Mathematics Department The University of Georgia Math 8150 Homework Assignment 1

Due during lecture on 1/24/2020. Late homework will not be accepted

- 1. Describe geometrically the sets of points z in the complex plane defined by the following relations:
 - (a) |z 1| = 1. (b) |z 1| = 2|z 2|. (c) $1/z = \overline{z}$.
 - (d) $\operatorname{Re}(z) = 3$ (e) $\operatorname{Im}(z) = a$ with $a \in \mathbb{R}$. (f) $\operatorname{Re}(z) > a$ with $a \in \mathbb{R}$.
 - (g) |z-1| < 2|z-2|.
- 2. Prove that $|z_1 + z_2| \ge ||z_1| |z_2||$ and explain when equality holds.
- 3. Prove that the equation $z^3 + 2z + 4 = 0$ has its roots outside the unit circle. [Hint: what is the maximum value of the modulus of the first two terms if $|z| \le 1$?]
- 4. (a) Prove that if $|w_1| = c|w_2|$ where c > 0, then $|w_1 c^2w_2| = c|w_1 w_2|$. (b) Prove that if c > 0, $c \neq 1$ and $z_1 \neq z_2$, then $|\frac{z - z_1}{z - z_2}| = c$ represents a circle. Find
 - its center and radius. [Hint: an easy way is to use part (a)]
- 5. (a) Let z, w be complex numbers, such that $\overline{z}w \neq 1$. Prove that

$$\left|\frac{w-z}{1-\bar{w}z}\right| < 1$$
 if $|z| < 1$ and $|w| < 1$,

and also that

$$\left|\frac{w-z}{1-\bar{w}z}\right| = 1$$
 if $|z| = 1$ or $|w| = 1$.

(b) Prove that for fixed w in the unit disk \mathbb{D} , the mapping

$$F: z \mapsto \frac{w-z}{1-\bar{w}z}$$

satisfies the following conditions:

- (i) F maps \mathbb{D} to itself and is holomorphic.
- (ii) F interchanges 0 and w, namely, F(0) = w and F(w) = 0.
- (iii) |F(z)| = 1 if |z| = 1.
- (iv) $F : \mathbb{D} \to \mathbb{D}$ is bijective. [Hint: Calculate $F \circ F$.]
- 6. Use *n*-th roots of unity (i.e. solutions of $z^n 1 = 0$) to show that

$$2^{n-1}\sin\frac{\pi}{n}\sin\frac{2\pi}{n}\cdots\sin\frac{(n-1)\pi}{n} = n \; .$$

[Hint: $1 - \cos 2\theta = 2\sin^2 \theta$, $\sin 2\theta = 2\sin \theta \cos \theta$.]

- 7. Prove that $f(z) = |z|^2$ has a derivative only at z = 0, but nowhere else.
- 8. Let f(z) be analytic in a domain. Prove that f(z) is a constant if it satisfies any of the following conditions:
 - (a) |f(z)| is constant;
 - (b) $\operatorname{Re}(f(z))$ is constant;
 - (c) $\arg(f(z))$ is constant;
 - (d) $\overline{f(z)}$ is analytic;

How do you generalize (a) and (b)?

- 9. Let f(z) be analytic. Show that $\overline{f(\overline{z})}$ is also analytic.
- 10. (a) Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$
 and $\frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta}$

(b) Use these equations to show that the logarithm function defined by

$$\log z = \log r + i\theta$$
 where $z = re^{i\theta}$ with $-\pi < \theta < \pi$

is a holomorphic function in the region r > 0, $-\pi < \theta < \pi$. Also show that $\log z$ defined above is not continuous in r > 0.

11. Prove that the distinct complex numbers z_1 , z_2 and z_3 are the vertices of an equilateral triangle if and only if

$$z_1^2 + z_2^2 + z_3^2 = z_1 z_2 + z_2 z_3 + z_3 z_1.$$