Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 2

Due during lecture on 2/10/2020 . Late homework will not be accepted

Complex Analysis, by Elias M. Stein and Rami Shakarchi, 2.6: $1,2,5,6,7,8,9,10,13,14,15$

Additional problems

1. Let $a_{n} \neq 0$ and assume that $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$. Show that $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$. In particular, this shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.
2. Let f be a power series centered at the origin. Prove that f has a power series expansion around any point in its disc of convergence.
3. Prove the following:
(a) The power series $\sum_{n=1}^{\infty} n z^{n}$ does not converge at any point of the unit circle.
(b) The power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$ converges at every point of the unit circle.
(c) The power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ converges at every point of the unit circle except at $z=1$.
4. Don't use the Cauchy integral formula. Show that if $|\alpha|<r<|\beta|$, then

$$
\int_{\gamma} \frac{d z}{(z-\alpha)(z-\beta)}=\frac{2 \pi i}{\alpha-\beta}
$$

where γ denotes the circle centered at the origin, of radius r, with positive orientation.
5. Assume f is continuous in the region: $x \geq x_{0}, 0 \leq y \leq b$ and the limit

$$
\lim _{x \rightarrow+\infty} f(x+i y)=A
$$

exists uniformly with respect to y (independent of y). Show that

$$
\lim _{x \rightarrow+\infty} \int_{\gamma_{x}} f(z) d z=i A b
$$

where $\gamma_{x}:=\{z \mid z=x+i t, 0 \leq t \leq b\}$.
6. Show by example that there exists function $f(z)$ that is holomorphic in $0<|z|<1$ and $\int_{|z|=r} f(z) d z=0$ for all $r<1$, but f is not holomorphic at $z=0$.
7. Let f be analytic on a region R. Suppose $f^{\prime}\left(z_{0}\right) \neq 0$ for some $z_{0} \in R$. Show that if C is a circle of sufficiently small radius centered at z_{0}, then

$$
\frac{2 \pi i}{f^{\prime}\left(z_{0}\right)}=\int_{C} \frac{d z}{f(z)-f\left(z_{0}\right)}
$$

(Hint: Use the inverse function theorem).
8. Assume real value functions u, v of two variables have continuous partial derivatives at $\left(x_{0}, y_{0}\right)$. Show that $f=u+i v$ has derivative $f^{\prime}\left(z_{0}\right)$ at $z_{0}=x_{0}+i y_{0}$ if and only if

$$
\lim _{r \rightarrow 0} \frac{1}{\pi r^{2}} \int_{\left|z-z_{0}\right|=r} f(z) d z=0 .
$$

9. (Cauchy's formula for "exterior" region) Let γ be piecewise smooth simple closed curve with interior Ω_{1} and exterior Ω_{2}. Assume $f^{\prime}(z)$ exists in an open set containing γ and Ω_{2} and $\lim _{z \rightarrow \infty} f(z)=A$. Show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi= \begin{cases}A, & \text { if } z \in \Omega_{1} \\ -f(z)+A, & \text { if } z \in \Omega_{2}\end{cases}
$$

10. Let $f(z)$ be bounded and analytic in \mathbb{C}. Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists

$$
\lim _{R \rightarrow \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z
$$

Use this to show that $f(z)$ must be a constant (Liouville's theorem).
11. Suppose that $f(z)$ is entire and $\lim _{z \rightarrow \infty} f(z) / z=0$. Show that $f(z)$ is a constant.
12. Let f be analytic on a domain D and let γ be a closed curve in D. For any z_{0} in D not on γ, show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z=\int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

Give a generalization of this result.
13. Compute $\int_{|z|=1}\left(z+\frac{1}{z}\right)^{2 n} \frac{d z}{z}$ and use it to show that

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=2 \pi \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}
$$

