Mathematics Department
The University of Georgia
Math 8150 Homework Assignment 3

Due during lecture on 3/6/2020. Late homework will not be accepted

Complex Analysis, by Elias M. Stein and Rami Shakarchi,
3.8: 1,2, 4,5 6,7,8,9,10, 14, 15, 17, 19.

1. Prove that if
Z co(z —a)* and Z d(z—a)

are Laurent series expansions of f(z), then ¢, = ¢, for all n.
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2. Expand + in a series of the form Z a,z". How many such expansions
1—22 3-—=z

are there? In which domain is each of them valid?
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3. Let P(z) and Q(z) be polynomials with no common zeros. Assume Q(a) = 0. Find
the principal part of P(z)/Q(z) at z = a if the zero a is (i) simple; (ii) double. Express
your answers explicitly using P and Q).

4. Let f(z) be a non-constant analytic function in |z| > 0 such that f(z,) = 0 for infinite
many points z, with lim, .., 2, = 0. Show that z = 0 is an essential singularity for
f(2). (An example of such a function is f(z) = sin(1/z).)

5. Let f be entire and suppose that lim, ,,, f(z) = co. Show that f is a polynomial.

6. (1) Show without using 3.8.9 in the textbook by Stein and Shakarchi that
2w )
/ log |1 — €®|df = 0.
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(2) Show the above identity is equivalent to the one in 3.8.9 of the textbook.
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7. Evaluate / ‘ dr, 0 < a < 4.
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8. (1) Prove the fundamental theorem of algebra using Rouché’s theorem.

(2) Prove the fundamental theorem of algebra using the maximum modulus principle.

9. Assume f(z) is analytic in region D and gamma is a rectifiable curve in D with interior
in D. Prove that if f(z) is real for all z € I, then f(z) is a constant.
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10 Evaluate / ’ d0

——,a>0.
o a+sin?f’



11.
12.
13.

14.

Find the number of roots of 2* — 6z +3 =0in |2|] <1 and 1 < |z| < 2 respectively.
Prove that z* + 223 — 22 4+ 10 = 0 has exactly one root in each open quadrant.
Prove that the equation ztanz = a, a > 0, has only real roots in C.

Let f be analytic on a bounded region Q and continuous on the closure Q. Assume
f(z) # 0. Show that f(z) = €M (where 6 is a real constant) if |f(z)] = M (a
constant) for z € 0f).



