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CLASS NOTES ON HODGE THEORY

JOHN B. ETNYRE

ABSTRACT. These are notes from an informal class that cover the Hodge theory of real
and complex forms. The primary references used for the notes are Warner “Foundations
of Differentiable Manifolds and Lie Groups”, Wells “Differential Analysis on Complex
Manifolds”, and Griffiths and Harris “Principles of Algebraic Geometry”.

The notes start with a fairly high level overview in the first two sections and then ends
with some of the analytic details in the last sections. Towards the end the notes get a little
sketching. Hopefully more details will appear in an updated version of these notes. Also,
reader beware, these notes have not been proof read so there are almost certainly lots of
typos and “mathos”. Hopefully these will also be addressed in a future update.
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In this section we prove the Hodge Theorem assuming some a couple analytic theorems
which will be established in subsequent sections. To keep the discussion self-contained we
briefly recall some facts from manifold theory and Riemannian geometry.
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1.1. Riemannian metrics and the Hodge star operator. Below we recall a little linear
algebra which is then promoted to manifolds.

1.1.1. Linear theory. Recall an inner product in a vector space V is a map
(,):VxV >R
(or to C if V' a complex vector space) such that

(1) (v,w) = (w,v) (or for complex vector spaces (v, w) = (w,v))
(2) (av,w) = a(v,w) and (v + v, w) = (v,w) + (V',w)
(3) (v,v) >0 and

(4) (v,v) =0 if and only if v = 0.

Example 1.1. On V = R" we have the Euclidean inner product
1 1

x Y n
< S > = Iy
" yn j=1
If e1,..., e, is a basis for V' then set
9ij = (€, €)-
Note that g;; = g;;- Now if v = vie; and w = w'e; then we have
vl t w!
(v,w) =v'wig; = | : | [9i]

" w™

So given a basis an inner product is equivalent to a certain type of symmetric matrix (note
just any symmetric matrix will not do!).

Given an inner product on V there is a natural inner product on the dual space V*.
Specifically, notice that the non-degeneracy of the inner product says that the map

C: V-V v (v-)
is an isomorphism. Thus for any two v*, w* € V* we can define the induced inner product
to be
(", w*) = (C7H(v"), C7H(w")).

It is obvious that this is an inner product on V*.
Exercise 1.2. We can always find an orthonormal basis for V. (Gram-Schmidt process)

Exercise 1.3. If eq,..., e, is an orthonormal basis for V then let e!,...,e" be the dual
basis for V*. Show in the induced inner product satisfies

(e, ey = 6%,
That is we could define the inner product on the dual space to be § in a basis dual to an
orthonormal basis of V.

Exercise 1.4. If e1,...,e, is any basis for V and the inner product in this basis is given
by [gij] then show the matrix defining the induced metric on V* in the dual basis is
-1
[9i7]

and we will denote this by [gij ] .
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We can now define an induced inner product on A*FV* by

(WF A AU wE AL AW = det [(uf,wh)]

Exercise 1.5. This is an inner product on AFV*.

Exercise 1.6. If e,...,e, is an orthonormal basis for V' then show the induced inner
product on A*V* is determined by saying

{vi, Ao A | fordy <L <}

is an orthonormal basis for AFV*.

Exercise 1.7. If ey, ..., e, is any basis for V' then show the inner product on A"V* 2 R is
given by
R xR —R:(a,b) — abdet [gi;] .
Let e1,...,e, be an oriented orthonormal basis for V' (so e!,...,e" is a dual basis for
V*) and define the Hodge star operator

s« ANV 5 AnTRY
on the basis €' A ... A€’ by
ELNALNER eI A L NIk

where €;,,...,€;,,€j,,...,¢e;, , is an oriented basis for V. We note the following
(1) Clearly

SO
AVF 5 AW s rel AL A e
(Recall AgV* =2 A, V* 2 R.)
(2) If vq,...,v, is any basis for V' then

x1 = y/det[(vi,v;)] vt AL AT

This is clear since y/det[{v;,v;)] v A AV =€l AL AE™
(3) Similarly

(4) Also
se! = (1)t AL AE AL A e,
where e? means to leave that term out.

Exercise 1.8. The map

%0 APV — APV
is

sk — (_1)p(n—p)'
Exercise 1.9. For any v, w € A*V* we have

(1) (v,w) = x(v A xw) = *(w A *v).
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1.1.2. Manifold theory. Let M be an oriented manifold. A Riemannian metric on M is
a smooth function
g:TM xTM — R
such that for all z € M
e T M x T, M — R
is an inner product. We can think of g € (TTM @ TM)*. In a coordinate chart U C M,V C

R" ¢ : V — U, we have coordinate z',...,z" and ¢*g has the form

(93 ()]
in the basis %, ceey a%. Given the metric g on T'M we also get an induced metric on T M.
In the basis dz!, ... dz" this metric takes the form

.. 1
[97(2)] = [gij(x)] -

We can then induce metrics on all the bundles A" (T*M) and get a Hodge star operators
w1 AMT*M — ARTE M

and
0 QF (M) — QVF(M)

by applying the first map pointwise (xa)(z) = *(a(x)). Here QF(M) is the set of sections

of AFT*M

On a Riemannian manifold the volume form is defined to be

dvol = x1

where 1 is the constant function on M. In local coordinates we have

dvol = y/det [gij(x)] da' A ... A da™

Example 1.10. Let f : R? — R be a smooth function and set
M =T = {(z,9, f(z,9))}.
For v,w € T(; ,, .yM define a Riemannian metric by
g(v,w) =v-w (where - is the dot product).
Local coordinates are given by V = R?, U = M and
¢:V = U:(2,y) = (2,9, f(z,y))
In these coordinates

1 0
d¢(z,y): 0 1
fw(x7y) fy(xvy)
1 1
0 0
g = gldoo—,do——) = HNE =1+

and similarly
g2 =1+ [, g12=g2= fufy
Therefor in these coordinates the metric looks like
[1 +f % fof. y ]
fofy 1+ f2
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dvolyr = /1 + f2 + f2dx A dy.

One should compare this to the area form on a graph from vector calculus.

and the volume form is

Example 1.11. Let S? be the unit 2-sphere in R3. The inverse of stereographic projection
from the north pole N € S? to the xy-plane give the coordinate chart

1
¢ : RQ — S2 C Rg : (l‘,y) — m(2$,2y,$2 +y2 — 1)
We have
1 —222 4292 + 2 —dxy
do =—— —4dxy 222 — 292 + 2
(z,y) (22 4+ 92 + 1)2 s 4y
In the basis e; = %, ey = 8% we have
B 1 4((2® + %) +1)? 0 - 4 10
I= @2+ 1) 0 W@+ + 1% @+ +1)2 [0 1]
Thus the volume form is
4
dvolgz = ————— dx N\ dy.
V0l g2 (322 n y2 n 1)2 ZT Y

Integrating this over R? = §2 — N, we see the volume of the unit sphere is 4.

Exercise 1.12. Work out the volume form on the unit S” in R™t!. Also work out the
volume form on the flat 72, that is R? module the integer lattice Z2.

Exercise 1.13. You can also embed T2 into R? as the surface obtained by revolving the unit
sphere centered at (2,0,0) in the zz-plane about the z-axis. Write down a prameterization
of this torus, thus giving a coordinate chart. Work out the volume form. What is the
volume of this torus?

1.2. Harmonic forms and the Hodge theorem. Let M be an oriented Riemannian
manifold with metric g. We have the following inner product on QP(M)

(@)= [ (ala).fa)dvol
:/ (x(a(x) A *xB(z))dvol
M
:/ a(z) A\ x[(x)
M

- [ anss

This is clearly symmetric, bilinear and non-negative. If o # 0 then there is some open set
U where (a(z), a(z)) > 0 and thus

(o, ) = /M<a(m),a(x)>dv0lM > /U<a(x),a(a:))dvolM >0

and thus we have shown («, 8) is an inner product. We call this the L? inner product on
forms.
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We now define the operator
§:QP(M) — QP~H(M)
as the “formal adjoint” of
d: QP Y (M) = QP(M)
with respect to the above inner product. That is for § € QP(M) we define 03 to be the
unique (p — 1)-form that satisfies

(68, ) = (8, da)
for all a € QP~1(M).
Lemma 1.14. On a closed manifold M the operator 6 : QP(M) — QP~Y(M) is
68 = (—1)"PHDH g 3.
Proof. If o € QP~Y(M) and 3 € QP(M) then
dlaAxB) =da A+ (—1)PLandxp

= da A+ (—1)PH(=1) PP A wox d %3

=da N\*f — (—1)"(P+1)+1a Ak xdxf.
Thus by Stokes’ theorem we have

O:/aMa/\*B:/Md(a/\*ﬁ)
- / da Axf — (~1)" P o Axxd o+
M

= (dav, B) — (v, (—1)" TV s d 4 3).
]

Example 1.15. Here we notice how d and ¢§ are related to classical differential operators
from vector calculus. Through this example we will always assume that we are in dimension
3. Denote the space of vector fields on a Riemannian manifold (M, g) by V(M ). Recall that
we can use the metric g to define an isomorphism between vector fields and 1-forms
bg: M — QYM) v = 1,9,

that is ¢4(v) is the 1-form that evaluates to g(v,w) on the vector field w. Moreover the
Hodge star operator provides isomorphisms

x: QM) — QY (M)
and

w: 3(M) — QO(M).
Recall QY(M) is the space of functions on M which we also denote by F(M). Now consider
the following diagram
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Define the operators D1, Dy and D3 via d and the vertical isomorphisms in the diagram. One
may easily check that in the flat metric on R? we have D;(f) is the gradient of the function
fy Da(v) is the curl of the vector field v and D3(v) is the divergence of the vector field v.
In particular ¢ is conjugate to the divergence operator on vector fields and d is conjugate
to the curl operator on vector fields and the gradient operator on functions. Notice that
we can use the above diagram to generalize the classical notions of divergence, gradient
and curl to a general Riemannian 3-manifold (of course the divergence and gradient can be
generalized to any Riemannian manifold of any dimension).

We define the Laplace-Beltrami operator (or simply the Laplacian) A : QP(M) —
QP(M) to be
A = 6d + do.

Exercise 1.16. Show the Laplacian and the Hodge star operator commute:
*A = Ax.
Exercise 1.17. Show that the Laplacian is self-adjoint. That is show that
(A, ) = (a, AB).

We call a p-form o harmonic if
Aa = 0.

Lemma 1.18. For any form « then
Aa =04 da=0 and da = 0.
Proof. The implication < is clear. For the other implication assume Aa = 0. Thus
0= (Aa,a) = (dda, ) + (ddav, o) = (b, dar) + (dav, de)
and hence (da, da) = 0 and (da, day = 0. And so da = 0 = dav. O
Example 1.19. The Laplacian
A QM) — QM)
is simply
A = dd.
(Recall Q°(M) is the set of functions on M.) Thus
Af=0<df =0.

So the harmonic 0-forms (‘e functions) on a closed manifold are exactly the constant func-
tions.

Example 1.20. Let ', ..., 2" be coordinates on R" and consider the standard Euclidean
(flat) metric g;; = &;;. Given a function f: R™ — R in Q°(R™) we have
of

N
df = 5= da.
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We now compute ¢ : QH(R™) — Q°(R™).
5(hj(z)da?) = (=1)PHDF g (hj(z)dz?)
= (=17 wd(hj(z)dz' A... Adad A ... Ada")

, h; - —
= —(—1)31*g;(x)dxj/\datl/\.../\d:xﬂ/\.../\dx"
x

:—*—:(az)dazl/\.../\dm"

Thus

n

Af:csclfzé(znjﬁ Z<8xﬂ)

]:

ox/
Exercise 1.21. If we have a metric on R" given by g;; compute

on
1 0 0
Af = —7% <\/det [Qz‘j]gijaji)

det [giﬂ

= 99 0w 8@”696] + Z 8x3

Here the ¢;(x)’s are just smooth functions. You can work out a formula for them in terms
of the metric, but the point of the second line is that we have identified the highest order
term explicitly. This is the term that governs the behavior of A as a differential operator
as we will see below.

Theorem 1.22 (Hodge Theorem). Let M be a closed oriented Riemannian n-manifold and
set

H? =ker(A: QP(M) — QP(M)).
Then we have

(1) The space of harmonic forms HP is finite dimensional.
(2) The smooth p-forms decompose as

OP(M) = H? @ A(QP(M))
— HP & d8(QP(M)) & 5d(QP (M)
= H° & d(QP~H(M)) & (P (M)).

We will prove this theorem in the next section (modulo a great deal of analytic work
which is done later), but for now let us explore the consequences of this theorem. But
first let us consider the content of the theorem. First the space of solutions to a PDE can
easily be an infinitely dimensional space (for example L = 8— on R? has kernel all smooth
functions in y). So the finiteness is quite non-trivial. Secondly with a little thought the
second statement would be (relatively) obvious (see the proof below) if we were dealing
with L2-forms (that is the coefficients that define the forms are just measurable functions
and not smooth). So the real content hear is that the kernel of A extended to the L2-forms
consists of smooth forms and hence is H? and (HP)+ = A(QP(M)).

From here on in this section M will be a closed oriented n-manifold.
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Corollary 1.23. The equation

Aw =«
has a solution w € QP(M) if and only if a is L?-orthogonal to the space of harmonic forms.
Moreover, if w is a solution to the equation the set of solutions is w + HP.

With a little work one can use this result to prove part (2) of the Hodge Theorem and in
fact that is more or less what we do. But we observe the corollary follows from (2) as well.
Thus the corollary and (2) are equivalent statements.

Proof. Since part (2) of the Hodge Theorem says (HP): = A(QP(M)) the condition for
solvability is clear and since Aw = « is a linear equation it is also clear that w + ker A is
the set of solutions if w is a solution. 0

Corollary 1.24. Fach deRham cohomology class has a unique harmonic representative.
That is the natural inclusion

HP — HY (M)
18 an isomorphism.
Proof. We first establish the following diagram:
ot = gl g 40P @ 6OP

d

d >

0P ~  HP g 4P @ sQrtt
N

d &

ottt > gttt e 4P @ sort?
To see this notice that if a € QP (M) then daw = 0 implies that « is harmonic (since clearly

da. = 0) and thus a = 0 since it is orthogonal to the harmonic forms. So we see that
kerd = HP @ dQP~1 (M) and d : §QP(M) — dQP~1(M) is an isomorphism as claimed.

Example 1.25. Show that § : dQP~ (M) — §QP(M) is an isomorphism as well. (Note: d
and ¢ are not inverses of one another!)

Now

_kerd  HP ®dOPH (M)

- ~ fP.
im d A —1(M)

Hp(M)
O
An immediate corollary of the Hodge theorem and the last corollary is the following.
Corollary 1.26. The deRham cohomology of a closed manifold is finite dimensional.
We have an obvious pairing
HIL(M) x Hyp"(M) — R
given by

(la). 18]) /Maw.
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We denote this pairing by ([a], [3]). We begin by noticing that his pairing is well-defined.
Indeed, if we take another representative of [a] it can be written a+d~y for some (p—1)-form

~. Thus
[ avianns=[ ans [ @ns
(since dB = 0)

:/MaAm/Md(wm
:/MaAﬁ+/<9M7Aﬁ

You can similarly check that the pairing does not depend on [3]. The pairing is clearly
bilinear.

Theorem 1.27 (Poincaré Duality). The pairing is non-singular. That is it induces an
isomorphism
Hap" (M) = (Hgp(M))*
and in particular
dim H),* (M) = dim H (M)
and H}jp(M) = R.
Proof. Given a class [a] € Hjp(M) such that [o] # 0 we can choose « € [a] so that Aa = 0.

Recall that *A = Ax and so *a is also harmonic and represents a class [xa] € Hz"(M).
We also can easily see

([a], [*a]) = /M a N\ *xq = /M la2dvol = ||| # 0.

Thus the pairing is non-singular. O

We now look at some applications to Riemannian geometry. We first observe the following
lemma.

Lemma 1.28. Let m: M — M be a finite covering space of a closed manifold M. Then
bj(M) < bj(M)

for all j, where b; stands for the G betti number (ie dimension of the j™ deRham cohomol-
0gy).

Proof. Pick a metric g on M and let ¢ = 7*¢ be the pull-back metric on M. Notice that
(1) 7*d = dr*,
(2) m*dvoly = dvolg, and
(3) ™ ox ==xo7*.
Thus
mrod=Fforx"
and

™o A =Aor*.
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Also notice that if the fold of the cover is p and U; is an open cover of M by coordinate
charts that are evenly covered by 7 and ¢; is a partition of unit subordinate to the cover

U; then
p/szp/UiZ@w:pZ/Uiqﬁiw
:Z/Wlwi)(gbiow)w*w:/ﬁw*w,

where the first and last inequalities are by the definition of the integral over manifolds.
Now if w1, ...,w, is an orthonormal basis for H’(M) then 7*wy, ..., 7*w, are harmonic
forms on M. Moreover, if j # k then

(m*wj, m*wy) = p(wj, wg) = 0.
Thus all the 7*w;’s are orthogonal which implies
dim H7 (M) > dim H7 (M).
O

Corollary 1.29. If M is a closed n-manifold that admits a metric of 1/4-pinched positive

sectional curvature (that is sectional curvatures larger than iK and less than or equal to K
for some fized constant K ), then bj(M) =0 for allj=1,...,n— 1.

Proof. By the Sphere Theorem the universal cover of M is S™ and so the result follows from
the lemma. g

Corollary 1.30. If M is a closed n-manifold that admits a metric with zero sectional
curvature (ie M is flat) then
bj(M) < <n>
J

Proof. One of Bieberbach’s theorems imply that M is finitely covered by T™. 0

(Notice that (?) = dim HY(T").)

Another application of the Hodge theorem to Riemannian geometry involves Ricci cur-
vature. One has the famous Bochner formula for 1-forms

Aa = V*Va + Ric(o)

where V is the covariant derivative associated to a metric and V* is its formal adjoint. (The
term V*V is called the covariant Laplacian.) We say Ric > 0 if (Ric(«), ) > 0 for all a.
(That is Ric is a positive operator.)

Corollary 1.31. If M is a closed manifold with a metric having Ric > 0 then H'(M) = 0.
If instead Ric > 0 then dim H'(M) < n.

Proof. Take o € H'(M) (that is « is a harmonic 1-form). Then
0= (Aa,a) = (V*'Va,a) + (Ric(a), a)
= (Va, Va) + (Ric(a), o)
= | Vel + (Ric(a), o) > 0.

Thus there is no such « is Ric > 0 and if Ric = 0 then Va = 0 which means « is covariantly
constant. Thus it is determined by its value at one point, proving the last inequality. [J
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1.3. Proof of the Hodge theorem (modulo some analytic details). To prove the
Hodge theorem we will need the notion of a weak solution to the equation

(2) Aw =«

where a € QP(M) is given and we are looking for w. Suppose we have such a solution w
then notice that

(@, 9) = (Aw, §) = (w, Ag)

for all ¢ € QP(M) since A is formally self-adjoint. Thus if we define a linear function

[:QP(M)—R
by I(8) = (w, B) then from above we see that
(3) I(Ag) = (a, )

for all ¢ € QP(M). We also notice that using the Cauchy-Schwarz inequality
LB = [{w, B < llwl[IB]]-

So if K = ||lw|| we have

(4) L(B)l < K118,

that is [ is a bounded linear operator.

Thus we see a solution w to Equation (2) gives a linear functional [ € (QP(M))* satisfying
Equations (3) and (4). Such an [ is called a weak solution to Equation (2). We have seen
that solutions give weak solutions, but for the equation we are concerned with we have a
converse.

Theorem A. Given a € QP(M) and a weak solution | € (2P(M))* to Aw = « there is an
w € QP(M) such that I(5) = (w, 5) for all 5§ € QP(M). In particular Aw = a. O

Notice that the last part of the theorem clearly follows from the first part. In particular

(a, B) = 1(AB) = (w, AB) = (Aw, §)
for all 5. And hence
(Aw—a,5) =0
for all 4. But his implies
Aw—a=0.
We also have

Theorem B. Let {a,} be a sequence of elements in QP (M) for which there is some constant
c such that

lom|[ < ¢
and
[Aan] < ¢
then there is a subsequence of {a,} that is Cauchy in the L? norm on QP(M). O

It will take quite a bit of analytic machinery to prove these theorems. We will state the
main results that come out of this machinery in the next section and derive Theorems A
and B from them. The machinery will be established in the following sections. But for now
we show how to prove the Hodge theorem once we know Theorems A and B.
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Proof of Hodge Theorem 1.22. We begin with statement (1), that is we show that the di-
mension of HP is finite. Suppose the dimension was not finite. Then there would be a
sequence {ay} of orthonormal forms in HP. Thus if ¢ > 1 then

lall = 1 < ¢

and
|Aay|| =0 < c.

Thus we can use Theorem B to find a subsequence of the «,’s (which we still denote a,)
that is Cauchy. But now consider

Han - amHZ = <04n — Qip, Oy, — am> = HanH2 + Ham”2 =2

(the second to last equality comes from orthogonality of the a,’s). This clearly contradicts
the sequence being Cauchy and hence HP could not be infinite dimensional.
Now for part (2) of the Hodge Theorem. That is we need to show

QP (M) = HP & A(QP(M))
= HP @ d6(QP(M)) @ 6d(QP (M)
= H @ d(QP~Y(M)) @ §(QPTH(M)).

Notice the second equality is obvious and the third equality was established in the proof of
Corollary 1.24 above. Thus we are left to see

OP(M) = HP @ A(QP(M))

To this end let wy,...,wy be an orthonormal basis for HP. For a € QP(M) set
N
h(a) = o — Z(a,wj>wj.
j=1
Clearly
(h(a),wj) =0

for all j. So h(a) € (HP)* and we see that
QP(M) = HP @ (HP)*.
Therefore to establish the theorem we are left to show that
(HP): = AQP(M).
One inclusion is easy. That is suppose v € AQP(M) so there is some 7 such that v = A7.
Thus for all w € HP we have
(y,w) = (A%, w) = (7, 8w) = (7,0) = 0.

So v € (HP)*.

To complete the proof we need to show that for any o € (HP)* there is some w such that
Aw = «. To this end we will construct a weak solution and then apply Theorem A. Recall
a weak solution is among other things in element | € (QP(M))*. To construct this element
we will follow a common strategy. That is we will define the linear functional on a subset of
QP(M) where the definition is “obvious” and then use the Hahn-Banach theorem to extend
it to all of QP(M). Thus we begin by recalling the well known theorem.



14 JOHN B. ETNYRE

Hahn-Banach Theorem. Suppose X is a linear space and p : X — R is a function
satisfying
plz+y) < p(z) + p(y)
and
p(Ax) = Ap(z).
Now given a subspace Y of X and a linear function f :Y — R satisfying

flz) < p(z)
for all x € Y, then there is a linear function F': X — R such that
F(z) = f(z)
for all z € Y and
F(z) < p(x)
for all x € X. O]

We will not prove this theorem here, but it can be found in any functional analysis book.

We begin to construct our weak solution for a given a € (H?)* by defining a linear map
[: AQP(M) — R as follows: given 8 € AQP(M) there is a v € QP(M) such that Ay = j,
define

1(B) = (e, 7).
Notice that [ is well-defined since if 5 = A4’ too then A(y —~') =0so (y —+') € HP and
thus

<O‘a Y= 7/> =0
since a € (HP)*. So we have

(o, 7) = (@)
and [ is well-defined. The function [ is clearly linear. To apply the Hahn-Banach theorem
we need the following lemma.

Lemma 1.32. There is a constant ¢ such that for all § € (HP)*
181l < cl|AB-
Assuming the lemma is true for the moment notice that if 3 = A~ then
L(B)] = [L(AY)[ = [I(A(h(v)))]
(recall A(y) = (v = Y (v, w;)w;) € (H?)")

= [, h(7))]
(by Cauchy-Schwarz inequality)

< [lef[[[p()]
(by the last lemma)

< cllafl|ARM)|]
(since the w; are harmonic)
= c[laf[|Av]| = c[lal/||]-
Thus if we set K = c||a|| we see that

1(B)] < K|l
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and if we set p: QP(M) — R : z — K||z|| then we can apply the Hahn-Banach theorem to
[ and p to extend [ to all of QP(M) such that it satisfies

1(B)] < K||8]|
for all g € QP(M) and
I(Ay) = {e,7)
by construction. So [ is a weak solution to Aw = « and hence Theorem A says there is some

w € QP(M) such that I(5) = (w, ) for all  and hence o € AQP(M). Thus establishing
(HP)+ = AQP(M) and completing the proof of the theorem. O

We are now left to prove Lemma 1.32.

Proof of Lemma 1.32. Suppose the bound in the lemma does not exist, then we can fine a
sequence 3, € (HP)* such that

18Il > nlAB|
for all n. Now set f3,, = H,Bl’ ”ﬁ;, so we have
[Bnll =1
and since Af,, = ”ﬁl, I Ap!, we have that
1 1
AB, || = ABL|| < —.
A0 = A% <

We can now apply Theorem B to {3,} to get a Cauchy subsequence.

Exercise 1.33. Suppose this Cauchy sequence converged to . Show that ||5]| = 1,8 €
(HP)* and B € HP. This is of course a contradiction and hence our initial assumption the
the lemma was not true is false. We have not finished the proof since QP(M) is not a
complete space and hence there is no guarantee that a Cauchy sequence converges.

To get around the lack of completeness of QP(M) we will use Theorem A again. In
particular, notice that for all v € QP(M) we have

’<5n77> - </8m77>| = ‘<Bn - ﬁma’w‘ < ||Bn - /Bm”H’YH

Thus since the 3, are Cauchy we see {(f3,,,7)} is a Cauchy sequence in R which is complete.
Thus {(5,,7)} converges to some number which we denote

l(v) = lim (Bn, 7).
It is clear that [ is linear and moreover
)| = | tim (B )| < tim [Bulllo] = 1]
So [ is a bounded linear functional on QP (M ). Notice that
[(Ay) = lim (Bp, Ay) = lim (Afy,7) < lim |AB[lv]] =0

and so [ is a weak solution to Aw = 0. Thus Theorem A implies there is an w such that
[(B) = (w, B) for all 8. This w should be the limit of the 3,’s. We show it behaves as if it
is. In particular for all w’ € HP notice that

(w,6) = 1) = Jim (B,0) = 0

lim
n—oo
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since the £/’s are in (HP)*. Thus w € (HP):. But of course Aw = 0 by construction so
w € HP too. Thus w = 0. We will have our contradiction, and hence establish the lemma,

once we see that ||w|| = 1. To see this notice that
lwol? = (w,w) = I(w)
= hm <ﬂn,w> = le 1(Bn)
- Jim (fim (5.5
= JLH;O(%EHOO<B71 — Bm + Bm, Bm))
( lim (

= lim ( lim ﬁn - Bm7ﬁm> + <Bm76m>)

n—oo m—0o0

= lim ( lim (8, — Bm, Bm) + 1)

n—oo Mm—oo

=1+ lim ( hmoo<5n ~ Bms Bm))-

n—oo m—

Now notice that since {f,} is Cauchy we have for any ¢ > 0 an N such that n,m > N
implies
Thus | limy,—ye0 (im0 (Bn — Bm, Bm))| = 0 and hence ||w|| = 1. O

1.4. Formal analytic details. In this section we show how to prove Theorems A and B
given certain analytic theorems.

In the Section 3 we will show how to associate Hilbert spaces Hs(2’(M)) with inner
products (-, -)s and associated norms || - ||s. These will be called Sobolev spaces of forms and
they essentially are forms whose first s derivatives are L?-bounded. The precise definition
is not relevant here. For now we just need the following properties.

Theorem 1.34. We have the following:
(1) QP(M) is a dense subset of Hs(QP(M)) for all s. (So all these new spaces are just
completions of smooth p-forms in some norm.)
(2) The inner product {-,-)o is the L*-inner product on QP(M). (So all these Sobolev
norms are generalizations of the Lz—norm.)
(3) If « € Hs(P(M)) and
<Oé, /B>s =0
for all B € QP(M) then o =0 in Hg(QP(M)).
(4) For any smooth form a € QP(M) and number s <t we have
alls < [lefle
Thus the identity map on QP (M) induces a bounded inclusion
Hy(QP(M)) C Hs(QP(M)).

(5) (Sobolev inequality) If s > & + k then there is a constant c such that for any smooth
form o € QP(M) we have

leller < cllals.
Thus the identity map on QP(M) induces a bounded inclusion
H(QP(M)) € CH(QP (M),

that is any element in Hy(QP(M)) has k continuous derivatives.
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(6) (Rellich’s lemma) if s < t then any sequence {a;} in H (¥ (M)) for which |lojl; <
K for some fized K, there is a subsequence that is Cauchy (and hence convergent)
in Hs(QP(M)). That is the bounded linear inclusion map

Hy(QP(M)) C Hs(2°(M))
is a compact operator.
(7) The map
Ho(QP(M)) — (Ho($2"(M)))*
given by
o= <O¢, ’>0
is an isomorphism.
Parts (1) and (2) of this theorem follow from the definition of the Sobolev spaces in
Section 3.5, while part (3) is an easy consequence of (1). Parts (4)-(6) are a restatement

of parts of Theorem 3.17 and part (7) is just the fact that an inner product induces an
isomorphism form a space to its dual space. We have the immediate corollary.

Corollary 1.35. We have
NsHs(QP(M)) = QP(M).

It turns out that the Laplacian is what is called an elliptic operator and while we do
not define this term until Section 4 we note the following results.

Theorem 1.36. The Laplacian on QP(M) extends to a bounded linear operator
A Hy(QP(M)) — Hs—o(Q2P(M)).

Theorem 1.37 (Elliptic estimate for the Laplacian). There is some constant ¢ such that
for all & € Hg12(QP(M)) we have

sy < e(lAalls + llalls).

Theorem 1.38 (Elliptic regularity for the Laplacian). Ifw € Ho(QP(M)) and o € H,(QP(M))
for some t > 0 such that

Aw =«
then w € Hypo(QP(M)).

The first theorem is the statement in part (2) of Theorem 3.17. The second two theorems
are direct consequences of Theorems 4.11 and 4.12

Proof of Theorem B. Suppose {a;} is a sequence of elements in QP(M) for which there is
some constant ¢ such that

lom]l < ¢
and

[Acn|| < ¢

then the Elliptic estimate implies that
lanll2 < c(|Aallo + [lallo) = 2¢c

and thus the Sobolev 2-norm is uniformly bounded for all n. Now Rellich’s lemma implies
that a subsequence of the «,’s is Cauchy in the Sobolev 0-norm, that is in the L?-norm on
QP(M). O
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Proof of Theorem A. Given o € QP(M ), suppose | € (QP(M))* is a weak solution to Aw =
a. That is,
(A7) = {a,7)
and there is some ¢ such that
L] < cllll
for all ~.
Since [ : (M) — R is a bounded linear operator and QP(M) is dense in Ho(QP(M)) we
can extend ! to a bounded linear operator on Ho(QP(M)). That is [ € (Ho(Q2?(M)))*. So
by Theorem 1.34 there is an element w € Hy(QP(M)) such that

1(B) = (w, B)
for all € Ho(Q2P(M)). If w were smooth then we would be done. Notice that
(Aw, B) = (w, AB) = I(AB) = (@, B)
for all g € QP(M). Thus again by Theorem 1.34 we have
Aw =«

in H_o(Q(M)). Since o € QP(M) it is in Hs(QP(M)) for all s. Thus Elliptic regularity
implies that w € Hs2(Q2P(M)) for all s. Therefore w € NsHs(2P(M)) and hence in QP(M).
O
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2. COMPLEX MANIFOLDS AND THE HODGE THEOREM

Here we present another version of the Hodge theorem for complex manifolds (this is
what many people mean when that say “Hodge theorem”). But for those interesting in just
seeing the details of the proofs of the theorems above feel free to skip this section and go
strait to Section 3. In this section we do not introduce anything important to the analysis
we will develop later.

2.1. Complex manifolds.

2.1.1. Linear theory. Let V be a R vector space. A complex structure on V is a linear
automorphism
J: V=V
such that
J? = —Idy.
Notice that a complex structure JJ on V gives V the structure of a C vector space:
(a+ib)v = av + b(Jv)
and )
di V =—di V.
img 5 dimg
Thus dimp V' is always even if V' has a complex structure.

Exercise 2.1. Prove the following statements.

o Ife,..., e, is a C-basis for V and f; = J(e;) then ey, fi,...,en, fn is a R-basis for
V.

e In this basis

[0 =1 0 0 ]
1 0 0 0

J—10 0 0 -1
0 0 1 0

e A complex structure induces an orientation on V.

Notice that if V' is a C vector space then the map
J:V-sViv—iw

is a complex structure on the underlying R vector space. Thus we see that a complex
structure on a R vector space is essentially equivalent to endowing the vector space with
the structure of a C vector space. It might seem strange to introduce this new idea that
is equivalent to an old idea, but we will see it is useful when moving to the manifold level.
But first we further explore a complex structure J on a R-vector space V.

Exercise 2.2. If V and V' are R-vector spaces with complex structures J and J’, respec-
tively, then an R-linear map ¢ : V' — V' is C-linear (for the C vector spaces structures
induced by the complex structures J and J') if and only if

poJ=1J oo

Exercise 2.3. If ¢ is a complex linear isomorphism then ¢ preserves the orientations
induced from J and J'.
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The eigenvalues of J are £ the square root of the eigenvalues —Idy so they are +i. Thus
we cannot diagonalize J over R. To diagonalize J we must complexify V' that is consider

Ve=VerC
Clearly J induces a map J : Vo — V. Set
V0 — i-eigenspace of J

and

v — —i-eigenspace of J.
Then clearly

Ve = V(L0 g 1/(0.1),

Exercise 2.4. Show that )

v 0 = {Zw—iJv)lveV}
and )

Vo) = {Gw+iJv)v eV}
Thus each of these spaces is R-isomorphic to V.
A word of caution: we should technically write v ® 1 4 (Jv) ® i for v + iJv and similarly
for the other expression. There is concern for confusion since we earlier said that J gives
V' the structure of a complex vector space by defining iv = Jv. But here we are thinking of
V' as a real vector space J an operator on it and V' ® C the complexification of V.

You might be wondering about the % here. This will be clear below when we talk about
the dual picture.

Exercise 2.5. Define “complex conjugation” to be
C: Ve = Ve iv+iw v —iw.
Show that C' induces an isomorphism from V(19 to V(1) Thus we identify V with a subset
of Vi by v+ (v —iJv) then
V(C =VaoV
where V = C(V).
The complex structure J on V induces a complex structure J* on the dual space V*. In
particular if w* € V* then we define J*(w*) to be the unique element in V* defined by
J*(w)(v) = w*(J(v)).
That is J* is the adjoint of J under the non-degenerate pairing
VxV*=R: (v,w") — w(v).
Now as above we have
Ve =V"erC= (V)10 g (v*) 01,
Exercise 2.6. Show that
/\k V((*: — @ /\(p,q) 1%4
p+q=k
where

/\(pvq) V = /\p(v*)(l,o) /\/\Q(V*)(O,l).
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Elements of /\(p DV are called forms of type (p, q).

Ifeq,..., e, is a C-basis for V with complex structure J, then eq, f1,...,en, fn is a R-basis
for V, where f; = J(e;j). Moreover the dual basis for V* is el, f1,... e", f". Now we have
that

1
V(1.9 is spanned by g9j = E(ej —ifj),j=1,...n,
and
\% 1sspannedbygj—2(ej+zf]),j—1,...,n.
Similarly we have
(V*)(l’o) is spanned by ¢/ =€/ +if/,j=1,...,n
and
(V*)(O’l) is spanned by ¢/ = ¢/ —ifl,j=1,...n.
Exercise 2.7. Show that g!, ..., g" is the dual basis to g1, . .., gn. (This explains why there

needs to be a % somewhere, the reason we put it in the definition of g; will be clear later.)

Finally if w € A®? V then
w = wa1,...,ap,61,...ﬁqgm A A gor /\gﬁl A /\gﬁq7

where we as usual use the summation convention.

2.1.2. Hermitian Structure. A Hermitian inner product on a vector space V with a
complex structure J is an R-linear map

h:VxV —=C
such that
(1) h(v,w) = h(w,v)

(2) h(v,v) >0 for v#0 (note that h(v,v) is real by (1))
(3) h(Jv,w) = ih(v,w)

Notice that the first and last properties imply
h(v, Jw) = —ih(v,w),
thus we have
h(Jv,w) = —h(v, Jw),
that is J is skew-adjoint with respect to h, and
h(Jv, Jw) = h(v,w),
that is h is J invariant.
Exercise 2.8. Notice that we can extend h: V x V — C to the complexified vector space
Ve
h: V(C X V(C —C
and it satisfies
(1) h(v,w) = h(v,w),
(2%) h(v,v) > 0 for all v # 0, and
(3") h(v,w) =0 for all v € VD) and w € VO,
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Given an Hermitian inner product h: V x V — C set
g(v,w) = Real part of h(v, w).
Exercise 2.9. Show g: V x V — R is an inner product and satisfies
g(JU,Jw) = g(U,W),
that is, ¢ is J invariant. In addition show that if ¢’ is any J invariant inner product on a
vector space V then
g9(v, w) +ig(v, Jw)
is a Hermitian inner product.
Now set 1
w(v,w) = —3 Imaginary part of h(v, w).
We easily see that
(1) we A2V:

1 1
wv,w) = —§Im h(v,w) = §Im h(w,v) = —w(w,v),

(2) w is non-degenerate
(3) w(v, Jv) = —4Im h(v, Jv) = 1Im ih(v,v) = g(v,v) > 0 for v # 0, and
(4) w(Jv, Jw) = w(v,w).
Exercise 2.10. Show that given and w € A2V that satisfies (2)—(4) then
2(w(v, Jw) — iw(v,w))
is a Hermitian inner product.

Given a Hermitian inner product A : V x V — C let ¢ and w be the associated inner
product and 2-form. Choose a complex basis eq,...,e, for V' that is orthonormal with
respect to h. Let f, = Je,. So e1, fi,...en, fn, is a real basis for V. Notice that

9(fas [3) = 9(Jea, Jeg) = glea,ep) = dap,
where 6,5 is the Kroneker delta. Also
9(fa,es) = Reh(Jeq,e5) = Reih(eq, eg) = —2w(eq, €g),

so g(f®,e#) =0 if for all & and 3. That is e, fi,...,en, fn is a real orthonormal basis for
V with respect to the metric g. Let e!, f2,...,€e", f*, be the dual basis. We clearly have

n

9= (" @+ & f).

a=1
In addition, from above we see that w(v,w) = —3g(v, Jw), so
1 n n
o= a=

n =n

Set g* = e*+1if* in V- and notice that g, g% ..., 9"
above one may check that
n
h=> g"®7g"
a=1

is a complex basis for V. From
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It is also amusing to notice that

n

w:%ZgaAga.

a=1

2.1.3. Manifold theory. A complex structure on s vector bundle p : £ — M is a bundle
automorphism

J
FE - B
& o Q
M
such that for all z € M we have

is a complex structure where E = p~!(z) and J, is J restricted to E,. An almost complex
structure on a manifold M is a complex structure on the tangent bundle 7'M of M. We will
see below why the word “almost” is used here, basically it is because “complex structure”
already has a meaning for manifolds.

Notice that if a manifold admits an almost complex structure then it is even dimensional
and orientable.

Example 2.11. Let M = C", so for every z € C" we have T,C" = C". Thus we have
J, T,C" - T,C" : v v
is an almost complex structure on M = C".

Example 2.12. Let M be a complex manifold. That is M has an atlas of coordinate
charts into C" and the transition maps are holomorphic maps.

A function f : C" — C" : (2%,...,2") = (f(z4...,2"), ..., f(z,...,2")) where
f? = + iv? is holomorphic if it satisfies the Cauchy-Riemann equations

oul o
dzk Dy,
ow o
Ay Oy,
for all k,7 =1,...,n. This is equivalent to
af’
95k = 0

where of course
o _1(0 .0
ozF 2\ 0zk " Toyk )’

Exercise 2.13. Show that a map f is holomorphic if and only if df is invariant under the
almost complex structure J defined in the previous example.
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Since the fixed almost complex structure on C™ is preserved by all the transition maps
in an atlas of coordinate charts for M we get an induced almost complex structure on M.
That is at a point z € M let f:V — U be a coordinate chart where U C M and V C C".
define the complex structure J’ at  to be

Th(ay = dfa 0 Jo o (dfa) "

One may easily check that this does not depend on the choice of coordinate chart.
Given two complex manifolds M and M’ with associated almost complex structures J
and J' we say a map f : M — M’ is a holomorphic map if

df o J = J odf.

Notice that this is equivalent to saying that in local coordinates on M and M’, f satisfies
the Caucy-Riemann equations.

Suppose M has an almost complex structure J. Then just as in the linear case we can
consider the complexified tangent bundle (basically just complexify pointwise) and split it
into the eigenspaces of J :

TM(C =TM®C = (TM)(LO) o) (TM)(O’D.

The first summand is called the holomorphic tangent bundle and the second is called the
anti-holomorphic tangent bundle. The composition of the inclusion of T'M into T'M¢

followed by (the correct) projection to (TM)1-9 is given by
1
TM — (TM)A) :y 5 (W +iJv)
and is an R-linear map. We similarly have
T*Mg =T"M @ C = (T*M)"D & (T° M) D),
and
/\k T*M(C _ /\k(T*M ® (C) — @p—l—q:k /\(p’Q) T* M.
We also have the sections of these bundles
QPA(M) = F(/\(Pﬂ) T*M).

From our study of the linear situation we can locally choose vector fields v1, . .. v, such that

v1, JUL, ..., Un, JUR
span T'M. Then of course we have
1
wj =g (v; —iJvj) j=1,...nspan (TM)10),
w! = v + i Jv j=1,...n span (T*M)(I’O),
1
wj = 3 (vj +iJv;) j=1,...nspan (TM)©OV,
w = —iJu j=1,...n span (T*M)(O’l),

where the v/ are the duals to vj. For n € QP(M) we have local functions nap for each
set of non-negative integers A = {a1,...,a,} and B = {by,...,b,}, such that |A| = p and
|B| = q, (recall |A| = a1 + --- + a, and similarly for |B|) so that we can write

n= Z napw* Aw”
|Al=p,|B|=q
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where, as usual, w = (whH)¥ A ... A (W),

Example 2.14. Of M is a complex manifold with local coordinate 24,0, 2" (and 2 =
a7 4+ iy?) then

0 _1 <0 — '8> j=1,...n span (TM)(I’O),

872]' N 5 8l'j z@yj

dz) = da? +idy’ j=1,...nspan (T"M)19),
0 1/ 0 0

o _1(0 0N L T OD
853' 2 <8x] +Zayj> J ’ 7 span ( ) ’
dz’ = da? —idy’ j=1,...nspan (T*M)OY.

Back to a general almost complex manifold M. We can extend the DeRham differential
d: QPM — QPHLM to the complexified p forms. So if i is a (p, ¢)-form represented as above
then

dn = Z dnAB/\wA/\wB—G— Z nABde/\wB—l— Z nABwA/\de.
|Al=p,|B|=¢ [Al=p,|Bl=q |A|=p,|B|=q
In the first term in this expression we see dnap which is a 1-form and can have (1,0) and
(0,1) components. Thus all the terms in the first sum are (p + 1,¢) and (p,q + 1) forms.
Consider dw?. This can be for example
(dw) A ((p — 1,0)-form).
(

since dw' is a 2-form it can have (2,0),(1,1) and (0,2) components. Thus the second sum
consists of terms that are (p+1,¢q), (p,q+1) and (p— 1, ¢+ 2) forms. Similarly the last sum
consists of terms that are (p+2,¢—1),(p+ 1,q) and (p,q + 1) forms. Thus we see that

d: QPIM) — Qp+27q—1(M) D Qp+1,q(M) D Qp7q+1(M) ® Qp—l,q+2(M)‘
However, if J comes from a complex structure in M then we can use as a basis for 7" Mg,
the dz? and dz’. In this case we see that
d(dz?) = 0 = d(dz’)
since d?> = 0. Thus on a complex manifold we have
d: QPI(M) — QPTLIM) @ QPITH(M).

Actually this characterizes when an almost complex structure comes from a complex struc-
ture

Theorem 2.15. Let J be an almost complex structure on M. Then there is a complex
structure on M inducing J if and only if

d(QPI(M)) C QPTLI(M) @ QP (M),
O

We will not prove this theorem here. In this generality it is a fairly involved PDE
problem. An almost complex structure coming from an underlying complex structure is
called integrable.

Now denote the projection to QP4(M) by

P4 QY (M) — QPI(M).
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Define
d: QPI(M) — QP
by 0 = 7PT19 0 d and B
d: QPI(M) — QPITL(M)
by 0 = mP%*! o d. We also define
N*=7%20d: QYO(M) - Q%2(M).
Exercise 2.16. Let N be the conjugate dual operator
N :T(T*°(M)) — T(T* (M)
The map N is called the Nijenhaus tensor. Show the following:
(1) N(v,w) = —8Re([v"?, w!0]%1).
(2) N is a tensor.
(3) Interperating N € I'(TM ® T*M ® T*M) we can write
N(v,w) = [Ju, Jw] — [v,w] — J[v, Jw] — J[Jv,w],
where v, w are vector fields.
(4) N =0 if and only if T%°M is closed under the Lie bracket.
(5) N =0 if and only if 9" = 0 on functions.
(6) N = 0 if and only if d(QP4(M)) C QPTLI(M) & QP4TL(M). (Hence if and only if J
is integrable!)

On a complex manifolds we clearly have
d=0+40
SO . o
0=d*=0°+09" + (00 + 99).
When this equation is applied to a (p,q) form we see that the first term on the right is
a (p+ 2,q) form, then next term is a (p,q + 2) form and the last term is a (p + 1,¢ + 1)

form. Since the decomposition of forms into type is a direct sum decomposition each of
these three terms must each be zero. Thus

#=0 9 =0 and 89+0d=0.
Hence we can consider the chain complex

o) 2 artn) & a2y L
We define th Dolbeault cohomology of M to be the cohomology of this complex

gy — Ker@: 2900 — Qi)

0 im(0 : QPa=Y (M) — QPa(M))
Exercise 2.17. Let f : M — N be a holomorphic function between two complex manifolds.
Then f* : Q¥(N) — QF(M) induces a map

£ QPI(N) — QP(M)

and

So we get a map
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2.2. Complex Laplacian and the Hodge theorem. Now consider a Hermitian structure
on the almost complex manifold (M, J). That is

h:TM®TM — R

such that h is a Hermitian inner product when restricted to T, M ® T, M for each x € M.
Note we get a Riemannian metric by

g = Real h

and hence a volume from on M which we denote wy,. We also get
1
=——Im~h
w 5 m
which is a non-degenerate 2-form. Actually w € QY1(M).
Example 2.18. The simplest example of a Hermitian structure is on M = C". Here we let

h = Z dz) @ dz’
j=1

= (d2’ +idy) @ (da? —idy)
j=1

=> ((de? © do + dy’ @ dy’) — i(da? @ dy’ — dy ® da?))
j=1
= Z ((dxj @ da? + dy! @ dy’) —i2dx’ A dyj) .
j=1
Thus g is the standard flat metric on R?" = C" and w = 2?21 da? A dy.
Exercise 2.19. Show that w in the above example can also be expressed as
w = iZdzj AdZ.
j=1
Exercise 2.20. (1) If f: M — N is a holomorphic function such that
daf : (T.(M)) MO 5 (Ty V)0

for all z € M then for any Hermitian structure A on N the pull-back f*h is a
Hermitian structure on M. Moreover

f*wh = Wf*h.

(2) If h is a Hermitian metric on a complex n-manifold M (here n is the complex
dimension) then

1
Volume (M) = / w'.

In other words n! [, wy = [}, w".
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We get an L-inner product from the metric g. Specifically given two functions f(x) and
g(z) on M we have

()= [ s@gte) e

and we can similarly define inner products on vector fields and forms. Using this L?-inner
product on forms we can define the L?-adjoint of @

" QPI(M) — QPITH(M).
Specifically, 8 1 is the unique element in QOP4=1Y(M) such that
(@, m) = (v, 0m)

for all n € QP4=L(M).
Let * denote the Hodge star operator induced by the Riemannian metric g.

Exercise 2.21. Check that * of a (p, ¢)-form is a (n — p,n — ¢)-form:
x: QPIY(M) — QPP M).
Of course applied to (p, q)-forms we have that

(1, 6) - = b A
and
*x1p = (—1)PT),
Exercise 2.22. Show the following formula for the L?-adjoint of 0:
9 = —%0x.
Notice that this of course implies that 9 00 =0.
We can now define the complex Laplace operator to be
A;=00"+3'0.
Exercise 2.23. Check that for a function f : C" — R we have

Also show that
0? 1, 0% 0?
dzi05 ~ 1o T ag2)
so that the complex Laplacian is just a constant multiple of the ordinary Laplacian when
applied to functions on C".

A form a € QP9(M) is called harmonic if
Aga =0.
Define the set of harmonic (p, ¢)-forms
HPY(M) = ker(9 : QPYU(M) — QP9(M)).

Theorem 2.24 (Hodge Theorem). Let M be a compact complex n-manifold with Hermitian
structure h. Then

(1) HP9(M) is finite dimensional.
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(2) We have
OPA(M) = HPI(M) © Ax(QP9(M)
= HPI(M) @ (P9 (M)) @ 8 (P11 (M)).
Just as for our first Hodge theorem we have the immediate corollaries:

Corollary 2.25. Given a € QP4(M) the equation Azw = a has a solution w € QP4(M) if
and only if a is L?-orthogonal to HP4(M) in QP9(M). Moreover, if there is a solution w to
the equation then the set of all solutions to the equation is w + HP1(M).

Corollary 2.26. The Dolbeault cohomology
Hg’q(M) = HPI(M)
1s finite dimensional.

Noting that x takes (p, ¢)-forms to (n — p,n — ¢)-forms we also have the following form
of duality.

Theorem 2.27. For a compact complex n-manifold M with Hermitian structure h we have
that

H""(M)=C
and the pairing
HPY (M) x H"P"I(M) - C: (o, f) — / alp
M
1s non-degenerate and hence
H" PRI = (HP(O))".
We define the Hodge numbers to be
P4 = dim HP9(M).
The previous results tell us that
hpvq < 00,
"t =1
and
pPd — pr—pn—aq.

This is about all we can say for a general complex manifold. In particular, the relation
between the Dolbeault cohomology and the topology of the manifolds is unclear. To under-
stand this connection we need another condition on the Hermitian structure. We discuss
this in the next subsection.

We note the proofs of all these theorems is essentially identical to the proofs of the
corresponding theorems for the DeRham differential once we know the following result.

Lemma 2.28. The complex Laplacian Az on a closed complex manifold is an elliptic op-
erator.

Exercise 2.29. When you have finished reading the proof in the DeRham case, prove this
lemma and then derive all the above results from it.
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2.3. Kahler manifolds. Let M be a complex manifold with induced almost complex struc-
ture J and Hermitian metric h. Let ¢ = Re h be the associated Riemannian metric and
w = —2Im h the associated non-degenerate (1,1)-form. We call (M, J, h) Kéhler if

dw = 0.

As a side note we mention a closed non-degenerate 2-form on a manifold is called a sym-
plectic form. So a Kéahler manifold is a complex manifold with a Hermitian inner product
such that its associated 2-form is a symplectic form. The study of symplectic forms is quite
interesting in its own right, but we will not go into this right now.

To better understand the Kahler condition better suppose we have a Kahler metric h on
a complex manifold (M, J). In a coordinate chart U choose a complex orthonormal basis
el, ... e" for T*U. Set fI = Je/. As worked out above we see that {¢' = e/ +if7 7oy isan

R-basis for (T*U)° and {aj}?zl is a R-basis for (T*U)%!. Moreover
i
w= g d I nd
j=1

We notice that d¢/ € QZ0(U) @ QWD(U). Let 77 be the (2,0) part of d¢?. We call the 77
the torsion of the metric. The form d¢’ — 77 is in QD(U) which has a basis {¢® A 55}
Thus there are functions ¢, 5 such that

oy — 7 =" ;3" N

Set ¢£ = Zciﬁgﬁ. The ¢g} are called the connection matrix of the metric. We clearly
have

dgl =7+ bl A ¢
Exercise 2.30. Show that z/z + wf =0.

We say that h has the same k jet as the Euclidean metric if for all zg € M there is a
holomorphic coordinate chart about zy in which

h = Z(éjk + gjk) dz) © d7’
j=1

where 4 is the Kronecker delta function and g;; are functions that vanish to order k at
20

Lemma 2.31. For a complex manifold M with Hermitian metric h the following are equiv-
alent

(1) R is Kdhler,
(2) 77 =0 for all j, and
(3) h has the same 1 jet as the Euclidean metric at each point of M.
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Proof. We begin by computing
2 o o
Sdw = (d¢ NG — ¢ Nd
“dw =) (A NG’ — ¢ NdF)
=3 (VAN AT~ NGNS+ NG — ¢ AT
(using Exercise 2.30)
= (WA A U NG NG T NG — AT )
-y (ﬂ NG — ¢ AT )
Noting that 77 has type (2,0) and similarly gbj,aj, and 7J have type (1,0),(0,1) and (0,2),
respectively, we see that dw = 0 if and only if all the 77 = 0, thus establishing the equivalence

of (1) and (2).

Now assume that (3) is true. So we have

n
Z ik + 9ik) dzj Ad7.
7j=1

[\D\NA

Since gjx(20) = dgjr(20) = 0, we see (dw)., = 0 for any 2. Thus (3) implies (1).
Now assume that (1) is true. Can always choose coordinates around a point zp so that

n

w= 3 Z <5jk + aji 24 o 7+ (higher order terms)) dz) A d77.
j=1

Exercise 2.32. Use our assumption to show that Q. = ki and aji = ag;-

Exercise 2.33. Make the coordinate change
1
kE _ k - I..m
28 =w —1—2 E brimw w
and compute w in these new coordinates.

Exercise 2.34. Show that if by;; = —ajj; then in these new coordinates h has the same 1
jet as the Euclidean metric at zp.

This completes the proof of the lemma. (|

Example 2.35. Any metric on a compact Riemann surface ¥ is Kéahler since dw is a 3-form
and hence zero.

Example 2.36. The standard metric on C" is Kahler:
n
h=>Y d ®ds
j=1
and
n .
w= Z da? A dy”
j=1
which is clearly closed.

Example 2.37. Let T?" = C"/A where A is a lattice in C". Since the standard metric on
C" is invariant under translations, it descends to a Kihler form on T2".
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Example 2.38. Consider complex projective space CP™. Recall CP" is the space of com-
plex planes in C"!, that is

CP" = (C"™ — {(0,0,...,0)})/(C - {0}).
Denote the quotient map
7 (C"* —{(0,0,...,0)}) — CP"

and let 2°,...,2" be coordiantes on C"*'. Let U be a coordinate chart for CP" so that
7 1(U) = U x (C — {0}). Choose a holomorphic function

z2:U— (C—-{0})cC.
Now set )
1 —
= —a0(1 2).
w = 500 (log ||

We claim that w is independent of z. Indeed given another holomorphic function 2’ there is
a non-zero holomorphic function f such that 2z’ = fz. Thus

1 = T = — _
500 log ||'[|* = 5-00(log||z[*f f +log f +log f)
s 27T
= 5-00(log ||2|[* + log f + log f)
=w+ Lag(logf + log f).
27

Moreover dlog f = 0 since log f is holomorphic and similarly 991log f = 0, so w is indepen-
dent of z. Convince yourself that this implies that we can define w on all of CP".
Since d = 9 + 0 we clearly have that dw = 0.

Exercise 2.39. Let U = 7({z° # 0}). On this set we have “homogeneous coordinates”
wl = z—é In these coordinates show

. n
I3 . .
w=— Y dw Ndw’.
2m Z
J=1
Thus w is a non-degenerate (1, 1)-form and is J invariant.

Thus we can use w to define a Hermitian metric on CP" that is Kahler. This metric is
called the Fubini-Study metric.

Exercise 2.40. Show that the product of Kahler manifolds is Kéahler.

Exercise 2.41. Show that if S C M is a complex submanifold of a Kéhler manifold, then
the induced metric on S is a Kéhler metric.

Example 2.42. Note the previous exercises and examples show that any compact complex
submanifold of C" or CP™ is a Kéhler manifold (ie any smooth projective variety is Kéahler).

We have the immediate connections between the Dolbeault cohomology of a Kéahler man-
ifold and its algebraic topology.

Theorem 2.43. For a closed Kdhler manifold M we have
(1) bop(M) > 0,
(2) Hg’O(M) injects into Hyp(M), and
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(3) for any complex submanifold (or variety) V-C M of complex dimension k we have
[V]# 0 in Hop(M).
Proof. For (1) we notice that dw” = 0 so it represents some element of H25(M). To see that

it is not the zero element note that if it were not then w* = d¢ and hence w" = dp Aw™ % =
cd(¢ A w™F), for some constant c. Thus Stokes’ theorem implies

Oz/aMcqb/\w"k:/Mcd(gzﬁ/\w"k):/Mw".

This contradicts the fact observed above that w™ is a non-zero multiple of the volume form
on M which of course has non-zero integral.

For item (2) suppose that [] € HZ°(M). So we know dn = 0. We want to show that
dn = 0 and that if n = d¢ then [§] = 0 in H?%(M). To this end let ¢',...,¢" be an
orthonormal frame for Q19(M), so we can write

n=>_me'

for some functions 7;. So we have n A7 = >_ ;67 A 51.

Exercise 2.44. Show that
wn—q — Cq Z ¢K A aK
|K|=n—q

where ¢, is a constant depending only on q.

Notice that
_ _ _ —I —K
NATAW T =cg Y i’ Ag AR A
[7]=¢

where K = 1,...,n — I in the sum. Thus

_ _ Cq 2
NATAW" 1= Cn(; Inr|*)dvoly
=q

So we see that a (g, 0)-form 7 is non-zero if and only if [}, n AT AwW"™7 # 0.

Now assuming 7 represents a class in H%°(M) we have dn = 0. So dn = (0 + 9)n = In.
Of course dn is in Q49TL0(M). Thus 9y = 0 if and only if

/ dn Adnp Aw™ 1 =0,
M
But d(nA(dn)Aw™ 9"1) = dnpAdnAw™ 9. Thus Stokes’ theorem implies [y dnAdnAw™ 11 =
0 and hence 0n = 0.
Now suppose that n = d¢. Then

/77/\77/\w"q:/ dpATAW" ) =0
M M

and we see that 7 = 0 and hence [n] = 0 in HPY(M).

For statement (3) we observe that if V' is a complex submanifold of M of complex di-
mension k then the Kéahler form w pulls back to a Kéhler form wy on V. Thus integrating
w® over V gives a non-zero number. This implies that V the fundamental class of V in M

cannot be null-homologous. ([l
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We are now ready to see a more subtle connection between the Dolbeault cohomology of
a Kahler manifold and its algebraic topology. The key is to relate the ordinary Laplacian to
the complex Laplacian. To that end we define the following operators. First two projections:

P4 QY (M) — QPI(M)
and
QM) — Q" (M)

where clearly 7" = > 74, From the operators 0,0 and d = 0 + 0 we have

ptq=r

and the various Laplacians

Ag=dd* +d'd, Ay=00 +9 dand Ay=099" + 0.
Finally using the (1,1)-form w coming from the Hermitian metric we have
L:QPUM) — QLY A oy » pAw

and its adjoint
A QPIY(M) — QP (.

Theorem 2.45. Let M a Kahler manifold. Then
(1) Aa d] = _47T(dc)*7

Ag =205 = 2A,.
Before proving this theorem notice we now have

Theorem 2.46 (Hodge decomposition theorem). For a closed compact Kahler manifold M
we have

Hyp(M) = @ HI(M)
ptg=r
and

P,q — q;p
HPY(M) = HEP(M).

Thus we see that the deRahm cohomology, which we know is related to the ordinary
cohomology, is actually the sum of the appropriate Dolbeault cohomology on a Kahler
manifold. So, in some sense, we can think of the Dolbeault cohomology of a Kéhler manifold
as a refinement of the ordinary cohomology (think about in what sense this is true and in
what sense it is not). Recall we know that h** > 0 and h™" = 1 = b*". Moreover, from the
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last theorem we know that h?? = h%P. We have the “Hodge diamond”:

L
h/;,k
hn,O hO,n
1,3:0 21 B2 1,0:3
h2,0 hi71 hO 2
hl,O hO,l
hO’O

This figure is symmetric about the horizontal middle line. Of course an immediate corollary
of the Hodge decomposition theorem is the following.

Theorem 2.47. The odd Betti numbers of a Kahler manifold are even, that is
dim Hj?‘l(]\/[) is even.
Proof of Theorem 2.46. Set
Hy = {n € Q"I(M)|Aqn = 0}

= {n € QPU(M)|Agn = 0} = HZ(M).

Now since
H" ={n e Q" (M)|Aqn =0} = Hyp(M)
and
[Ag, 7”9 =0
we clearly have
Hip(M) = ) HLA(M).
pta=r

Since Ay is a real operator for any n € QP4(M) we clearly have

Agn =0 ifand onlyif Am=0

and thus we have
Hg’q(M) = Hg’p(M).
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Now for the proof of the technical theorem.

Proof of Theorem 2.45. We begin by showing that equation (1) in the theorem implies the
other equations. Equation (1) says

Ad — dA = —4xn(d)* = —i(8" — 9").

The adjoint equation is
&L — Ld* = —i(d — 8) = —4nd".
That is the adjoint is just Equation (2). To verify Equation (3) notice that
dlwAn)=wAdn

and hence [d, L] =0 = [L,d] and [d*, A] = 0 = [A, d*]. Moreover
i
47
(04 0)(0 — 9) = —dd".

dd=—(0 —9)(0+9) = —(—00 + 90)

i
E .
i
T ar
Taking adjoints we also have (d°)*d* = —d*(d®)*. Thus we see
L(dd* + d*d) = dLd* + (d*L + 4wd)d
= dd"L + d(47d®) + d*dL + 4wd°d
= (dd* +d*d)L
so LA; = AyL and taking adjoints gives AgA = AA,, thus establishing Equation (3).
Let us work on Equation (5) now. To this end notice that
Ad — dA = —47(d°)* < MO+ ) — (O + D)A = —i(D" — d¥)
(decomposing by type)
& [N, 0] = —id" and [A, 8] = id*.
So we have _
90" +0°0 = —i(O(AD — OA) 4 (AD — DN)D)
= —i(0OAO — OAOD) = 0.
From which we can deduce
Ag=(040)(0"+8 )+ (0" +0)(+0)
= (00" +9%9) + (00 + 8 0) + (90" + BO* + "0+ 0 )
(from the last equation)
= (80" +9%0) + (09" +0°0) = Ay + A
In addition we have
ANy = 00" + 00
= —i(0(AD — ON) + (AD — OA)D)
= —i(OAD + ADO — DOA — OAD)
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and similarly
Az = i(OAD — OOA + AOO — OAOD)
= i(OAD + OOA — ADO — OAD)
= A 9
These last three computations yield equation (5) in the theorem. As it is clear that Ay

commutes with 779 we also see that Ay commutes using (5). Thus (4) also holds.
We are left to establish (1).

Exercise 2.48. Show that if (1) is true in C" with the standard Hermitian structure then
it is true for any Ké&hler manifold using the the fact that a Kahler metric has the same 1
jet as the standard Hermitian structure on C" by Lemma 2.31.

We now consider the standard Hermitian C". Let z!,..., 2" be the standard coordinates
on C". Define the wedge product maps

ep : QPI(CM) — PTLYCT) : ¢ d2F A o

and
e QPI(CM) — QPITHC™) b dZF A @

Let i), and 7 be their formal adjoints. We claim

. 0 ifke K
i o ex(d=’ A=) = {2dzJ NdZK if k¢ K.

To see this notice that the first link is obvious since dz¥ A dz* = 0. The second line follows
by observing that

(i 0 ep(dz” N dz™), dzt A dZM) = (d2% A dz? A dZE d2P A d2l A dzM)
= (d2*,dF)(dz? A dZE dzl A dzM)
= 2(dz” N dzE d2E A dZEM).

Similarly we have
ex 0 in(d=" N dZ") = {gdzJ A dzK i Z i i

From this we have ey oip +ip0ep, = 2 aﬁnd €k oidy +1i o€, = 2. If k # | then one may easily
check that e o4 +i;0e, =0 and e, o4; + ;0 € = 0.
Now notice that

and »
= —E 7 Oi
5 U O 1
If we define 0 > ¢yxdz’ Ndz5K =3 (8&7]5) dz’ A dz¥ and similarly for ), then we have
azzakoek :Zekoak
and
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Exercise 2.49. Show that the formal adjoint of J is —0; and the formal adjoint of Oy is
—0p. Also show that 0 and 0y and their adjoints commute with ¢, €;,4;, and ;.

From the exercise we see that

and B o
6* = — Z 8k Ok
Now
i - . - .
Aa = —5 Zlklkalel = Z 8lzkzkel
i - . - .
= —5 Z Opirirer + Z Olikire
k kAl
i Oireni 21 o 1 Diveri
=35 Z KRGk — Z Kkt 5 Z LK€Lk
k k Ik
/l: - . . -
= 5 Z alzkelzk —1 Z aklk
1k k
= —% Z 8leﬁkik — 25* = 0A — 15*
1k
Similarly o
AO = OA —i0".
Thus B
Ad = dA —i(@" — 9%).
Completing the proof of (1). O

We end this section with the Hard Lefschetz Theorem. We do not provide a proof,
but refer to Griffiths and Harris “Principles of Algebraic Geometry” for that as well as a
discussion of the theorem.

Theorem 2.50 (Hard Lefschetz Theorem). Let M be a closed Kdhler manifold. Then
(1) The map
LF iR (M) — Hi* (M),

coming from wedging with the k™ power of the Kéhler form w, is an isomorphism.

(2) If
P (M) = ker(LF : HIZH(M) — HIEF2(M)) = ker(A) N HZ" (M)
then
Hifp(M) =Y LH(P™ (M)
k
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3. FUNCTION SPACES
3.1. Sobolev spaces on 1. Let T" = R"/(27Z") with coordinates (z1,...,zy).

Let CH(T™,C™) = {f : T™ — CF|f is | times differentiable}
The L? inner product on C*°(T™, Cm) is

(f,9) @) / f(z x)dvoly,
and norm is
11l = (552
The sup norm on C? is
[flloc = sup {|f(x)[}-

zeT™

The Sovolev k-inner product on C> keeps track of the L? inner product of k derivatives.

If o =(a,...,a,) and
0 \M" o\
a _ (_lalf Y U
= () (o)

where |a] = ag + -+ + ap,. Now define
<fag>s = Z <DafaDag>
la|<s
and

1
1flls = (f5 )3
Notice that the inner product and norm would be the same with or without the factor of ¢
in the definition of D®. It is included to simplify various formulas below.

Lemma 3.1. All the above define inner products on C°.

Define Hs(T™) to be the completion of C*°(T™,C™) in the norm ||||s.
In general two norms ||| and |||’ on a vector space V are called equivalent if there are
constants C' and C’ such that

Clloll < [[vll" < C|Jol|
for all v e V.

Lemma 3.2. Egquivalent norms on a vector space V induce equivalent topologies on the
vector space. A sequence is Cauchy in one norm if and only if it is Cauchy in the other
norm. Thus the completions of V in both norms are isomorphic vector spaces.

Let
(f,9)s = (f.9)+ Y_(D*f, D)

la|=s
and

I = (F, L2

Lemma 3.3. The norms ||||s and |||| are equivalent norms.
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This will be easiest to prove after the next section.

Recall def of completion. Completions only depend on norm up to equivalence. bounded
linear maps on a dense subset extend to bounded maps on the completions (if image space
is complete). If normed linear space is a subset of another complete linear space then its
closure is the completion.

Maybe Def of Hy as subset of L? functions (so need to define weak derivative).

3.2. Alternate, Fourier, definition of Sobolev spaces on 7T". Given a function f €
C>(T™,C") and an n-tuple of integers £ = (&1,...,&,) € Z" we set

1
Je= Gy

and call this the ™ Fourier coefficient of f. The Fourier series of f is
D fee'™t
e

Say some stuff about [2(Z") the I2 norm and weighted [2-norms.

f(z)e = dvol,

Theorem 3.4. Facts about Fourier series:

(1) This series converges uniformly to f(x).
(2) (Parseval’s identity) The L?*-norm of f can be computed by

(5) A2 =) Ifel
e

(3) Something about L*(T™,C™) and [*(Z"™,C™).
Note
0 1 0 ;
—fle= —— — =€ qyol
(3xj 1e (2m)m /n (8xj f(x))e vote
(integrate by parts and notice no boundary terms)

chf)dvol

— f( )( i&;e” %) dvol,

i / n——
= ’ng fg.
Or better: 5
(—Z%jf)é =&jfe
In general we clearly have

(7) (D%f)e = € fe-

Using Parseval’s identity, Equation (5), we can compute the L?-norm of D®f :

(8) |D*f||* = ZézalfdQ
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We can use this observation to rewrite the Sobolev s-norm on C*°(T™,C™)
I£I3 =D ID"fIP =D & fef.
lo<s | <s,¢

Now consider the norm

©) 1A = (Zu i !f\z)sts\V)

3
where s is any number. Say something about this giving norm on 1?(Z", C™)...

Lemma 3.5. For any non-negative integer s the norms ||||s and ||| are equivalent. That
is there are constants c,c such that

cllflls < WAIS < EIF1s-

Thus we can think of this Fourier defined Sobolev norm as generalizing the derivative de-
fined norm. Below when s is a non-negative integer we will switch between these two norms
without warning, using the one most convenient at the time. Discuss Hs as completion of
image of C™ functions in 2.

Proof. We begin by claiming that for each ¢ there are constants ¢; and ¢} such that for all £
(10) Yy Er<KPr<d)y ¢
|a|=t || =t
We will prove this below, but given this inequality note that if we set
) 1
c= min —
{ (S)C;t }

t=0...s,t'=0...s o

then
2\s _ s 2 s 2(s—1) 2s
1+ 1Py =i+ D)+ (7 )P+ i)
1 1 1,
L I sl e s
9 Cs—1 Cs
11
) SI+ Y 44 Y gy > e
lal=1 |a)=5—1 la|=s
<)o
el <s

One can similarly define ¢’ so that

S e <dtiePy.

o] <s
Thus we have

c(1+1[€7) =) & <d(1+[¢f).
lof<s
And hence
L+ [PV fel® = D €1l < L+ 1EP)°Ife.

laf<s
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Now if we sum over £ notice that

A = (cZa n |§!2)5|f5!2) :
13

< < > 52a|f§2>2

§lal<s

(X HD“f!P)é

la|<s

= [Iflls-

(12)

Similarly
1
1£1ls < ()2 f1I5-
We are left to prove Equation (10). To this end consider the function

I
p(f) - Z|a|:t gga‘

We think of p as a function R™ — R. Notice that

p(X¢) = p(§)

for all non-zero A. Since Equation (10) is clear for £ = 0 we just prove it for & # 0. The
unit sphere in R"™ is compact and p is positive on it so it has a positive minimum ¢; and
maximum ¢;. Thus we see that

p(&) = p(&/I€]) < ¢}
EPF < )y e

|al=t

e Z 6204 S ’5‘275'

|af=t

S0
Similarly

O

3.3. Operators on Sobolev spaces. We begin by defining a differential operator from
C®(T™,C™) to C°(T™,C™). This is just an m x m’ matrix with entries for the form
Y o Wa(x)D®. The order of the operator is the highest order derivative taken in the matrix.

n 8 2
L= Z <(93?z>
7=1

is a second order operator from C*(T™,C) to itself.

Example 3.6. The operator

Example 3.7. The operator

T

(8%2)2 9sin xo Jes 9

is a second order operator from C(T™,C3) to C>(T™,C?).

_ N z1z2 O 92
L = cosx; Do e 3 589318:62
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Theorem 3.8. (1) For all s the derivative operator D : C*°(T™,C™) — C>(T",C™)

(13)

(18)

satisfies
1D flls < A1f ls1a
and thus extends to a bounded linear operator
D : Hyy o) (T") = Hy(T™).
For all s and all functions w(zx) € C°(T™,C) there are constants ¢ and ¢’ such that
the multiplicative operator M, : C°(T™,C™) — C>°(T",C™) defined by M, (f(x)) =
w(x)f(x) satisfies

[ Mo flls < cllwllooll f1Is + C/Hst—l

and in particular (since || flls—1 < || flls) there is a constant ¢’ such that | M, f||s <
'||f|ls and thus the operator extends to a bounded linear operator

M, : Hy(T™) — Hy(T™).

For all s and linear differential operator of order k, L : C°(T™,C™) — C>°(T",C™)
there is a constant ¢ such that

ILA s < ellfllsr

and thus extends to a bounded linear operator

L: Hyp(T™) — Hy(T™).

Proof. Notice that

g2 = g .. g2om < (14 [¢f?)le

since €291 - .. £20n will occur as one of the terms in (1+ [€]2)/* = (1 + & +... +&2)lol with
coefficient greater than one. Thus

IDflls = (1 +[€*)°¢>| fel?

:
<D+ [EP A+ ) fel?
:

= (1l

Thus establishing Inequality (13) for any s.
We first notice that for s = 0 we have

(19)

lwflls = llw Il < flellooll £1]-
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Using the derivative definition of the Sobolev norm we have
lwfll3 = > ID*w )P
lof<s
(by the triangle inequality and Equation 24)
<> lwDFIP+ Y 1D (wf) = wD f?
o <s lo|<s

(since the second term only has derivatives of f
of order less than s times functions with bounded

sup norm we can use Equation (19))

< Y wlZDfIP +e Y 1D

lal<s la|<s—1
= lwllZIIF11Z + el FII3-1
= (lwllocllflls + €1.flls-1)

Thus establishing Inequality (15) for non-negative integer values of s.
Add proof for all s.

Exercise 3.9. Prove Inequality (26).
Hint: this is essentially obvious from the other inequalities.

3.4. Properties of Sobolev spaces on T".
Theorem 3.10. (1) For any smooth function f and number s <t we have
1f1ls < 1 1le-
Thus the identity map on C°(T",C™) induces a bounded inclusion
H(T") ¢ H(T").

(2) (Sobolev inequality) If s > 5 +k then there is a constant ¢ such that for any smooth
function f we have

[fllex < el flls-
Thus the identity map on C°(T",C™) induces a bounded inclusion
Hy(T") c CH(T™,C™),
that is any element in Hy(T™) has k continuous derivatives.
(3) (Rellich’s lemma) if s < t then any sequence f; in H(T™) for which || fjll: < K

for some fized K, there is a subsequence that is Cauchy (and hence convergent) in
Hy(T™). That is the bounded linear inclusion map

H,(T™) C Hy(T™)
18 a compact operator.

Corollary 3.11.
NsH(T™) = C°(T",C™).

This corollary is clear given that the smooth functions are in all Sobolev spaces.
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Proof of Theorem 3.10. The first statement in the theorem is obvious.
For the Sobolev inequality we assume 5§ < s and note that since for a smooth function
the Fourier series converges absolutely we have

F@)P =D fee™ P < | fel?
13 13
=D A+ ED) @+ P fel
13

— I 2\—s 2\s 2
Jm 37 (1 [+ €
I€I<N
(by Cauchy Schwarz inequality)

< i 2\—s 2\s 2
< dim [ S+l ) [ 3 as ey
[§]<N [§I<N
(since, if s > ﬁ, the two terms on the next line converge,
the second since f is in Hy and the second is checked below,
we have)
< 1 2\ —s . 2\s 2
< Jim STl ) [ gm ST lePyI
[§]<N [€I<N
(setting ¢ =Y (1 +[¢[*)7%))
3
= c[|f]s-
Thus
[fllco < cl[fls

and we have an embedding of C(T™) into Hy(T™), if s > %. Now if s > 2 + k then for
laf <k we have D*f € H,_|o(T") and s — |a| > s — k > 5 and thus Inequality (13) gives

1D Flico < 1D flls=ja) < [1f[ls-

We can hence conclude that there is a ¢ such that

[fllex < el flls-

We are left to check our claim that . (1+[¢ )~ is uniformly convergent if s > 2. To this
end set

S] = {é.: (‘glv"':fn) :ma‘x‘gl’ SJ}

Since for any & € §; there is one § equal to +j and the other n — 1 terms are between —j
and j we see

|S5] < 2n(25 +1)" 1.
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In addition & € S; implies |£|? > j2. Thus we have
1 2
55 = —
! gezs: (1 + |§!2>
(2 + 1n-t (2 + 1)n-t
(1 +j2)3 - j2s
2n(35)"""

j2s

S

The last sequence converges if 1 +2s —n > 1.
Now for Rellich’s lemma. Let {f?} be a sequence in H(T™) such that

1f)s < C.

S CjnfleS'

IN

So we have

For each fixed & we let

ul = (L+[¢)3 1
and notice that |u§]2 = uE ‘é (1+ \§|2)t]f‘g]2 < |IfIIZ < IfII? < C2. Thus for a fixed & we
have a bounded sequence {ué} in C"™ which of course must have a convergent subsequence.

Ordering the {’s we can use the Cantor diagonalization argument to find a subsequence of
the f7’s, which we still denote f7, so that the corresponding u%’s converge for each fixed &.

We now claim that {f7} is a Cauchy sequence in H;(T™). To see this notice that
1F7 = FEE = 30 L+ IRy L+ 6P 1A - £
lEl<N
+ Y AP T+ P I - P
=N

We call the first term on the left I and the second term /7. Since s — ¢t < 0 we have the
following bound on [

I1< Y (L+ NP1+ €Y L - fEP

1€1=N

= (L+ N2 Y (L P~ fEP
¢

= (L N2 —
(by the triangle inequality and Equation 24)

< e(L+ N2 TSN+ M) < (14 N2> heC?,
Thus we can choose N sufficiently large so that 11 < § for any pre assigned e. To bound 1
notice that

(L+[¢P) <1
and thus 4
T< > (4P — fEP

lgl<N
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Now since for each fixed £ the sequence {ué =1+ |2)% fg} is Cauchy, and since there are
only finitely many £ with || < n we see there is some N’ such that for all j, k > N’ we have

€
where [ is the number of £ with || < n. We now have
, , i
L< Y (UHIERYIF = 18P = Y g — g < 51

lgl<N lgl<N

€

5"

Combining this with the above estimate shows that given e there is an N’ such that for
j,k > N’ we have

1F7 = f*lls < e
and thus {f7} is Cauchy in the s-norm. O

Here are several useful inequalities.

Lemma 3.12. (1) (Peter-Paul inequality) Let t' <t <" then for any € > 0 there is a
constant ¢ (depending on €,t,t' and t") such that
(20) [flle < €llfller 4 el fller,

for all f € Hu(T™).
(2) For any function w : T™ — C and functions f,g € Hs(T™) we have

(21) (wf,g)s = (f;wg)| < el fllsllglls—1 + I flls-1llglls)-
(3) There is a constant ¢ (which happens to be 1) such that for any numbers a,b we
have
(22) jabl < e(|al® + [b).
Moreover, given an € there is a constant ¢ such that
(23) |ab| < e|al?® + c|b|?.
(4) There is a constant ¢ such that
N N N
(24) D lag)* <> lai* < O lagl)’
j=1 j=1 Jj=1

Proof. To prove the Peter-Paul inequality notice that if y # 0 then y or i > 1. Thus since
t" —t and t — t' are greater than 0 we have

1 t—t/
1< ()t + <> :
( y

If we set y = eﬁ(l + |€[?) then
1

L<e(l+ )" "+ —
(L~ [¢)
and thus .
" -t Y
A+ 6P <e(T+ €)Y +erv (14 €)'

Multiplying both sides by |f¢|> and summing over ¢ gives the desired inequality with ¢ =

t'—¢
e€t—t',
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For Inequality (21) we first notice that if s = 0 then we clearly have

[ wtog=1-@a) o
.

(wf,g) — (f,wg) = G

Now for s = 1 we have

[(wf g = (f.wghl| = (s7lr)” /T
il (o 9+ 2 [, (Do) Dis
~Jera- X [ oir i)

(2m)
(the second and third terms cancel)
1 _
= (Z[/ WDjf'ng—/T Djf-wDjg
j n n

CLE
+/T (Djw)f~ng+/T Djf'(Djw)gm
(the first and second terms cancel)

(Qi)n(\/Tn(Djw)f-ng\ﬂ/Tn Djf-(Djw)gD

(the Cauchy-Schwarz inequality gives)

< Z (!\(Djw)fll 1Djgll + D5 £l II(Dﬁ)gH)

<

(Inequality (15) gives)

<3 (el f1IDsgl + <151 1ol
J

=cllfI Y 1Dsgll +lgl D ID; £l
j j

< cllfllllglly + <A elgh < <ALf gl + £ llglD-
This establishes the inequality for s = 1.

Exercise 3.13. Prove the inequality for general s.

(In Section ?? we will discuss a “trick” for proving this inequality, but hopefully it is
clear that one should expect the inequality to be true from the above computation.)
Inequality 24 follows from Inequality (22) which in turn clearly follows form Inequal-
ity (23). For This inequality notice that for a real number ¢ # 0 we have
Lone a2 Lo
0 < (clal — 5 ) = Plal? — Jab| + 7510
SO

1
|ab| < ?laf® + @\512-

Thus the inequality follows if we set ¢ = y/e. O
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3.5. Sobolev spaces on a compact manifold M. We now define the Sobolev spaces
of sections of a bundle over a general manifold. To this end let p : £ — M be a vector
bundle of an n-manifold with fiber dimension m. Let I'(E) denote the smooth sections of
E. There are several ways to define Sobolev spaces, the most elegant way involves using
connections on a bundle, but the “simplest” way is as follows. Let {V;} be a finite cover
of M by coordinate charts homeomorphic to subsets U; of T™ such that U; is an n-ball
embedded in T" Let
¢j:Uj =V

be the inverse of the coordinate chart map and

T gﬁ;E ’VJ — R™
be the projection to R™ of U; x R™ after a fixed identification

Now choose a partition of unity {p;} subordinate to {V;}. Suppose o is a section of E.
Notice that p;o is a section with support in V; and 7; o (qﬁ}f(pia)) is a function on U; with
support on the interior of U;. Thus we can extend it by 0 to a function 7" — R"™ and
measure
[l 0 (65 (pio)lls
using any of the definitions of the Sobolev s-norm for functions on 7. We now define
1

2

(25) lolls = Z I o (65 (pio)) 12

First note that this defines a norm on I'( £'). The only non-tivial thing to check is the triangle
inequality.

Example 3.14. Prove the triangle inequality.

We now define the Sobolev space of sections of E to be the completion of I'(E)
using the norm | - ||s, and denote it Hs(FE). For most purposes we can use the above
definition and not worry about the fact that the norm depends on lots of data, specifically
{U;,Vj, ¢j,pj,mj}. But it is nice to know that this dependence is not important in the
following sense.

Lemma 3.15. For a compact manifold M the Sobolev s-norm on E is independent of the
choices made up to equivalence. That is if || -||s is defined using {U;, Vj, ¢;, pj, m;} and || - |
is defined using {U}, V], ¢, pi, w5} then there are constants c,c’ such that

cllolls < llolls < cllolls

and hence the topologies induced on I'(E) are the same as are the completions with respect
to these norms.

Proof. We first note that if u: M — C is a smooth function then
Im5 0 (65 (pina)lls = llmj o (1o ¢5)(¢5(pjo)))lls
(since m; is linear on each fiber)
= [[(w o ¢5)(m; 0 (65(pjo)))lls
(by Theorem 3.8)
< cllmj o (¢5(pio))lls-
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We also notice that if ¢ : U — U’ is a diffeomorphism between two open subsets of 7" and
f:U" — C™ then we have

le*flz = > 1D°¢" fII”
|al<s
(by the chain rule and product rule)
= Z (derivatives of the map ¢)||¢* D f||
|al<s

(by Theorem 3.8, where K is the largest constants associ-
ated to the sup norms of the derivatives of ¢)

<K Y [¢" D2

laf<s

(by the independence of integrals on coordinates)

=K Y |DfI?

lof<s
_ 2
= K1l

We can similarly prove that there is a K’ such that ||f||s < K'||¢* f||s (just apply the above
inequality to (¢~1)* f).

Example 3.16. If F is a bundle over a contractible set U C T"™ and w and 7’ are projections
of E|y to R™ using two different trivializations of E|y then there are constants ¢ and ¢
such that

clmoals < fn'oolls < flmoals.

Hint: This is more or less just like the last estimate proven above.

Now we have

o]l = ZII?U (@7 (pjo))lls
=Z||wjo S oo
<Z||7Tj p]’pj o))lls

(by the exercise above)

<CZIIW o (65 (Pjpio))lls

(by the second estimate proved above)

<CZ|| @0 5 ) () o (65 (o)) s

(Exerc1se. check that pull back commutes with a fixed 77})
=c Z”W'O (P]'PJ o))lls

(by the first estimate proved above)
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<Y N o (5 (hpols = ¢ (o ])?

5!

J

We note that in all the constants above we were constantly taking the largest constant
involved in the all the different norms in the sum. It is because we have a finite number
of terms in the sums that this is a finite fixed constant. Of course the other inequality is
similar. ]

We now generalize all the results for Sobolev spaces to an arbitrary closed manifold.

Theorem 3.17. For a closed manifold M and bundles E and F over M we have the
following.

(1) For any smooth section o € I'(E) and number s <t we have
lolls < ol
Thus the identity map on I'(E) induces a bounded inclusion
Hi(E) C Hs(E).

(2) For all s and linear differential operator of order k, L : T'(E) — I'(F) there is a
constant ¢ such that

(26) [Lolls < cllofls+x
and thus extends to a bounded linear operator
L:Hs(E) — Hy(F).

(3) (Sobolev inequality) If s > 5 +k then there is a constant ¢ such that for any smooth
section o € T'(E) we have

loflex < ello]ls.
Thus the identity map on T'(E) induces a bounded inclusion
Hy(E) ¢ CH(EB),

that is any element in Hy(E) has k continuous derivatives.

(4) (Rellich’s lemma) if s < t then any sequence oj in Hy(E) for which |oj|ls < K
for some fized K, there is a subsequence that is Cauchy (and hence convergent) in
H(FE). That is the bounded linear inclusion map

H(F) C H4(E)

18 a compact operator.
(5) (Peter-Paul inequality) Let t' < t < t" then for any € > 0 there is a constant ¢
(depending on €,t,t" and t") such that

(27) lolle < ellofler + cllefle,
for all o € Hy (E).

Proof. For the first statement just fix the data {Uj, V}, ¢;, pj, 7;} used to define the Sobolev
norm and note

o2 =" llmj o (65(pjo)IZ < e D llmj o (65 (pio)lI} = cllor]l
j j

where the inequality comes form the inequality proved on T".



52 JOHN B. ETNYRE

For the second statement we have
ILo))? = I pjoll?

J
<> IL(pio)l2
i

(Exercise: applying ;o gf); to the s-norm can be estimated

since the terms integrated will only involved fixed deriva-
tives of ¢7¢; and p;)

< lmjodi(Lipio))3
J
(there is an operator L;- of the same order as L such that
(mj 0 @)L = Lj(m; 0 ¢;))
=Y _|IL(mj 0 ¢5(pso))I2
J

(by Theorem 3.8)

<Y im0 @5 (pio) 2k = ¢lloll
i

For the Sobolev inequality notice that we just need a point wise bound on ¢ (and its
derivatives, by the way, what is the C* norm on sections of E!).

Exercise 3.18. Given an inner product, and hence norm |- |g, on E we can estimate
lpj(z)o(z)|g by the Euclidean norm on R", |7 o ¢7(p;(x)o(z))].

In turn, if s > %, this can be estimated, using the Sobolev inequality in 7", by ||7; o
¢7(pjo)|ls which is clearly less than [|o|s. Thus we have

lo(z)|e = Izpj(w)a(:v)l < Z Ip(x)o(z)] < cllofs

and hence [|o[|co < c||o||s. Similarly we can get |[ocr < cl|o|s, if s > 2 + F.

Rellich’s lemma easily follows since there are a finite number of charts V; in the cover of
M. Indeed, suppose we have a sequence o, and a K such that ||o,||; < K for all n. Then
on T" we certainly have

s 0 63(pso)le < K
for all n (and j). Thus Rellich’s lemma on 7™ implies there is a subsequence of the o,,’s
such that ; o ¢7(pjoy) is Cauchy in the Sovolev s-norm for each j. Thus for each € > 0
there is an N such that for n,m > N we have

low = omllz = ll7j 0 ¢5(pj(on — o))l
i

= im0 85 (pjon) — w50 85 (pjom))|12 < e.
i

Thus the sequence o, is Cauchy in the Sobolev s-norm.

Exercise 3.19. Generalize the Peter-Paul inequality from 7™ to M.
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4. ELLIPTIC OPERATORS

4.1. Elliptic Operators on 7". Recall a differential operator L of order k on C*° (7", C™)
is an operator of the form

L=P,(D)+...+ Py(D)
where P;(D) is an m x m matrix with entries 3, _; aa(2)D
function on T™.
Example 4.1. For n =2 =m and k = 1 we have L = P;(D) + Py(D) where

20 0 o)

@ where a,(z) is a smooth

P %,
xT
cosyz, €5,

P (D) = [

and

22 sin 5
Py(D) = [63:3 +ny ex] .

Example 4.2. For m =1 and k = 2 we have L' = P,(D) where

n 8 2
Py(D) = Z (W> :
j=1
The symbol of a differential operatorL of order k, denoted o(L), is the function
R"™ — M, (C>(T",C))
that takes an element £ € R" and returns the matrix Py(§) with entries from C*°(7T™,R).

Example 4.3. In the first example above for £ = (¢!, £2) we have

261 4 g2 2

Example 4.4. In the second example above we have

a(L)(&) = Pa(&) = > (&)

=1

We call L elliptic at z € T if for all £ € R" with £ # 0 the matrix o(L)(§)(x)
is invertible. We say L is elliptic if it is elliptic at each point x € T™. There are two
fundamental theorems about elliptic operators.

Theorem 4.5 (Géarding inequality on 7). If L is an elliptic operator on C*°(T™,C™) of
order k then for any integer s we can extend L to Hs i (T™) such that there is a contact ¢
for which

[ fllsn < eCILSls 4+ 11f]ls)
for all f € Heyr (TT).

Notice that we already know that

ILflls < el flls+x
and of course

[flls < WSl

so we trivially have
LAl + 1 flls < S llse
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In other words the Géarding inequality basically says that the norm || - ||s4+x is equivalent to
the norm ||L - ||s+ || - ||s- That is, controlling Lf is as good as controlling k derivatives of f.

Theorem 4.6 (Elliptic regularity on T™). If L is an elliptic operator on C*°(T",C™) of
order k then given u € Ho(T") and v € H(T™) such that

Lu=wv

we have
u e Ht+k-(Tn)

Recall, that the bigger ¢ for which u sits in H;(T™) the smoother u is. So this theorem
says that elliptic operators can improve the regularity, or smoothness, of solutoins. Thus if
v is smooth then any solution to Lu = v is smooth (since u € NsHs(T™) = C°(T™,C™)).

Proof of Garding’s inequality on T™. There are three steps in the proof. We first will easily
show that if L is a contact coefficient operator of order £ (and the P;(D) = 0 for j < k) then
the inequality is true. Then we show that for functions supported near a point (thus the
coefficients of Pi(D) only vary a little on the support of the function) then the inequality
is true and finally we prove the general version of the inequality.

Step 1: Inequality when L = Py(D) and the entries of of Pr(D) are of the form E\alzj aq D™
where the aq are constants. We are in the situation wher Py (&) € M,,(C) and by ellipticity
this m x m matrix is invertible. Since the unit sphere in R is compact we see that there
is some constant ¢ > 0 such that

|Pr(&)ul* > ¢

for all |£| = 1 = |u|. Thus for any £ # 0 # u we have

3 > u
n(&)e
&1/ [ul
and since the entries in P, are homogeneous of order k in the £ variables we have

2
>c

1 u|2

Epk(f)m

> c.

Thus
|PL(&)ul? > cle**[ul?
(note this also holds for £ = 0 or w = 0). Thus for all f € C°(T"™,C™) we have
ILAIZ =D (A + 1P IPfe? = e ) (1 + [P €| fel.
3 3
So
(LAl + A1) = NLFIZ + A3

> > (L+[EP) (clelP + DI fel?
¢

(taking ¢’ smaller than c or 1)

>N (L [EP) (€7 + 1)l fel?
¢
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Notice that since if € # 0 then |£|?2 > 1 we have
k
1 2\k _ 21
et =3 ()
kY g2k 2k
< <1l+k
<3 (3 < 1w

(taking k' greater than 1 or k)
<K+ ()

Combining the last two estimates we have some constant ¢’ such that

(Al U172 2 0 I el Dl

B
>y (L P € + D)F | fel®
¢
=Y (P fel? = I 12
¢

Thus using Inequality (24) we have

UL ls + F 1) > 1S llsk-

Step 2: Inequality for a general L but with “locally” supported functions. Specifically we
show that for each point € T™ there is an open set U such that for functions f with
support in U the inequality is true. Set P{(£) = Py(€)(p) and Lo the order k differential
operator with constant coefficients PY(D). From Step 1 we know there is a constant ¢ such
that

[fllstr < e[Loflls + WIf1ls) < cUILFls + [1(Lo = L) flls + 1 £1]s)-

Of course we need to control the second term on the right. To that end there is a neighbor-
hood U’ of z such that the sup norm of the first s derivatives of the coefficients of Lo — L
in U’ are less than or equal to . Now define the operator L’ to be Ly — L on a subset U of
U’, such that U C U’, to be 0 on the complement of U’ and any interpolating operator in
between. Thus if f has support in U then immediately from the inequality above we have

£ lls+x < cCILslls + 1L flls + 11£]ls)

(by the standard estimate for k'™ order operators, Inequal-
ity 26)

< c(ILflls + N f lsn + 1 F1ls)

1
(by the Peter-Paul Inequality with e =

cc'2

)

1
< ILflls + ol st + € Mf Nor—r +11£ls)
(by the Peter-Paul Inequality with e = ——)
cc'’'4
1 1
< cILflls + ol st + oM llsr A+ N lls - 1LF1ls)

3 m
= 7 s+ eILflls + (€ + DIIFIls)
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3
< I lsr + RCALF s + 11 £1s)-

Moving the first term to the left hand side we and multiplying by 4 we have the desired
inequality
£+ < KL + 1£1s)-

Step 3: Inequality in the general case. We will need a technical lemma.

Lemma 4.7. For smooth functions f : T™ — C" and u : T™ — C and a differential operator
of order k there is a constant ¢ such that

(28) [(Lu? f, Lf)s = (Luf, Luf)s| < el fllsrll Fllsrr—1-
Proof. First we note that
(Lu?f, Lf)s = (Luf, Luf)s| < [(uLuf, Lf)s — (Luf,ulf)|
+ [(Luf, (uL — Lu) f)s| + [((Lu — uL)uf, Lf)s|.

Now the second term on the left is
[(Luf, (uL — Lu) f)s| < cl|[Luf|s|(uL — Lu) f||s

(since uL — Lu is a differential operator of order
< k — 1 applying Inequality (26) twice)

< cllwfllstrll flls+r—1 < N Flstrll fllsr-1-

We can similarly bound the last term and the first term is appropriately bounded by In-
equality (21) O

Let p; be a partition of unity subordinate to the finite cover U; of T™, such that Step 2
applies to any function supported in U;. Now wet u; = ,/p;.

A2 = (s Psvre = O w3 f vk
(by Inequality (21))
< (uifoug Fssn + el fllserll fllspr
=D i flzsk + el fllsrnllf i
(by Step 2)
<D U F113 + g £I12) + el fllssll fllsrn—1

(by Inequality (28) on the first term and Inequality (26)
on the second)

<Y (LuGf, LE)s + IFIE A+ I Dol Fllsnn

(by Inequality (23) on the last term with € =

2CIII )

1
< NLAIE+ I3+ §||f||§+k + Ol N3 k-1
(by the Peter-Paul Inequality)
3
2 2
< LLIS + IS + A5k + CFIS

Thus we have
1112 < C"UILFIZ+ 1F112)
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and hence

1£llsr < CTAILE s + 11 £1ls)-
O

We need some preliminary notions and results to prove elliptic regularity on 7. In
particular we need to understand when the derivative of a function in is a Sobolev space.
To do this we work with difference quotients. Given h € R"™ we define

T), : C®(T", C™) — C®(T",C™)
by
Tu(f)(@) = f(z + h).
Notice that
f(z+h)e @ da

~ @20 Jpm

_ —i(z—h)-€
) o (x)e dz

) 1 )
_ ezlwc f(x)e—zxf dr

Thus if we define

_ flet+h) - f@) _ Tl (@) - f(2)
Id Id ’

We can use these formulas to define 7}, and (-)® on Hg(T™). (That is thinking of the Sobolev
space as a subset of the sequences [2(Z",C") the operators are defined by the appropriate
multiplication of the terms in the sequence.)

then

Lemma 4.8. We have the following
(1) If f € H(T™) then T(f) € H/(T™) and

ITh (Ol = [1£le-
(2) If f € Hiy1(T™) then f* € H)(T™) and there is a constant ¢ such that
1™l < ell flliga-
(3) if f € H(T™) and there is some ¢ such that for all h sufficiently small
1" < e,

then f € Hy11(T™).
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Proof. The first statement is obvious. For the second statement

th-& _ 1
17 = S+ P () g
3
(since € = cosh-¢+isinh- £)

. 2 s 2
_ ) o\ <Coszh-§—1> <smzh'§>

| fel?

= S0Py (Cothebhg g eomh SR LY g
- X+ ef) (22 Ia
— S ey (W) el
3
<X+ ef) (o) e - S+l (e 1

< DA+ EP A+ EDIfel* = 1f 1.
¢

For the last statement consider the truncated Fourier series
fn=>Y_ fee™t.
[EI<N

If we can show that there is a ¢ such that

[fnllivr <c
for all N then clearly
[flli1 <c
and we are done. Now let eq,...,e, be the standard orthonormal basis for R" and set

h = te; for any j. Then for a fixed £ we have
2

ethé 112 |eih _q )
— | =— =& ast — 0
i = el
since the Taylor expansion of the second term is i&; + %(ifj) t+.... So for any finite number
of £’s and a given € > 0 there is a § > 0 such that ¢ < 6,
- | &P <e
’h‘ ’gj ’ > €

By hypothesis there is a 8’ > 0 such that for all ¢t < §’,

S (1 [e)! (hfhl) 2

o> <> @+ g
[EI<N £

2
|f§|2 < k)Q.

S
|l
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For appropriately chosen € and ¢ < min{d, ¢’} we have

7@+ IEP) &P fel* < K

[§I<N

and hence
DA+ P IERIfl® < KPn.
lEI<N

Notice this bound is independent of N (of course for different N we might need to choose
different 0). We now have

vl =D L+ R fel?

[EI<N

= Y AH DL +HD TS NA+ P EPIfel?
13

[§|<N

< @+ P I fel? + nk?
£

< || flle + nk?.

And as mentioned above this bounds || f|/;+1 so we have shown f € H;1(T™). O

Elliptic Regularity for T™. The theorem follows if we can show that u € Hg(T™) and Lu =
v € Hy_141(T™) then u € Hg 1(T™). To this end supose h € R™ and h # 0. Let L" be

the operator obtained from L by replacing all the coefficients a(x) with w and let
Tr(L) be the operator obtained by replacing the coefficients of L with a(xz + h). Notice

L") = (L)) (2) = L <“<$ + %— u(x))
(Th(L)(w))(x + h) = (Lu)(x))
1]
L{u(z + h)) — (TpL)(u(x + h))
1]
= —L"(Th(w)).

Thus using Garding’s inequality we have

™[5 < el L |s—t + [[a"{|s-2)
< (L) llsmt + 1L (Tnw)lls—t + lulls—141)
(since L" is a differential operator of order 1)
L) o+ Tl + lloi1)
(1Lulls—r41 + llulls + [lulls)

M (olls—141 + [lulls)-

IN NN

Thus ||u”||s is bounded independent of h so u € Hyy1(T™). O
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4.2. Elliptic Operators a general closed manifold. Suppose E and F' are bundles over
a manifold M. An operator L : I'(E) — I'(F) is a differential operator of order k if
in local coordinates (homeomorphic to a subset of T") it can be expressed as a differential
operator on an open subset of T™. We similarly call the operator elliptic if in local coordi-
nate about each point x € M it is elliptic at . This definition is somewhat cumbersome to
work with in practice so we will reformulate it but first notice.

Exercise 4.9. Using the local expression for the Laplacian on functions given in Section 1.2
show that it is elliptic.

Suppose L : C®(T™,C™) — C°(T™,C™ is a differential operator of order k on T". We

claim that L is elliptic at z if and only if for all
L(¢*u) #0
for all u € C°°(T™,C™) with u(x) # 0 and ¢ : T™ — R with ¢(z) = 0 and d¢, # 0. To see
this notice that
L(¢"u)(z) = Py(D)(¢"u)(x)
+ (terms with < k derivatives of ¢* at x so they = 0)
= Py(cdoy)u(z)

for some nonzero c¢. Thus by our choice of ¢ and u the operator L is elliptic if and only if the
last term is nonzero for all suitable choices of ¢ and u. This criterion easily transverse to
manifolds and bundles. In particular we see that L : I'(E) — I'(F) is a differential operator
of order k then it is elliptic at = if and only if for all & € I'(E) with a(z) #0and ¢ : M — R
with ¢(x) = 0 and d¢, # 0 we have

L(¢"a)() # 0.

Exercise 4.10. Show that the above construction yields, for each x, a well defined linear
map

T:M — Hom(E,, Fy)
thus we get a bundle map

T*M — Hom(E, F).

The bundle map constructed in the exercise is called the symbol of L and is denoted
o(L). In terms of this symbol we can say L is elliptic if and only if o(L)¢ is a isomorphism
E, — F, (where & is a covector above x) for all £ # 0. This is the definition of ellipticity
that is easiest to deal with.

Theorem 4.11. The Laplacian
A QP(M) — QP(M)
1s an elliptic operator or order 2.

Proof. Clearly A is of order two. For ellipticity consider any z € M and any non-zero
elements v € (A,M), and § € Ty M. Let a € QP(M) and ¢ : M — R be such that

and
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Now
D)™ s d x d(¢?a)

)
D™ s d % (20dp A a + p2da)

D)™ s d(2¢ % (do A o) + ¢ * da)

)™ (2dp A +(dp A @) + 2pd * (do A @)
+ 2¢dg A xda + ¢*d * dev).

dd(¢ar)

(=
(=
(=
(=

Evaluating this at x we get

§d(¢Pa) = (1) (2% £ A (+(E Av))).
Similarly
dd(¢?a) = (=1)"PTDFL2E A #(€ A xv))
and thus
A(gPa) = (1) 2 E A ((E A D)) + (=1)"PEITH2E A (€ A wv)).
To see A is elliptic we need to see that this is nonzero. To this end consider the map
We s AL(M) = Ay (M)
given by
We(v) = £ Av.
We claim that the adjoint of W is
We(v) = (=1)"% % & A sv.
Thus we can write
A(¢*ar) = (—1)" T 2(WEWe + W Wi .

Below we will see that this is nonzero, but first let us check our claim about the adjoint of
We. Indeed

(We(v),w) = (€ Av,w)
(using the formula for inner products on A (M), see Equa-
tion (1))

= #((€ Av) Asw) = (v A (=1)F(E A xw))
= x(v A s (=1)POTR ()R (€ A sw))
*(0 A [(= 1) x (€A w)))

= (0, (=D x (£ A xw))

and thus the adjoint is as claimed.
We now observe a simple linear algebra fact. Suppose U,V and W are vector spaces with
inner products and

vaAvEw
exact at V. Let A* and B* be the adjoints of A and B, respectively. We claim that
B*B+ AA*:V -V
is an isomorphism. Indeed suppose v # 0. If (B*B 4+ AA*)v = 0 then
0= ((B*B+ AA™)v,v) = (Bv, Bv) + (A*v, A*v).
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Thus A*v = 0 and Bv = 0. Since Bv = 0 we have some u such that Au = v, but
(v,v) = (Au, Au) = (u, A*Au) = (u, A*v) =0

which of course implies that © = 0 and hence v = Au = 0, a contradiction. Thus B*B+ AA*
is an isomorphism as claimed.
Thus we will have completed our proof once we check that

Nooa (M) =5 AL(M) = Ay (M)
is exact at Aj (M) for any £ # 0. Clearly we have
WeWev =EANEAv = 0.
So we are left to show that if Wev = 0 then v = Weu for some v € Ay_;(M). For this if

€ # 0 we choose a basis for T*M, e!, ... e" where e! = ¢. Now
v = Zai17..,,ikei1 VAN ei’“,
where we only consider i; < ip < ... < i}. Since €' A ... A e+ with i; < iy < ... < Tht1
is a basis for A*, (M) we see that if any of the terms in v does not have e! in it then
k+1 y
ENv=e! Av#0. There for if we set
u = Zaihm’ikei? VAN ei’“,
then clearly We(u) = v. O

4.3. Properties of Elliptic Operators a general closed manifold.

Theorem 4.12. If M is a closed manifold, E and F are a vector bundles over M with the
same fiber dimension and L is an elliptic operator from I'(E) to I'(F') of order k then
(1) (Gérding inequality.) There is a constant ¢ for which
lells+r < e(l[Lals + [lels)

for all « € Hyy(,(E).
(2) (Elliptic regularity.) Given u € Hy(E) and v € Hy(F) such that

Lu=wv

we have
u e Ht+k(E)



