Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 3

Due during lecture on 3/6/2020. Late homework will not be accepted

Complex Analysis, by Elias M. Stein and Rami Shakarchi, 3.8 : $1,2,4,5,6,7,8,9,10,14,15,17,19$.

1. Prove that if

$$
\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} \quad \text { and } \sum_{n=-\infty}^{\infty} c_{n}^{\prime}(z-a)^{n}
$$

are Laurent series expansions of $f(z)$, then $c_{n}=c_{n}^{\prime}$ for all n.
2. Expand $\frac{1}{1-z^{2}}+\frac{1}{3-z}$ in a series of the form $\sum_{-\infty}^{\infty} a_{n} z^{n}$. How many such expansions are there? In which domain is each of them valid?
3. Let $P(z)$ and $Q(z)$ be polynomials with no common zeros. Assume $Q(a)=0$. Find the principal part of $P(z) / Q(z)$ at $z=a$ if the zero a is (i) simple; (ii) double. Express your answers explicitly using P and Q.
4. Let $f(z)$ be a non-constant analytic function in $|z|>0$ such that $f\left(z_{n}\right)=0$ for infinite many points z_{n} with $\lim _{n \rightarrow \infty} z_{n}=0$. Show that $z=0$ is an essential singularity for $f(z)$. (An example of such a function is $f(z)=\sin (1 / z)$.)
5. Let f be entire and suppose that $\lim _{z \rightarrow \infty} f(z)=\infty$. Show that f is a polynomial.
6. (1) Show without using 3.8.9 in the textbook by Stein and Shakarchi that

$$
\int_{0}^{2 \pi} \log \left|1-e^{i \theta}\right| d \theta=0
$$

(2) Show the above identity is equivalent to the one in 3.8.9 of the textbook.
7. Evaluate $\int_{0}^{\infty} \frac{x^{a-1}}{1+x^{3}} d x, 0<a<4$.
8. (1) Prove the fundamental theorem of algebra using Rouchés theorem.
(2) Prove the fundamental theorem of algebra using the maximum modulus principle.
9. Assume $f(z)$ is analytic in region D and gamma is a rectifiable curve in D with interior in D. Prove that if $f(z)$ is real for all $z \in \Gamma$, then $f(z)$ is a constant.

10 Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{a+\sin ^{2} \theta}, a>0$.
11. Find the number of roots of $z^{4}-6 z+3=0$ in $|z|<1$ and $1<|z|<2$ respectively.
12. Prove that $z^{4}+2 z^{3}-2 z+10=0$ has exactly one root in each open quadrant.
13. Prove that the equation $z \tan z=a, a>0$, has only real roots in \mathbb{C}.
14. Let f be analytic on a bounded region Ω and continuous on the closure $\bar{\Omega}$. Assume $f(z) \neq 0$. Show that $f(z)=e^{i \theta} M$ (where θ is a real constant) if $|f(z)|=M$ (a constant) for $z \in \partial \Omega$.

