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All rings mentioned are unitary and commutative. To indicate that I ⊆ R is an ideal of the ring
R, we will often use the notation I �R. For other conventions used throughout, see [Har77Har77].
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1 Flatness

The notion of flatness was introduced by J. P. Serre in his famous paper [Ser56Ser56].

Definition 1.1. Let R be a ring. A R-module M is flat if the functor ⊗RM : ModR → ModR is
exact.

Remark. Recall that ⊗RM is always right exact, so the only thing to test to check flatness of a
R-module M is that for any exact sequence 0→ N1 → N2 also 0→ N1 ⊗RM → N2 ⊗RM is exact.

A simple example of a flat R-module is R itself, or more in general any free R-module.

Example 1.2. Let S be a multiplicatively closed subset of the ring R, and consider the R-module
S−1R, the localization of R aver S. Then S−1R is a flat R-module. Indeed, consider an exact sequence
of R-modules 0→M → N , and assume that an element x

s of S−1M becomes 0 in S−1N . By definition
this means that there is some s′ ∈ S such that s′x = 0 in N , but since M is a R-submodule of N , we
also have s′x = 0 in M . But then x

s was already 0 in S−1M , thus 0→ S−1M → S−1N is exact.
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Remark. If M is a flat R-module and t ∈ R is not a zero divisor, then M
·t−→ M is injective; indeed,

since 0→ R
·t−→ R is exact, also 0→ R⊗RM

·t−→ R⊗RM is.

Lemma 1.3. For a R-module M , the following are equivalent:

1. M is a flat R-module;

2. for every ideal I �R, the map I ⊗RM →M defined by j ⊗m 7→ jm is injective.

This lemma gives us an equivalent definition of flatness in terms of ideals of R; as we shall see,
this will be an important tool in studying properties of flatness.

Proof. The implication 1⇒ 2 is immediate, so we just prove that 2 implies 1. Let f : N1 → N2 be an
injective morphism of R-modules, and consider f ⊗ id : N1⊗RM → N2⊗RM . To prove that f ⊗ id is
injective it is of course sufficient to show that it is injective when restricted to any submodule of the
form N ′1 ⊗R M , where N ′1 is a finitely generated R-submodule of N1. From now on we may assume
then that N1 and N2 are finitely generated R-modules, and that f : N1 → N2 is the inclusion map.

In this context there are n ∈ Z>0 and R-submodules L2 ⊆ L1 ⊆ Rn such that N2 = Rn/L2,
N1 = L1/L2. We wish to show that

L1
L2
⊗RM Rn

L2
⊗RM

is injective. Notice that there are natural maps L2 ⊗RM → Rn ⊗RM ∼= Mn and L1 ⊗RM → Mn;
if we manage to show that these are injective, then also L1

L2
⊗RM → Rn

L2
⊗RM will be injective, since

under this hypothesis L1
L2
⊗RM ∼= L1⊗RM

L2⊗RM
, Rn

L2
⊗RM ∼= Mn

L2⊗RM
and these isomorphisms are such that

L1
L2
⊗RM Rn

L2
⊗RM

L1⊗RM
L2⊗RM

Mn

L2⊗RM

' '

is commutative. To conclude then it will be enough to prove that for any R-submodule K of Rn, the
natural map K⊗RM →Mn is injective. We do this by induction on n. For n = 1 K is an ideal in R,
so K ⊗RM → M is injective by our hypothesis. Assume now that n > 1 and that the thesis is valid
for n− 1. Define

K ′ = K ∩
(
{0} × · · · × {0}︸ ︷︷ ︸

n−1 times
×R)

so that K/K ′ ⊆ Rn−1. Then we have the following commutative diagram with exact rows:

0 K ′ K K/K ′ 0

0 R Rn Rn−1 0

tensoring with M we get another diagram with exact rows

K ′ ⊗RM K ⊗RM (K/K ′)⊗RM 0

0 M Mn Mn−1 0

where the first and third vertical arrows are injections, by our induction hypothesis and the base case.
Then it follows that also the vertical arrow in the middle is an injection, so we have the thesis.

Remark. Notice that condition 2 in Lemma 1.31.3 is actually equivalent to

2′. for every finitely generated I �R, the map I ⊗RM →M is injective.
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Indeed, if J is an ideal of R (not necessarily finitely generated) and m ∈ ker(J ⊗RM →M), there is
a finitely generated I � R such that I ⊆ J and m ∈ ker(I ⊗R M → M). Assuming that 2′ holds we
deduce that m = 0.

Lemma 1.4. Let R be a principal ideal domain. Then a R-module M is flat if and only if it is torsion
free.

Proof. By Lemma 1.31.3, M is flat if and only if for every a�R, a⊗M → M is injective. Since R is a
PID, this is equivalent to saying that for all t ∈ R, the multiplication M

·t−→ M is injective, i.e. M is
torsion-free.

Proposition 1.5. Let R be a ring, and let 0 → M ′ → M → M ′′ → 0 be a short exact sequence
of R-modules. If M ′′ is flat, then for any R-module N the sequence 0 → N ⊗R M ′ → N ⊗R M →
N ⊗RM ′′ → 0 is exact.

Proof. Let N be a R-module, and fix a short exact sequence of R-modules 0 → K → F → N → 0
with F a free R-module; then we can define the following commutative diagram:

0 0 0

M ′ ⊗R N M ⊗R N M ′′ ⊗R N 0

0 M ′ ⊗R F M ⊗R F M ′′ ⊗R F 0

M ′ ⊗R K M ⊗R K M ′′ ⊗R K 0

0

and notice that is has exact rows and columns. Indeed, the last column is exact because M ′′ is flat,
and the middle row is exact since F is free (hence flat). From this diagram it can be easily checked
that N ⊗RM ′ → N ⊗RM is injective by diagram chasing.

A corollary of this is that flatness is stable by extensions. The proof of this is again by diagram
chasing.

Corollary 1.6 (Stability by extensions). Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of
R-modules. If M ′ and M ′′ are both flat, then also M is; moreover, if M and M ′′ are flat, then also
M ′ is.

Proposition 1.7 (Base change and transitivity). Let M be a flat A-module. Then

1. if ϕ : A→ B is a ring homomorphism, then M ⊗A B is a flat B-module;

2. if ψ : R→ A makes A into a flat R-module, then M considered as a R-module is also flat.

Proof. For the first claim, let N be any B-module and notice that N ⊗B (M ⊗A B) ∼= N ⊗AM , if we
consider N as an A-module via ϕ. Then, if 0 → N1 → N2 is an exact sequence of B-modules from
the flatness of M it follows that also 0→ N1 ⊗B (M ⊗A B)→ N2 ⊗B (M ⊗A B) is exact.

For the second claim, we can proceed analogously. It is simply enough to notice that if N is a
R-module then N ⊗RM ∼= N ⊗R (A⊗AM) ∼= (N ⊗R A)⊗AM .

Proposition 1.8 (Local criteria). A R-module M is flat if and only if Mp is a flat Rp-module for
every p ∈ Spec(R). Moreover, a finitely generated module over a local Noetherian ring is flat if and
only if it is free.

Proof. Proposition 3.G in [Mat87Mat87] and Proposition 3.J in [Mat87Mat87].
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1.1 Flat morphisms of schemes

Definition 1.9. Let f : X → Y be a morphism of schemes, and let F be a sheaf of OX -modules. We
say that F is f -flat at x ∈ X if the stalk Fx, seen as a OY,f(x)-module via f ] : OY,f(x) → OX,x, is
flat. If F is f -flat at every x ∈ X, we say that F is f -flat. We will also say that F is f -flat at some
y ∈ Y if it is f -flat at each x ∈ X such that f(x) = y.

We are particularly interested in the case F = OX ; in this case we will simply say that f is flat
at x ∈ X or at y ∈ Y . It’s also quite common to use phrases like “let X → Y be a flat family of
schemes”, without naming the morphism.

The idea behind this condition is that a flat morphism of schemes X → Y describes a family of
schemes parametrized by the base Y which is, in some sense, continuous. Why this is the case seems
to be a bit of a mystery (these are Hartshorne’s words), but nonetheless flat morphisms exhibit a
number of nice properties that we would expect from a continuous family of geometric objects.

The previous definition describes actually a relative notion of flatness. The corresponding absolute
(i.e. that does not depend on a chosen morphism) definition is the following: a sheaf of OX -modules
F is flat if and only if each stalk Fx is a flat OX,x-module.

Lemma 1.10. Let X be a Noetherian scheme, and let F be a coherent sheaf of OX-modules. Then
F is flat if and only if it is locally free.

As usual, the notion of flatness for affine schemes is completely algebraic.

Lemma 1.11. Let ϕ : A → B be a morphism of rings, and let f : Spec(B) → Spec(A) be the
corresponding map of schemes. Let M be a B-module. Then M̃ is f -flat if and only if M is a flat
A-module.

As a partial justification for the definition of flatness, consider an affine scheme X = Spec(A)
of finite type over an algebraically closed field k. Any ideal I � A defines the closed subscheme
Z = Spec(A/I). Let M̃ be a quasicoherent sheaf on X; as usual, we may regard sections of M̃ as
“M -valued functions” on X. The restriction of M̃ to Z is the coherent sheaf on Z defined by the
A/I-module M ⊗A A/I, and because M is A-flat we know that M ⊗A A/I ∼= M/(IM). In other
words, a (local) section of M over X restricts to 0 in Z if and only if over Z it took values in IM .
Thus we can say that M̃ is flat when its sections “restrict nicely” to closed subsets of X.

1.1.1 Generic flatness and the open nature of flatness

Now we show that, under some reasonable hypothesis, the failure of flatness can only happen on a
“small” subset of the base. This is a consequence of the “Generic freeness Lemma” of Grothendieck
[GD65GD65, Lemme 6.9.2].

Theorem 1.12 (Generic freeness). Let A be an integral Noetherian ring, B a finitely generated A-
algebra and M a finitely generated B-module. Then there is some f ∈ A \ {0} such that Mf is a free
Af -module.

As a corollary we easily get that each sufficiently regular morphism of schemes is “generically flat”.

Corollary 1.13 (Generic flatness). Let f : X → Y be a morphism of finite type of schemes, with Y
locally Noetherian and integral. For any coherent OX-module F , there is an open set U ⊆ Y such
that F�f−1(U) is flat over U .

Proof. By taking an affine open cover of Y , we see that it will be enough to prove the theorem in the
case when Y is affine. Assume then that Y = Spec(A) for a Noetherian integral domain A. Since f
is of finite type, we can cover X by a finite number of open affine sets {Spec(Bi) | i = 1, . . . , N} such
that each Bi is a finitely generated A-algebra.

If we prove that for each i = 1, . . . , N there is an open set Ui ⊆ Y such that F�Spec(Bi)∩f−1(Ui) is
flat, then it will be enough to take U =

⋂N
i=1 Ui to get an open set with the desired property. Hence

we may also assume that X = Spec(B) for some finitely generated A-algebra B.
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By assumption there is a finitely generated B-module M such that F = M̃ . Then Theorem 1.121.12
tells us that there is some nonzero a ∈ A such that Ma is a free Aa-module, and this is precisely what
we had to prove.

A result that has a similar flavour is that the set of points at which a coherent sheaf is flat is open,
c.f. [GD66GD66, Théorème 11.1.1].

Proposition 1.14 (Open nature of flatness). Let f : X → Y be a morphism locally of finite type,
with Y locally Noetherian, and let F be a coherent OX-module. Then {x ∈ X | F is f − flat at x} is
an open subset of X.

Since this is again a local question, it is enough to prove it for X = Spec(B), Y = Spec(A), F = M̃
for a finitely generated B-module M and f ] : A → B making B into a finitely generated A-algebra.
Then the proposition follows again by an algebraic lemma.

Lemma 1.15. Let A be a Noetherian ring, B a finitely generated A-algebra, M a finitely generated
B-module. choose q ∈ Spec(B), and let p�A be the preimage of q under the natural map A→ B. If
Mq is a flat Ap-module, then there is g ∈ B \ q such that for all prime ideals q′ � B with q ⊆ q′ and
g 6∈ q′, Mq′ is a flat Ap′-module, where p′ is the preimage of q′.

For a proof, we refer to [GD66GD66, 11.1.1.1].

1.1.2 One-parameter families

Before studying flatness in full generality, we show that in some special (but nonetheless interesting)
cases, flatness can be described as an actual continuity property, in the sense that in a flat family
each fibre is the “limit” of all the other neighbouring fibres. To do this we will need the concept of
associated points of a scheme, which is explained in some detail in the Appendix (Section 33).

Theorem 1.16. Let f : X → Y be a morphism of locally Noetherian schemes, with Y a regular and
integral scheme of dimension 1. Let y ∈ Y be a closed point. Then f is flat at y if and only if no
associated point of X maps to y.

Note that, under these hypothesis, Y has exactly one non-closed point, its generic point.

Proof. Since Y is regular of dimension 1 and y is a closed point of Y , dim(OY,y) = dim(Y ) = 1, so
OY,y is a Noetherian local integral domain of dimension 1: it must be a PID11.

Assume that x ∈ X is such that f(x) = y, and that f is flat at x. Let u ∈ OY,y be a generator of my.
By hypothesis u does not divide zero in OY,y, and if we look at the map of local rings f ]y : OY,y → OX,x
we see that f ]y(u) ∈ mx is an element that does not divide 0, by the Remark at page 22. Hence x cannot
be an associated point of X, by Lemma 3.163.16.

For the other direction, assume that f−1(y) does not contain any associated point of X. Let x ∈ X
be such that f(x) = y. By Lemma 1.41.4 we know that f is flat at x if and only if OX,x is a torsion-free
module, i.e. for all nonzero t ∈ OY,y, f ]y(t) is not a zero divisor in OX,x.

Assume, on the contrary, that there is some t ∈ OY,y such that f ]y(t) is a zero divisor in OX,x. Let
u be a generator of my, and let n ∈ Z≥0 be the unique22 integer such that t = aun for some a ∈ OY,y.
Then f ]y(aun)b = 0 for some nonzero b ∈ OX,x, and f ]y(a)b 6= 0; indeed, if f ](a) were a zero divisor, a
would be an element of my, implying that t = a′un+1 for some a′. Then also f ](u) is a zero divisor in
OX,x, and so f ](u) is contained in some associated prime p of OX,x, by Lemma 3.43.4. But this means
that there is an associated point x′ ∈ X such that f(x′) = y, against our assumption.

Corollary 1.17. Let f : X → Y be a morphism of locally Noetherian schemes, with Y a regular and
integral scheme of dimension 1. Then f is flat if and only if every associated point of X maps to the
generic point of Y .

1Every regular local domain of dimension 1 is a DVR, and in particular it is a PID[Har77Har77, Theorem 6.2A, chapter 1].
2The uniqueness follows from the fact that OY,y, being a DVR, is a UFD.
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Proof. Let η be the generic point of Y . By the previous Theorem, the implication “f flat ⇒ the
associated points of X map to η” is immediate. For the other direction, we already know from
Theorem 1.161.16 that f is flat over each x ∈ X that maps to a closed point of Y . So it is enough to show
that f is flat at those x ∈ X that are in the preimage of η. But the ring OY,η is a field, so that for
every x such that f(x) = η the ring OX,x is a vector space over OY,η via f ]η. Of course a vector space
is always flat over its base field, so we have the thesis.

Corollary 1.18. Let f : X → Y be a morphism of locally Noetherian schemes, with Y regular and
integral of dimension 1. Let p ∈ Y be a closed point, and let Z be a closed subscheme of X \ f−1(p),
so that Z is a locally closed subscheme of X. If f�Z is flat, then there is a unique closed subscheme Z̄
of X such that f�Z̄ is flat and Z̄ coincides with Z on X \ f−1(p). In other words, there is a unique
flat limit of Z in X.

Proof. Let Z̄ be the scheme-theoretic closure of Z in X. By Lemma 3.173.17, the associated points of
Z̄ are just the associated points of Z, and all of these are mapped to the generic point of Y by
the flatness hypothesis and the previous theorem. This indeed means that Z̄ is flat over Y , again
by our previous result. Moreover, if W is any other closed subscheme of X containing Z such that
Z = W ∩ (X \ f−1(p)), we have that (as sets) W = Z̄ ∪ (W ∩ f−1(p)). Since these two sets are both
closed and nontrivial, we found that W has at least an additional irreducible component that maps
to p. So the generic point of this irreducible component is an associate point of W that maps to a
closed point of Y ; in other words, f�W : W → Y is not flat.

Corollary 1.19. Let f : X → Y be a morphism of locally Noetherian schemes, with Y a regular and
integral scheme of dimension 1. Let Z ⊆ X a closed subscheme. Then f�Z is flat if and only if for
each closed point y ∈ Y , the fibre of Z over y is the flat limit of Z ∩ (X \ f−1(y)).

Proof. The implication “⇒” is immediate from Corollary 1.181.18. For the other implication we use
Theorem 1.161.16 as follows: fix x ∈ Z, and let y = f(x). If y is the generic point of Y then we know that
f�Z is flat at x, from the proof of Corollary 1.171.17. If instead y is a closed point of Y , by hypothesis we
know that Z is the scheme-theoretic closure in X of Z∩(X \f−1(y)), so by Lemma 3.173.17 the associated
points of Z are contained in Z ∩ (X \ f−1(y)). In particular, x is not an associated point of Z. But
then f�Z is flat at x, by Theorem 1.161.16.

Example 1.20. Let k be an algebraically closed field, and consider the closed subscheme X ⊆ A3
k

defined by the ideal (xy − t) in k[x, y, t]. Then we have a map X → T = Spec(k[t]), induced by the
natural ring map k[t]→ k[x, y, t]. This morphism of schemes is flat, by the criterion of Theorem 1.171.17:
our scheme X is integral, so its unique associated point is its generic point, which maps to the generic
point of T .

If we identify the closed points of T with elements of k, we notice that the closed fibres of X → T
are all nonsingular hyperbolas, except for the one over the point 0 which is the union of two lines.
Hence the flat limit of the family X \X0 → T \ {0} is a “singular degeneration” of the general fibre.

Example 1.21. Let X1 be a closed subscheme of P3
k, and consider for each a ∈ k∗ the automorphism

σa of P3
k defined by σa([x0 : x1 : x2 : x3]) = [x0 : x1 : x2 : ax3]. Then by putting Xa := σa(X1)

we obtain a subscheme of P3
k × A1

k which is flat over A1
k \ {0}, since it is isomorphic to the product

X1 × (A1
k \ {0}). By Corollary 1.181.18 we can extend this to a flat family over all A1

k by taking the
scheme-theoretic closure.

We do the computation for a twisted cubic curve, X1 = V (x0x1−x2
3 +x2

0, x1x3−x2x0). A picture
of what happens is given in Figure 11; see also Example 1.221.22 and Example 4.74.7. We restrict ourselves
to the affine open set x0 6= 0 of P3

k, and use coordinates x = x1/x0, y = x2/x0 and z = x3/x0 on this
affine set. For each a 6= 0, Xa is then given by V (x− z2a−2 + 1, xza−1 − y) and the ideal defining the
family in the open set D(t) of Spec(k[x, y, z, t]) is I = (x − z2t−2 + 1, xzt−1 − y) � k[x, y, z, t]t. We
can find what is I ∩ k[x, y, z, t] by a Gröbner basis calculation (performed with Mathematica), since
I ∩ k[x, y, z, t] is the saturation with respect to t of the ideal (t2x− z2 + t2, xz − ty) � k[x, y, z, t]. We
discover that

I ∩ k[x, y, z, t] = (t3y + t2z − z3, t2 + t2x− z2,−ty + xz, tx+ tx2 − yz, x2 + x3 − y2)
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Figure 1: The twisted cubic squashed on the z = 0 plane (Example 1.211.21).

and in particular the fibre over the closed point 0 is defined in A3
k by the ideal

(z2, xz, yz, y2 − x2(x+ 1)).

We see that the resulting scheme is contained in the plane z = 0, and has the same support as a nodal
cubic. For x 6= 0 and y 6= 0 moreover the local ring of this X0 has no nilpotents, hence X0 is reduced
away from the node (0, 0, 0). At the node instead we have a nilpotent element in the ring of X0, since
z is not in the defining ideal of X0 but z2 is.

The general member of this family is a smooth cubic, but the flat limit for t→ 0 is singular, with
an embedded point.

Example 1.22. A very similar example is obtained by using the same automorphisms of A3
k, and

choosing as the starting point the scheme defined by the ideal (−2x+z2−4, x2 +y2−2x). This scheme
is just the curve obtained by intersecting a cylinder and a sphere, it’s known as “Viviani’s curve”. The
family of morphisms σa of the previous example “flattens” this curve onto the plane z = 0, intuitively
giving a circle for a going to 0. A picture of the process is given in Figure 22.
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Doing the same computation we find that the family of schemes is described by the family of ideals

Ia = (−2x+ z2

a2 − 4, x2 + y2 − 2x)

and describes a subscheme of Spec(k[x, y, z, t]) which is flat over Spec(k[t]). Indeed the family Xa for
a 6= 0 is given by the fibres of the morphism

Spec
(

k[x, y, z, t]t
(−2x+ z2

t2 − 4, x2 + y2 − 2x)

)
⊆ D(t) ⊆ Spec(k[x, y, z, t]) −→ Spec(k[t]).

According to our theory, this family admits a flat limit; this is computed again via Gröbner basis, and
it is given by the spectrum of the ring

k[x, y, z, t]
(5t4 + 4t4y2 − 6t2z2 + z4, t2 + 2t2x− z2, 5t2 + 4t2y2 − 5z2 + 2xz2,−2x+ x2 + y2)

We see that again the fibre over the closed point 0 is described by the circle −2x+ x2 + y2 = 0 with
some nonreduced structure given by the nilpotent element z; this time, however, the nonreducedness
is everywhere.

One reason for studying in detail one-parameter families is that they can be used to check flatness
of much more general families, c.f. [EH00EH00, Lemma II− 30].

Theorem 1.23. Let k be a field, Y a reduced locally Noetherian k-scheme and f : X → Y a morphism
of finite type. Then for any closed point y ∈ Y , f is flat at y if and only if for any regular, integral,
locally Noetherian k-scheme Y ′, any closed point y′ ∈ Y and any morphism ϕ : Y ′ → Y such that
ϕ(y′) = y, the morphism

X ′ = X ×Y Y ′
f ′−→ Y ′

is flat at y′.

Proof. The implication “⇒” is immediate from the previous results and the fact that flatness is stable
under arbitrary base changes. The other direction, which is much more complicated, in given by
[RG71RG71, Corollaire 4.2.10].

1.2 Some properties of flatness

A very nice property of flatness is that it is stable under arbitrary base changes.

Proposition 1.24. Let f : X → Y be a morphism of schemes, and let F be a f -flat OX-module.
Then

1. for any base change

X ×Y Y ′ X

Y ′ Y

ϕ

f ′ f

g

also ϕ∗F is f ′-flat;

2. if h : Y → Z is a flat morphism of schemes, then F is (h ◦ f)-flat.

Before going on, we define a relative version of the cohomology of a sheaf.

Definition 1.25. Let f : X → Y be a morphism of schemes. The higher direct image functors Rif∗
are the right derived functors of f∗ : Ab(x)→ Ab(Y ).
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Figure 2: Viviani’s curve squashed on the z = 0 plane (Example 1.221.22).
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This definition is a bit obscure, but it is not too hard to check some properties that help the
intuition. For the details we refer to [Har77Har77, §8, chapter III].

Proposition 1.26. Let f : X → Y be a morphism of schemes, and let F be a sheaf of OX-modules.
Then for every i ≥ 0, Rif∗F is the sheaf associated to the presheaf{

V 7→ H i(f−1(V ),F�f−1(V ))
}
.

Moreover, if X is Noetherian, F is quasi-coherent and Y is affine, Rif∗F ∼= ˜H i(X,F ).

First nice property of flatness: cohomology commutes with flat base changes.

Proposition 1.27. Let f : X → Y be a separated morphism of finite type of Noetherian schemes, and
let F be a quasi-coherent sheaf on X. Let u : Y ′ → Y be a flat morphism, with also Y ′ Noetherian,
and consider the fibred product

X ⊗Y Y ′ X

Y ′ Y

v

f ′ f

u

Then there is a natural isomorphism between u∗Rif∗F and Rif ′∗(v∗F ), for all i ≥ 0.

Proof. Since affine open sets form a basis for the topology on Y ′, we may assume that Y ′ and Y are
affine, Y ′ = Spec(A′) and Y = Spec(A). By Proposition 1.261.26 then we have to exhibit an isomorphism
between H i(X ′, v∗F ) and H i(X,F )⊗A A′, where X ′ := X ⊗Y Y ′. Notice that X is separated (since
it is separated over an affine scheme), and since F is quasi-coherent we can compute H i(X,F ) by
Čech cohomology. For the same reasons we can compute H i(X ′, v∗F ) by Čech cohomology, since by
base extension also f ′ is separated and of finite type (hence X ′ is also separated and Noetherian).

Let U be an open cover of X by affine sets; since the fibred product of affine schemes is again affine,
v−1(U) is again affine, and so v−1(U) is an open cover of X ′. We compute Čech cohomologies with
respect to these two covers. By definition, the Čech complex C·(v−1(U), v∗F ) is just C·(U ,F )⊗A A′;
indeed, for every U ∈ U we have v∗F (v−1(U)) = F (U)⊗A A′ (to check this, simply notice that U is
affine). So we have to compute the cohomology of the complex

C0(U ,F )⊗A A′ C1(U ,F )⊗A A′ C2(U ,F )⊗A A′ . . .

but since A′ is a flat A-module, tensoring with A′ preserves the cohomology of any sequence of A-
modules.

1.2.1 Flatness and dimension of fibres

This theorem tells us that, when considering flat families, the dimension of the fibres of the family
behaves according to our “geometric intuition”. As it is given here, it is a slight generalization of
Proposition 9.5 in [Har77Har77, chapter III].

Theorem 1.28. Let f : X → Y be a flat morphism of locally Noetherian schemes. Choose x ∈ X,
and let y = f(x). Then

dim(OX,x) = dim(OXy ,x) + dim(OY,y)

where Xy is the fibre over y.

Proof. We can make a base change Y ′ → Y , with Y ′ = Spec(OY,y), and consider the new morphism
f ′ : X ′ = X ⊗Y Y ′ → Y ′. Then f ′ is still flat, and if x′ ∈ X ′ is a preimage of x under the map
X ′ → X, we have

dim(OX′,x′) = dim(OX,x)
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and also

dim(OX′y ,x′) = dim(OXy ,x)
dim(OY ′,y) = dim(OY,y).

Indeed, making the base change Y ′ → Y just means that we are restricting the morphism f : X → Y
to an arbitrarily small neighbourhood of y in Y , and since all the numbers involved in the theorem
are can be computed locally, they are left untouched by this restriction.

So we may assume that Y = Spec(A) for a local Noetherian ring A, with y being the maximal
ideal of A. We proceed by induction on dim(Y ). If dim(Y ) = 0, it means that every element of y
is nilpotent. Now, choose an affine neighbourhood Spec(B) of x in X, and notice that the fibre Xy

around x is defined by Spec(B ⊗A k(y)). The ideal sheaf of Xy in X is thus defined by the kernel of
the map B → B ⊗A k(y), and this can be computed as follows: consider the short exact sequence

0→ y → A→ k(y)→ 0

and tensoring with B we get by flatness another short exact sequence

0→ yB → B → k(y)⊗A B → 0

hence the ideal is yB � B. But since each element of y is nilpotent this ideal is contained in the
nilradical of B, hence dim(OXy ,x) = dimX,x and the thesis follows.

Assume now that dim(Y ) > 0. We can make a base extension to Yred, and the numbers in question
do not change; hence we may assume that Y is reduced. Since its dimension is greater than 1, there is
a prime ideal p ⊆ A such that {0} ⊆ p ⊂ y, so that we can find some t ∈ y that is not contained in any
minimal prime of A by the Prime Avoidance Lemma 3.63.6; notice that, since SpecA is Noetherian, it has
a finite number of irreducible components (hence A has finitely many minimal primes). In particular
t is not a zero divisor, by Lemma 3.23.2. Let Y ′ = Spec(A/(t)), and make the base extension Y ′ → Y ,
obtaining

X ′ X

Y ′ Y

f ′ f

and notice as usual that f ′ is also a flat morphism. Moreover, if Spec(B) is, as before, an open
affine neighbourhood of x in X, we have that x has a preimage in X ′ and that this preimage has an
open affine neighbourhood isomorphic to Spec(B/(f ](t))). This follows readily by noticing that the
following diagram is a push-forward

A B

A/(t) B ⊗A A/(t)

f]

and that f ](t) ⊆ x, B ⊗A A/(t) ∼= B/(f ](t)).
Since f is flat, also f ](t) is not a zero divisor in OX,x, and so by Lemma 3.33.3 and Lemma 3.13.1 we

have

dim(OY ′,y) = dim(OY,y)− 1
dim(OX′,x) = dim(OX,x)− 1.

By the induction hypothesis then we find

dim(OX′,x) = dim(OX′y ,x) + dim(OY ′,y)

and to get the thesis it is then enough to notice that fibres of X ′ and X over y are naturally isomorphic,
hence dim(OX′y ,x) = dim(OXy ,x).

11



Corollary 1.29. Let f : X → Y be a flat morphism of schemes of finite type over a field k, with Y
irreducible. Then the following are equivalent:

1. every irreducible component of X has dimension equal to dim(Y ) + n;

2. for every y ∈ Y , every irreducible component of Xy has dimension n.

Proof. (1 ⇒ 2). Fix y ∈ Y , and let Z be an irreducible component of Xy with the reduced induced
subscheme structure. If x ∈ Z is a closed point that is not contained in any other irreducible component
of Z then dim(Z) = dim(OZ,x), by Exercise 3.20 in [Har77Har77, chapter II]. Notice also that by that
exercise we have33

dim(OX,x) = dimX − dim({x})
dim(OY,y) = dimY − dim({y}).

Since x is a closed point of the fibre Xy, the residue field k(x) is a finite algebraic extension of ky, and
again by the same exercise in Hartshorne this means that dim({x}) = dim({y}). Since Z has dimension
equal to dim(Y ) + n by hypothesis, we get the thesis from dim(OZ,x) = dim(OX,x)− dim(OY,y) (this
is what Theorem 1.281.28 tells us).

(2 ⇒ 1). Let Z be an irreducible component of X, and let x ∈ Z be a closed point that is not
contained in any other irreducible component of X. By Theorem 1.281.28 we have

dim(OX,x) = dim(OY,f(y)) + dim(OXf(y),x).

Our hypothesis is that dim(OX,x) = n, and we know that dim(Z) = dim(OX,x). Moreover, f(x) must
be a closed point of Y , since x is closed in X. So dim(Y ) = dim(OY,y), and dim(Z) = dim(Y ) + n as
we wanted to prove.

2 Hilbert polynomials and flatness

Definition 2.1. Let X be a projective scheme over the field k, and let F be a coherent sheaf on X.
Then we define the Euler characteristic of F as

χ(F ) :=
∑
i=0

(−1)idimkH
i(X,F ).

Remark. This is a good definition, since each H i(X,F ) is a finite-dimensional vector space over k and
for i > dim(X) we have H i(X,F ) = {0}.

By using the long exact sequence in cohomology associated to a short exact sequence of sheaves,
we easily find that χ is ”additive”: if 0 → F ′ → F → F ′′ → 0 is an exact sequence of coherent
sheaves on X, then

χ(F ) = χ(F ′) + χ(F ′′).

Theorem 2.2. Let X be a projective scheme over the algebraically closed field k, together with a very
ample invertible sheaf OX(1). For any coherent sheaf F on X, define F (n) := F ⊗OX

OX(n), where
OX(n) = OX(1)⊗n. Then for all coherent sheaves F on X there is a polynomial P (z) ∈ Q[z] such
that

χ(F (n)) = P (n), ∀n ∈ Z>0.

Proof. We proceed by induction on the dimension d of the support of F . If d = 0 then F is supported
on a finite number of points, and by Grothendieck’s vanishing theorem χ(F (n)) is constant. Indeed,
if p is a point in the support of F then H i({p},F ) = {0} for i > 0, while H0({p},F ) = Fp. Assume
then that d > 0, and that the thesis holds for all d′ < d.

Let j : X → Prk be a closed immersion of k-schemes such that OX(1) = j∗O(1). Recall that if F is
coherent on X then also j∗F is coherent on Prk, and their cohomologies are the same by [Har77Har77, Lemma
2.10, chapter III]. Then it will be sufficient to prove the theorem for X = Prk and OX(1) = O(1).

3Notice that dim(OX,x) = codim({x}, X), in the notation of [Har77Har77, Exercise 3.20, chapter II].
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Write X = Proj(k[x0, . . . , xr]), and let x ∈ H0(X,O(1)) be such that the hyperplane H = {x = 0}
does not contain any irreducible component of supp(F ), so that H ∩ supp(F ) has dimension strictly
less than d. Let µ : OX(−1)→ O(X) be the map given by multiplication by x; this map fits into an
exact sequence of sheaves on X

0 OX(−1) OX OH 0µ

where OH is the structure sheaf of H considered as a sheaf on X. Tensoring with F gives another
exact sequence

0 K F (−1) F R 0µ⊗1

and since OX(1) preserves exact sequences (it is locally free) we find for all n an exact sequence

0 K (n) F (n− 1) F (n) R(n) 0.

It is immediate to check that the additivity property of χ implies that χ(F (n)) − χ(F (n − 1)) =
χ(R(n))−χ(K (n)), so it will be enough to prove that there is a numerical polynomial Q ∈ Q[z] such
that χ(R(n))− χ(K (n)) = Q(n) to have the thesis (c.f. [Har77Har77, Proposition 7.3, chapter I]).

This last part follows from the inductive hypothesis, since the supports of K and R have dimension
strictly smaller than d. Indeed, Qp is zero whenever p 6∈ supp(F ) or x is a unit in OX,p, so supp(Qp) ⊆
H ∩ supp(F ). the same thing holds for K : if x is a unit in OX,p, the multiplication by x cannot have
a nontrivial kernel in Fp.

Remark. The requirement of k to be algebraically closed is just so we can guarantee that k is infinite.
This is needed to make sure that there is an hyperplane in Pnk not containing any irreducible component
of supp(F ). However, we can avoid making this additional hypothesis: indeed, for an arbitrary field
k, its algebraic closure k̄ is a flat k-module. Then the morphism of schemes Spec(k̄)→ Spec(k) is flat;
let the following diagram be the base change via this morphism

X ′ X

Spec(k̄) Spec(k)

π

and recall that Proposition 1.271.27 tells us that for all i ≥ 0

H i(X,F )⊗k k̄ ∼= H i(X ′, π∗F ).

Hence for the dimensions of the cohomology groups (vector spaces, in this case) we have

dimk̄H
i(X ′, π∗F ) = dimk̄

(
H i(X,F )⊗k k̄

)
= dimkH

i(X,F )

so Theorem 2.22.2 holds also for k not algebraically closed.
Remark. Recall that for a projective scheme X over a Noetherian scheme and a coherent sheaf F ,
there is some N ∈ Z≥0 such that dim(F (n)) = 0 for all n ≥ N . Then the previous theorem tells
us that there is a polynomial P (z) with rational coefficients such that dim(F (n)) = P (n) for all
sufficiently big n. Traditionally this is known as the Hilbert polynomial of F . The Hilbert polynomial
of X is defined as the Hilbert polyomial of the sheaf OX(1); it carries a lot of informations about X,
for example the dimension, the degree and the arithmetic genus.

Lemma 2.3. Consider an exact sequence of coherent modules on X = PnA,

F1 → F2 → · · · → Fn−1 → Fn.

Then, for all m sufficiently large we have an exact sequence

Γ (X,F1(m))→ Γ (X,F2(m))→ · · · → Γ (X,Fn−1(m))→ Γ (X,Fn(m)).
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Proof. By induction on n. For n = 3, expand the sequence as

0→ ker1 → F1 → ran1 → 0→ ran1 → F2 → ran2 → 0→ ran2 → F3 → Q → 0.

From each short exact piece we can apply Serre’s vanishing Theorem [Har77Har77, Theorem 5.2, chapter
III] to find exact sequences in cohomology, like

0→ H0(X, ker1(m))→ H0(X,F1(m))→ H0(X, ran1(m))→ 0.

Putting together the various pieces so obtained, we get the thesis. For n > 3, the same reasoning can
be applied: just split the sequence at the last element.

Theorem 2.4. Let T be an integral Noetherian scheme, and let X be a closed subscheme of PnT . Then
X is flat over T if and only if the Hilbert polynomials Pt of the fibres Xt (seen as closed subschemes
of Pnk(t)) do not depend upon t ∈ T .

Proof. By considering OX as a coherent sheaf on PnT , we see that it will be enough to prove that for
any coherent sheaf F on X = PnT , F is flat over T if and only if for all t ∈ T the Hilbert polynomial
of Ft equals the Hilbert polynomial of F0, where 0 ∈ T is the generic point. Up to performing a base
change Spec(OT,t)→ T we may also assume that T = Spec(A) for a local Noetherian domain A.

We will show that the following are equivalent:

• F is flat over T ;

• H0(X,F (m)) is a free A-module of finite rank, for all sufficiently large m;

• the Hilbert polynomial Pt of Ft on Xt = Pnk(t) is independent of t.

(1⇒ 2). Let U be the usual open affine cover of projective space. We can compute the cohomology
groups H i(X,F (m)) by means of the Čech complex C·(U ,F (m)), and since F is flat each term of the
complex is a flat A-module. Moreover, for m >> 0 all the higher cohomology groups H i(X,F (m))
vanish, for i > 0. In other words, by taking m large enough we have an exact sequence

0 H0(X,F (m)) C0(U ,F (m)) . . . Cn(U ,F (m)) 0

where all the terms except the first are A-flat. But then also H0(X,F (m)) must be A-flat, by
Proposition 1.61.6. Since it is also finitely generated and A is a local Noetherian ring, from Proposition
1.81.8 we find that H0(X,F (m)) must be a free A-module.
(2 ⇒ 1). Let S = A[x0, . . . , xn], so that X = Proj(S). Since 2 holds, there is some m0 such that
H0(X,F (m)) is free for m ≥ m0. If we define M =

⊕
m≥m0 H

0(X,F (m)), notice that M equals
Γ∗(F ) =

⊕
m∈Z Γ (X,F (m)) for degrees m ≥ m0, so M̃ = Γ̃∗(F ). On the other hand, we know that

Γ̃∗(F ) = F . Since by hypothesis M is a free A-module, this means that F is flat.
(2⇒ 3). The Hilbert polynomial Pt of the fibre over t ∈ T is characterized by the property Pt(m) =
dimk(t)H

0(Xt,Ft(m)) for large enough m; then it will be enough to prove for every t ∈ T that, for
m large enough, Pt(m) = rankAH0(X,F (m)). This will follow from equation (11), which we prove
without assuming 2.

We propose to show that

H0(Xt,Ft(m)) ∼= H0(X,F )⊗A k(t). (1)

Choose t ∈ T , t = p for a certain p ∈ Spec(A). Since Ap is a flat A-module, by performing the
base change Spec(Ap)→ T we reduce to the case in which t is a closed point of T . Indeed, recall from
Proposition 1.271.27 that cohomology commutes with flat base changes.

Since A is Noetherian, the maximal ideal of t is finitely generated, say by r elements. Then we
can find an exact sequence

A⊕r A k(t) 0 (2)

from which we can get an exact sequence

14



F⊕r F Ft 0.

Then, for m sufficiently large we have, by Lemma 2.32.3 another exact sequence

H0(X,F (m))⊕r H0(X,F (m)) H0(Xt,Ft(m)) 0.

We can also tensor the sequence in (22) with H0(X,F (m)) to obtain

H0(X,F (m))⊕r H0(X,F (m)) H0(X,F (m))⊗A k(t) 0

so comparing the two sequences we get the desired result.
(3 ⇒ 2). By [Har77Har77, Lemma 8.9, chapter II], to check that an A-module M is free it is enough to
check that dimkM ⊗A k = dimKM ⊗AK, where k is the residue field of A and K is its quotient field.
Our hypothesis is that the Hilbert polynomial of the fibre over the generic point η and the closed
point ξ of A coincide, i.e.

dimkH
0(Xξ,Fξ(m)) = dimKH

0(Xη,Fη(m))

for all large enough m. Of course, this equation together with (11) gives the thesis.

Remark. By examining the previous proof, it is clear that the implications 1⇒ 2 and 2⇒ 3 hold even
if T is not integral. Indeed, the integrality hypothesis is only needed to appeal to [Har77Har77, Lemma 8.9,
chapter II]. So we have that for any connected scheme T , if X is a closed subscheme of PnT flat over
T , then the Hilbert polynomials of the fibres of X → T are all the same.

Moreover, the hypothesis of Theorem 2.42.4 can be still a bit relaxed: it is enough that T is connected
and reduced to have the thesis.

3 Appendix

Here we collect some of the results that are needed to study flatness.

3.1 Algebraic facts

Lemma 3.1. Let R be a commutative ring, and let p be a minimal prime of R. Then each element
of p is a zero divisor.

Proof. Consider the localization Rp. Since p is minimal in R, pRp is the nilradical of Rp. This means
that for each r ∈ p there are s ∈ R \ p and n ∈ Z≥0 such that rns = 0.

Lemma 3.2. Let R be a reduced ring. Then each zero divisor is contained in some minimal prime of
R.

Proof. Let x be a zero divisor in R, and let y ∈ R \ {0} be such that xy = 0. Since R is reduced, the
intersection of all minimal prime ideals of R is 0. Hence there is some p�R minimal such that y 6∈ p,
and from this it follows that x ∈ p.

Lemma 3.3. Let R be a local Noetherian ring with maximal ideal m, and let f ∈ m be an element
that is not contained in any minimal prime ideal of A. Then dim(A/fA) = dim(A)− 1.

This is Theorem 5.15 in [Liu02Liu02, chapter 2]. C.f. Theorem 1.8A and Theorem 1.11A in [Har77Har77,
chapter I].

Lemma 3.4. For any ring R, the set of zero divisors of R is the union of all the associated primes
of R.

Proof. See [Mat87Mat87, chapter 2, Corollary 2].

Lemma 3.5. If R is a Noetherian ring, the number of associated primes in R is finite.

Proof. See [Mat87Mat87, Proposition 7.G].
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Lemma 3.6 (Prime avoidance). Let I1, . . . , In be prime ideals of the ring R, and let J�R be an ideal
such that J 6⊆ Ii for all i = 1, . . . , n. Then there exists an element x ∈ J such that x 6∈

⋃n
i=1 Ii.

Remark. Lemma 3.63.6 actually holds even if at most two of the ideals I1, . . . , In are not prime, but we
will not need it in this stronger form.

Proof. By induction on n. For n = 1 the claim is obvious. Assume then that n > 1 and the thesis
holds for n − 1; without loss of generality, we may also assume that there are no inclusions among
I1, . . . , In.

By the inductive hypothesis we can find x ∈ J \ (I1 ∪ · · · ∪ In−1). If x 6∈ In we are done, so assume
that x ∈ In. Notice that if the product ideal JI1 . . . In−1 were contained in In then we would have
J ⊆ In, against our hypothesis; then there is some y ∈ JI1 . . . In−1 \ In, and x+ y is an element of J
not contained in In.

3.2 Scheme-theoretic closure

Let X be a scheme, and let V ⊆ X be a closed subset. We define the reduced induced subscheme
structure on V as follows: for X = Spec(A) affine, consider

a :=
⋂
{p ∈ Spec(A) | p ∈ V }

which is the largest ideal of A such that V = V (a). Then a defines a scheme structure on V , and with
this structure V (a) is a reduced scheme: indeed, a =

⋂
{p ∈ Spec(A) | a ⊆ p}. When X is not affine,

we take a covering U = {Ui | i ∈ I} of V consisting of open affines of X.
We should check that the scheme structures on each V ∩ Ui glue together to define a global

scheme structure on V . By affine communication, it is enough to check that for any distinguished
open set D(f) of Ui = Spec(A), the reduced structure on V ∩ Ui induced by Spec(A) gives the
reduced structure on V ∩D(f) induced by Spec(Af ), when restricted to D(f). This is quite easy to
check: let a be the ideal defining the reduced structure on V ∩ Ui, and let Zi := Spec(A/a). Then
Zi ∩ D(f) ∼= Spec(Af/(aAf )). Notice also that the reduced structure on V ∩ D(f) is defined by
the ideal b =

⋂
{p ∈ Spec(Af ) | p ∈ V ∩D(f)}, which is equal to aAf ; this proves the claim, so the

reduced induced structure on V is well-defined.
From the definition of the reduced induced structure, we find immediately that it is the “smallest”

closed subscheme structure on the given closed subset.

Lemma 3.7 (Universal property of the reduced induced structure). Let V be a closed subset of a
scheme X, and consider Y as a closed subscheme of X by endowing it with the reduced induced
scheme structure. Then for any other closed subscheme Y ′ of X with the same underlying topological
space as Y , the inclusion Y ↪→ X factors through Y ′.

These ideas can be generalized to define a “scheme-theoretic” notion of image (sometimes also
called range) of a morphism of schemes.

Definition 3.8. Let f : X → Y be a morphism of schemes, and let I be the largest quasi-coherent
subsheaf of ker(f ] : OY → f∗OX). We define the scheme-theoretic image of f to be the closed
subscheme of Y defined by I . We denote it by f(X).

An alternative terminology that can also be used is schematic image, but we will stick to the
former one.

Remark. The scheme-theoretic image is indeed a closed subscheme of Y , see [Har77Har77, chapter II,
Proposition 5.9]. However, in general it may fail to have some desirable properties; for example, it
may not have as underlying topological space the closure of ran(f) (for an example of this behaviour
see [VakVak, Example 4, §8.3]). However, it can be easily seen that under some reasonable hypothesis,
the scheme-theoretic image of f behaves exactly as we would expect.
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Example 3.9. Let f : X → Y be a morphism of schemes, and assume that Y = Spec(B) is affine.
Then f(X) is the closed subscheme of Y defined by the ideal{

b ∈ B
∣∣∣ f ](b) = 0 ∈ OX(X)

}
.

To make an explicit computation, consider the map ϕ : k[x, y] → k[t, t−1] defined by ϕ(p(x, y)) =
p(t, 0). This corresponds to the inclusion of the scheme Spec(k[t, t−1]) (the line without a point) into
A2
k, and the scheme-theoretic image in A2

k is defined by the ideal {p(x, y) ∈ k[x, y] | p(t, 0) = 0}, i.e.
the ideal (y). The scheme-theoretic image is just the whole line.

As a slight variation, we could consider the inclusion of the line without a point into the projective
plane P2

k. The target scheme is not affine, but we could easily make the computation affine set by
affine set and then glue toghether the results to obtain a quasi-coherent sheaf of ideals on P2

k.

There are some conditions that allow us to compute the scheme-theoretic image of a morphism
affine-locally. In this case, scheme-theoretic images exhibit many pleasant properties. For a proof of
the following theorem, see [VakVak, Theorem 8.3.4].

Theorem 3.10. Let f : X → Y be a morphism of schemes. Assume that either X is reduced or f is
quasi-compact; then ker(f ] : OY → f∗OX) is a quasi-coherent sheaf of ideals on Y , and the underlying
set of f(X) is the closure of {f(x) | x ∈ X}.

We are interested in the scheme-theoretic image mostly because it allows us to talk about the
scheme-theoretic closure of a subscheme.

Definition 3.11. Let X be a scheme. A locally closed subscheme of X is a morphism of schemes
f : Z → X that can be factored as

Z U X
f1 f2

where f1 is a closed immersion and f2 is an open immersion. In other words, a locally closed subscheme
is a closed subscheme of an open subscheme. If f : Z → X is a locally closed subscheme, we define
the closure of Z in X to be the scheme-theoretic image of f .

The following lemma tells us that, when considering locally closed subschemes of a locally Noethe-
rian scheme, the hypothesis of Theorem 3.103.10 are satisfied.

Lemma 3.12. Let X be a locally Noetherian scheme, and let f : Z → X be a locally closed subscheme
of X. Then f is quasi-compact.

Proof. Write f as the composition of an open immersion and a closed one, Z ↪→ U ↪→ X. We know that
a closed immersion is quasi-compact and that the composition of quasi-compact morphisms is again
quasi-compact. Then to prove the lemma it will be enough to show that U ↪→ X is quasi-compact.

Let V = Spec(A) be an open affine subscheme of X; notice that A is a Noetherian ring, since
X is locally Noetherian. We can write V ∩ U =

⋃
i∈I D(fi) for some collection of fi ∈ A, so that

V \ (V ∩ U) =
⋂
i∈I V (fi). Since A is Noetherian the ideal J generated by {fi | i ∈ I} is finitely

generated, and so there are f1, . . . , fn ∈ J such that U ∩ V =
⋃n
j=1D(fj).

Exercise 3.13. It will be useful to see an explicit description of the schematic closure, and by the
previous results it is enough to do this on an affine scheme. Consider a locally closed subscheme
Z ↪→ U ↪→ Spec(A) where A is a Noetherian ring, and let f1, . . . , fn be such that U =

⋃n
i=1D(fi).

Since Z is a closed subscheme of U , for each i = 1, . . . , n there is an ideal ai�Afi
such that Z∩D(fi) =

Spec(Afi
/ai). Moreover ai and aj define the same ideal in Afifj

, for all i 6= j. Let āi be ai ∩ A, and
set a :=

⋂n
i=1 āi. Then the scheme-theoretic closure of Z in Spec(A) is Z̄ := Spec(A/a). It is easy to

check that for all i, aAfi
= ai. Indeed, consider x

fk
i

∈ ai. Since xfk
j

(fifj)k ∈ ajAfifj
by hypothesis, for all

j there is some kj such that xfkj

i ∈ āj . Then if m := max{k1, . . . , kn} we have that xfmi ∈ a, and so
aAfi

= ai.
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3.3 Associated points

Next we come to the definition of the “most important points of a scheme” (Vakil’s words).
Definition 3.14. Let R be a ring, and let M be a R-module. A prime ideal p � R is said to be
associated to M if there is some m ∈ M such that p = Ann(m), i.e. p = {r ∈ R | rm = 0}. If X is a
scheme, any x ∈ X is said to be an associated point of X if the maximal ideal mx in OX,x is associated
to OX,x, considered as a module over itself.

The typical example of associated points of a scheme are the generic points of the irreducible
components of a locally Noetherian scheme. Indeed, let η be the generic point of an irreducible
component Y of X. If Spec(A) is an open affine neighbourhood of η, then Y ∩ Spec(A) is defined by
a prime p � A, minimal with respect to inclusion. Then η = (0) ∈ Spec(A/p), and OX,η = Ap is a
local ring of Krull dimension 0, i.e. the maximal ideal mη is the only prime ideal of OX,η. But this
means that mη is the nilradical of the ring. As we will see later, for a Noetherian ring this is enough
to conclude that mη is an associated prime of OX,η.
Lemma 3.15. When X = Spec(A) is a Noetherian affine scheme, a point p ∈ X is associated precisely
when p is an associated prime of A.
Proof. It is easy to see that if p = Ann(x) is prime then pAp = Ann([x, 1]). Conversely, assume that
p � A is a prime ideal such that pAp = Ann([x, 1]) for some x ∈ A. Since A is Noetherian, there are
y1, . . . , yr ∈ A such that p = (y1, . . . , yr). Moreover, for every i = 1, . . . , r there is some gi ∈ A\p such
that yigix = 0. Consider then Ann(xg1 . . . gr); of course p ⊆ Ann(xg1 . . . gr), and if y ∈ Ann(xg1 . . . gr)
then [y, 1] ∈ Ann([x, 1]) since each of the gi is invertible in Ap. But then [y, 1] ∈ pAp, so y ∈ p.

Remark. Actually the implication

p�A is an associated prime ⇒ p ∈ Spec(A) is an associated point

holds for any ring; the converse, however, holds just for Noetherian rings; see Example 4.24.2 below. This
is one of the reasons why we will talk about associated points just for locally Noetherian schemes.
Another reason for considering associated points just for Noetherian schemes is given by the following
lemma.
Lemma 3.16. Let R be a Noetherian local ring with maximal ideal m. Then m is an associated prime
of R if and only if each element of m is a zero divisor.
Proof. This is an immediate consequence of Lemma 3.43.4, Lemma 3.53.5 and Lemma 3.63.6.

From now on we will actually just be interested in prime ideals p� R associated to R, so we will
just say “let p�R be an associated prime”.
Remark. Lemma 3.163.16 does not hold for local rings that are not Noetherian (c.f. [Har77Har77, Definition at
page 257]), see Examples 4.34.3 and 4.44.4 below.

The next lemma tells us that the scheme-theoretic closure of a locally closed subscheme does not
add any extra nonreduced structure to the original scheme.
Lemma 3.17. Let X be a locally Noetherian scheme, and consider a locally closed subscheme Z → X.
Then the associated points of Z are precisely the associated points of the scheme-theoretic closure of
Z in X.
Proof. Let U ⊆ X be an open subscheme such that Z ⊂ U is a closed subscheme, and let Z̄ be the
scheme-theoretic closure of Z in X. Of course any associated point of Z is also an associated point of
Z̄, so we just have to show that the associated points of Z̄ come from associated points of Z.

The question we have to study is local, so we may assume that Z̄ = Spec(A) is affine, and that
Z =

⋃n
i=1D(fi) is an open subscheme of Z̄ that is scheme-theoretic dense in Z̄. This happens precisely

when the fi are such that for any a ∈ A, if for all i = 1, . . . , n there is mi ∈ Z≥0 such that fmi
i a = 0,

then a = 0.
Let q�A be an associated point of Z̄; then there is some a ∈ A such that q = Ann(a). Since the

closure of Z is Z̄, at least one of the fi cannot be in q; indeed, if f1, . . . , fn ∈ q then fia = 0 for all i,
implying that a = 0. But Ann(0) = A. This means that q ∈ D(fi) for some i, i.e. q ∈ Z.
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4 More examples

Example 4.1 (Computation of an affine closure). Let X be the crossing of two affine lines, X =
Spec(A) with A = k[x, y]/(xy), and consider the scheme Z = Spec(k[x, x−1]). The map k[x, y]/(xy)→
k[x, x−1] defined as f(x, y) + (xy) 7→ f(x, 0) induces on Z a structure of open subscheme of X, since
it is an isomorphism between Z and D(x+ (xy)) ⊂ X. What is the closure of Z in X?

We just have to compute the ideal a � A of all the elements α ∈ A that are sent to zero by the
map A → Ax+(xy). For all α ∈ A, [α, 1] = [0, 1] in Ax+(xy) if and only if there is some n such that
(x + (xy))nα = 0. This happens precisely when α ∈ (y + (xy)) � A, so a = (y + (xy)). Then the
closure of Z in X is Spec(A/(y + (xy))) = Spec(k[x]); this is just the affine line.

Example 4.2 (Failure of Lemma 3.153.15 for non-Noetherian rings). Consider the ideal

I = (xiyi | i ∈ Z≥0) � k[x1, y1, x2, y2, x3, . . . ].

Then A := k[x1, y1, x2, y2, . . . ]/I is not a Noetherian ring, and in this ring we can see that Lemma 3.153.15
fails. Indeed, consider the prime ideal p = (x̄1, x̄2, x̄3, . . . ), where for any a ∈ k[x1, y1, . . . ] we denote
by ā its image in A under the canonical projection. Then Ap is a field, and pAp = 0; in particular,
pAp = Ann(α) for any α ∈ Ap \ {0}, while p is not an associated prime of A. Indeed, assume that
m ∈ A is such that p ⊆ Ann(m), and let r be such that m ∈ (x̄1, ȳ1, . . . , x̄r, ȳr). Then it is easy to
check that x̄r+1m = 0 if and only if m = 0.

Example 4.3 (Failure of Lemma 3.163.16 for non-Noetherian rings). Let k be an algebraically closed
field, let I be the ideal

(
x2

0, x0 − x2
1, x1 − x2

2, x2 − x2
3, . . .

)
� k[x0, x1, x2, x3, . . . ] and consider the ring

R = k[x0, x1, x2, x3, . . . ]
I

.

If we let y0 := xi + I for i ≥ 0 then we have that y2
0 = 0, y2

k+1 = yk and y2k

k = y0 for all k ∈ Z≥0. The
ring R satisfies the following properties:

1. R is not Noetherian;

2. R is a local ring of finite (Krull) dimension;

3. if m is the maximal ideal of R, then every element of m is a zero divisor, but m is not an
associated prime of R.

1. The increasing sequence of ideals (y0) ⊂ (y1) ⊂ (y2) ⊂ . . . does not stabilize. Indeed, if this were
not the case there would be some f ∈ R and some k ∈ Z>0 such that fyk = yk+1. But (fyk)(2k+1) = 0,
while y(2k+1)

k+1 = y0 6= 0.
2. Let m be the ideal of R generated by y0, y1, y2, . . . . Each element of m is nilpotent, and all the
elements in R \m are invertible. Then R is indeed a local ring, with maximal ideal m. From the fact
that each element of m is nilpotent it follows readily that if p ⊆ m is a prime ideal of R, p must equal
m.
3. Suppose that x ∈ R is such that mx = 0 for all m ∈ m. Since x ∈ m, we can write it as

x = x0y
a0
k + · · ·+ xny

an
k

for some k, with 1 ≤ a0 < · · · < an ≤ 2k and x0, . . . , xn ∈ k. Thus multiplying x by y(2k−a0)
k we obtain

0 = xy
(2k−a0)
k = x0ε

so x0 = 0. Then we may multiply x by y(2k−a1)
k to find x1 = 0, and recursively we get xj = 0 for all

j, i.e. x = 0.
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Figure 3: Two different schemes obtained from Example 4.54.5.

Example 4.4 (Failure of Lemma 3.163.16 for non-Noetherian rings). A very similar reasoning can be
carried out with the ring

k[x1, x2, x3, . . . ]
(x2

1, x
2
2, x

2
3, . . . )

.

Example 4.5 (A flat morphism). Let k be an algebraically closed field, and let f(x, y) ∈ k[x, y].
Consider the ideal I = (z2 − f(x, y)) � k[x, y, z], the scheme X = Spec(k[x, y, z]/I) and the map
X → A2

k induced by the inclusion k[x, y] → k[x, y, z]/I. Then X is flat over A2
k; indeed, if we write

R := k[x, y], the R-module k[x, y, z]/I is freely generated by 1 and z, so that k[x, y, z]/I ∼= R ⊕ R as
a R-module. For a couple of particular cases, see Figure 33.

Example 4.6 (A morphism that is not flat). Let k be an algebraically closed field, and consider the
affine scheme X = Spec(k[x, y, z]/(xz−y)) together with the map f : X → A2

k defined by the inclusion
f ] : k[z, y]→ k[x, y, z]/(xz − y). See also Figure 44.

Then X is irreducible and of dimension 2, so by Corollary 1.291.29 the fibre over each p ∈ A2
k should

be 0-dimensional. But the fibre over p = (x, y) ∈ A2
k is a whole copy of k[z], hence f cannot be flat.

Example 4.7 (Another flat family of cubics). Consider the twisted cubic C given by the 3-uple
immersion of P1

k in P3
k,

P1
k → P3

k

[s : u] 7→ [s3 : s2u : su2 : u3].

Then C is defined in P3
k by the homogeneous ideal

Ih = (x0x3 − x1x2, x1x3 − x2
2, x0x2 − x2

1).

Consider the family of curves C = {Ca | a 6= 0} described by the family of homogeneous ideals

Ih(a) = (x0x3 −
1
a
x1x2, x1x3 −

1
a2x

2
2,

1
a
x0x2 − x2

1).

Each member of the family is a closed subscheme of the fibre, over the closed point (t−a) ∈ Spec(k[t]),
of the natural morphism of schemes

P3
k × (A1

k \ {(t)}) = P3
k × Spec(k[t, t−1]) −→ A1

k = Spec(k[t]).
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Figure 4: The scheme of Example 4.64.6.

According to the theory developed for Corollary 1.181.18, this family admits a unique flat limit in P3
k×A1

k;
to compute it, we consider the restriction of the family to the open affine subset U3 = {x3 6= 0} of P3

k.
Setting x = x0

x3
, y = x1

x3
and z = x2

x3
, the curve Ca is described in U3 by the ideal

I(a) =
(
x− yz

a
, y − z2

a2 ,
xz

a
− y2

)

i.e. the family of curves is described by (see also Figure 55):

C ∩ U3 = Spec

 k[x, y, z, t]t(
x− yz

t , y −
z2

t2 ,
xz
t − y2

)
 .

We want to find the ideal J � k[x, y, z, t] such that

J =
(
x− yz

t
, y − z2

a2 ,
xz

t
− y2

)
∩ k[x, y, z, t]

in other words, J is the saturation with respect to t of the ideal

J ′ = (tx− yz, t2y − z2, xz − ty2) � k[x, y, z, t].

To compute this saturation we use the method of Gröbner bases: using the program Mathematica we
find a Gröbner bases for the saturation of J ′:

J = (t2y − z2, tx− yz, xz − ty2, x2 − y3) � k[x, y, z, t].

Hence
C ∩ U3 = Spec

( k[x, y, z, t]
(t2y − z2, tx− yz, xz − ty2, x2 − y3)

)
and the fibre C0 over the closed point 0 = (t) ∈ Spec(k[a]) is

Spec
( k[x, y, z]

(z2, yz, xz, x2 − y3)

)
.

We see that this fibre is the cuspidal cubic in the plane z = 0, with some additional structure: indeed,
the point x = y = 0 has some extra nonreduced structure, coming from the presence of z2 in the
defining ideal of C0.
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Figure 5: The family of cubics of Example 4.74.7.
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