Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 1

Due during lecture on 1/24/2020. Late homework will not be accepted

1. Describe geometrically the sets of points z in the complex plane defined by the following relations:
(a) $|z-1|=1$.
(b) $|z-1|=2|z-2|$.
(c) $1 / z=\bar{z}$.
(d) $\operatorname{Re}(z)=3$
(e) $\operatorname{Im}(z)=a$ with $a \in \mathbb{R}$.
(f) $\operatorname{Re}(z)>a$ with $a \in \mathbb{R}$.
(g) $|z-1|<2|z-2|$.
2. Prove that $\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$ and explain when equality holds.
3. Prove that the equation $z^{3}+2 z+4=0$ has its roots outside the unit circle. [Hint: what is the maximum value of the modulus of the first two terms if $|z| \leq 1$?]
4. (a) Prove that if $\left|w_{1}\right|=c\left|w_{2}\right|$ where $c>0$, then $\left|w_{1}-c^{2} w_{2}\right|=c\left|w_{1}-w_{2}\right|$.
(b) Prove that if $c>0, c \neq 1$ and $z_{1} \neq z_{2}$, then $\left|\frac{z-z_{1}}{z-z_{2}}\right|=c$ represents a circle. Find its center and radius. [Hint: an easy way is to use part (a)]
5. (a) Let z, w be complex numbers, such that $\bar{z} w \neq 1$. Prove that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|<1 \quad \text { if }|z|<1 \text { and }|w|<1,
$$

and also that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=1 \quad \text { if }|z|=1 \text { or }|w|=1
$$

(b) Prove that for fixed w in the unit disk \mathbb{D}, the mapping

$$
F: z \mapsto \frac{w-z}{1-\bar{w} z}
$$

satisfies the following conditions:
(i) F maps \mathbb{D} to itself and is holomorphic.
(ii) F interchanges 0 and w, namely, $F(0)=w$ and $F(w)=0$.
(iii) $|F(z)|=1$ if $|z|=1$.
(iv) $F: \mathbb{D} \mapsto \mathbb{D}$ is bijective. [Hint: Calculate $F \circ F$.]
6. Use n-th roots of unity (i.e. solutions of $z^{n}-1=0$) to show that

$$
2^{n-1} \sin \frac{\pi}{n} \sin \frac{2 \pi}{n} \cdots \sin \frac{(n-1) \pi}{n}=n .
$$

[Hint: $1-\cos 2 \theta=2 \sin ^{2} \theta, \sin 2 \theta=2 \sin \theta \cos \theta$.]
7. Prove that $f(z)=|z|^{2}$ has a derivative only at $z=0$, but nowhere else.
8. Let $f(z)$ be analytic in a domain. Prove that $f(z)$ is a constant if it satisfies any of the following conditions:
(a) $|f(z)|$ is constant;
(b) $\operatorname{Re}(f(z))$ is constant;
(c) $\arg (f(z))$ is constant;
(d) $\overline{f(z)}$ is analytic;

How do you generalize (a) and (b)?
9. Let $f(z)$ be analytic. Show that $\overline{f(\bar{z})}$ is also analytic.
10. (a) Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \quad \text { and } \quad \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

(b) Use these equations to show that the logarithm function defined by

$$
\log z=\log r+i \theta \text { where } z=r e^{i \theta} \text { with }-\pi<\theta<\pi
$$

is a holomorphic function in the region $r>0,-\pi<\theta<\pi$. Also show that $\log z$ defined above is not continuous in $r>0$.
11. Prove that the distinct complex numbers z_{1}, z_{2} and z_{3} are the vertices of an equilateral triangel if and only if

$$
z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1} .
$$

