2(SρG−1/G;Q) = 0 unless |G| = 3.
If the order of G is three, then H2(SρG−1/G;Z) = Z.

Summarizing, if G 6= 1, C3, (and m 6= 1), then πGi HZ ∧ SmρG . This leads to the Gap
Theorem.

Proposition 1.22.2. Suppose that X → Y is a map of d-slices, and X is cellular. Then
d 6≡ −1 mod p where p divides |G|. Then if πudX → πudY is an isomorphism then f is a weak
equivalence. (the underling map of spectra)

Example 1.22.3. KR, πu2nKR ∼= Z with (−1)n-action of Z/2. There is an equivariant map
Snρ2 → KR, whose underlying non-equivariant map is the generator. If Snρ2 ≥ 2n, then
Snρ2toP2nKR gives HZ ∧ Snρ2 → P 2n

2nKR. By the proposition this is an equivalence. �

Example 1.22.4. Suppose that R is a C4 spectrum and suppose that πu4R = Z〈b〉 ⊕ Z〈c〉 ⊕
Z〈a〉 where the last Z has the sign representation, and the first two Z’s form the 2-dimensional
permutation representation. Suppose we guess P 4

4R is cellular. The 4D slice cells are (C4)+∧
S4, (C4)+ ∧C2 S

2ρ2 , and Sρ4 . By the proposition, if we can find maps Sρ4 → R refining c to
a C4-equivariant map, and S2ρ2 → R refining a to a C2-equivariant map, then

P 4
4R ' HZ ∧ (Sρ4 ∨ (C4)+ ∧C2 S

2ρ2).

�
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Proof. Define C as the mapping cone X → Y → C. Then C ≥ d. We need to show that
[Ŝ, C]G = 0 when Ŝ is a slice cell and dim Ŝ ≥ d. By induction on the order of the group, we
can assume that G is not trivial, and Ŝ ' SmρG or SmrhoG−1.

Case 1: d ≡ 0 mod |G|. By smashing with S−
|G|
d
ρG , we can assume that d = 0. So in this

case, X and Y are zero slices. π0X = M , and π0Y = M ′, and X = HZ ∧ T+ where T is a
discrete G-set. This implies that M(S) = M(S ×G)G.

M(S)

M(S ×G)G

M ′(S ×G)G

M ′(S)

'

'

implies the top is an equivalence.
Case 2: d 6 ||G|, then πGmρGC = 0 for m|G| > d, and πGmρG−1C = 0 for m|G| > d.

πGVX − [SVX]G. Low m|G| − 1 > d. and we have

0 = πGmρGY → πGmρGC → πGmρG−1X = 0

so the middle term is zero. [...]

claim If X is a cellular d-slice and m|G|− 1 > d then πGmρG−2 → πum|G|−2X is a monomor-
phism.

1.23 Complex cobordism and formal groups date: Nov
2nd, 2011

We’ve discussed the slice tower and certain techniques for figuring out certain slices. We
figured out the 0-slice of S0, and we have the notion of a pure spectrum. Now we are going
to start introducing some examples of spectra. The ones we are really going to work with.

Let MU be the Thom spectrum over BU of the universal virtual bundle V 0. BU =
∪nBUn, thenMU(n) = Thom(BUn, V

n
univ). We get Σ2MU(n−1)→MU(n). And colim Σ−2nMU(n) =

MU . This has some interesting universal properties. MU is a commutative ring (BU is an
infinite loop space).

Definition 1.23.1. Let E be a ring spectrum (E ∧ E → E is unital and homotopy asso-
ciative). A complex orientation of E is an element x ∈ Ẽ2(CP∞) such that x restricts to
1 ∈ E0(pt), under

E2(CP∞)→ Ẽ2(CP2) = Ẽ2(S2) ∼= E0(pt).

�

Proposition 1.23.2. If x ∈ Ẽ2(C]P∞) is a complex orientation, then E∗(CP∞) = π∗E[[x]].
More generally,

E∗(CP∞ × · · · × CP∞︸ ︷︷ ︸
n times

) = π∗E[[x1, . . . , xn]]

where xi comes from the image of x under the projection to ith-factor.
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Proof. By induction on n we show, E∗(CPn) = π∗E[x]/xn+1. There is a morphism π∗E[x]/xn+1 →
E∗(CPn), and it is an isomorphism for n = 1. Then we study the sequence

→ E∗(CPn,CPn−1)→ E∗(CPn)→ E∗(CPn−1)→

and use CPn/CPn−1 ' S2n, for the inductive step. We use a factorization of ∆, CPn →
S2n → ∧nCPn where the second map is degree 1. [[FFF didn’t quite follow.]]

The map CP∞ × CP∞ → CP∞ gives us,

f(x, y) ∈ π∗E[[x, y]].

This defines a formal group law over π∗E. (Unital, commutative, and associative). Some of
our applications are calculational so I will stick to formula based descriptions. But there are
more conceptual and elegant ways to think about this.

There is a universal formal group law F (x, y) = x + y +
∑

i,j>1 aijx
iyj . aij = aji and

associativity gives a series of complicated relations. The Lazard ring is Z[aij ]/ these relations.
Then

Ring(L,R)↔ Formal Group Laws over R.

In fact there is a category of formal group laws.
Back in topology... MU itself is a complex oriented spectrum. MU(1) = Th(BU(1), V 1

univ) =
Th(CP∞, L) which is the mapping cone of pt ' S∞ ' S(L)→ CP∞ → Thom(CP∞, L).

Σ∞CP∞ = MU(1)→ Σ2MU

gives x ∈ M̃U
2
(CP∞) and is a complex orientation.

Suppose that E is complex oriented. Then E∗(CP∞) is a free π∗E-module on b0, b1, . . .
where each bi ∈ E2iCP∞, where 〈bi, xj〉 = δij . Now L : CP∞ → BU , and we have a
Schubert celll decomposition of BU (coming from Grassmanians) implies that E∗(BU) =
π∗E[b0, b1, . . . ]/(b0 = 1). So

E∗BU = SymE∗(Ẽ∗CP∞).

Similarly E∗(BU) = Homπ∗E(E∗BU, π∗E).
Let βn ∈ E2nΣ2CP∞ correspond to bn−1 under the suspension isomorphism. Similar

arguments show that E∗MU = π∗E[β1, β2, . . . ], and E∗MU = Homπ∗E [E∗MU,π∗E]. So
E∗MU = [MU,E]. Homotopy multiplicative maps are in bijection with ring maps E∗MU →
E∗.

Theorem 1.23.3 (Quillen). The map L → π∗MU sending aij to coefficients of the formal
group law in π2(i+j)MU is an isomorphism.

Theorem 1.23.4 (Lazard). L = Z[x1, x2, . . . ] with |xi| = 2i when |aij | = 2(i+ j).

Real Bordism

Landweber, Araki, then later Hu-Kriz. Let’s work in C2-spectra. Consider CP∞. C2 acts on
this by complex conjugation (the fixed point space is RP∞). If BU = colimBU(n), then C2

acts on this by complex conjugation. The fixed point space is BO. Araki defined the notion of
a Real oriented spectrum. This is a C2-spectrum with an element x ∈ Ẽρ2CP∞, where ρ2 is the
2-dimensional sign representation. Then it restricts to 1 ∈ Ẽρ2(CP1) = Ẽρ2(Sρ2) = E0(pt).



48 Nov 4th, 2011
Mike Hopkins

Equivariant Homotopy Theory

All the Schubert cells lift to C2-equivariant cells with Snρ2 replacing S2n. So all of those
previous computations go through. E?(X) = ⊕VEV (X) is the RO(G)-graded cohomology,
where EV (X) = [X,SV ∧ E]G. Then,

E?(CP∞) = (π?E)[[x]].

The same argument works for these and all the same computations go through.

E?(CP∞ × · · · × CP∞︸ ︷︷ ︸
n times

) = π?E[[x1, . . . , xn]]

Then we define Real bordism as MUR = colimS−nρ2MUR(n), where MUR(n) is the Thom
space of the universal bundle over BU(n), which the complex conjugation action. We get a
map,

L→ π?MUR

sending aij to aij ∈ π(i+j)ρ2MUR.
Now L = Z[x1, x2, . . . ], and the image in π?MUR is xi ∈ πρ2MUR. For any monomial xI ,

we get xI ∈ π|I|ρ2MUR. Using these we can construct,∨
|I|=n

Snρ2 →MUR

forgetting the group action, refining a basis on π2nMU . This implies (by the theorem yes-
terday) that the even slices of MUR are pure.

One of the main theorems we will prove is that the odd slices of MUR are zero, hence
MUR is pure.

1.24 date: Nov 4th, 2011

MUR = colimS−nρ2 ∧ MUR(n), where MUR(n) is the Thom complex (spectrum) of the
universal bundle over BU(n).

What is BUR(n)? It is the limit of the Grassmanian of complex n-planes Grn(CN ) where
Z/2 acts by complex conjugation. The fixed point space BUR(n)Z/2 = BO(n), where BO(n)
is the colimit of real Grassmanians. If X is a space with a Z/2-action, then [X,BUR(n)]Z/2

is the set of isomorphism classes of Real vector bundles of dimension n on X. What is this?
It is a complex vector bundle V of dimension n on X with a Z/2-action on V , such that
V → X is equivariant. 0 6= τ ∈ Z/2. This means that we have an isomorphism

τ : Vx ∼= Vτx

We further require that this isomorphism is conjugate linear.

Example 1.24.1. If Z/2 acts trivially on X, then a Real vector bundle V on X is V ∼= V0⊗C
where V0 is the fixed point R-vector bundle. �

Example 1.24.2. An algebraic variety X over R with vector bundle. Then look at complex
points. �



Mike Hopkins
Equivariant Homotopy Theory Nov 4th, 2011 49

Now Thom spectra have two roles in homotopy theory. They are universal for Thom
isomorphisms, and there homotopy groups are certain bordism groups. Look at MUR. let
V → X be a Real vector bundle (of dimC V = n). We have X → BUR(n). We get,

Thom(X;V )→MUR(n)→ Snρ2 ∧MUR

This gives u ∈ MUnρ2n (Thom(X;V )). The Thom isomorphism: multiplication by u is an
isomorphism

MU?R(X) ∼= MU?+nρ2R (Thom(X;V )).

Suppose that M is an n-dimensional real manifold, i.e. M has a Z/2-action, and TM is a
Real vector bundle.

The Pontryagin-Thom construction; We choose M ⊆ CN , equivariant with normal
bundle ν. Then we get

CN r SNρ2 → Thom(M ; ν)→ S(N−n)ρ2 ∧MUR

which gives Snρ2 → MUR. We denote this [M ] ∈ πnρ2MUR. More generally πnρ2MUR is
cobordism classes of n-dimensional real manifolds.

This is subtle as the usual proof need transversality, but transversality doesn’t work well.
For example the origin in the real line with its Z/2 flipping action is a fixed point. It can’t
be equivariantly made transeverse. But it can if there are extra fixed point directions. In
the cobordism theory, we are right on the cusp of whether there is enough fixed directions.
Cobordisms need to be defined as: A map M → C of Real manifolds, transverse at 1,−1. It
is a cobordism between M−1 and M1.

Real oriented cohomology theories, E.

The following are equivalent

– x ∈ Ẽρ2(CP∞) restricting to 1;

– A homotopy multiplicative map MUR → E;

– A Thom isomorphism E?(X) ∼= E?+nρ2(Thom(X,V )) for all Real vector bundles, which
is multiplicative in the sense that if V n → X and Wm → Y , then

E?(X)⊗ E?(Y )

E?(X × Y )

E?(Thom(X,V )⊗ E?(Y,W ))

E?(Thom(X × Y, V ×W ))

mult

Thom

A Real orientation of E gives a formal group law over π?E. In fact it is defined over
⊕πnρ2E. π is overloaded:

– π∗E is a Mackey functor.

– πGnE = [Sn, E]G = πnE(pt).

– πnρ2 = [Snρ2 , E]G.

– πUnX = πnX(G) = πn(i∗X), where i∗X is the underlying non-equivariant spectrum.
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1.24.1 RO(G)-graded commutativity

Suppose that E is homotopy commutative. x : Sv → X, and y : SW → E, then the product
is x∪ y : SV ∧SW → E ∧E → E. The commutativity of the multiplication tells me that the
following diagram commutes (up to homotopy)

SV ∧ SW

SW ∧ SV E

where the map SV ∧SW → SW ∧SV is (non-canonically) an element in A(G)×. In the usual
case this is just an element of ±1, and this is the usual sign issue.

In our cases of interest, π0E = Z. (True for E = MUR). So the equivariant commutativity
just introduces the usual signs. A real orientation x ∈ Ẽρ2(CP∞) gives a formal group law
over ⊕nπnρ2E, and if E is homotopy commutative, then this is a commutative ring.

This maps,
⊕nπnρ2E → ⊕nπU2nE

If x maps to an ordinary complex orientation of i∗E, then we have a lift of the formal group
law on ⊕nπU2nE.

Theorem 1.24.3 (Hu-Kriz, Araki).

L

⊕nπnρ2MUR ⊕nπU2nMUR

Equivalently, every x ∈ π2nMU = πu2nMUR lifts (refines) to an element x ∈ πnρ2MUR.
Every stably almost complex manifold is cobordant to a Real manifold. (We already knew this
by explicit generators due to Milnor).

...

Now G is an arbitrary group.

Definition 1.24.4. Suppose X is a G-spactrum. A refinement of homotopy of X is a map
Ŵ → X, where Ŵ is a wedge of slice cells, and where non-equivariantly the SnαX form a
basis for πU∗ X. �

For this to be possible, the homotopy of i∗X has to be free abelian.

1.25 date: Nov 14, 2011

[[FFF Missed Lectures Nov 7,9, and 11. Anyone take notes?]]
No class Friday.
In the last lecture we were looking at fixed points
claim; The generators r1, · · · ,∈ L (ri ∈ L2i) whose images ri ∈ πiρ2MUR have the

property that ΦC2ri = hi ∈ πiMO have the property that h2j−1 = 0 {hk|k 6= 2j − 1}.
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π∗MU , Calculated by Thom. There is an equalizer diagram

π∗MO → π∗HZ/2 ∧MO ⇒ π∗(HZ/2 ∧HZ/2 ∧MO)

RP∞ = MO(1) = Th(BO(1)), MO = colim Σ−nMO(n). So we get α ∈ MO1(RP∞). The
same arguments from last week apply and

MO∗(RP∞) = π∗MO[[a]]

MO∗(RP∞ × RP∞) = π∗MO[[a, b]]

and the map RP∞×RP∞ → RP∞ induces a formal group law over π∗MO. Now the composite

RP∞ ∆→ RP∞ × RP∞ → RP∞

(mult by 2) is null-homotopic. Thus F (a, a) = a+F a = 0.

Theorem 1.25.1 (Quillen). The formal group law for MO is the unversal one satisfying
F (a, a) = a+F a = 0.

π∗HZ/2 ∧MO = H∗(MO;Z/2). There are two ways to think about this. Let H∗ =
homology with Z/2-coefficients. Then H∗(MO) = Sym(H∗(RP∞))/b0 = 1, where bi dual to
ai. Another way to think about this is the go through the theory of formal groups using
RP∞ instead of CP∞. Let E be a cohomology theory. Given α ∈ Ẽ1(RP∞) which restricts
to 1 ∈ E0(pt). Then E∗(RP∞) = π∗E[[α]] and a formal group law.

In our particular case E = HZ/2 ∧MO, we have two classes:

a : RP∞ → ΣMO → ΣHZ/2 ∧MO

x : RP∞ → ΣHZ/2→ ΣHZ/2 ∧MO

Thus E∗RP∞ = π∗E[[x]] with x+F y = x+ y. Also E∗RP∞ = π∗E[[a]], with the formal sum
given from the one in MO. But these are isomorphic. Thus....

x = `(a) =
∑

bna
n+1 = a+ b1a

2 + . . .

Where bk ∈ HkMO. An exercise shows these are the same bi from before. ` is an isomorphism
from the a-formal group to the additive group.

We’ve shown that H∗MO represents the universal isomorphism of the formal group law
over π∗MO to the additive formal group law.

What is π∗HZ/2 ∧HZ/2 ∧MO = A∗ ⊗H∗MO, where A∗ is the dual Steenrod algebra.
In Milnor’s work: There is an action A⊗H∗(X)→ H∗(X), can be rewritten

H∗(X)→ A∗ ⊗H∗(X).

When X = RP∞, then H∗(RP∞) = Z/2[x], and we get the map

x 7→
∑

fkx
k+1 = f(x)

we get f(x + y) = f(x) + f(y), so f(x) = x +
∑
ζnx

2n , so fk = 0 for k 6= 2n − 1. ζn ∈ A∗.
Thus (using Steenrod algebra relations) A∗ = Z/2[ζ1, ζ2, . . . ].
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Atiyah-Hirzebruch interpreted Milnor’s computation as Spec A∗ = Aut(Ga). This was the
beginning of the entry of formal groups into algebraic topology and homotopy theory.

π∗MO → HZ/2∗MO ⇒ A∗ ⊗HZ/2∗MO. The first is the Scheme of formal group laws
F with an isomorphism to Ga, and the second consists of those F with an isomorphism of F
with Ga, and an additional automorphism of Ga. The pair of maps are the obvious ones.

Now `(a) =
∑
bka

k+1. `(2) =
∑
b2j−1a

2j . Then (`(2))−1 ◦ `(a) =
∑
hia

i (and h2j−1 = 0).
(This is easy and an exercise for the reader). The conclusion is that π∗MO = Z/2{hi | i 6=
2k − 1}.

Now let’s do the MU analog. We can do this at any prime, but we’re going to assume
that everything is localized at p = 2.

π∗MU → H∗MU

x ∈ H2(CP∞;Z), the generator, and we have z ∈ MU2(CP∞). A similar discussion holds.
The homology of MU is the symmetric algebra of H∗CP∞/m0 = 1. It is generated by the
mi which are dual to zi. Spec H∗MU = Iso(FMU ,Ga) and x = `(z) = z +

∑
mnz

n+1.
Notation: Q2n = π2nMU/I2 which I = ⊕j>0π2jMU . Let IH = ⊕j>0H2jMU , and

QH∗ = IH/IH2. Then QH2n = Z(2){mn}.

Theorem 1.25.2 (Milnor). Q2n → QH2n is an isomorphism if n 6= 2j − 1, and Q2(2j−1) ↪→
QH2n → Z/2 (short exact sequence).

`(z)−
∑
mnZ

n+1, and let `(2)(z) =
∑
m2j−1z

2j .

Theorem 1.25.3 (Cartier). (`(2))−1 ◦ ` has coefficients in π∗MU (i.e. over L and not just
L⊗Q).

Example 1.25.4. Consider the multiplicative formal group, x+F y = 1− (1− x)(1− y) =

x + y − xy. This log(1 − x) = x + x2

2 + · · · gives an isomorphism of this with the additive

group. `(2)(x) =
∑ x2

n

2n . Then

(`(2))−1 ◦ `(x)

has integer coefficients is equivalent to exp(
∑ x2

n

2n ) ∈ Z(2)[[x]], which is the Artin Hasse
exponential formula. �

Using Cartier’s theorem, let’s define ri ∈ π2iMU (over Z(2)) by

(`(2))−1 ◦ `(z) =
∑

riz
i+1

The easy to check ri ≡ mi mod IH2 if i 6= 2j − 1, and that r2j−1 ≡ 2m2j−1. So the ri are
the algebra generators. π∗MU = Z(2)[r1, . . . ]. This gives elements ri ∈ πiρ2MUR. The claim
is that these are the elements such that

ΦC2(ri) = hi

(h2j−1 = 0).
Let’s try to relate real bordism to unoriented bordism. x : CP∞ → Sρ2 ∧MUR which has

the spacial property that the restriction to CP1 is the usual thing. Now apply ΦC2 . We get
the class a : RP∞ → S1 ∧MO. The map,

π∗ρ2X → π∗Φ
C2X
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is additive and multiplicative. Thus if we define mn ∈ πnρ2HZ ∧ MUR, we have `(x) =∑
mnx

n+1, and similarly for `
(2)

. Applyng ΦC2 gives the ` and `(2) from before.

The result now follows by applying ΦC2 to (`
(2)

)−1 ◦ `(x) =
∑
rnx

n+1

1.26 date: Nov 16, 2011

In the last class we defined these generators ri for the Lazard ring, and mapped this to
⊕πnρ2MUR sending ri to ri. We defined hi = ΦC2ri ∈ πiMO, and we saw h2j−1 = 0, and
π∗MO = Z/2[hi | i 6= 2j − 1].

For G = C2n , we can generalize to MU (G) = NG
C2
MUR. The C2-spectrum underlying

MU (C4) = MUR ∧MUR where the C4-action sends (a, b) 7→ (b, a). The proof from last time
generalizes.

γ a generator of G. We know πu∗MU (G), because of the yoga of complex oriented coho-
mology theories, but the same techniques from last time also apply. We learn that

πu∗MU (G) = Z(2)[r1, γr1, · · · , γcr1︸ ︷︷ ︸
|G|/2 times

, r2, γr2, · · · , γcr2, · · · ]

where c = |G|/2 − 1. Then γ
|G|
2 r1 = −r1 ⇔ complex conjugation. If we let G · ri = the

collection of ri, γri, · · · , γcri. So we say,

πu∗MU (G) = Z(2)[G · r1, G · r2, · · · ]

Warning: The ri for G depend on G.
Construction of the ri for G = C4. πu∗MU (C4) = π∗MU ∧MU . This represents a pair of

formal group laws and an isomorphism between them. The two formal group laws are F and
F γ , and we have an isomorphism from F to F γ . With this description we can work out the
whole C4-action.

F

Ga

F γ

Ga

` `γ

where `(x) =
∑
mnx

n+1, and `γ(x) =
∑
mγ
nxn+1. We also have (`γ)(2) =

∑
mγ

2n−1x
2n [???]

Claim:
((`γ)(2))−1 ◦ ` =

∑
rix

i+1

has coefficients in π∗MU ∧MU . This is because (`γ)−1 ◦ ` has coefficients in π∗MU ∧MU .
((`γ)(2))−1 ◦ `γ has coefficients in π∗MU ∧MU by Cartier’s result.

The argument from last time that showed that the ri are generators generalizes to this
case as well.

This all comes from manipulations of formal groups. It actually can be made to take
place in ⊕iπC2

iρ2
MU (G). The consequence of that is that we get a map

Z(2)[G · r1, G · r2, . . . ]→ ⊕iπC2
iρ2
MU (G)

γjri 7→ γjri
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When G = C8, this is the spectrum and its homotopy groups are what we will want to
understand.

The Main Theorem is that MU (G) is pure. Let’s sketch the approach to proving this.
[[FFF Q: Isn’t this just a formal consequence of the fact that MU (G) is a smash of

MURs? Ans: No! For example NC4
C2
HZ 6= HZ nor is it even pure. It is a crappy spectrum.

]]
We would like to define a G-spectrum Jn such that MU (G)/Jn is π∗MU (G)/ the ideal of

all elements of degree ≥ n. Then form a tower,

· · · →MU (G)/J2 →MU (G)/J1 = H ′

[H ′ is written R(∞) in the paper]. We then find that the fiber of MU (G)/Jn →MU (G)/Jn−1is
contractible when n is odd and is H ′∧ a wedge of slice cells of dimension n, when n is even.
Proving H ′ = HZ then implies that MU (G) is pure and that {MU (G)/Jn} is the slice tower.

We construct MU/Jn using the method of polynomial algebras. For each ri choose a
C2-equivariant map

ri : Siρ2 →MU (G)

representing it. Then extend to a map of associative algebras

T (Siρ2)→MU (G)

Here the free algebra T (Siρ2) = ∨n≥0S
inρ2 . This map is C2-equivariant. Now we apply NG

C2

and we get

NG
C2
T (Siρ2) NG

C2
MU (G)

MU (G)

Now by the formula for the norm of a wedge this first term is isomorphic to S0[G · ri].

Example 1.26.1. G = C4. Then S0[G · r1] is S0[r1] ∧ S0[γr1] which is equal to

(S0 ∨ Sρ2 ∨ S2ρ2 ∨ · · · ) ∧ (S0 ∨ Sρ2 ∨ S2ρ2 ∨ · · · )

which is just,
S0 ∨ (Sρ2 ∨ Sρ2)︸ ︷︷ ︸

C4+∧C2
Sρ2

∨(S2ρ2 ∨ S2ρ2︸ ︷︷ ︸
C4+∧C2

S2ρ2

∨ Sρ2 ∧ Sρ2︸ ︷︷ ︸
Sρ4=N

C4
C2
Sρ2

) ∨ · · ·

�

More generally Hu
∗ S

0[G · ri] = Z[ri, γri, · · · , γcri], and S0[G · ri] is a wedge of slice cells
of the from G+ ∧H SmρH (not desuspensions). Now we take this

S0[G · ri]→MU (G)

and smash together and take a colimit to get a G-equivariant map

S0[G · r1, G · r2, . . . ]→MU (G)

Then Mn is the sub-wedge of slice cells of S0[G ·r1, G ·r2, . . . ] of cells of dimension ≥ n. Then
Jn = MU (G) ∧S0[G·r1,... ] Mn. We get the desired property for MU (G)/Jn.
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