Mathematics Department The University of Georgia Math 8150 Homework Assignment 4

Due during lecture on 4/27/2020. Late homework will not be accepted

Complex Analysis, by Elias M. Stein and Rami Shakarchi, 3.9: 2, 3. 4.4: 1, 2, 3. 8.5: 1, 2, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, Additional Problems

1. Assume a real valued continuous function u(x, y) has mean value property (MVP) in a region Ω . That is, for each a in Ω there exists $r_0 > 0$ such that

$$u(a) = \frac{1}{2\pi} \int_0^{2\pi} u(a + re^{it}) dt \text{ for } 0 < r \le r_0.$$

This exercise guides to a proof of the fact that MVP implies harmonicity using Poisson formula for the solution of the Dirichlet problem in any disc given in class.

(1) Assume that $\overline{\Omega}_1$ is a compact region in Ω . Prove that u cannot attain maximum (resp. minimum) value in the interior Ω_1 unless it is a constant on Ω_1 . (Avoid circular reasoning: you cannot use the equivalence of harmonicity and MVP and the maximum/minmum modulus principle for harmonic functions.)

(2) Let $\overline{D}_r(a) \in \Omega$ be a disk in Ω . Let g(z) = u(x, y) for $z \in \partial D_r(a)$ and let U(z) be the solution of the Dirichlet problem in $\overline{D}_r(a)$ with boundary values g(z). Show that u(z) - U(z) = 0 in $\overline{D}_r(a)$ and conclude that u is harmonic in Ω .

[Note: The same method idea in (1) also yields the uniqueness of the solution of the Dirichlet problem in a disc.]

2. (1) Let $f(z) \in H(\mathbb{D})$, Re(f(z)) > 0, f(0) = a > 0. Show that

$$\frac{|f(z) - a|}{|f(z) + a|} \le |z|, \quad |f'(0)| \le 2a.$$

(2) Show that the above is still true if $\operatorname{Re}(f(z)) > 0$ is replaced with $\operatorname{Re}(f(z)) \ge 0$.

- 3. Assume f(z) is analytic in \mathbb{D} and f(0) = 0 and is not a rotation (i.e. $f(z) \neq e^{i\theta}z$). Show that $\sum_{n=1}^{\infty} f^n(z)$ converges uniformly to an analytic function on compact subsets of \mathbb{D} , where $f^{n+1}(z) = f(f^n(z))$.
- 4. Let $\Omega = \{z : |z-1| < \sqrt{2}, |z+1| < \sqrt{2}\}$. Find a bijective conformal map from Ω to the upper half plane \mathbb{H} .

- 5. Find the fractional linear transformation that maps the circle |z| = 2 into |z + 1| = 1, the point -2 into the origin, and the origin into *i*.
- 6. Let $\Omega = \mathbb{D} \setminus (-1, -1/2]$. Find a bijective conformal map from Ω to the unit disk \mathbb{D} . How do you find the most general form of all such maps (you don't have to explicitly describe the general form, just explain the strategy for obtaining it)?
- 7. Let $\Omega = \mathbb{C} \setminus [0, \infty)$. Is there an analytic isomorphism from Ω to \mathbb{C} ? If yes, exhibit one such isomorphism. If no, explain why.
- 8. (1) Show that if f is analytic in an open set containing the disc $|z a| \leq R$, then

$$|f(a)|^2 \le \frac{1}{\pi R^2} \int_0^{2\pi} \int_0^R |f(a + re^{i\theta})|^2 r dr d\theta$$

(2) Let Ω be a region and M > 0 a fixed positive constant. Let \mathcal{F} be the family of all analytic functions f on Ω such that $\iint_{\Omega} |f(z)|^2 dx dy \leq M$. Show that \mathcal{F} is a normal family.