
CLASS NOTES ON HODGE THEORY

JOHN B. ETNYRE

Abstract. These are notes from an informal class that cover the Hodge theory of real
and complex forms. The primary references used for the notes are Warner “Foundations
of Differentiable Manifolds and Lie Groups”, Wells “Differential Analysis on Complex
Manifolds”, and Griffiths and Harris “Principles of Algebraic Geometry”.

The notes start with a fairly high level overview in the first two sections and then ends
with some of the analytic details in the last sections. Towards the end the notes get a little
sketching. Hopefully more details will appear in an updated version of these notes. Also,
reader beware, these notes have not been proof read so there are almost certainly lots of
typos and “mathos”. Hopefully these will also be addressed in a future update.
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1. Laplacians and the Hodge Theorem

In this section we prove the Hodge Theorem assuming some a couple analytic theorems
which will be established in subsequent sections. To keep the discussion self-contained we
briefly recall some facts from manifold theory and Riemannian geometry.
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1.1. Riemannian metrics and the Hodge star operator. Below we recall a little linear
algebra which is then promoted to manifolds.

1.1.1. Linear theory. Recall an inner product in a vector space V is a map

〈·, ·〉 : V × V → R
(or to C if V a complex vector space) such that

(1) 〈v, w〉 = 〈w, v〉 (or for complex vector spaces 〈v, w〉 = 〈w, v〉)
(2) 〈av, w〉 = a〈v, w〉 and 〈v + v′, w〉 = 〈v, w〉+ 〈v′, w〉
(3) 〈v, v〉 ≥ 0 and
(4) 〈v, v〉 = 0 if and only if v = 0.

Example 1.1. On V = Rn we have the Euclidean inner product〈x
1

...
xn

 ,
y

1

...
yn

〉 =
n∑
j=1

xjyj

If e1, . . . , en is a basis for V then set

gij = 〈ei, ej〉.
Note that gij = gji. Now if v = viei and w = wiei then we have

〈v, w〉 = viwjgij =

v
1

...
vn


t [
gij
] w

1

...
wn

 .
So given a basis an inner product is equivalent to a certain type of symmetric matrix (note
just any symmetric matrix will not do!).

Given an inner product on V there is a natural inner product on the dual space V ∗.
Specifically, notice that the non-degeneracy of the inner product says that the map

C : V → V ∗ : v 7→ 〈v, ·〉
is an isomorphism. Thus for any two v∗, w∗ ∈ V ∗ we can define the induced inner product
to be

〈v∗, w∗〉 = 〈C−1(v∗), C−1(w∗)〉.
It is obvious that this is an inner product on V ∗.

Exercise 1.2. We can always find an orthonormal basis for V. (Gram-Schmidt process)

Exercise 1.3. If e1, . . . , en is an orthonormal basis for V then let e1, . . . , en be the dual
basis for V ∗. Show in the induced inner product satisfies

〈ei, ej〉 = δij .

That is we could define the inner product on the dual space to be δij in a basis dual to an
orthonormal basis of V.

Exercise 1.4. If e1, . . . , en is any basis for V and the inner product in this basis is given
by
[
gij
]

then show the matrix defining the induced metric on V ∗ in the dual basis is[
gij
]−1

and we will denote this by
[
gij
]
.
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We can now define an induced inner product on ∧kV ∗ by

〈v∗1 ∧ . . . ∧ v∗k, w∗1 ∧ . . . ∧ w∗k〉 = det
[
〈v∗i , w∗j 〉

]
.

Exercise 1.5. This is an inner product on ∧kV ∗.

Exercise 1.6. If e1, . . . , en is an orthonormal basis for V then show the induced inner
product on ∧kV ∗ is determined by saying

{v∗i1 ∧ . . . ∧ v
∗
ik
| for i1 < . . . < ik}

is an orthonormal basis for ∧kV ∗.

Exercise 1.7. If e1, . . . , en is any basis for V then show the inner product on ∧nV ∗ ∼= R is
given by

R× R→ R : (a, b) 7→ abdet
[
gij
]
.

Let e1, . . . , en be an oriented orthonormal basis for V (so e1, . . . , en is a dual basis for
V ∗) and define the Hodge star operator

∗ : ∧kV ∗ → ∧n−kV ∗

on the basis ei1 ∧ . . . ∧ eik by

ei1 ∧ . . . ∧ eik 7→ ej1 ∧ . . . ∧ ejn−k

where ei1 , . . . , eik , ej1 , . . . , ejn−k is an oriented basis for V. We note the following

(1) Clearly

∗1 = e1 ∧ . . . ∧ en,
so

∧0V ∗ → ∧nV ∗ : r 7→ r e1 ∧ . . . ∧ en.
(Recall ∧0V ∗ ∼= ∧nV ∗ ∼= R.)

(2) If v1, . . . , vn is any basis for V then

∗1 =
√

det[〈vi, vj〉] v1 ∧ . . . ∧ vn.

This is clear since
√

det[〈vi, vj〉] v1 ∧ . . . ∧ vn = e1 ∧ . . . ∧ en.
(3) Similarly

∗(e1 ∧ . . . ∧ en) = 1.

(4) Also

∗ei = (−1)i−1e1 ∧ . . . ∧ êi ∧ . . . ∧ en,

where êi means to leave that term out.

Exercise 1.8. The map

∗∗ : ∧pV ∗ → ∧pV ∗

is

∗∗ = (−1)p(n−p).

Exercise 1.9. For any v, w ∈ ∧kV ∗ we have

(1) 〈v, w〉 = ∗(v ∧ ∗w) = ∗(w ∧ ∗v).
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1.1.2. Manifold theory. Let M be an oriented manifold. A Riemannian metric on M is
a smooth function

g : TM × TM → R
such that for all x ∈M

gx : TxM × TxM → R
is an inner product. We can think of g ∈ (TM ⊗ TM)∗. In a coordinate chart U ⊂M,V ⊂
Rn, φ : V → U, we have coordinate x1, . . . , xn and φ∗g has the form[

gij(x)
]

in the basis ∂
∂x1

, . . . , ∂
∂xn . Given the metric g on TM we also get an induced metric on T ∗M.

In the basis dx1, . . . , dxn this metric takes the form[
gij(x)

]
=
[
gij(x)

]−1
.

We can then induce metrics on all the bundles ∧n(T ∗M) and get a Hodge star operators

∗ : ∧kT ∗M → ∧n−kT ∗M
and

∗ : Ωk(M)→ Ωn−k(M)

by applying the first map pointwise (∗α)(x) = ∗(α(x)). Here Ωk(M) is the set of sections
of ∧kT ∗M .

On a Riemannian manifold the volume form is defined to be

dvol = ∗1
where 1 is the constant function on M. In local coordinates we have

dvol =
√

det
[
gij(x)

]
dx1 ∧ . . . ∧ dxn.

Example 1.10. Let f : R2 → R be a smooth function and set

M = Γf = {(x, y, f(x, y))}.
For v, w ∈ T(x,y,z)M define a Riemannian metric by

g(v, w) = v · w (where · is the dot product).

Local coordinates are given by V = R2, U = M and

φ : V → U : (x, y)→ (x, y, f(x, y)).

In these coordinates

dφ(x,y) =

 1 0
0 1

fx(x, y) fy(x, y)

 .
So

g11 = g(dφ
∂

∂x
, dφ

∂

∂x
) =

 1
0
fx

 ·
 1

0
fx

 = 1 + f2x .

and similarly
g22 = 1 + f2y , g12 = g21 = fxfy.

Therefor in these coordinates the metric looks like[
1 + f2x fxfy
fxfy 1 + f2y

]
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and the volume form is

dvolM =
√

1 + f2x + f2y dx ∧ dy.
One should compare this to the area form on a graph from vector calculus.

Example 1.11. Let S2 be the unit 2-sphere in R3. The inverse of stereographic projection
from the north pole N ∈ S2 to the xy-plane give the coordinate chart

φ : R2 → S2 ⊂ R3 : (x, y) 7→ 1

x2 + y2 + 1
(2x, 2y, x2 + y2 − 1).

We have

dφ(x,y) =
1

(x2 + y2 + 1)2

−2x2 + 2y2 + 2 −4xy
−4xy 2x2 − 2y2 + 2

4x 4y

 .
In the basis e1 = ∂

∂x , e2 = ∂
∂y we have

g =
1

(x2 + y2 + 1)4

[
4((x2 + y2) + 1)2 0

0 4((x2 + y2) + 1)2

]
=

4

(x2 + y2 + 1)2

[
1 0
0 1

]
.

Thus the volume form is

dvolS2 =
4

(x2 + y2 + 1)2
dx ∧ dy.

Integrating this over R2 = S2 −N, we see the volume of the unit sphere is 4π.

Exercise 1.12. Work out the volume form on the unit Sn in Rn+1. Also work out the
volume form on the flat T 2, that is R2 module the integer lattice Z2.

Exercise 1.13. You can also embed T 2 into R3 as the surface obtained by revolving the unit
sphere centered at (2, 0, 0) in the xz-plane about the z-axis. Write down a prameterization
of this torus, thus giving a coordinate chart. Work out the volume form. What is the
volume of this torus?

1.2. Harmonic forms and the Hodge theorem. Let M be an oriented Riemannian
manifold with metric g. We have the following inner product on Ωp(M)

〈α, β〉 =

∫
M
〈α(x), β(x)〉dvolM

=

∫
M

(∗(α(x) ∧ ∗β(x))dvolM

=

∫
M
α(x) ∧ ∗β(x)

=

∫
M
α ∧ ∗β.

This is clearly symmetric, bilinear and non-negative. If α 6= 0 then there is some open set
U where 〈α(x), α(x)〉 > 0 and thus

〈α, α〉 =

∫
M
〈α(x), α(x)〉dvolM ≥

∫
U
〈α(x), α(x)〉dvolM > 0

and thus we have shown 〈α, β〉 is an inner product. We call this the L2 inner product on
forms.
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We now define the operator

δ : Ωp(M)→ Ωp−1(M)

as the “formal adjoint” of
d : Ωp−1(M)→ Ωp(M)

with respect to the above inner product. That is for β ∈ Ωp(M) we define δβ to be the
unique (p− 1)-form that satisfies

〈δβ, α〉 = 〈β, dα〉
for all α ∈ Ωp−1(M).

Lemma 1.14. On a closed manifold M the operator δ : Ωp(M)→ Ωp−1(M) is

δβ = (−1)n(p+1)+1 ∗ d ∗ β.
Proof. If α ∈ Ωp−1(M) and β ∈ Ωp(M) then

d(α ∧ ∗β) = dα ∧ ∗β + (−1)p−1α ∧ d ∗β

= dα ∧ ∗β + (−1)p−1(−1)(p−1)(n−p+1)α ∧ ∗ ∗ d ∗β

= dα ∧ ∗β − (−1)n(p+1)+1α ∧ ∗ ∗ d ∗β.
Thus by Stokes’ theorem we have

0 =

∫
∂M

α ∧ ∗β =

∫
M
d(α ∧ ∗β)

=

∫
M
dα ∧ ∗β − (−1)n(p+1)+1α ∧ ∗ ∗ d ∗β

= 〈dα, β〉 − 〈α, (−1)n(p+1)+1 ∗ d ∗β〉.
�

Example 1.15. Here we notice how d and δ are related to classical differential operators
from vector calculus. Through this example we will always assume that we are in dimension
3. Denote the space of vector fields on a Riemannian manifold (M, g) by V(M). Recall that
we can use the metric g to define an isomorphism between vector fields and 1-forms

φg :M→ Ω1(M) : v 7→ ιvg,

that is φg(v) is the 1-form that evaluates to g(v, w) on the vector field w. Moreover the
Hodge star operator provides isomorphisms

∗ : Ω2(M)→ Ω1(M)

and
∗ : Ω3(M)→ Ω0(M).

Recall Ω0(M) is the space of functions on M which we also denote by F(M). Now consider
the following diagram

F(M)
D1- V(M)

D2- V(M)
D3- F(M)

Ω0(M)

id

?
d
- Ω1(M)

φg

?
d
- Ω2(M)

∗ ◦ φg
?

d
- Ω3(M).

id

?
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Define the operators D1, D2 and D3 via d and the vertical isomorphisms in the diagram. One
may easily check that in the flat metric on R3 we have D1(f) is the gradient of the function
f, D2(v) is the curl of the vector field v and D3(v) is the divergence of the vector field v.
In particular δ is conjugate to the divergence operator on vector fields and d is conjugate
to the curl operator on vector fields and the gradient operator on functions. Notice that
we can use the above diagram to generalize the classical notions of divergence, gradient
and curl to a general Riemannian 3-manifold (of course the divergence and gradient can be
generalized to any Riemannian manifold of any dimension).

We define the Laplace-Beltrami operator (or simply the Laplacian) ∆ : Ωp(M) →
Ωp(M) to be

∆ = δd+ dδ.

Exercise 1.16. Show the Laplacian and the Hodge star operator commute:

∗∆ = ∆∗ .

Exercise 1.17. Show that the Laplacian is self-adjoint. That is show that

〈∆α, β〉 = 〈α,∆β〉.

We call a p-form α harmonic if

∆α = 0.

Lemma 1.18. For any form α then

∆α = 0⇔ dα = 0 and δα = 0.

Proof. The implication ⇐ is clear. For the other implication assume ∆α = 0. Thus

0 = 〈∆α, α〉 = 〈dδα, α〉+ 〈δdα, α〉 = 〈δα, δα〉+ 〈dα, dα〉

and hence 〈δα, δα〉 = 0 and 〈dα, dα〉 = 0. And so δα = 0 = dα. �

Example 1.19. The Laplacian

∆ : Ω0(M)→ Ω0(M)

is simply

∆ = δd.

(Recall Ω0(M) is the set of functions on M.) Thus

∆f = 0⇔ df = 0.

So the harmonic 0-forms (ie functions) on a closed manifold are exactly the constant func-
tions.

Example 1.20. Let x1, . . . , xn be coordinates on Rn and consider the standard Euclidean
(flat) metric gij = δij . Given a function f : Rn → R in Ω0(Rn) we have

df =
∂f

∂xj
dxj .
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We now compute δ : Ω1(Rn)→ Ω0(Rn).

δ(hj(x)dxj) = (−1)n(1+1)+1 ∗ d ∗ (hj(x)dxj)

= −(−1)j−1 ∗ d(hj(x) dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn)

= −(−1)j−1 ∗ ∂hj
∂xj

(x) dxj ∧ dx1 ∧ . . . ∧ d̂xj ∧ . . . ∧ dxn

= − ∗ ∂hj
∂xj

(x) dx1 ∧ . . . ∧ dxn

= −∂hj
∂xj

(x).

Thus

∆f = δdf = δ(
n∑
j=1

∂f

∂xj
dxj) = −

n∑
j=1

(
∂

∂xj

)2

f.

Exercise 1.21. If we have a metric on Rn given by gij compute

∆f = − 1√
det
[
gij
] ∂

∂xj

(√
det
[
gij
]
gij

∂f

∂xi

)

= gij
∂2f

∂xi∂xj
+
∑

cj(x)
∂f

∂xj
.

Here the cj(x)’s are just smooth functions. You can work out a formula for them in terms
of the metric, but the point of the second line is that we have identified the highest order
term explicitly. This is the term that governs the behavior of ∆ as a differential operator
as we will see below.

Theorem 1.22 (Hodge Theorem). Let M be a closed oriented Riemannian n-manifold and
set

Hp = ker(∆ : Ωp(M)→ Ωp(M)).

Then we have

(1) The space of harmonic forms Hp is finite dimensional.
(2) The smooth p-forms decompose as

Ωp(M) = Hp ⊕∆(Ωp(M))

= Hp ⊕ dδ(Ωp(M))⊕ δd(Ωp(M))

= H0 ⊕ d(Ωp−1(M))⊕ δ(Ωp+1(M)).

We will prove this theorem in the next section (modulo a great deal of analytic work
which is done later), but for now let us explore the consequences of this theorem. But
first let us consider the content of the theorem. First the space of solutions to a PDE can
easily be an infinitely dimensional space (for example L = ∂

∂x on R2 has kernel all smooth
functions in y). So the finiteness is quite non-trivial. Secondly with a little thought the
second statement would be (relatively) obvious (see the proof below) if we were dealing
with L2-forms (that is the coefficients that define the forms are just measurable functions
and not smooth). So the real content hear is that the kernel of ∆ extended to the L2-forms
consists of smooth forms and hence is Hp and (Hp)⊥ = ∆(Ωp(M)).

From here on in this section M will be a closed oriented n-manifold.
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Corollary 1.23. The equation
∆ω = α

has a solution ω ∈ Ωp(M) if and only if α is L2-orthogonal to the space of harmonic forms.
Moreover, if ω is a solution to the equation the set of solutions is ω +Hp.

With a little work one can use this result to prove part (2) of the Hodge Theorem and in
fact that is more or less what we do. But we observe the corollary follows from (2) as well.
Thus the corollary and (2) are equivalent statements.

Proof. Since part (2) of the Hodge Theorem says (Hp)⊥ = ∆(Ωp(M)) the condition for
solvability is clear and since ∆ω = α is a linear equation it is also clear that ω + ker ∆ is
the set of solutions if ω is a solution. �

Corollary 1.24. Each deRham cohomology class has a unique harmonic representative.
That is the natural inclusion

Hp → Hp
dR(M)

is an isomorphism.

Proof. We first establish the following diagram:

Ωp−1 ∼= Hp−1 ⊕ dΩp−2 ⊕ δΩp

Ωp

d

?
∼= Hp ⊕ dΩp−1

�

d
∼=

⊕ δΩp+1

Ωp+1

d

?
∼= Hp+1 ⊕ dΩp

�

d
∼=

⊕ δΩp+2

To see this notice that if α ∈ δΩp(M) then dα = 0 implies that α is harmonic (since clearly
δα = 0) and thus α = 0 since it is orthogonal to the harmonic forms. So we see that
ker d = Hp ⊕ dΩp−1(M) and d : δΩp(M)→ dΩp−1(M) is an isomorphism as claimed.

Example 1.25. Show that δ : dΩp−1(M) → δΩp(M) is an isomorphism as well. (Note: d
and δ are not inverses of one another!)

Now

Hp
dR(M) =

ker d

im d
=
Hp ⊕ dΩp−1(M)

dΩp−1(M)
∼= Hp.

�

An immediate corollary of the Hodge theorem and the last corollary is the following.

Corollary 1.26. The deRham cohomology of a closed manifold is finite dimensional.

We have an obvious pairing

Hp
dR(M)×Hn−p

dR (M)→ R
given by

([α], [β]) 7→
∫
M
α ∧ β.
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We denote this pairing by 〈[α], [β]〉. We begin by noticing that his pairing is well-defined.
Indeed, if we take another representative of [α] it can be written α+dγ for some (p−1)-form
γ. Thus ∫

M
(α+ dγ) ∧ β =

∫
M
α ∧ β +

∫
M

(dγ) ∧ β

(since dβ = 0)

=

∫
M
α ∧ β +

∫
M
d(γ ∧ β)

=

∫
M
α ∧ β +

∫
∂M

γ ∧ β

=

∫
M
α ∧ β.

You can similarly check that the pairing does not depend on [β]. The pairing is clearly
bilinear.

Theorem 1.27 (Poincaré Duality). The pairing is non-singular. That is it induces an
isomorphism

Hn−p
dR (M) ∼= (Hp

dR(M))∗

and in particular

dimHn−p
dR (M) = dimHp

dR(M)

and Hn
dR(M) = R.

Proof. Given a class [α] ∈ Hp
dR(M) such that [α] 6= 0 we can choose α ∈ [α] so that ∆α = 0.

Recall that ∗∆ = ∆∗ and so ∗α is also harmonic and represents a class [∗α] ∈ Hn−p
dR (M).

We also can easily see

〈[α], [∗α]〉 =

∫
M
α ∧ ∗α =

∫
M
|α|2dvol = ‖α‖2 6= 0.

Thus the pairing is non-singular. �

We now look at some applications to Riemannian geometry. We first observe the following
lemma.

Lemma 1.28. Let π : M̃ →M be a finite covering space of a closed manifold M. Then

bj(M) ≤ bj(M̃)

for all j, where bj stands for the jth betti number (ie dimension of the jth deRham cohomol-
ogy).

Proof. Pick a metric g on M and let g̃ = π∗g be the pull-back metric on M̃. Notice that

(1) π∗d = dπ∗,
(2) π∗dvolg = dvolg̃, and
(3) π∗ ◦ ∗ = ∗ ◦ π∗.

Thus

π∗ ◦ δ = δ ◦ π∗

and

π∗ ◦∆ = ∆ ◦ π∗.
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Also notice that if the fold of the cover is p and Ui is an open cover of M by coordinate
charts that are evenly covered by π and φi is a partition of unit subordinate to the cover
Ui then

p

∫
M
ω = p

∫
Ui

∑
φiω = p

∑∫
Ui

φiω

=
∑∫

π−1(Ui)
(φi ◦ π)π∗ω =

∫
M̃
π∗ω,

where the first and last inequalities are by the definition of the integral over manifolds.
Now if ω1, . . . , ωn is an orthonormal basis for Hj(M) then π∗ω1, . . . , π

∗ωn are harmonic

forms on M̃. Moreover, if j 6= k then

〈π∗ωj , π∗ωk〉 = p〈ωj , ωk〉 = 0.

Thus all the π∗ωj ’s are orthogonal which implies

dimHj(M̃) ≥ dimHj(M).

�

Corollary 1.29. If M is a closed n-manifold that admits a metric of 1/4-pinched positive
sectional curvature (that is sectional curvatures larger than 1

4K and less than or equal to K
for some fixed constant K), then bj(M) = 0 for all j = 1, . . . , n− 1.

Proof. By the Sphere Theorem the universal cover of M is Sn and so the result follows from
the lemma. �

Corollary 1.30. If M is a closed n-manifold that admits a metric with zero sectional
curvature (ie M is flat) then

bj(M) ≤
(
n

j

)
.

(Notice that
(
n
j

)
= dimH i(Tn).)

Proof. One of Bieberbach’s theorems imply that M is finitely covered by Tn. �

Another application of the Hodge theorem to Riemannian geometry involves Ricci cur-
vature. One has the famous Bochner formula for 1-forms

∆α = ∇∗∇α+Ric(α)

where ∇ is the covariant derivative associated to a metric and ∇∗ is its formal adjoint. (The
term ∇∗∇ is called the covariant Laplacian.) We say Ric > 0 if 〈Ric(α), α〉 > 0 for all α.
(That is Ric is a positive operator.)

Corollary 1.31. If M is a closed manifold with a metric having Ric > 0 then H1(M) = 0.
If instead Ric ≥ 0 then dimH1(M) ≤ n.

Proof. Take α ∈ H1(M) (that is α is a harmonic 1-form). Then

0 = 〈∆α, α〉 = 〈∇∗∇α, α〉+ 〈Ric(α), α〉
= 〈∇α,∇α〉+ 〈Ric(α), α〉
= ‖∇α‖2 + 〈Ric(α), α〉 ≥ 0.

Thus there is no such α is Ric > 0 and if Ric = 0 then ∇α = 0 which means α is covariantly
constant. Thus it is determined by its value at one point, proving the last inequality. �
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1.3. Proof of the Hodge theorem (modulo some analytic details). To prove the
Hodge theorem we will need the notion of a weak solution to the equation

(2) ∆ω = α

where α ∈ Ωp(M) is given and we are looking for ω. Suppose we have such a solution ω
then notice that

〈α, φ〉 = 〈∆ω, φ〉 = 〈ω,∆φ〉
for all φ ∈ Ωp(M) since ∆ is formally self-adjoint. Thus if we define a linear function

l : Ωp(M)→ R

by l(β) = 〈ω, β〉 then from above we see that

(3) l(∆φ) = 〈α, φ〉

for all φ ∈ Ωp(M). We also notice that using the Cauchy-Schwarz inequality

|l(β)| = |〈ω, β〉| ≤ ‖ω‖‖β‖.

So if K = ‖ω‖ we have

(4) |l(β)| ≤ K‖β‖,

that is l is a bounded linear operator.
Thus we see a solution ω to Equation (2) gives a linear functional l ∈ (Ωp(M))∗ satisfying

Equations (3) and (4). Such an l is called a weak solution to Equation (2). We have seen
that solutions give weak solutions, but for the equation we are concerned with we have a
converse.

Theorem A. Given α ∈ Ωp(M) and a weak solution l ∈ (Ωp(M))∗ to ∆ω = α there is an
ω ∈ Ωp(M) such that l(β) = 〈ω, β〉 for all β ∈ Ωp(M). In particular ∆ω = α. �

Notice that the last part of the theorem clearly follows from the first part. In particular

〈α, β〉 = l(∆β) = 〈ω,∆β〉 = 〈∆ω, β〉

for all β. And hence

〈∆ω − α, β〉 = 0

for all β. But his implies

∆ω − α = 0.

We also have

Theorem B. Let {αn} be a sequence of elements in Ωp(M) for which there is some constant
c such that

‖αn‖ ≤ c
and

‖∆αn‖ ≤ c
then there is a subsequence of {αn} that is Cauchy in the L2 norm on Ωp(M). �

It will take quite a bit of analytic machinery to prove these theorems. We will state the
main results that come out of this machinery in the next section and derive Theorems A
and B from them. The machinery will be established in the following sections. But for now
we show how to prove the Hodge theorem once we know Theorems A and B.
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Proof of Hodge Theorem 1.22. We begin with statement (1), that is we show that the di-
mension of Hp is finite. Suppose the dimension was not finite. Then there would be a
sequence {αn} of orthonormal forms in Hp. Thus if c > 1 then

‖αn‖ = 1 < c

and

‖∆αn‖ = 0 < c.

Thus we can use Theorem B to find a subsequence of the αn’s (which we still denote αn)
that is Cauchy. But now consider

‖αn − αm‖2 = 〈αn − αm, αn − αm〉 = ‖αn‖2 + ‖αm‖2 = 2

(the second to last equality comes from orthogonality of the αn’s). This clearly contradicts
the sequence being Cauchy and hence Hp could not be infinite dimensional.

Now for part (2) of the Hodge Theorem. That is we need to show

Ωp(M) = Hp ⊕∆(Ωp(M))

= Hp ⊕ dδ(Ωp(M))⊕ δd(Ωp(M))

= H0 ⊕ d(Ωp−1(M))⊕ δ(Ωp+1(M)).

Notice the second equality is obvious and the third equality was established in the proof of
Corollary 1.24 above. Thus we are left to see

Ωp(M) = Hp ⊕∆(Ωp(M))

To this end let ω1, . . . , ωN be an orthonormal basis for Hp. For α ∈ Ωp(M) set

h(α) = α−
N∑
j=1

〈α, ωj〉ωj .

Clearly

〈h(α), ωj〉 = 0

for all j. So h(α) ∈ (Hp)⊥ and we see that

Ωp(M) = Hp ⊕ (Hp)⊥.

Therefore to establish the theorem we are left to show that

(Hp)⊥ = ∆Ωp(M).

One inclusion is easy. That is suppose γ ∈ ∆Ωp(M) so there is some γ̃ such that γ = ∆γ̃.
Thus for all ω ∈ Hp we have

〈γ, ω〉 = 〈∆γ̃, ω〉 = 〈γ̃,∆ω〉 = 〈γ̃, 0〉 = 0.

So γ ∈ (Hp)⊥.
To complete the proof we need to show that for any α ∈ (Hp)⊥ there is some ω such that

∆ω = α. To this end we will construct a weak solution and then apply Theorem A. Recall
a weak solution is among other things in element l ∈ (Ωp(M))∗. To construct this element
we will follow a common strategy. That is we will define the linear functional on a subset of
Ωp(M) where the definition is “obvious” and then use the Hahn-Banach theorem to extend
it to all of Ωp(M). Thus we begin by recalling the well known theorem.
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Hahn-Banach Theorem. Suppose X is a linear space and ρ : X → R is a function
satisfying

ρ(x+ y) ≤ ρ(x) + ρ(y)

and

ρ(λx) = λ ρ(x).

Now given a subspace Y of X and a linear function f : Y → R satisfying

f(x) ≤ ρ(x)

for all x ∈ Y, then there is a linear function F : X → R such that

F (x) = f(x)

for all x ∈ Y and

F (x) ≤ ρ(x)

for all x ∈ X. �

We will not prove this theorem here, but it can be found in any functional analysis book.
We begin to construct our weak solution for a given α ∈ (Hp)⊥ by defining a linear map

l : ∆Ωp(M) → R as follows: given β ∈ ∆Ωp(M) there is a γ ∈ Ωp(M) such that ∆γ = β,
define

l(β) = 〈α, γ〉.
Notice that l is well-defined since if β = ∆γ′ too then ∆(γ − γ′) = 0 so (γ − γ′) ∈ Hp and
thus

〈α, γ − γ′〉 = 0

since α ∈ (Hp)⊥. So we have

〈α, γ〉 = 〈α, γ′〉
and l is well-defined. The function l is clearly linear. To apply the Hahn-Banach theorem
we need the following lemma.

Lemma 1.32. There is a constant c such that for all β ∈ (Hp)⊥

‖β‖ ≤ c‖∆β‖.

Assuming the lemma is true for the moment notice that if β = ∆γ then

|l(β)| = |l(∆γ)| = |l(∆(h(γ)))|

(recall h(γ) = (γ −
∑
〈γ, ωj〉ωj) ∈ (Hp)⊥)

= |〈α, h(γ)〉|
(by Cauchy-Schwarz inequality)

≤ ‖α‖‖h(γ)‖
(by the last lemma)

≤ c‖α‖‖∆h(γ)‖
(since the ωj are harmonic)

= c‖α‖‖∆γ‖ = c‖α‖‖β‖.

Thus if we set K = c‖α‖ we see that

|l(β)| ≤ K‖β‖
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and if we set ρ : Ωp(M)→ R : x 7→ K‖x‖ then we can apply the Hahn-Banach theorem to
l and ρ to extend l to all of Ωp(M) such that it satisfies

|l(β)| ≤ K‖β‖

for all β ∈ Ωp(M) and

l(∆γ) = 〈α, γ〉
by construction. So l is a weak solution to ∆ω = α and hence Theorem A says there is some
ω ∈ Ωp(M) such that l(β) = 〈ω, β〉 for all β and hence α ∈ ∆Ωp(M). Thus establishing
(Hp)⊥ = ∆Ωp(M) and completing the proof of the theorem. �

We are now left to prove Lemma 1.32.

Proof of Lemma 1.32. Suppose the bound in the lemma does not exist, then we can fine a
sequence β′n ∈ (Hp)⊥ such that

‖β′n‖ > n‖∆β′n‖
for all n. Now set βn = 1

‖β′n‖
β′n, so we have

‖βn‖ = 1

and since ∆βn = 1
‖β′n‖

∆β′n we have that

‖∆βn‖ =
1

‖β′n‖
‖∆β′n‖ ≤

1

n
.

We can now apply Theorem B to {βn} to get a Cauchy subsequence.

Exercise 1.33. Suppose this Cauchy sequence converged to β. Show that ‖β‖ = 1, β ∈
(Hp)⊥ and β ∈ Hp. This is of course a contradiction and hence our initial assumption the
the lemma was not true is false. We have not finished the proof since Ωp(M) is not a
complete space and hence there is no guarantee that a Cauchy sequence converges.

To get around the lack of completeness of Ωp(M) we will use Theorem A again. In
particular, notice that for all γ ∈ Ωp(M) we have

|〈βn, γ〉 − 〈βm, γ〉| = |〈βn − βm, γ〉| ≤ ‖βn − βm‖‖γ‖.

Thus since the βn are Cauchy we see {〈βn, γ〉} is a Cauchy sequence in R which is complete.
Thus {〈βn, γ〉} converges to some number which we denote

l(γ) = lim
n→∞

〈βn, γ〉.

It is clear that l is linear and moreover

|l(γ)| = | lim
n→∞

〈βn, γ〉| ≤ lim
n→∞

‖βn‖‖γ‖ = ‖γ‖.

So l is a bounded linear functional on Ωp(M). Notice that

l(∆γ) = lim
n→∞

〈βn,∆γ〉 = lim
n→∞

〈∆βn, γ〉 ≤ lim
n→∞

‖∆βn‖‖γ‖ = 0

and so l is a weak solution to ∆ω = 0. Thus Theorem A implies there is an ω such that
l(β) = 〈ω, β〉 for all β. This ω should be the limit of the βn’s. We show it behaves as if it
is. In particular for all ω′ ∈ Hp notice that

〈ω, ω′〉 = l(ω′) = lim
n→∞

〈βn, ω′〉 = 0
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since the β′n’s are in (Hp)⊥. Thus ω ∈ (Hp)⊥. But of course ∆ω = 0 by construction so
ω ∈ Hp too. Thus ω = 0. We will have our contradiction, and hence establish the lemma,
once we see that ‖ω‖ = 1. To see this notice that

‖ω‖2 = 〈ω, ω〉 = l(ω)

= lim
n→∞

〈βn, ω〉 = lim
n→∞

l(βn)

= lim
n→∞

( lim
m→∞

〈βn, βm〉)

= lim
n→∞

( lim
m→∞

〈βn − βm + βm, βm〉)

= lim
n→∞

( lim
m→∞

〈βn − βm, βm〉+ 〈βm, βm〉)

= lim
n→∞

( lim
m→∞

〈βn − βm, βm〉+ 1)

= 1 + lim
n→∞

( lim
m→∞

〈βn − βm, βm〉).

Now notice that since {βn} is Cauchy we have for any ε > 0 an N such that n,m > N
implies

|〈βn − βm, βm〉| ≤ ‖βn − βm‖‖βm‖ = ‖βn − βm‖1 ≤ ε.
Thus | limn→∞(limm→∞〈βn − βm, βm〉)| = 0 and hence ‖ω‖ = 1. �

1.4. Formal analytic details. In this section we show how to prove Theorems A and B
given certain analytic theorems.

In the Section 3 we will show how to associate Hilbert spaces Hs(Ω
p(M)) with inner

products 〈·, ·〉s and associated norms ‖ · ‖s. These will be called Sobolev spaces of forms and
they essentially are forms whose first s derivatives are L2-bounded. The precise definition
is not relevant here. For now we just need the following properties.

Theorem 1.34. We have the following:

(1) Ωp(M) is a dense subset of Hs(Ω
p(M)) for all s. (So all these new spaces are just

completions of smooth p-forms in some norm.)
(2) The inner product 〈·, ·〉0 is the L2-inner product on Ωp(M). (So all these Sobolev

norms are generalizations of the L2-norm.)
(3) If α ∈ Hs(Ω

p(M)) and

〈α, β〉s = 0

for all β ∈ Ωp(M) then α = 0 in Hs(Ω
p(M)).

(4) For any smooth form α ∈ Ωp(M) and number s ≤ t we have

‖α‖s ≤ ‖α‖t.
Thus the identity map on Ωp(M) induces a bounded inclusion

Ht(Ω
p(M)) ⊂ Hs(Ω

p(M)).

(5) (Sobolev inequality) If s > n
2 +k then there is a constant c such that for any smooth

form α ∈ Ωp(M) we have

‖α‖Ck ≤ c‖α‖s.
Thus the identity map on Ωp(M) induces a bounded inclusion

Hs(Ω
p(M)) ⊂ Ck(Ωp(M)),

that is any element in Hs(Ω
p(M)) has k continuous derivatives.
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(6) (Rellich’s lemma) if s < t then any sequence {αj} in Ht(Ω
p(M)) for which ‖αj‖t ≤

K for some fixed K, there is a subsequence that is Cauchy (and hence convergent)
in Hs(Ω

p(M)). That is the bounded linear inclusion map

Ht(Ω
p(M)) ⊂ Hs(Ω

p(M))

is a compact operator.
(7) The map

H0(Ω
p(M))→ (H0(Ω

p(M)))∗

given by

α 7→ 〈α, ·〉0
is an isomorphism.

Parts (1) and (2) of this theorem follow from the definition of the Sobolev spaces in
Section 3.5, while part (3) is an easy consequence of (1). Parts (4)–(6) are a restatement
of parts of Theorem 3.17 and part (7) is just the fact that an inner product induces an
isomorphism form a space to its dual space. We have the immediate corollary.

Corollary 1.35. We have

∩sHs(Ω
p(M)) = Ωp(M).

It turns out that the Laplacian is what is called an elliptic operator and while we do
not define this term until Section 4 we note the following results.

Theorem 1.36. The Laplacian on Ωp(M) extends to a bounded linear operator

∆ : Hs(Ω
p(M))→ Hs−2(Ω

p(M)).

Theorem 1.37 (Elliptic estimate for the Laplacian). There is some constant c such that
for all α ∈ Hs+2(Ω

p(M)) we have

‖α‖s+2 ≤ c(‖∆α‖s + ‖α‖s).

Theorem 1.38 (Elliptic regularity for the Laplacian). If ω ∈ H0(Ω
p(M)) and α ∈ Ht(Ω

p(M))
for some t > 0 such that

∆ω = α

then ω ∈ Ht+2(Ω
p(M)).

The first theorem is the statement in part (2) of Theorem 3.17. The second two theorems
are direct consequences of Theorems 4.11 and 4.12

Proof of Theorem B. Suppose {αn} is a sequence of elements in Ωp(M) for which there is
some constant c such that

‖αn‖ ≤ c′

and

‖∆αn‖ ≤ c′

then the Elliptic estimate implies that

‖αn‖2 ≤ c(‖∆α‖0 + ‖α‖0) = 2cc′

and thus the Sobolev 2-norm is uniformly bounded for all n. Now Rellich’s lemma implies
that a subsequence of the αn’s is Cauchy in the Sobolev 0-norm, that is in the L2-norm on
Ωp(M). �
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Proof of Theorem A. Given α ∈ Ωp(M), suppose l ∈ (Ωp(M))∗ is a weak solution to ∆ω =
α. That is,

l(∆γ) = 〈α, γ〉
and there is some c such that

|l(γ)| ≤ c‖γ‖
for all γ.

Since l : Ωp(M)→ R is a bounded linear operator and Ωp(M) is dense in H0(Ω
p(M)) we

can extend l to a bounded linear operator on H0(Ω
p(M)). That is l ∈ (H0(Ω

p(M)))∗. So
by Theorem 1.34 there is an element ω ∈ H0(Ω

p(M)) such that

l(β) = 〈ω, β〉
for all β ∈ H0(Ω

p(M)). If ω were smooth then we would be done. Notice that

〈∆ω, β〉 = 〈ω,∆β〉 = l(∆β) = 〈α, β〉
for all β ∈ Ωp(M). Thus again by Theorem 1.34 we have

∆ω = α

in H−2(Ω
p(M)). Since α ∈ Ωp(M) it is in Hs(Ω

p(M)) for all s. Thus Elliptic regularity
implies that ω ∈ Hs+2(Ω

p(M)) for all s. Therefore ω ∈ ∩sHs(Ω
p(M)) and hence in Ωp(M).

�
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2. Complex manifolds and the Hodge theorem

Here we present another version of the Hodge theorem for complex manifolds (this is
what many people mean when that say “Hodge theorem”). But for those interesting in just
seeing the details of the proofs of the theorems above feel free to skip this section and go
strait to Section 3. In this section we do not introduce anything important to the analysis
we will develop later.

2.1. Complex manifolds.

2.1.1. Linear theory. Let V be a R vector space. A complex structure on V is a linear
automorphism

J : V → V

such that
J2 = −IdV .

Notice that a complex structure J on V gives V the structure of a C vector space:

(a+ ib)v = av + b(Jv)

and

dimC V =
1

2
dimR V.

Thus dimR V is always even if V has a complex structure.

Exercise 2.1. Prove the following statements.

• If e1, . . . , en is a C-basis for V and fj = J(ej) then e1, f1, . . . , en, fn is a R-basis for
V.
• In this basis

J =


0 −1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 −1 · · ·
0 0 1 0 · · ·
...

...
...

...
. . .

 .
• A complex structure induces an orientation on V.

Notice that if V is a C vector space then the map

J : V → V : v 7→ iv

is a complex structure on the underlying R vector space. Thus we see that a complex
structure on a R vector space is essentially equivalent to endowing the vector space with
the structure of a C vector space. It might seem strange to introduce this new idea that
is equivalent to an old idea, but we will see it is useful when moving to the manifold level.
But first we further explore a complex structure J on a R-vector space V.

Exercise 2.2. If V and V ′ are R-vector spaces with complex structures J and J ′, respec-
tively, then an R-linear map φ : V → V ′ is C-linear (for the C vector spaces structures
induced by the complex structures J and J ′) if and only if

φ ◦ J = J ′ ◦ φ.

Exercise 2.3. If φ is a complex linear isomorphism then φ preserves the orientations
induced from J and J ′.
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The eigenvalues of J are ± the square root of the eigenvalues −IdV so they are ±i. Thus
we cannot diagonalize J over R. To diagonalize J we must complexify V that is consider

VC = V ⊗R C.
Clearly J induces a map J : VC → VC. Set

V (1,0) = i-eigenspace of J

and

V (0,1) = −i-eigenspace of J.

Then clearly

VC = V (1,0) ⊕ V (0,1).

Exercise 2.4. Show that

V (1,0) = {1

2
(v − iJv)|v ∈ V }

and

V (1,0) = {1

2
(v + iJv)|v ∈ V }

Thus each of these spaces is R-isomorphic to V.
A word of caution: we should technically write v ⊗ 1 + (Jv) ⊗ i for v + iJv and similarly
for the other expression. There is concern for confusion since we earlier said that J gives
V the structure of a complex vector space by defining iv = Jv. But here we are thinking of
V as a real vector space J an operator on it and V ⊗ C the complexification of V.
You might be wondering about the 1

2 here. This will be clear below when we talk about
the dual picture.

Exercise 2.5. Define “complex conjugation” to be

C : VC → VC : v + iw 7→ v − iw.

Show that C induces an isomorphism from V (1,0) to V (0,1). Thus we identify V with a subset
of VC by v 7→ 1

2(v − iJv) then

VC = V ⊕ V
where V = C(V ).

The complex structure J on V induces a complex structure J∗ on the dual space V ∗. In
particular if w∗ ∈ V ∗ then we define J∗(w∗) to be the unique element in V ∗ defined by

J∗(w∗)(v) = w∗(J(v)).

That is J∗ is the adjoint of J under the non-degenerate pairing

V × V ∗ → R : (v, w∗) 7→ w∗(v).

Now as above we have

V ∗C = V ∗ ⊗R C ∼= (V ∗)(1,0) ⊕ (V ∗)(0,1).

Exercise 2.6. Show that ∧k V ∗C =
⊕
p+q=k

∧(p,q) V

where ∧(p,q) V =
∧p(V ∗)(1,0) ∧

∧q(V ∗)(0,1).
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Elements of
∧(p,q) V are called forms of type (p, q).

If e1, . . . , en is a C-basis for V with complex structure J, then e1, f1, . . . , en, fn is a R-basis
for V, where fj = J(ej). Moreover the dual basis for V ∗ is e1, f1, . . . , en, fn. Now we have
that

V (1,0) is spanned by gj =
1

2
(ej − ifj), j = 1, . . . n,

and

V (0,1) is spanned by gj =
1

2
(ej + ifj), j = 1, . . . , n.

Similarly we have

(V ∗)(1,0) is spanned by gj = ej + if j , j = 1, . . . , n

and

(V ∗)(0,1) is spanned by gj = ej − if j , j = 1, . . . n.

Exercise 2.7. Show that g1, . . . , gn is the dual basis to g1, . . . , gn. (This explains why there
needs to be a 1

2 somewhere, the reason we put it in the definition of gj will be clear later.)

Finally if ω ∈
∧(p,q) V then

ω = ωα1,...,αp,β1,...,βqg
α1 ∧ · · · ∧ gαp ∧ gβ1 ∧ · · · ∧ gβq ,

where we as usual use the summation convention.

2.1.2. Hermitian Structure. A Hermitian inner product on a vector space V with a
complex structure J is an R-linear map

h : V × V → C

such that

(1) h(v, w) = h(w, v)
(2) h(v, v) > 0 for v 6= 0 (note that h(v, v) is real by (1))
(3) h(Jv,w) = ih(v, w)

Notice that the first and last properties imply

h(v, Jw) = −ih(v, w),

thus we have

h(Jv,w) = −h(v, Jw),

that is J is skew-adjoint with respect to h, and

h(Jv, Jw) = h(v, w),

that is h is J invariant.

Exercise 2.8. Notice that we can extend h : V × V → C to the complexified vector space
VC

h : VC × VC → C
and it satisfies

(1’) h(v, w) = h(v, w),
(2’) h(v, v) > 0 for all v 6= 0, and

(3’) h(v, w) = 0 for all v ∈ V (1,0) and w ∈ V (0,1).
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Given an Hermitian inner product h : V × V → C set

g(v, w) = Real part of h(v, w).

Exercise 2.9. Show g : V × V → R is an inner product and satisfies

g(Jv, Jw) = g(v, w),

that is, g is J invariant. In addition show that if g′ is any J invariant inner product on a
vector space V then

g(v, w) + ig(v, Jw)

is a Hermitian inner product.

Now set

ω(v, w) = −1

2
Imaginary part of h(v, w).

We easily see that

(1) ω ∈ ∧2V :

ω(v, w) = −1

2
Im h(v, w) =

1

2
Im h(w, v) = −ω(w, v),

(2) ω is non-degenerate
(3) ω(v, Jv) = −1

2 Im h(v, Jv) = 1
2 Im ih(v, v) = g(v, v) > 0 for v 6= 0, and

(4) ω(Jv, Jw) = ω(v, w).

Exercise 2.10. Show that given and ω ∈ ∧2V that satisfies (2)–(4) then

2(ω(v, Jw)− iω(v, w))

is a Hermitian inner product.

Given a Hermitian inner product h : V × V → C let g and ω be the associated inner
product and 2-form. Choose a complex basis e1, . . . , en for V that is orthonormal with
respect to h. Let fα = Jeα. So e1, f1, . . . en, fn, is a real basis for V. Notice that

g(fα, fβ) = g(Jeα, Jeβ) = g(eα, eβ) = δαβ,

where δαβ is the Kroneker delta. Also

g(fα, eβ) = Reh(Jeα, eβ) = Re ih(eα, eβ) = −2ω(eα, eβ),

so g(fα, eβ) = 0 if for all α and β. That is e1, f1, . . . , en, fn is a real orthonormal basis for
V with respect to the metric g. Let e1, f2, . . . , en, fn, be the dual basis. We clearly have

g =

n∑
α=1

(eα ⊗ eα + fα ⊗ fα).

In addition, from above we see that ω(v, w) = −1
2g(v, Jw), so

ω = −1

2

n∑
α=1

−eα ⊗ fα + fα ⊗ eα) =
n∑

α=1

eα ∧ fα.

Set gα = eα+ ifα in VC and notice that g1, g1, . . . , gn, gn is a complex basis for VC. From
above one may check that

h =
n∑

α=1

gα ⊗ gα.
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It is also amusing to notice that

ω =
i

2

n∑
α=1

gα ∧ gα.

2.1.3. Manifold theory. A complex structure on s vector bundle p : E → M is a bundle
automorphism

E
J

- E

◦

M
�

pp

-

such that for all x ∈M we have

Ex
Jx−→ Ex

is a complex structure where Ex = p−1(x) and Jx is J restricted to Ex. An almost complex
structure on a manifold M is a complex structure on the tangent bundle TM of M. We will
see below why the word “almost” is used here, basically it is because “complex structure”
already has a meaning for manifolds.

Notice that if a manifold admits an almost complex structure then it is even dimensional
and orientable.

Example 2.11. Let M = Cn, so for every z ∈ Cn we have TzCn = Cn. Thus we have

Jz : TzCn → TzCn : v 7→ iv

is an almost complex structure on M = Cn.

Example 2.12. Let M be a complex manifold. That is M has an atlas of coordinate
charts into Cn and the transition maps are holomorphic maps.

A function f : Cn → Cn : (z1, . . . , zn) 7→ (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)) where
f j = uj + ivj is holomorphic if it satisfies the Cauchy-Riemann equations

∂uj

∂xk
=
∂vj

∂yk

∂uj

∂yk
= − ∂v

j

∂xk

for all k, j = 1, . . . , n. This is equivalent to

∂f j

∂zk
= 0

where of course
∂

∂zk
=

1

2

(
∂

∂xk
+ i

∂

∂yk

)
.

Exercise 2.13. Show that a map f is holomorphic if and only if df is invariant under the
almost complex structure J defined in the previous example.



24 JOHN B. ETNYRE

Since the fixed almost complex structure on Cn is preserved by all the transition maps
in an atlas of coordinate charts for M we get an induced almost complex structure on M.
That is at a point x ∈M let f : V → U be a coordinate chart where U ⊂M and V ⊂ Cn.
define the complex structure J ′ at x to be

J ′f(x) = dfx ◦ Jx ◦ (dfx)−1.

One may easily check that this does not depend on the choice of coordinate chart.
Given two complex manifolds M and M ′ with associated almost complex structures J

and J ′ we say a map f : M →M ′ is a holomorphic map if

df ◦ J = J ′ ◦ df.
Notice that this is equivalent to saying that in local coordinates on M and M ′, f satisfies
the Caucy-Riemann equations.

Suppose M has an almost complex structure J. Then just as in the linear case we can
consider the complexified tangent bundle (basically just complexify pointwise) and split it
into the eigenspaces of J :

TMC = TM ⊗ C = (TM)(1,0) ⊕ (TM)(0,1).

The first summand is called the holomorphic tangent bundle and the second is called the
anti-holomorphic tangent bundle. The composition of the inclusion of TM into TMC
followed by (the correct) projection to (TM)(1,0) is given by

TM → (TM)(1,0) : v 7→ 1

2
(v + iJv)

and is an R-linear map. We similarly have

T ∗MC = T ∗M ⊗ C = (T ∗M)(1,0) ⊕ (T ∗M)(0,1),

and ∧k T ∗MC =
∧k(T ∗M ⊗ C) =

⊕
p+q=k

∧(p,q) T ∗M.

We also have the sections of these bundles

Ωp,q(M) = Γ(
∧(p,q) T ∗M).

From our study of the linear situation we can locally choose vector fields v1, . . . vn such that

v1, Jv1, . . . , vn, Jvn

span TM. Then of course we have

wj =
1

2
(vj − iJvj) j = 1, . . . n span (TM)(1,0),

wj = vj + iJvj j = 1, . . . n span (T ∗M)(1,0),

wj =
1

2
(vj + iJvj) j = 1, . . . n span (TM)(0,1),

wj = vj − iJvj j = 1, . . . n span (T ∗M)(0,1),

where the vj are the duals to vj . For η ∈ Ωp,q(M) we have local functions ηAB for each
set of non-negative integers A = {a1, . . . , an} and B = {b1, . . . , bn}, such that |A| = p and
|B| = q, (recall |A| = a1 + · · ·+ an and similarly for |B|) so that we can write

η =
∑

|A|=p,|B|=q

ηAB w
A ∧ wB
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where, as usual, wA = (w1)a1 ∧ . . . ∧ (wn)an .

Example 2.14. Of M is a complex manifold with local coordinate z1, . . . , zn (and zj =
xj + iyj) then

∂

∂zj
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
j = 1, . . . n span (TM)(1,0),

dzj = dxj + idyj j = 1, . . . n span (T ∗M)(1,0),

∂

∂zj
=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
j = 1, . . . n span (TM)(0,1),

dzj = dxj − idyj j = 1, . . . n span (T ∗M)(0,1).

Back to a general almost complex manifold M. We can extend the DeRham differential
d : ΩpM → Ωp+1M to the complexified p forms. So if η is a (p, q)-form represented as above
then

dη =
∑

|A|=p,|B|=q

dηAB ∧ wA ∧ wB +
∑

|A|=p,|B|=q

ηAB dw
A ∧ wB +

∑
|A|=p,|B|=q

ηAB w
A ∧ dwB.

In the first term in this expression we see dηAB which is a 1-form and can have (1, 0) and
(0, 1) components. Thus all the terms in the first sum are (p + 1, q) and (p, q + 1) forms.
Consider dwA. This can be for example

(dw1) ∧ ((p− 1, 0)-form).

since dw1 is a 2-form it can have (2, 0), (1, 1) and (0, 2) components. Thus the second sum
consists of terms that are (p+1, q), (p, q+1) and (p−1, q+2) forms. Similarly the last sum
consists of terms that are (p+ 2, q − 1), (p+ 1, q) and (p, q + 1) forms. Thus we see that

d : Ωp,q(M)→ Ωp+2,q−1(M)⊕ Ωp+1,q(M)⊕ Ωp,q+1(M)⊕ Ωp−1,q+2(M).

However, if J comes from a complex structure in M then we can use as a basis for T ∗MC,
the dzj and dzj . In this case we see that

d(dzj) = 0 = d(dzj)

since d2 = 0. Thus on a complex manifold we have

d : Ωp,q(M)→ Ωp+1,q(M)⊕ Ωp.q+1(M).

Actually this characterizes when an almost complex structure comes from a complex struc-
ture

Theorem 2.15. Let J be an almost complex structure on M. Then there is a complex
structure on M inducing J if and only if

d(Ωp,q(M)) ⊂ Ωp+1,q(M)⊕ Ωp.q+1(M).

�

We will not prove this theorem here. In this generality it is a fairly involved PDE
problem. An almost complex structure coming from an underlying complex structure is
called integrable.

Now denote the projection to Ωp,q(M) by

πp,q : Ω∗(M)→ Ωp,q(M).
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Define
∂ : Ωp,q(M)→ Ωp+1,q(M)

by ∂ = πp+1,q ◦ d and
∂ : Ωp,q(M)→ Ωp,q+1(M)

by ∂ = πp,q+1 ◦ d. We also define

N∗ = π0,2 ◦ d : Ω1,0(M)→ Ω0,2(M).

Exercise 2.16. Let N be the conjugate dual operator

N : Γ(T 2,0(M))→ Γ(T 0,1(M))

The map N is called the Nijenhaus tensor. Show the following:

(1) N(v, w) = −8Re([v1,0, w1,0]0,1).
(2) N is a tensor.
(3) Interperating N ∈ Γ(TM ⊗ T ∗M ⊗ T ∗M) we can write

N(v, w) = [Jv, Jw]− [v, w]− J [v, Jw]− J [Jv,w],

where v, w are vector fields.
(4) N = 0 if and only if T 1,0M is closed under the Lie bracket.

(5) N = 0 if and only if ∂
2

= 0 on functions.
(6) N = 0 if and only if d(Ωp,q(M)) ⊂ Ωp+1,q(M)⊕ Ωp,q+1(M). (Hence if and only if J

is integrable!)

On a complex manifolds we clearly have

d = ∂ + ∂

so
0 = d2 = ∂2 + ∂

2
+ (∂∂ + ∂∂).

When this equation is applied to a (p, q) form we see that the first term on the right is
a (p + 2, q) form, then next term is a (p, q + 2) form and the last term is a (p + 1, q + 1)
form. Since the decomposition of forms into type is a direct sum decomposition each of
these three terms must each be zero. Thus

∂2 = 0, ∂
2

= 0, and ∂∂ + ∂∂ = 0.

Hence we can consider the chain complex

Ωp,0(M)
∂→ Ωp,1(M)

∂→ Ωp,2(M)
∂→ . . . .

We define th Dolbeault cohomology of M to be the cohomology of this complex

Hp,q

∂
(M) =

ker(∂ : Ωp,q(M)→ Ωp,q+1(M))

im(∂ : Ωp,q−1(M)→ Ωp,q(M))
.

Exercise 2.17. Let f : M → N be a holomorphic function between two complex manifolds.
Then f∗ : Ωk(N)→ Ωk(M) induces a map

f∗ : Ωp,q(N)→ Ωp,q(M)

and
f∗ ◦ ∂ = ∂ ◦ f∗.

So we get a map
f∗ : Hp,q

∂
(N)→ Hp,q

∂
(M).
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2.2. Complex Laplacian and the Hodge theorem. Now consider a Hermitian structure
on the almost complex manifold (M,J). That is

h : TM ⊗ TM → R

such that h is a Hermitian inner product when restricted to TxM ⊗ TxM for each x ∈ M.
Note we get a Riemannian metric by

g = Real h

and hence a volume from on M which we denote ωh. We also get

ω = −1

2
Im h

which is a non-degenerate 2-form. Actually ω ∈ Ω1,1(M).

Example 2.18. The simplest example of a Hermitian structure is on M = Cn. Here we let

h =
n∑
j=1

dzj ⊗ dzj

=

n∑
j=1

(dxj + i dyj)⊗ (dxj − i dyj)

=

n∑
j=1

(
(dxj ⊗ dxj + dyj ⊗ dyj)− i(dxj ⊗ dyj − dyj ⊗ dxj)

)
=

n∑
j=1

(
(dxj ⊗ dxj + dyj ⊗ dyj)− i2 dxj ∧ dyj

)
.

Thus g is the standard flat metric on R2n = Cn and ω =
∑n

j=1 dx
j ∧ dyj .

Exercise 2.19. Show that ω in the above example can also be expressed as

ω = i
n∑
j=1

dzj ∧ dzj .

Exercise 2.20. (1) If f : M → N is a holomorphic function such that

df : (Tz(M))(1,0) → (Tf(z)N)(1,0)

for all z ∈ M then for any Hermitian structure h on N the pull-back f∗h is a
Hermitian structure on M. Moreover

f∗ωh = ωf∗h.

(2) If h is a Hermitian metric on a complex n-manifold M (here n is the complex
dimension) then

Volume (M) =
1

n!

∫
m
ωn.

In other words n!
∫
M ωh =

∫
M ωn.
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We get an L2-inner product from the metric g. Specifically given two functions f(x) and
g(x) on M we have

〈f, g〉 =

∫
M
f(x)g(x)

1

n!
ωn

and we can similarly define inner products on vector fields and forms. Using this L2-inner
product on forms we can define the L2-adjoint of ∂

∂
∗

: Ωp,q(M)→ Ωp,q−1(M).

Specifically, ∂
∗
ψ is the unique element in Ωp,q−1(M) such that

〈∂∗ψ, η〉 = 〈ψ, ∂η〉
for all η ∈ Ωp,q−1(M).

Let ∗ denote the Hodge star operator induced by the Riemannian metric g.

Exercise 2.21. Check that ∗ of a (p, q)-form is a (n− p, n− q)-form:

∗ : Ωp,q(M)→ Ωn−p,n−q(M).

Of course applied to (p, q)-forms we have that

〈ψ, φ〉 1

n!
ωn = ψ ∧ ∗φ

and
∗ ∗ ψ = (−1)p+qψ.

Exercise 2.22. Show the following formula for the L2-adjoint of ∂:

∂
∗

= − ∗ ∂ ∗ .
Notice that this of course implies that ∂

∗ ◦ ∂∗ = 0.

We can now define the complex Laplace operator to be

∆∂ = ∂ ∂
∗

+ ∂
∗
∂.

Exercise 2.23. Check that for a function f : Cn → R we have

∆∂f = ∂
∗
∂f = −2

∑ ∂2

∂zj∂zj
f.

Also show that
∂2

∂zj∂zj
=

1

4
(
∂2

∂x2
+

∂2

∂y2
),

so that the complex Laplacian is just a constant multiple of the ordinary Laplacian when
applied to functions on Cn.

A form α ∈ Ωp,q(M) is called harmonic if

∆∂ α = 0.

Define the set of harmonic (p, q)-forms

Hp,q(M) = ker(∂ : Ωp,q(M)→ Ωp,q(M)).

Theorem 2.24 (Hodge Theorem). Let M be a compact complex n-manifold with Hermitian
structure h. Then

(1) Hp,q(M) is finite dimensional.
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(2) We have

Ωp,q(M) = Hp,q(M)⊕∆∂(Ωp,q(M)

= Hp,q(M)⊕ ∂(Ωp,q−1(M))⊕ ∂∗(Ωp,q+1(M)).

Just as for our first Hodge theorem we have the immediate corollaries:

Corollary 2.25. Given α ∈ Ωp,q(M) the equation ∆∂ω = α has a solution ω ∈ Ωp,q(M) if

and only if α is L2-orthogonal to Hp,q(M) in Ωp,q(M). Moreover, if there is a solution ω to
the equation then the set of all solutions to the equation is ω +Hp,q(M).

Corollary 2.26. The Dolbeault cohomology

Hp,q

∂
(M) ∼= Hp,q(M)

is finite dimensional.

Noting that ∗ takes (p, q)-forms to (n − p, n − q)-forms we also have the following form
of duality.

Theorem 2.27. For a compact complex n-manifold M with Hermitian structure h we have
that

Hn,n(M) ∼= C
and the pairing

Hp,q(M)×Hn−p,n−q(M)→ C : (α, β) 7→
∫
M
α ∧ β

is non-degenerate and hence

Hn−p,n−q(M) ∼= (Hp,q(M))∗.

We define the Hodge numbers to be

hp,q = dimHp,q(M).

The previous results tell us that

hp,q <∞,

hn,n = 1,

and

hp,q = hn−p,n−q.

This is about all we can say for a general complex manifold. In particular, the relation
between the Dolbeault cohomology and the topology of the manifolds is unclear. To under-
stand this connection we need another condition on the Hermitian structure. We discuss
this in the next subsection.

We note the proofs of all these theorems is essentially identical to the proofs of the
corresponding theorems for the DeRham differential once we know the following result.

Lemma 2.28. The complex Laplacian ∆∂ on a closed complex manifold is an elliptic op-
erator.

Exercise 2.29. When you have finished reading the proof in the DeRham case, prove this
lemma and then derive all the above results from it.
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2.3. Kähler manifolds. Let M be a complex manifold with induced almost complex struc-
ture J and Hermitian metric h. Let g = Re h be the associated Riemannian metric and
ω = −1

2 Im h the associated non-degenerate (1, 1)-form. We call (M,J, h) Kähler if

dω = 0.

As a side note we mention a closed non-degenerate 2-form on a manifold is called a sym-
plectic form. So a Kähler manifold is a complex manifold with a Hermitian inner product
such that its associated 2-form is a symplectic form. The study of symplectic forms is quite
interesting in its own right, but we will not go into this right now.

To better understand the Kähler condition better suppose we have a Kähler metric h on
a complex manifold (M,J). In a coordinate chart U choose a complex orthonormal basis
e1, . . . , en for T ∗U. Set f j = Jej . As worked out above we see that {φj = ej + if j}nj=1 is an

R-basis for (T ∗U)1,0 and {φj}nj=1 is a R-basis for (T ∗U)0,1. Moreover

ω =
i

2

n∑
j=1

φj ∧ φj .

We notice that dφj ∈ Ω(2,0)(U)⊕Ω(1,1)(U). Let τ j be the (2, 0) part of dφj . We call the τ j

the torsion of the metric. The form dφj − τ j is in Ω(1,1)(U) which has a basis {φα ∧ φβ}.
Thus there are functions cjαβ such that

dφj − τ j =
∑

cjαβφ
β ∧ φα.

Set ψjα =
∑
cjαβφ

β
. The ψjα are called the connection matrix of the metric. We clearly

have

dφj = τ j +
∑

ψjα ∧ φα.

Exercise 2.30. Show that ψjk + ψkj = 0.

We say that h has the same k jet as the Euclidean metric if for all z0 ∈M there is a
holomorphic coordinate chart about z0 in which

h =

n∑
j=1

(δjk + gjk) dz
j ⊗ dzj

where δjk is the Kronecker delta function and gjk are functions that vanish to order k at
z0.

Lemma 2.31. For a complex manifold M with Hermitian metric h the following are equiv-
alent

(1) h is Kähler,
(2) τ j = 0 for all j, and
(3) h has the same 1 jet as the Euclidean metric at each point of M.



CLASS NOTES ON HODGE THEORY 31

Proof. We begin by computing

2

i
dω =

∑
(dφj ∧ φj − φj ∧ dφj)

=
∑(

ψjα ∧ φα ∧ φ
j − φj ∧ ψjα ∧ φ

α
+ τ j ∧ φj − φj ∧ τ j

)
(using Exercise 2.30)

=
∑(

ψjα ∧ φα ∧ φ
j − ψαj ∧ φj ∧ φ

α
+ τ j ∧ φj − φj ∧ τ j

)
=
∑(

τ j ∧ φj − φj ∧ τ j
)

Noting that τ j has type (2, 0) and similarly φj , φ
j
, and τ j have type (1, 0), (0, 1) and (0, 2),

respectively, we see that dω = 0 if and only if all the τ j = 0, thus establishing the equivalence
of (1) and (2).

Now assume that (3) is true. So we have

ω =
i

2

n∑
j=1

(δjk + gjk) dz
j ∧ dzj .

Since gjk(z0) = dgjk(z0) = 0, we see (dω)z0 = 0 for any z0. Thus (3) implies (1).
Now assume that (1) is true. Can always choose coordinates around a point z0 so that

ω =
i

2

n∑
j=1

(
δjk + ajkl z

l + ajkl z
l + (higher order terms)

)
dzj ∧ dzj .

Exercise 2.32. Use our assumption to show that ajkl = akjl and ajkl = alkj .

Exercise 2.33. Make the coordinate change

zk = wk +
1

2

∑
bklmw

lwm

and compute ω in these new coordinates.

Exercise 2.34. Show that if bklj = −ajkl then in these new coordinates h has the same 1
jet as the Euclidean metric at z0.

This completes the proof of the lemma. �

Example 2.35. Any metric on a compact Riemann surface Σ is Kähler since dω is a 3-form
and hence zero.

Example 2.36. The standard metric on Cn is Kähler:

h =
n∑
j=1

dzj ⊗ dzj

and

ω =
n∑
j=1

dxj ∧ dyJ

which is clearly closed.

Example 2.37. Let T 2n = Cn/Λ where Λ is a lattice in Cn. Since the standard metric on
Cn is invariant under translations, it descends to a Kähler form on T 2n.
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Example 2.38. Consider complex projective space CPn. Recall CPn is the space of com-
plex planes in Cn+1, that is

CPn = (Cn+1 − {(0, 0, . . . , 0)})/(C− {0}).
Denote the quotient map

π : (Cn+1 − {(0, 0, . . . , 0)})→ CPn

and let z0, . . . , zn be coordiantes on Cn+1. Let U be a coordinate chart for CPn so that
π−1(U) = U × (C− {0}). Choose a holomorphic function

z : U → (C− {0}) ⊂ C.
Now set

ω =
i

2π
∂∂(log ‖z‖2).

We claim that ω is independent of z. Indeed given another holomorphic function z′ there is
a non-zero holomorphic function f such that z′ = fz. Thus

i

2π
∂∂ log ‖z′‖2 =

i

2π
∂∂(log ‖z‖2ff + log f + log f)

=
i

2π
∂∂(log ‖z‖2 + log f + log f)

= ω +
i

2π
∂∂(log f + log f).

Moreover ∂ log f = 0 since log f is holomorphic and similarly ∂∂ log f = 0, so ω is indepen-
dent of z. Convince yourself that this implies that we can define ω on all of CPn.

Since d = ∂ + ∂ we clearly have that dω = 0.

Exercise 2.39. Let U = π({z0 6= 0}). On this set we have “homogeneous coordinates”

wj = zj

z0
. In these coordinates show

ω =
i

2π

n∑
j=1

dwj ∧ dwj .

Thus ω is a non-degenerate (1, 1)-form and is J invariant.

Thus we can use ω to define a Hermitian metric on CPn that is Kähler. This metric is
called the Fubini-Study metric.

Exercise 2.40. Show that the product of Kähler manifolds is Kähler.

Exercise 2.41. Show that if S ⊂M is a complex submanifold of a Kähler manifold, then
the induced metric on S is a Kähler metric.

Example 2.42. Note the previous exercises and examples show that any compact complex
submanifold of Cn or CPn is a Kähler manifold (ie any smooth projective variety is Kähler).

We have the immediate connections between the Dolbeault cohomology of a Kähler man-
ifold and its algebraic topology.

Theorem 2.43. For a closed Kähler manifold M we have

(1) b2k(M) > 0,

(2) Hq,0

∂
(M) injects into Hq

dR(M), and
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(3) for any complex submanifold (or variety) V ⊂ M of complex dimension k we have
[V ] 6= 0 in H2k(M).

Proof. For (1) we notice that dωk = 0 so it represents some element of H2k
dR(M). To see that

it is not the zero element note that if it were not then ωk = dφ and hence ωn = dφ∧ωn−k =
cd(φ ∧ ωn−k), for some constant c. Thus Stokes’ theorem implies

0 =

∫
∂M

cφ ∧ ωn−k =

∫
M
cd(φ ∧ ωn−k) =

∫
M
ωn.

This contradicts the fact observed above that ωn is a non-zero multiple of the volume form
on M which of course has non-zero integral.

For item (2) suppose that [η] ∈ Hq,0(M). So we know ∂η = 0. We want to show that
dη = 0 and that if η = dφ then [η] = 0 in Hq,0(M). To this end let φ1, . . . , φn be an
orthonormal frame for Ω1,0(M), so we can write

η =
∑

ηIφ
I

for some functions ηI . So we have η ∧ η =
∑
ηIηIφ

I ∧ φI .

Exercise 2.44. Show that

ωn−q = cq
∑

|K|=n−q

φK ∧ φK

where cq is a constant depending only on q.

Notice that

η ∧ η ∧ ωn−q = cq
∑
|I|=q

ηIηIφ
I ∧ φI ∧ φK ∧ φK

where K = 1, . . . , n− I in the sum. Thus

η ∧ η ∧ ωn−q =
cq
cn

(
∑
|I|=q

|ηI |2)dvolg

So we see that a (q, 0)-form η is non-zero if and only if
∫
M η ∧ η ∧ ωn−q 6= 0.

Now assuming η represents a class in Hq,0(M) we have ∂η = 0. So dη = (∂ + ∂)η = ∂η.
Of course ∂η is in Ωq+1,0(M). Thus ∂η = 0 if and only if∫

M
dη ∧ dη ∧ ωn−q−1 = 0.

But d(η∧(dη)∧ωn−q−1) = dη∧dη∧ωn−q. Thus Stokes’ theorem implies
∫
M dη∧dη∧ωn−q−1 =

0 and hence ∂η = 0.
Now suppose that η = dφ. Then∫

M
η ∧ η ∧ ωn−q =

∫
M
d(φ ∧ η ∧ ωn−q) = 0

and we see that η = 0 and hence [η] = 0 in Hp,0(M).
For statement (3) we observe that if V is a complex submanifold of M of complex di-

mension k then the Kähler form ω pulls back to a Kähler form ωV on V. Thus integrating
ωk over V gives a non-zero number. This implies that V the fundamental class of V in M
cannot be null-homologous. �
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We are now ready to see a more subtle connection between the Dolbeault cohomology of
a Kähler manifold and its algebraic topology. The key is to relate the ordinary Laplacian to
the complex Laplacian. To that end we define the following operators. First two projections:

πp,q : Ω∗(M)→ Ωp,q(M)

and

πr : Ω∗(M)→ Ωr(M)

where clearly πr =
∑

p+q=r π
p,q. From the operators ∂, ∂ and d = ∂ + ∂ we have

dc =
i

4π
(∂ − ∂)

and the various Laplacians

∆d = dd∗ + d∗d, ∆∂ = ∂ ∂
∗

+ ∂
∗
∂ and ∆∂ = ∂∂∗ + ∂∗∂.

Finally using the (1, 1)-form ω coming from the Hermitian metric we have

L : Ωp,q(M)→ Ωp+1,q+1(M) : η → η ∧ ω

and its adjoint

Λ : Ωp,q(M)→ Ωp−1.q−1(M).

Theorem 2.45. Let M a Kähler manifold. Then

(1) [Λ, d] = −4π(dc)∗,
(2) [L, d∗] = 4πdc,
(3) [L,∆d] = 0 = [Λ,∆d],
(4) [∆d, π

p,q] = 0, and
(5) ∆d = 2∆∂ = 2∆∂ .

Before proving this theorem notice we now have

Theorem 2.46 (Hodge decomposition theorem). For a closed compact Káhler manifold M
we have

Hr
dR(M) =

⊕
p+q=r

Hp,q

∂
(M)

and

Hp,q

∂
(M) = Hq,p

∂
(M).

Thus we see that the deRahm cohomology, which we know is related to the ordinary
cohomology, is actually the sum of the appropriate Dolbeault cohomology on a Kähler
manifold. So, in some sense, we can think of the Dolbeault cohomology of a Kähler manifold
as a refinement of the ordinary cohomology (think about in what sense this is true and in
what sense it is not). Recall we know that hk,k > 0 and hn,n = 1 = b2n. Moreover, from the
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last theorem we know that hp,q = hq,p. We have the “Hodge diamond”:

hn,n

....
....

....
....

....
....

....
....

....
..

hk,k

............................

......................................

hn,0 h0,n

h3,0

................................

h2,1 h1,2 h0,3
....

....
....

....
....

....
....

....

h2,0 h1,1

........................................

h0,2

h1,0 h0,1

h0,0

This figure is symmetric about the horizontal middle line. Of course an immediate corollary
of the Hodge decomposition theorem is the following.

Theorem 2.47. The odd Betti numbers of a Kähler manifold are even, that is

dimH2k+1
dR (M) is even.

Proof of Theorem 2.46. Set

Hp,q
d = {η ∈ Ωp,q(M)|∆dη = 0}

= {η ∈ Ωp,q(M)|∆∂η = 0} = Hp,q

∂
(M).

Now since
Hr = {η ∈ Ωr(M)|∆dη = 0} ∼= Hr

dR(M)

and
[∆d, π

p,q] = 0

we clearly have

Hr
dR(M) =

⊕
p+q=r

Hp,q

∂
(M).

Since ∆d is a real operator for any η ∈ Ωp,q(M) we clearly have

∆dη = 0 if and only if ∆dη = 0

and thus we have
Hp,q

∂
(M) = Hq,p

∂
(M).
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�

Now for the proof of the technical theorem.

Proof of Theorem 2.45. We begin by showing that equation (1) in the theorem implies the
other equations. Equation (1) says

Λd− dΛ = −4π(dc)∗ = −i(∂∗ − ∂∗).

The adjoint equation is

d∗L− Ld∗ = −i(∂ − ∂) = −4πdc.

That is the adjoint is just Equation (2). To verify Equation (3) notice that

d(ω ∧ η) = ω ∧ dη

and hence [d, L] = 0 = [L, d] and [d∗,Λ] = 0 = [Λ, d∗]. Moreover

dcd =
i

4π
(∂ − ∂)(∂ + ∂) =

i

4π
(−∂∂ + ∂∂)

= − i

4π
(∂ + ∂)(∂ − ∂) = −ddc.

Taking adjoints we also have (dc)∗d∗ = −d∗(dc)∗. Thus we see

L(dd∗ + d∗d) = dLd∗ + (d∗L+ 4πdc)d

= dd∗L+ d(4πdc) + d∗dL+ 4πdcd

= (dd∗ + d∗d)L

so L∆d = ∆dL and taking adjoints gives ∆dΛ = Λ∆d, thus establishing Equation (3).
Let us work on Equation (5) now. To this end notice that

Λd− dΛ = −4π(dc)∗ ⇔ Λ(∂ + ∂)− (∂ + ∂)Λ = −i(∂∗ − ∂∗)
(decomposing by type)

⇔ [Λ, ∂] = −i∂∗ and [Λ, ∂] = i∂∗.

So we have

∂∂
∗

+ ∂
∗
∂ = −i(∂(Λ∂ − ∂Λ) + (Λ∂ − ∂Λ)∂)

= −i(∂Λ∂ − ∂Λ∂) = 0.

From which we can deduce

∆d = (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂)

= (∂∂∗ + ∂∗∂) + (∂∂
∗

+ ∂
∗
∂) + (∂∂

∗
+ ∂∂∗ + ∂∗∂ + ∂

∗
∂)

(from the last equation)

= (∂∂∗ + ∂∗∂) + (∂∂
∗

+ ∂
∗
∂) = ∆∂ + ∆∂ .

In addition we have

∆∂ = ∂∂∗ + ∂∗∂

= −i(∂(Λ∂ − ∂Λ) + (Λ∂ − ∂Λ)∂)

= −i(∂Λ∂ + Λ∂∂ − ∂∂Λ− ∂Λ∂)
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and similarly

∆∂ = i(∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂)

= i(∂Λ∂ + ∂∂Λ− Λ∂∂ − ∂Λ∂)

= ∆∂

These last three computations yield equation (5) in the theorem. As it is clear that ∆∂

commutes with πp,q we also see that ∆d commutes using (5). Thus (4) also holds.
We are left to establish (1).

Exercise 2.48. Show that if (1) is true in Cn with the standard Hermitian structure then
it is true for any Kähler manifold using the the fact that a Kähler metric has the same 1
jet as the standard Hermitian structure on Cn by Lemma 2.31.

We now consider the standard Hermitian Cn. Let z1, . . . , zn be the standard coordinates
on Cn. Define the wedge product maps

ek : Ωp,q(Cn)→ Ωp+1,q(Cn) : φ 7→ dzk ∧ φ
and

ek : Ωp,q(Cn)→ Ωp,q+1(Cn) : φ 7→ dzk ∧ φ.
Let ik and ik be their formal adjoints. We claim

ik ◦ ek(dzJ ∧ dzK) =

{
0 if k ∈ K
2dzJ ∧ dzK if k 6∈ K.

To see this notice that the first link is obvious since dzk ∧ dzk = 0. The second line follows
by observing that

〈ik ◦ ek(dzJ ∧ dzK), dzL ∧ dzM 〉 = 〈dzk ∧ dzJ ∧ dzK , dzk ∧ dzL ∧ dzM 〉

= 〈dzk, dzk〉〈dzJ ∧ dzK , dzL ∧ dzM 〉
= 2〈dzJ ∧ dzK , dzL ∧ dzM 〉.

Similarly we have

ek ◦ ik(dzJ ∧ dzK) =

{
0 if k 6∈ K
2dzJ ∧ dzK if k ∈ K.

From this we have ek ◦ ik + ik ◦ ek = 2 and ek ◦ ik + ik ◦ ek = 2. If k 6= l then one may easily
check that ek ◦ il + il ◦ ek = 0 and ek ◦ il + il ◦ ek = 0.

Now notice that

L =
i

2

∑
ek ◦ ek

and

Λ = − i
2

∑
ik ◦ ik.

If we define ∂k
∑
φJKdz

J ∧ dzK =
∑(

∂φJK
∂zk

)
dzJ ∧ dzK and similarly for ∂k then we have

∂ =
∑

∂k ◦ ek =
∑

ek ◦ ∂k
and

∂ =
∑

∂k ◦ ek =
∑

ek ◦ ∂k.
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Exercise 2.49. Show that the formal adjoint of ∂k is −∂k and the formal adjoint of ∂k is
−∂k. Also show that ∂k and ∂k and their adjoints commute with el, el, il, and il.

From the exercise we see that

∂∗ = −
∑

∂k ◦ ik
and

∂
∗

= −
∑

∂k ◦ ik.
Now

Λ∂ = − i
2

∑
ikik∂lel =

∑
∂likikel

= − i
2

∑
k

∂kikikek +
∑
k 6=l

∂likikel


=
i

2

∑
k

∂kikekik −
2i

2

∑
k

∂kik +
i

2

∑
l 6=k

∂likelik

=
i

2

∑
l,k

∂likelik − i
∑
k

∂kik

= − i
2

∑
l,k

∂lelikik − i∂
∗

= ∂Λ− i∂∗.

Similarly
Λ∂ = ∂Λ− i∂∗.

Thus
Λd = dΛ− i(∂∗ − ∂∗).

Completing the proof of (1). �

We end this section with the Hard Lefschetz Theorem. We do not provide a proof,
but refer to Griffiths and Harris “Principles of Algebraic Geometry” for that as well as a
discussion of the theorem.

Theorem 2.50 (Hard Lefschetz Theorem). Let M be a closed Kähler manifold. Then

(1) The map

Lk : Hn−k
dR (M)→ Hn+k

dR (M),

coming from wedging with the kth power of the Kähler form ω, is an isomorphism.
(2) If

Pn−k(M) = ker(Lk+1 : Hn−k
dR (M)→ Hn+k+2

dR (M)) = ker(Λ) ∩Hn−k
dR (M)

then
Hm
dR(M) =

∑
k

Lk(Pm−2k(M)).
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3. Function spaces

3.1. Sobolev spaces on Tn. Let Tn = Rn/(2πZn) with coordinates (x1, . . . , xn).
Let C l(Tn,Cm) = {f : Tn → Ck|f is l times differentiable}
The L2 inner product on C∞(Tn,Cm) is

〈f, g〉 =
1

(2π)n

∫
Tn
f(x) · g(x)dvolx

and norm is

‖f‖ = 〈f, f〉
1
2 .

The sup norm on C0 is

‖f‖∞ = sup
x∈Tn
{|f(x)|}.

The Sovolev k-inner product on C∞ keeps track of the L2 inner product of k derivatives.
If α = (α1, . . . , αn) and

Dα = (−i)|α|
(

∂

∂x1

)α1

· · ·
(

∂

∂xn

)αn
where |α| = α1 + · · ·+ αn. Now define

〈f, g〉s =
∑
|α|≤s

〈Dαf,Dαg〉

and

‖f‖s = 〈f, f〉
1
2
s .

Notice that the inner product and norm would be the same with or without the factor of i
in the definition of Dα. It is included to simplify various formulas below.

Lemma 3.1. All the above define inner products on C∞.

Define Hs(T
n) to be the completion of C∞(Tn,Cm) in the norm ‖‖s.

In general two norms ‖‖ and ‖‖′ on a vector space V are called equivalent if there are
constants C and C ′ such that

C‖v‖ ≤ ‖v‖′ ≤ C ′‖v‖
for all v ∈ V.

Lemma 3.2. Equivalent norms on a vector space V induce equivalent topologies on the
vector space. A sequence is Cauchy in one norm if and only if it is Cauchy in the other
norm. Thus the completions of V in both norms are isomorphic vector spaces.

Let

〈f, g〉′s = 〈f, g〉+
∑
|α|=s

〈Dαf,Dαg〉

and

‖f‖′s = (〈f, f〉′s)
1
2 .

Lemma 3.3. The norms ‖‖s and ‖‖′s are equivalent norms.
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This will be easiest to prove after the next section.
Recall def of completion. Completions only depend on norm up to equivalence. bounded

linear maps on a dense subset extend to bounded maps on the completions (if image space
is complete). If normed linear space is a subset of another complete linear space then its
closure is the completion.

Maybe Def of Hs as subset of L2 functions (so need to define weak derivative).

3.2. Alternate, Fourier, definition of Sobolev spaces on Tn. Given a function f ∈
C∞(Tn,Cn) and an n-tuple of integers ξ = (ξ1, . . . , ξn) ∈ Zn we set

fξ =
1

(2π)n

∫
Tn
f(x)e−i x·ξdvolx

and call this the ξth Fourier coefficient of f. The Fourier series of f is∑
ξ∈Zn

fξe
i x·ξ.

Say some stuff about l2(Zn) the l2 norm and weighted l2-norms.

Theorem 3.4. Facts about Fourier series:

(1) This series converges uniformly to f(x).
(2) (Parseval’s identity) The L2-norm of f can be computed by

(5) ‖f‖2 =
∑
ξ∈Zn

|fξ|2.

(3) Something about L2(Tn,Cm) and l2(Zn,Cm).

Note

(6)

(
∂

∂xj
f)ξ =

1

(2π)n

∫
Tn

( ∂

∂xj
f(x)

)
e−i x·ξdvolx

(integrate by parts and notice no boundary terms)

= − 1

(2π)n

∫
Tn
f(x)

( ∂

∂xj
e−i x·ξ

)
dvolx

= − 1

(2π)n

∫
Tn
f(x)

(
−iξje−i x·ξ

)
dvolx

= iξj
1

(2π)n

∫
Tn
f(x)e−i x·ξdvolx

= iξjfξ.

Or better:

(−i ∂
∂xj

f)ξ = ξjfξ.

In general we clearly have

(7) (Dαf)ξ = ξαfξ.

Using Parseval’s identity, Equation (5), we can compute the L2-norm of Dαf :

(8) ‖Dαf‖2 =
∑
ξ

ξ2α|fξ|2.
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We can use this observation to rewrite the Sobolev s-norm on C∞(Tn,Cm)

‖f‖2s =
∑
|α|≤s

‖Dαf‖2 =
∑
|α|≤s,ξ

ξ2α|fξ|2.

Now consider the norm

(9) ‖f‖′′s =

(∑
ξ

(1 + |ξ|2)s‖fξ‖2
) 1

2

,

where s is any number. Say something about this giving norm on l2(Zn,Cm)...

Lemma 3.5. For any non-negative integer s the norms ‖‖s and ‖‖′′s are equivalent. That
is there are constants c, c′ such that

c‖f‖s ≤ ‖f‖′′s ≤ c′‖f‖s.

Thus we can think of this Fourier defined Sobolev norm as generalizing the derivative de-
fined norm. Below when s is a non-negative integer we will switch between these two norms
without warning, using the one most convenient at the time. Discuss Hs as completion of
image of C∞ functions in l2.

Proof. We begin by claiming that for each t there are constants ct and c′t such that for all ξ

(10) ct
∑
|α|=t

ξ2α ≤ |ξ|2t ≤ c′t
∑
|α|=t

ξ2α

We will prove this below, but given this inequality note that if we set

c = min
t=0...s,t′=0...s

{ 1(
s
t′

)
c′t
}

then

(11)

c(1 + |ξ|2)s = c(1 +

(
s

2

)
|ξ|2 + . . .+

(
s

s− 1

)
|ξ|2(s−1) + |ξ|2s)

≤ 1 +
1

c′1
|ξ|2 + . . .+

1

c′s−1
|ξ|2(s−1) +

1

c′s
|ξ|2s

≤ 1 +
∑
|α|=1

ξ2α + . . .+
∑
|α|=s−1

ξ2α +
∑
|α|=s

ξ2α

≤
∑
|α|≤s

ξ2α.

One can similarly define c′ so that∑
|α|≤s

ξ2α ≤ c′(1 + |ξ|2)s.

Thus we have

c(1 + |ξ|2)s =
∑
|α|≤s

ξ2α ≤ c′(1 + |ξ|2)s.

And hence

c(1 + |ξ|2)s|fξ|2 =
∑
|α|≤s

ξ2α|fξ|2 ≤ c′(1 + |ξ|2)s|fξ|2.
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Now if we sum over ξ notice that

(12)

c
1
2 ‖f‖′′s =

(
c
∑
ξ

(1 + |ξ|2)s|fξ|2
) 1

2

≤
( ∑
ξ,|α|≤s

ξ2α|fξ|2
) 1

2

=

(∑
|α|≤s

‖Dαf‖2
) 1

2

= ‖f‖s.
Similarly

‖f‖s ≤ (c′)
1
2 ‖f‖′′s .

We are left to prove Equation (10). To this end consider the function

p(ξ) =
|ξ|2t∑
|α|=t ξ

2α
.

We think of p as a function Rn → R. Notice that

p(λξ) = p(ξ)

for all non-zero λ. Since Equation (10) is clear for ξ = 0 we just prove it for ξ 6= 0. The
unit sphere in Rn is compact and p is positive on it so it has a positive minimum ct and
maximum c′t. Thus we see that

p(ξ) = p(ξ/|ξ|) ≤ c′t
so

|ξ|2t ≤ c′t
∑
|α|=t

ξ2α.

Similarly

ct
∑
|α|=t

ξ2α ≤ |ξ|2t.

�

3.3. Operators on Sobolev spaces. We begin by defining a differential operator from
C∞(Tn,Cm) to C∞(Tn,Cm′). This is just an m × m′ matrix with entries for the form∑

α ωα(x)Dα. The order of the operator is the highest order derivative taken in the matrix.

Example 3.6. The operator

L =
n∑
j=1

(
∂

∂xi

)2

is a second order operator from C∞(Tn,C) to itself.

Example 3.7. The operator[
L = cosx1

∂
∂x1

ex1x2 ∂
∂x2

5 ∂2

∂x1∂x2
( ∂
∂x2

)2 9 sinx2
∂
∂x2

9

]
is a second order operator from C∞(Tn,C3) to C∞(Tn,C2).
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Theorem 3.8. (1) For all s the derivative operator Dα : C∞(Tn,Cm)→ C∞(Tn,Cm)
satisfies

(13) ‖Dαf‖s ≤ ‖f‖s+|α|

and thus extends to a bounded linear operator

(14) Dα : Hs+|α|(T
n)→ Hs(T

n).

(2) For all s and all functions ω(x) ∈ C∞(Tn,C) there are constants c and c′ such that
the multiplicative operator Mω : C∞(Tn,Cm)→ C∞(Tn,Cm) defined by Mω(f(x)) =
ω(x)f(x) satisfies

(15) ‖Mωf‖s ≤ c‖ω‖∞‖f‖s + c′‖f‖s−1

and in particular (since ‖f‖s−1 ≤ ‖f‖s) there is a constant c′′ such that ‖Mωf‖s ≤
c′′‖f‖s and thus the operator extends to a bounded linear operator

(16) Mω : Hs(T
n)→ Hs(T

n).

(3) For all s and linear differential operator of order k, L : C∞(Tn,Cm)→ C∞(Tn,Cm)
there is a constant c such that

(17) ‖Lf‖s ≤ c‖f‖s+k

and thus extends to a bounded linear operator

(18) L : Hs+k(T
n)→ Hs(T

n).

Proof. Notice that

ξ2α = ξ2α1
1 · · · ξ2αnn ≤ (1 + |ξ|2)|α|

since ξ2α1
1 · · · ξ2αnn will occur as one of the terms in (1 + |ξ|2)|α| = (1 + ξ21 + . . .+ ξ2n)|α| with

coefficient greater than one. Thus

‖Dαf‖s =
∑
ξ

(1 + |ξ|2)sξ2α|fξ|2

≤
∑
ξ

(1 + |ξ|2)s(1 + |ξ|2)|α||fξ|2

= ‖f‖s+|α|.

Thus establishing Inequality (13) for any s.
We first notice that for s = 0 we have

(19) ‖ωf‖s = ‖ωf‖ ≤ ‖ω‖∞‖f‖.
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Using the derivative definition of the Sobolev norm we have

‖ωf‖2s =
∑
|α|≤s

‖Dα(ωf)‖2

(by the triangle inequality and Equation 24)

≤
∑
|α|≤s

‖ωDαf‖2 +
∑
|α|≤s

‖Dα(ωf)− ωDαf‖2

(since the second term only has derivatives of f
of order less than s times functions with bounded
sup norm we can use Equation (19))

≤
∑
|α|≤s

‖ω‖2∞‖Dαf‖2 + c
∑
|α|≤s−1

‖Dαf‖2

= ‖ω‖2∞‖f‖2s + c‖f‖2s−1
= (‖ω‖∞‖f‖s + c′‖f‖s−1)2

Thus establishing Inequality (15) for non-negative integer values of s.
Add proof for all s.

Exercise 3.9. Prove Inequality (26).
Hint: this is essentially obvious from the other inequalities.

�

3.4. Properties of Sobolev spaces on Tn.

Theorem 3.10. (1) For any smooth function f and number s ≤ t we have

‖f‖s ≤ ‖f‖t.

Thus the identity map on C∞(Tn,Cm) induces a bounded inclusion

Ht(T
n) ⊂ Hs(T

n).

(2) (Sobolev inequality) If s > n
2 +k then there is a constant c such that for any smooth

function f we have

‖f‖Ck ≤ c‖f‖s.
Thus the identity map on C∞(Tn,Cm) induces a bounded inclusion

Hs(T
n) ⊂ Ck(Tn,Cm),

that is any element in Hs(T
n) has k continuous derivatives.

(3) (Rellich’s lemma) if s < t then any sequence fj in Ht(T
n) for which ‖fj‖t ≤ K

for some fixed K, there is a subsequence that is Cauchy (and hence convergent) in
Hs(T

n). That is the bounded linear inclusion map

Ht(T
n) ⊂ Hs(T

n)

is a compact operator.

Corollary 3.11.

∩sHs(T
n) = C∞(Tn,Cm).

This corollary is clear given that the smooth functions are in all Sobolev spaces.
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Proof of Theorem 3.10. The first statement in the theorem is obvious.
For the Sobolev inequality we assume n

2 < s and note that since for a smooth function
the Fourier series converges absolutely we have

|f(x)|2 = |
∑
ξ

fξe
ix·ξ|2 ≤

∑
ξ

|fξ|2

=
∑
ξ

(1 + |ξ|2)−s(1 + |ξ|2)s|fξ|2

= lim
N→∞

∑
|ξ|≤N

(1 + |ξ|2)−s(1 + |ξ|2)s|fξ|2

(by Cauchy Schwarz inequality)

≤ lim
N→∞

∑
|ξ|≤N

(1 + |ξ|2)−s
∑

|ξ|≤N

(1 + |ξ|2)s|fξ|2


(since, if s >
n

s
, the two terms on the next line converge,

the second since f is in Hs and the second is checked below,
we have)

≤

 lim
N→∞

∑
|ξ|≤N

(1 + |ξ|2)−s
 lim

N→∞

∑
|ξ|≤N

(1 + |ξ|2)s|fξ|2


(setting c =
∑
ξ

(1 + |ξ|2)−s))

= c‖f‖s.

Thus

‖f‖C0 ≤ c‖f‖s

and we have an embedding of C0(Tn) into Hs(T
n), if s > n

2 . Now if s > n
2 + k then for

|α| ≤ k we have Dαf ∈ Hs−|α|(T
n) and s− |α| ≥ s− k > n

2 and thus Inequality (13) gives

‖Dαf‖C0 ≤ ‖Dαf‖s−|α| ≤ ‖f‖s.

We can hence conclude that there is a c such that

‖f‖Ck ≤ c‖f‖s.

We are left to check our claim that
∑

ξ(1 + |ξ|2)−s is uniformly convergent if s > n
2 . To this

end set

Sj = {ξ = (ξ1, . . . , ξn) : max |ξl| ≤ j}.

Since for any ξ ∈ Sj there is one ξl equal to ±j and the other n− 1 terms are between −j
and j we see

|Sj | ≤ 2n(2j + 1)n−1.
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In addition ξ ∈ Sj implies |ξ|2 ≥ j2. Thus we have

sj =
∑
ξ∈Sj

(
1

1 + |ξ|2

)2

≤ 2n(2j + 1)n−1

(1 + j2)s
≤ 2n(2j + 1)n−1

j2s

≤ 2n(3j)n−1

j2s
≤ cjn−1−2s.

So we have ∑
ξ

1

(1 + |ξ|2)s
= 1 +

∞∑
j=1

sj ≤ 1 + c
∞∑
j=1

jn−1−2s.

The last sequence converges if 1 + 2s− n > 1.
Now for Rellich’s lemma. Let {f j} be a sequence in Hs(T

n) such that

‖f j‖s ≤ C.
For each fixed ξ we let

ujξ = (1 + |ξ|2)
t
2 f iξ

and notice that |ujξ|
2 = ujξ · u

j
ξ = (1 + |ξ|2)t|f jξ |

2 ≤ ‖f‖2t ≤ ‖f‖2s < C2. Thus for a fixed ξ we

have a bounded sequence {ujξ} in Cm which of course must have a convergent subsequence.

Ordering the ξ’s we can use the Cantor diagonalization argument to find a subsequence of

the f j ’s, which we still denote f j , so that the corresponding ujξ’s converge for each fixed ξ.

We now claim that {f j} is a Cauchy sequence in Ht(T
n). To see this notice that

‖f j − fk‖2s =
∑
|ξ|<N

(1 + |ξ|2)s−t(1 + |ξ|2)t|f jξ − f
k
ξ |2

+
∑
|ξ|≥N

(1 + |ξ|2)s−t(1 + |ξ|2)t|f jξ − f
k
ξ |2

We call the first term on the left I and the second term II. Since s − t < 0 we have the
following bound on II

II ≤
∑
|ξ|≥N

(1 +N2)s−t(1 + |ξ|2)t|f jξ − f
k
ξ |2

= (1 +N2)s−t
∑
ξ

(1 + |ξ|2)t|f jξ − f
k
ξ |2

= (1 +N2)s−t‖f j − fk‖2t
(by the triangle inequality and Equation 24)

≤ c(1 +N2)s−t(‖f j‖2t + ‖fk‖2t ) ≤ (1 +N2)s−tcC2.

Thus we can choose N sufficiently large so that II ≤ ε
2 for any pre assigned ε. To bound I

notice that
(1 + |ξ|2)s−t ≤ 1

and thus
I ≤

∑
|ξ|<N

(1 + |ξ|2)t|f jξ − f
k
ξ |2.
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Now since for each fixed ξ the sequence {ujξ = (1 + |ξ|2)
t
2 f iξ} is Cauchy, and since there are

only finitely many ξ with |ξ| < n we see there is some N ′ such that for all j, k > N ′ we have

|ujξ − u
k
ξ |2 <

ε

2l

where l is the number of ξ with |ξ| < n. We now have

I ≤
∑
|ξ|<N

(1 + |ξ|2)t|f jξ − f
k
ξ |2 =

∑
|ξ|<N

|ujξ − u
k
ξ |2 ≤

ε

2l
l =

ε

2
.

Combining this with the above estimate shows that given ε there is an N ′ such that for
j, k > N ′ we have

‖f j − fk‖s ≤ ε
and thus {f j} is Cauchy in the s-norm. �

Here are several useful inequalities.

Lemma 3.12. (1) (Peter-Paul inequality) Let t′ < t < t′′ then for any ε > 0 there is a
constant c (depending on ε, t, t′ and t′′) such that

(20) ‖f‖t ≤ ε‖f‖t′′ + c‖f‖t′ ,
for all f ∈ Ht′′(T

n).
(2) For any function ω : Tn → C and functions f, g ∈ Hs(T

n) we have

(21) |〈ωf, g〉s − 〈f, ωg〉| ≤ c(‖f‖s‖g‖s−1 + ‖f‖s−1‖g‖s).
(3) There is a constant c (which happens to be 1

2) such that for any numbers a, b we
have

(22) |ab| ≤ c(|a|2 + |b|2).
Moreover, given an ε there is a constant c such that

(23) |ab| ≤ ε|a|2 + c|b|2.
(4) There is a constant c such that

(24) c(
N∑
j=1

|aj |)2 ≤
N∑
j=1

|aj |2 ≤ (
N∑
j=1

|aj |)2

Proof. To prove the Peter-Paul inequality notice that if y 6= 0 then y or 1
y > 1. Thus since

t′′ − t and t− t′ are greater than 0 we have

1 ≤ (y)t
′′−t +

(
1

y

)t−t′
.

If we set y = ε
1

t′′−t (1 + |ξ|2) then

1 ≤ ε(1 + |ξ|2)t′′−t +
1

ε
t−t′
t′′−t (1− |ξ|2)t−t′

and thus

(1 + |ξ|2)t ≤ ε(1 + |ξ|2)t′′ + ε
t′′−t
t−t′ (1 + |ξ|2)t′ .

Multiplying both sides by |fξ|2 and summing over ξ gives the desired inequality with c =

ε
t′′−t
t−t′ .
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For Inequality (21) we first notice that if s = 0 then we clearly have

〈ωf, g〉 − 〈f, ωg〉 =
1

(2π)n

∫
Tn

(ωf · g − f · (ωg)) = 0.

Now for s = 1 we have

|〈ωf, g〉1 − 〈f, ωg〉1| =
1

(sπ)n

∫
Tn

=
1

(2π)n

∣∣∣( ∫
Tn
ωf · g +

∑
j

∫
Tn

(Djωf) ·Djg

−
∫
Tn
ωf · g −

∑
j

∫
Tn
Djf ·Dj(ωg)

)∣∣∣
(the second and third terms cancel)

=
1

(2π)n

∣∣∣(∑
j

[ ∫
Tn
ωDjf ·Djg −

∫
Tn
Djf · ωDjg

+

∫
Tn

(Djω)f ·Djg +

∫
Tn
Djf · (Djω)g

])∣∣∣
(the first and second terms cancel)

≤ 1

(2π)n

(∣∣ ∫
Tn

(Djω)f ·Djg
∣∣+
∣∣ ∫

Tn
Djf · (Djω)g

∣∣)
(the Cauchy-Schwarz inequality gives)

≤
∑
j

(
‖(Djω)f‖‖Djg‖ + ‖Djf‖‖(Djω)g‖

)
(Inequality (15) gives)

≤
∑
j

(
c‖f‖‖Djg‖ + c′‖Djf‖‖g‖

)
= c‖f‖

∑
j

‖Djg‖ + c′‖g‖
∑
j

‖Djf‖

≤ c‖f‖‖g‖1 + c′‖f‖1‖g‖ ≤ c′′(‖f‖‖g‖1 + ‖f‖1‖g‖).

This establishes the inequality for s = 1.

Exercise 3.13. Prove the inequality for general s.

(In Section ?? we will discuss a “trick” for proving this inequality, but hopefully it is
clear that one should expect the inequality to be true from the above computation.)

Inequality 24 follows from Inequality (22) which in turn clearly follows form Inequal-
ity (23). For This inequality notice that for a real number c 6= 0 we have

0 ≤ (c|a| − 1

2c
|b|)2 = c2|a|2 − |ab|+ 1

4c2
|b|2

so

|ab| ≤ c2|a|2 +
1

4c2
|b|2.

Thus the inequality follows if we set c =
√
ε. �
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3.5. Sobolev spaces on a compact manifold M . We now define the Sobolev spaces
of sections of a bundle over a general manifold. To this end let p : E → M be a vector
bundle of an n-manifold with fiber dimension m. Let Γ(E) denote the smooth sections of
E. There are several ways to define Sobolev spaces, the most elegant way involves using
connections on a bundle, but the “simplest” way is as follows. Let {Vj} be a finite cover

of M by coordinate charts homeomorphic to subsets Uj of Tn such that Uj is an n-ball
embedded in T . Let

φj : Uj → Vj
be the inverse of the coordinate chart map and

πj : φ∗jE|Vj → Rm

be the projection to Rm of Ui ×Rm after a fixed identification

φ∗jE|Vj ∼= Ui × Rm.
Now choose a partition of unity {ρj} subordinate to {Vj}. Suppose σ is a section of E.
Notice that ρjσ is a section with support in Vj and πj ◦ (φ∗j (ρiσ)) is a function on Uj with
support on the interior of Uj . Thus we can extend it by 0 to a function Tn → Rm and
measure

‖πj ◦ (φ∗j (ρiσ))‖s
using any of the definitions of the Sobolev s-norm for functions on Tn. We now define

(25) ‖σ‖s =

∑
j

‖πj ◦ (φ∗j (ρiσ))‖2s

 1
2

.

First note that this defines a norm on Γ(E). The only non-tivial thing to check is the triangle
inequality.

Example 3.14. Prove the triangle inequality.

We now define the Sobolev space of sections of E to be the completion of Γ(E)
using the norm ‖ · ‖s, and denote it Hs(E). For most purposes we can use the above
definition and not worry about the fact that the norm depends on lots of data, specifically
{Uj , Vj , φj , ρj , πj}. But it is nice to know that this dependence is not important in the
following sense.

Lemma 3.15. For a compact manifold M the Sobolev s-norm on E is independent of the
choices made up to equivalence. That is if ‖ · ‖s is defined using {Uj , Vj , φj , ρj , πj} and ‖ · ‖′
is defined using {U ′j , V ′j , φ′j , ρ′j , π′j} then there are constants c, c′ such that

c‖σ‖s ≤ ‖σ‖′s ≤ c′‖σ‖s
and hence the topologies induced on Γ(E) are the same as are the completions with respect
to these norms.

Proof. We first note that if µ : M → C is a smooth function then

‖πj ◦ (φ∗j (ρjµσ)‖s = ‖πj ◦ ((µ ◦ φj)(φ∗j (ρjσ)))‖s
(since πj is linear on each fiber)

= ‖(µ ◦ φj)(πj ◦ (φ∗j (ρjσ)))‖s
(by Theorem 3.8)

≤ c‖πj ◦ (φ∗j (ρiσ))‖s.
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We also notice that if φ : U → U ′ is a diffeomorphism between two open subsets of Tn and
f : U ′ → Cm then we have

‖φ∗f‖2s =
∑
|α|≤s

‖Dαφ∗f‖2

(by the chain rule and product rule)

=
∑
|α|≤s

(derivatives of the map φ)‖φ∗Dαf‖

(by Theorem 3.8, where K is the largest constants associ-
ated to the sup norms of the derivatives of φ)

≤ K
∑
|α|≤s

‖φ∗Dαf‖2s

(by the independence of integrals on coordinates)

= K
∑
|α|≤s

‖Dαf‖2s

= K‖f‖2s.

We can similarly prove that there is a K ′ such that ‖f‖s ≤ K ′‖φ∗f‖s (just apply the above
inequality to (φ−1)∗f).

Example 3.16. If E is a bundle over a contractible set U ⊂ Tn and π and π′ are projections
of E|U to Rm using two different trivializations of E|U then there are constants c and c′

such that

c‖π ◦ σ‖s ≤ ‖π′ ◦ σ‖s ≤ c′‖π ◦ σ‖s.
Hint: This is more or less just like the last estimate proven above.

Now we have

‖σ‖2s =
∑
j

‖πj ◦ (φ∗j (ρjσ))‖s

=
∑
j

‖πj ◦ (φ∗j ((
∑
j′

ρ′j′)ρjσ))‖s

≤
∑
j,j′

‖πj ◦ (φ∗j (ρ
′
j′ρjσ))‖s

(by the exercise above)

≤ c
∑
j,j′

‖π′j ◦ (φ∗j (ρ
′
j′ρjσ))‖s

(by the second estimate proved above)

≤ c′
∑
j,j′

‖((φ′j′ ◦ φ−1j )∗(π′j ◦ (φ∗j (ρ
′
j′ρjσ)))‖s

(Exercise: check that pull back commutes with a fixed π′j)

= c′
∑
j,j′

‖π′j′ ◦ ((φ′j′)
∗(ρ′j′ρjσ))‖s

(by the first estimate proved above)
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≤ c′′
∑
j′

‖π′j′ ◦ ((φ′j′)
∗(ρ′j′σ))‖s = c′′(‖σ‖′s)2

We note that in all the constants above we were constantly taking the largest constant
involved in the all the different norms in the sum. It is because we have a finite number
of terms in the sums that this is a finite fixed constant. Of course the other inequality is
similar. �

We now generalize all the results for Sobolev spaces to an arbitrary closed manifold.

Theorem 3.17. For a closed manifold M and bundles E and F over M we have the
following.

(1) For any smooth section σ ∈ Γ(E) and number s ≤ t we have

‖σ‖s ≤ ‖σ‖t.
Thus the identity map on Γ(E) induces a bounded inclusion

Ht(E) ⊂ Hs(E).

(2) For all s and linear differential operator of order k, L : Γ(E) → Γ(F ) there is a
constant c such that

(26) ‖Lσ‖s ≤ c‖σ‖s+k
and thus extends to a bounded linear operator

L : Hs+k(E)→ Hs(F ).

(3) (Sobolev inequality) If s > n
2 +k then there is a constant c such that for any smooth

section σ ∈ Γ(E) we have

‖σ‖Ck ≤ c‖σ‖s.
Thus the identity map on Γ(E) induces a bounded inclusion

Hs(E) ⊂ Ck(E),

that is any element in Hs(E) has k continuous derivatives.
(4) (Rellich’s lemma) if s < t then any sequence σj in Ht(E) for which ‖σj‖t ≤ K

for some fixed K, there is a subsequence that is Cauchy (and hence convergent) in
Hs(E). That is the bounded linear inclusion map

Ht(E) ⊂ Hs(E)

is a compact operator.
(5) (Peter-Paul inequality) Let t′ < t < t′′ then for any ε > 0 there is a constant c

(depending on ε, t, t′ and t′′) such that

(27) ‖σ‖t ≤ ε‖σ‖t′′ + c‖σ‖t′ ,
for all σ ∈ Ht′′(E).

Proof. For the first statement just fix the data {Uj , Vj , φj , ρj , πj} used to define the Sobolev
norm and note

‖σ‖2s =
∑
j

‖πj ◦ (φ∗j (ρjσ)‖2s ≤ c
∑
j

‖πj ◦ (φ∗j (ρjσ)‖2t = c‖σ‖2t

where the inequality comes form the inequality proved on Tn.
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For the second statement we have

‖Lσ‖2s = ‖L
∑
j

ρjσ‖2s

≤
∑
j

‖L(ρjσ)‖2s

(Exercise: applying πj ◦φ∗j to the s-norm can be estimated
since the terms integrated will only involved fixed deriva-
tives of φ∗jφj and ρj)

≤ c
∑
j

‖πj ◦ φ∗j (L(ρjσ))‖2s

(there is an operator L′j of the same order as L such that

(πj ◦ φ∗j )L = L′j(πj ◦ φj))

= c
∑
j

‖L′j(πj ◦ φ∗j (ρjσ))‖2s

(by Theorem 3.8)

≤ c′
∑
j

‖πj ◦ φ∗j (ρjσ)‖2s+k = c′‖σ‖2s+k

For the Sobolev inequality notice that we just need a point wise bound on σ (and its
derivatives, by the way, what is the Ck norm on sections of E!).

Exercise 3.18. Given an inner product, and hence norm | · |E , on E we can estimate
|ρj(x)σ(x)|E by the Euclidean norm on Rn, |πj ◦ φ∗j (ρj(x)σ(x))|.

In turn, if s > n
2 , this can be estimated, using the Sobolev inequality in Tn, by ‖πj ◦

φ∗j (ρjσ)‖s which is clearly less than ‖σ‖s. Thus we have

|σ(x)|E = |
∑
j

ρj(x)σ(x)| ≤
∑
j

|ρ(x)σ(x)| ≤ c‖σ‖s

and hence ‖σ‖C0 ≤ c‖σ‖s. Similarly we can get ‖σ‖Ck ≤ c‖σ‖s, if s > n
s + k.

Rellich’s lemma easily follows since there are a finite number of charts Vj in the cover of
M. Indeed, suppose we have a sequence σn and a K such that ‖σn‖t ≤ K for all n. Then
on Tn we certainly have

‖πj ◦ φ∗j (ρjσn)‖t ≤ K
for all n (and j). Thus Rellich’s lemma on Tn implies there is a subsequence of the σn’s
such that πj ◦ φ∗j (ρjσn) is Cauchy in the Sovolev s-norm for each j. Thus for each ε > 0
there is an N such that for n,m > N we have

‖σn − σm‖2s =
∑
j

‖πj ◦ φ∗j (ρj(σn − σm))‖2s

=
∑
j

‖πj ◦ φ∗j (ρjσn)− πj ◦ φ∗j (ρjσm))‖2s ≤ ε.

Thus the sequence σn is Cauchy in the Sobolev s-norm.

Exercise 3.19. Generalize the Peter-Paul inequality from Tn to M.

�
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4. Elliptic Operators

4.1. Elliptic Operators on Tn. Recall a differential operator L of order k on C∞(Tn,Cm)
is an operator of the form

L = Pk(D) + . . .+ P0(D)

where Pj(D) is an m × m matrix with entries
∑
|α|=j aα(x)Dα where aα(x) is a smooth

function on Tn.

Example 4.1. For n = 2 = m and k = 1 we have L = P1(D) + P0(D) where

P1(D) =

[
x2 ∂

∂x + x ∂
∂y

∂
∂y

cos y ∂
∂y ex ∂

∂y

]
and

P0(D) =

[
x2 sin y 5

6x3 + y2 ex

]
.

Example 4.2. For m = 1 and k = 2 we have L′ = P2(D) where

P2(D) =
n∑
j=1

(
∂

∂xj

)2

.

The symbol of a differential operatorL of order k, denoted σ(L), is the function

Rn →Mm(C∞(Tn,C))

that takes an element ξ ∈ Rn and returns the matrix Pk(ξ) with entries from C∞(Tn,R).

Example 4.3. In the first example above for ξ = (ξ1, ξ2) we have

σ(L)(ξ) = P1(ξ) =

[
x2ξ1 + xξ2 ξ2

(cos y) ξ2 exξ2

]
.

Example 4.4. In the second example above we have

σ(L)(ξ) = P2(ξ) =
n∑
j=1

(ξj)2.

We call L elliptic at x ∈ Tn if for all ξ ∈ Rn with ξ 6= 0 the matrix σ(L)(ξ)(x)
is invertible. We say L is elliptic if it is elliptic at each point x ∈ Tn. There are two
fundamental theorems about elliptic operators.

Theorem 4.5 (Gärding inequality on Tn). If L is an elliptic operator on C∞(Tn,Cm) of
order k then for any integer s we can extend L to Hs+k(T

n) such that there is a contact c
for which

‖f‖s+k ≤ c(‖Lf‖s + ‖f‖s)
for all f ∈ Hs+k(T

n).

Notice that we already know that

‖Lf‖s ≤ c‖f‖s+k
and of course

‖f‖s ≤ ‖f‖s+k
so we trivially have

‖Lf‖s + ‖f‖s ≤ c′‖f‖s+k.
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In other words the Gärding inequality basically says that the norm ‖ · ‖s+k is equivalent to
the norm ‖L · ‖s + ‖ · ‖s. That is, controlling Lf is as good as controlling k derivatives of f.

Theorem 4.6 (Elliptic regularity on Tn). If L is an elliptic operator on C∞(Tn,Cm) of
order k then given u ∈ H0(T

n) and v ∈ Ht(T
n) such that

Lu = v

we have

u ∈ Ht+k(T
n).

Recall, that the bigger t for which u sits in Ht(T
n) the smoother u is. So this theorem

says that elliptic operators can improve the regularity, or smoothness, of solutoins. Thus if
v is smooth then any solution to Lu = v is smooth (since u ∈ ∩sHs(T

n) = C∞(Tn,Cm)).

Proof of Gärding’s inequality on Tn. There are three steps in the proof. We first will easily
show that if L is a contact coefficient operator of order k (and the Pj(D) = 0 for j < k) then
the inequality is true. Then we show that for functions supported near a point (thus the
coefficients of Pk(D) only vary a little on the support of the function) then the inequality
is true and finally we prove the general version of the inequality.

Step 1: Inequality when L = Pk(D) and the entries of of Pk(D) are of the form
∑
|α|=j aαD

α

where the aα are constants. We are in the situation wher Pk(ξ) ∈Mm(C) and by ellipticity
this m×m matrix is invertible. Since the unit sphere in Rm is compact we see that there
is some constant c > 0 such that

|Pk(ξ)u|2 ≥ c
for all |ξ| = 1 = |u|. Thus for any ξ 6= 0 6= u we have∣∣∣∣Pk ( ξ

|ξ|

)
u

|u|

∣∣∣∣2 ≥ c
and since the entries in Pk are homogeneous of order k in the ξ variables we have

| 1

|ξ|
Pk(ξ)

u

|u|
|2 ≥ c.

Thus

|Pk(ξ)u|2 ≥ c|ξ|2k|u|2

(note this also holds for ξ = 0 or u = 0). Thus for all f ∈ C∞(Tn,Cm) we have

‖Lf‖2s =
∑
ξ

(1 + |ξ|2)s|Pk(ξ)fξ|2 ≥ c
∑
ξ

(1 + |ξ|2)s|ξ|2k|fξ|2.

So
(‖Lf‖s + ‖f‖s)2 ≥ ‖Lf‖2s + ‖f‖2s

≥
∑
ξ

(1 + |ξ|2)s(c|ξ|2k + 1)|fξ|2

(taking c′ smaller than c or 1)

≥ c′
∑
ξ

(1 + |ξ|2)s(|ξ|2k + 1)|fξ|2
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Notice that since if ξ 6= 0 then |ξ|2 ≥ 1 we have

(1 + |ξ|2)k =
∑(

k

l

)
|ξ|2l

≤
∑(

k

l

)
|ξ|2k ≤ 1 + k|ξ|2k

(taking k′ greater than 1 or k)

≤ k′(1 + |ξ|2k)

Combining the last two estimates we have some constant c′′ such that

(‖Lf‖s + ‖f‖s)2 ≥ c′
∑
ξ

(1 + |ξ|2)s(|ξ|2k + 1)|fξ|2

≥ c′′
∑
ξ

(1 + |ξ|2)s(|ξ|2 + 1)k|fξ|2

= c′′
∑
ξ

(1 + |ξ|2)k+s|fξ|2 = c′′‖f‖2s+k.

Thus using Inequality (24) we have

c′′′(‖Lf‖s + ‖f‖s) ≥ ‖f‖s+k.

Step 2: Inequality for a general L but with “locally” supported functions. Specifically we
show that for each point x ∈ Tn there is an open set U such that for functions f with
support in U the inequality is true. Set P 0

k (ξ) = Pk(ξ)(p) and L0 the order k differential
operator with constant coefficients P 0

k (D). From Step 1 we know there is a constant c such
that

‖f‖s+k ≤ c(‖L0f‖s + ‖f‖s) ≤ c(‖Lf‖s + ‖(L0 − L)f‖s + ‖f‖s).
Of course we need to control the second term on the right. To that end there is a neighbor-
hood U ′ of x such that the sup norm of the first s derivatives of the coefficients of L0 − L
in U ′ are less than or equal to ε. Now define the operator L′ to be L0 −L on a subset U of
U ′, such that U ⊂ U ′, to be 0 on the complement of U ′ and any interpolating operator in
between. Thus if f has support in U then immediately from the inequality above we have

‖f‖s+k ≤ c(‖Lf‖s + ‖L′f‖s + ‖f‖s)
(by the standard estimate for kth order operators, Inequal-
ity 26)

≤ c(‖Lf‖s + c′‖f‖s+k + ‖f‖s)

(by the Peter-Paul Inequality with ε =
1

cc′2
)

≤ c(‖Lf‖s +
1

2c
‖f‖s+k + c′′‖f‖s+k−1 + ‖f‖s)

(by the Peter-Paul Inequality with ε =
1

cc′′4
)

≤ c(‖Lf‖s +
1

2c
‖f‖s+k +

1

4c
‖f‖s+k + c′′′‖f‖s + ‖f‖s)

=
3

4
‖f‖s+k + c(‖Lf‖s + (c′′′ + 1)‖f‖s)



56 JOHN B. ETNYRE

≤ 3

4
‖f‖s+k + k(‖Lf‖s + ‖f‖s).

Moving the first term to the left hand side we and multiplying by 4 we have the desired
inequality

‖f‖s+k ≤ k′(‖Lf‖s + ‖f‖s).
Step 3: Inequality in the general case. We will need a technical lemma.

Lemma 4.7. For smooth functions f : Tn → Cn and u : Tn → C and a differential operator
of order k there is a constant c such that

(28) |〈Lu2f, Lf〉s − 〈Luf, Luf〉s| ≤ c‖f‖s+k‖f‖s+k−1.

Proof. First we note that

|〈Lu2f, Lf〉s − 〈Luf, Luf〉s| ≤ |〈uLuf, Lf〉s − 〈Luf, uLf〉s|
+ |〈Luf, (uL− Lu)f〉s|+ |〈(Lu− uL)uf, Lf〉s|.

Now the second term on the left is

|〈Luf, (uL− Lu)f〉s| ≤ c‖Luf‖s‖(uL− Lu)f‖s
(since uL − Lu is a differential operator of order
≤ k − 1 applying Inequality (26) twice)

≤ c‖uf‖s+k‖f‖s+k−1 ≤ c′‖f‖s+k‖f‖s+k−1.
We can similarly bound the last term and the first term is appropriately bounded by In-
equality (21) �

Let ρj be a partition of unity subordinate to the finite cover Uj of Tn, such that Step 2
applies to any function supported in Uj . Now wet uj =

√
ρj .

‖f‖2s+k = 〈f, f〉s+k = 〈
∑

u2jf, f〉s+k
(by Inequality (21))

≤
∑
〈ujf, ujf〉s+k + c‖f‖s+k‖f‖s+k−1

=
∑
‖ujf‖2s+k + c‖f‖s+k‖f‖s+k−1

(by Step 2)

≤
∑

(‖Lujf‖2s + ‖ujf‖2s) + c‖f‖s+k‖f‖s+k−1
(by Inequality (28) on the first term and Inequality (26)
on the second)

≤ c′
∑
〈Lu2jf, Lf〉s + c′′‖f‖2s + c′′′‖f‖s+k‖f‖s+k−1

(by Inequality (23) on the last term with ε =
1

2c′′′
)

≤ c′‖Lf‖2s + c′′‖f‖2s +
1

2
‖f‖2s+k + C‖f‖2s+k−1

(by the Peter-Paul Inequality)

≤ c′‖Lf‖2s + c′′‖f‖2s +
3

4
‖f‖2s+k + C ′‖f‖2s

Thus we have
‖f‖2s+k ≤ C ′′(‖Lf‖2s + ‖f‖2s)
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and hence

‖f‖s+k ≤ C ′′(‖Lf‖s + ‖f‖s).

�

We need some preliminary notions and results to prove elliptic regularity on Tn. In
particular we need to understand when the derivative of a function in is a Sobolev space.
To do this we work with difference quotients. Given h ∈ Rn we define

Th : C∞(Tn, Cm)→ C∞(Tn,Cm)

by

Th(f)(x) = f(x+ h).

Notice that

(Th(f))ξ =
1

(2π)n

∫
Tn
f(x+ h)e−ix·ξ dx

=
1

(2π)n

∫
Tn
f(x)e−i(x−h)·ξ dx

= eih·x
1

(2π)n

∫
Tn
f(x)e−ix·ξ dx

= eih·xfξ.

Thus if we define

fh =
f(x+ h)− f(x)

|h|
=
Th(f)(x)− f(x)

|h|
,

then

(fh)ξ =

(
eih·ξ − 1

|h|

)
fξ.

We can use these formulas to define Th and (·)h on Hs(T
n). (That is thinking of the Sobolev

space as a subset of the sequences l2(Zn,Cn) the operators are defined by the appropriate
multiplication of the terms in the sequence.)

Lemma 4.8. We have the following

(1) If f ∈ Hl(T
n) then Th(f) ∈ Hl(T

n) and

‖Th(f)‖l = ‖f‖l.

(2) If f ∈ Hl+1(T
n) then fh ∈ Hl(T

n) and there is a constant c such that

‖fh‖l ≤ c‖f‖l+1.

(3) if f ∈ Hl(T
n) and there is some c such that for all h sufficiently small

‖fh‖l ≤ c,

then f ∈ Hl+1(T
n).
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Proof. The first statement is obvious. For the second statement

‖fh‖l =
∑
ξ

(1 + |ξ|2)l|
(
eih·ξ − 1

|h|

)
fξ|2

(since eih·ξ = cosh · ξ + i sinh · ξ)

=
∑
ξ

(1 + |ξ|2)l
[(

cos ih · ξ − 1

|h|

)2

+

(
sin ih · ξ
|h|

)2
]
|fξ|2

=
∑
ξ

(1 + |ξ|2)l
(

cos2 h · ξ + sin2 h · ξ − 2 cosh · ξ + 1

|h|2

)
|fξ|2

=
∑
ξ

(1 + |ξ|2)l
(

2− 2 cosh · ξ
|h|2

)
|fξ|2

=
∑
ξ

(1 + |ξ|2)l
(

4 sin2(12h · ξ)
|h|2

)
|fξ|2

≤
∑
ξ

(1 + |ξ|2)l
(

(h · ξ)2

|h|2

)
|fξ|2 =

∑
ξ

(1 + |ξ|2)l
(
h

|h|
· ξ
)2

|fξ|2

≤
∑
ξ

(1 + |ξ|2)l(1 + |ξ|2)|fξ|2 = ‖f‖l+1.

For the last statement consider the truncated Fourier series

fN =
∑
|ξ|≤N

fξe
ih·ξ.

If we can show that there is a c such that

‖fN‖l+1 ≤ c

for all N then clearly

‖f‖l+1 ≤ c
and we are done. Now let e1, . . . , en be the standard orthonormal basis for Rn and set
h = tej for any j. Then for a fixed ξ we have∣∣∣∣eih·ξ − 1

|h|

∣∣∣∣2 =

∣∣∣∣eih·ξ − 1

t

∣∣∣∣2 → |ξi|2 as t→ 0

since the Taylor expansion of the second term is iξj+ 1
2(iξj)

2t+ . . . . So for any finite number
of ξ’s and a given ε > 0 there is a δ > 0 such that t ≤ δ,∣∣∣∣∣

∣∣∣∣eih·ξ − 1

|h|

∣∣∣∣2 − |ξj |2
∣∣∣∣∣ ≤ ε.

By hypothesis there is a δ′ > 0 such that for all t ≤ δ′,∑
|ξ|≤N

(1 + |ξ|2)l
∣∣∣∣(eih·ξ − 1

|h|

)∣∣∣∣2 |fξ|2 ≤∑
ξ

(1 + |ξ|2)l
∣∣∣∣(eih·ξ − 1

|h|

)∣∣∣∣2 |fξ|2 < k2.
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For appropriately chosen ε and t ≤ min{δ, δ′} we have∑
|ξ|≤N

(1 + |ξ|2)l|ξj |2|fξ|2 ≤ k2

and hence ∑
|ξ|≤N

(1 + |ξ|2)l|ξ2| |fξ|
2 ≤ k2n.

Notice this bound is independent of N (of course for different N we might need to choose
different δ). We now have

‖fN‖l+1 =
∑
|ξ|≤N

(1 + |ξ|2)l+1|fξ|2

=
∑
|ξ|≤N

(1 + |ξ|2)l|fξ|2 +
∑
|ξ

| ≤ N(1 + |ξ|2)l|ξ|2|fξ|2

≤
∑
ξ

(1 + |ξ|2)l|fξ|2 + nk2

≤ ‖f‖l + nk2.

And as mentioned above this bounds ‖f‖l+1 so we have shown f ∈ Hl+1(T
n). �

Elliptic Regularity for Tn. The theorem follows if we can show that u ∈ Hs(T
n) and Lu =

v ∈ Hs−l+1(T
n) then u ∈ Hs+1(T

n). To this end supose h ∈ Rn and h 6= 0. Let Lh be

the operator obtained from L by replacing all the coefficients a(x) with a(x+h)−a(x)
h and let

Th(L) be the operator obtained by replacing the coefficients of L with a(x+ h). Notice[
L(uh)− (L(u))h

]
(x) = L

(
u(x+ h)− u(x)

|h|

)
− (Th(L)(u))(x+ h)− (Lu)(x))

|h|

=
L(u(x+ h))− (ThL)(u(x+ h))

|h|
= −Lh(Th(u)).

Thus using Gärding’s inequality we have

‖uh‖s ≤ c(‖Luh‖s−l + ‖uh‖s−l)

≤ c′(‖(Lu)h‖s−l + ‖Lh(Thu)‖s−l + ‖u‖s−l+1)

(since Lh is a differential operator of order l)

≤ c′(‖(Lu)h‖s−l + ‖Thu‖s + ‖u‖s+l−1)
≤ c′′(‖Lu‖s−l+1 + ‖u‖s + ‖u‖s)
≤ c′′′(‖v‖s−1+1 + ‖u‖s).

Thus ‖uh‖s is bounded independent of h so u ∈ Hs+1(T
n). �
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4.2. Elliptic Operators a general closed manifold. Suppose E and F are bundles over
a manifold M. An operator L : Γ(E) → Γ(F ) is a differential operator of order k if
in local coordinates (homeomorphic to a subset of Tn) it can be expressed as a differential
operator on an open subset of Tn. We similarly call the operator elliptic if in local coordi-
nate about each point x ∈M it is elliptic at x. This definition is somewhat cumbersome to
work with in practice so we will reformulate it but first notice.

Exercise 4.9. Using the local expression for the Laplacian on functions given in Section 1.2
show that it is elliptic.

Suppose L : C∞(Tn,Cm) → C∞(Tn,Cm is a differential operator of order k on Tn. We
claim that L is elliptic at x if and only if for all

L(φku) 6= 0

for all u ∈ C∞(Tn,Cm) with u(x) 6= 0 and φ : Tn → R with φ(x) = 0 and dφx 6= 0. To see
this notice that

L(φku)(x) = Pk(D)(φku)(x)

+ (terms with ≤ k derivatives of φk at x so they = 0)

= Pk(c dφx)u(x)

for some nonzero c. Thus by our choice of φ and u the operator L is elliptic if and only if the
last term is nonzero for all suitable choices of φ and u. This criterion easily transverse to
manifolds and bundles. In particular we see that L : Γ(E)→ Γ(F ) is a differential operator
of order k then it is elliptic at x if and only if for all α ∈ Γ(E) with α(x) 6= 0 and φ : M → R
with φ(x) = 0 and dφx 6= 0 we have

L(φkα)(x) 6= 0.

Exercise 4.10. Show that the above construction yields, for each x, a well defined linear
map

T ∗xM → Hom(Ex, Fx)

thus we get a bundle map

T ∗M → Hom(E,F ).

The bundle map constructed in the exercise is called the symbol of L and is denoted
σ(L). In terms of this symbol we can say L is elliptic if and only if σ(L)ξ is a isomorphism
Ex → Fx (where ξ is a covector above x) for all ξ 6= 0. This is the definition of ellipticity
that is easiest to deal with.

Theorem 4.11. The Laplacian

∆ : Ωp(M)→ Ωp(M)

is an elliptic operator or order 2.

Proof. Clearly ∆ is of order two. For ellipticity consider any x ∈ M and any non-zero
elements v ∈ (∧∗pM)x and ξ ∈ T ∗xM. Let α ∈ Ωp(M) and φ : M → R be such that

α(x) = v

and

φ(x) = 0, dφx = ξ.
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Now
δd(φ2α) = (−1)np+1 ∗ d ∗ d(φ2α)

= (−1)np+1 ∗ d ∗ (2φdφ ∧ α+ φ2dα)

= (−1)np+1 ∗ d(2φ ∗ (dφ ∧ α) + φ2 ∗ dα)

= (−1)np+1(2dφ ∧ ∗(dφ ∧ α) + 2φd ∗ (dφ ∧ α)

+ 2φdφ ∧ ∗dα+ φ2d ∗ dα).

Evaluating this at x we get

δd(φ2α) = (−1)np+1(2 ∗ ξ ∧ (∗(ξ ∧ v))).

Similarly

dδ(φ2α) = (−1)n(p+1)+1(2ξ ∧ ∗(ξ ∧ ∗v))

and thus

∆(φ2α) = (−1)np+1(2 ∗ ξ ∧ (∗(ξ ∧ v))) + (−1)n(p+1)+1(2ξ ∧ ∗(ξ ∧ ∗v)).

To see ∆ is elliptic we need to see that this is nonzero. To this end consider the map

Wξ : ∧∗k(M)→ ∧∗k+1(M)

given by

Wξ(v) = ξ ∧ v.
We claim that the adjoint of Wξ is

W ∗ξ (v) = (−1)nk ∗ ξ ∧ ∗v.
Thus we can write

∆(φ2α) = (−1)n+12(W ∗ξWξ +WξW
∗
ξ )v.

Below we will see that this is nonzero, but first let us check our claim about the adjoint of
Wξ. Indeed

〈Wξ(v), w〉 = 〈ξ ∧ v, w〉
(using the formula for inner products on ∧k(M), see Equa-
tion (1))

= ∗((ξ ∧ v) ∧ ∗w) = ∗(v ∧ (−1)k(ξ ∧ ∗w))

= ∗(v ∧ ∗ ∗ (−1)k(n−k)(−1)k(ξ ∧ ∗w))

= ∗(v ∧ ∗[(−1)kn ∗ (ξ ∧ ∗w)])

= 〈v, (−1)kn ∗ (ξ ∧ ∗w)〉
and thus the adjoint is as claimed.

We now observe a simple linear algebra fact. Suppose U, V and W are vector spaces with
inner products and

U
A→ V

B→W

exact at V. Let A∗ and B∗ be the adjoints of A and B, respectively. We claim that

B∗B +AA∗ : V → V

is an isomorphism. Indeed suppose v 6= 0. If (B∗B +AA∗)v = 0 then

0 = 〈(B∗B +AA∗)v, v〉 = 〈Bv,Bv〉+ 〈A∗v,A∗v〉.
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Thus A∗v = 0 and Bv = 0. Since Bv = 0 we have some u such that Au = v, but

〈v, v〉 = 〈Au,Au〉 = 〈u,A∗Au〉 = 〈u,A∗v〉 = 0

which of course implies that u = 0 and hence v = Au = 0, a contradiction. Thus B∗B+AA∗

is an isomorphism as claimed.
Thus we will have completed our proof once we check that

∧∗k−1(M)
Wξ→ ∧∗k(M)

Wξ→ ∧∗k+1(M)

is exact at ∧∗k(M) for any ξ 6= 0. Clearly we have

WξWξv = ξ ∧ ξ ∧ v = 0.

So we are left to show that if Wξv = 0 then v = Wξu for some u ∈ ∧∗k−1(M). For this if

ξ 6= 0 we choose a basis for T ∗M, e1, . . . , en where e1 = ξ. Now

v =
∑

ai1,...,ike
i1 ∧ . . . ∧ eik ,

where we only consider ii < i2 < . . . < ik. Since ei1 ∧ . . . ∧ eik+1 , with ii < i2 < . . . < ik+1

is a basis for ∧∗k+1(M) we see that if any of the terms in v does not have e1 in it then

ξ ∧ v = e1 ∧ v 6= 0. There for if we set

u =
∑

ai1,...,ike
i2 ∧ . . . ∧ eik ,

then clearly Wξ(u) = v. �

4.3. Properties of Elliptic Operators a general closed manifold.

Theorem 4.12. If M is a closed manifold, E and F are a vector bundles over M with the
same fiber dimension and L is an elliptic operator from Γ(E) to Γ(F ) of order k then

(1) (Gärding inequality.) There is a constant c for which

‖α‖s+k ≤ c(‖Lα‖s + ‖α‖s)
for all α ∈ Hs+k(E).

(2) (Elliptic regularity.) Given u ∈ H0(E) and v ∈ Ht(F ) such that

Lu = v

we have
u ∈ Ht+k(E).


