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In this graduate textbook Professor Humphreys presents a concrete and up-to-
date introduction to the theory of Coxeter groups. He assumes that the reader
has a good knowledge of algebra, but otherwise the book is self-contained making
it suitable either for courses and seminars or for self-study.

The first part is devoted to establishing concrete examples. Chapter 1 develops
the most important facts about finite reflection groups and related geometry,
leading to the presentation of such groups as Coxeter groups. In Chapter 2 these
groups are classified by Coxeter graphs, and actual realizations are described.
Chapter 3 discusses in detail the polynomial invariants of finite reflection groups.
The first part ends with the construction in Chapter 4 of the affine Weyl groups,
a class of Coxeter groups which plays a major role in Lie theory.

The second part (which is logically independent of, but motivated by, the first)
starts by developing from scratch the properties of Coxeter groups in general,
including the Bruhat ordering. In Chapter 6, it is shown how earlier examples
and others fit into the general classification of Coxeter graphs. Chapter 7 in-
troduces the seminal work of Kazhdan and Lusztig on representations of Hecke
algebras associated with Coxeter groups. Finally, Chapter 8 sketches a number
of interesting complementary topics as well as connections with Lie theory.

The book concludes with an extensive bibliography on Coxeter groups and
their applications.
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Preface

'Les choses, en effet, sont pour le moins doubles.'
Proust, La Fugitive

Since its appearance in 1968, Bourbaki [1] (treating Coxeter groups, Tits
systems, reflection groups, and root systems) has become indispensable
to all students of semisimple Lie theory. An enormous amount of in-
formation is packed into relatively few pages, including detailed descrip-
tions of the individual root systems and a vast assortment of challenging
'exercises'. My own dog-eared copy (purchased at Dillon's in London in
the spring of 1969 for 90 shillings) is always at hand. The present book
attempts to be both an introduction to Bourbaki and an updating of
the coverage, by inclusion of such topics as Bruhat ordering of Coxeter
groups. I was motivated especially by the seminal 1979 paper of D.A.
Kazhdan and G. Lusztig [1], which has led to rapid progress in repre-
sentation theory and which deserves to be regarded as a fundamental
chapter in the theory of Coxeter groups.

Part I deals concretely with two of the most important types of Cox-
eter groups: finite (real) reflection groups and affine Weyl groups. The
treatment is fairly traditional, including the classification of associated
Coxeter graphs and the detailed study of polynomial invariants of finite
reflection groups.

Part II is for the most part logically independent of Part I, but lacks
motivation without it. Chapter 5 develops the general theory of Coxeter
groups, with emphasis on the 'root system' (following Deodhar [4]), the
Strong Exchange Condition of Verma, and the Bruhat ordering. Spe-
cial cases such as finite and hyperbolic Coxeter groups occupy Chapter
6. Chapter 7 is mainly an exposition of Kazhdan-Lusztig [1]. Finally,
Chapter 8 sketches some related topics of interest, with suggestions for
further reading. Because the subject reaches out in so many directions, I
have provided an extensive (though by no means complete) bibliography.

The arguments in Part I are largely self-contained. However, the
treatments of crystallographic reflection groups (Weyl groups) in Chap-
ter 2 and affine Weyl groups in Chapter 4 require some facts about

XI
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xii Preface

(crystallographic) root systems which are less directly connected with
the theory of Coxeter groups and are therefore only summarized here.
The coverage in Chapter VI of Bourbaki is thorough and accessible, and
highly recommended for the serious student of Lie theory.

There are interesting groups generated by 'reflections' which are not
in a natural way Coxeter groups, including for example most of the
complex reflection groups (these deserve a book of their own). I have
mentioned such related theories only in passing, in order to concentrate
the treatment on Coxeter groups.

The history of the subject is long and intricate: see the Note his-
torique in Bourbaki as well as the historical remarks in Coxeter [1]. Of-
ten a result has been first observed empirically (using the classification
of finite reflection groups, for example) and later proved conceptually.
I have tried to attribute theorems correctly, but have stopped short of
reconstructing the history of each. The notes and references at the ends
of chapters are intended to make it possible for the interested reader to
get back to the original sources, notably the pioneering work of Coxeter
and Witt. I hope readers will call omissions or errors to my attention.

All cross-references are to sections, such as 2.7. Each section contains
at most one result labelled lemma, proposition, theorem or corollary,
later referred to as (for example) Theorem 2.7. In order to emphasize
what I take to be the high points in the development, I have made
a distinction (admittedly subjective) between the labels 'proposition'
and 'theorem'. Against considerable odds, I have struggled to make
consistent notational choices, but there are occasional local aberrations.
Exercises are scattered throughout the text. The reader is encouraged
to try all of them; but none is required afterwards except as indicated.

I am indebted to the many people whose books, papers, and lectures
have shaped my own knowledge of the subject, especially N. Bourbaki,
V.V. Deodhar and J. Tits. Special thanks are due to George Avrunin
for initiating me into the mysteries of JATgX. Research support from the
National Science Foundation is also gratefully acknowledged.

J.E. Humphreys
Amherst, MA
October 1989

For this printing, a number of misprints and minor errors have been cor-
rected, and portions of 4.5, 5.5, 5.10 have been rewritten. I am grateful
to the many readers who pointed out errors and suggested improvements,
especially J. B. Carrell, E. Neher, and L. Tan.
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Chapter 1

Finite reflection groups

In this chapter we begin the study of finite groups generated by reflec-
tions in (real) euclidean spaces. Our main tool will be a well-chosen set
of vectors ('roots') orthogonal to reflecting hyperplanes (1.2). A set of
'simple roots' (1.3) yields an efficient generating set for the group (1.5),
leading eventually to a very simple presentation by generators and re-
lations as a 'Coxeter group' (1.9). The latter part of the chapter treats
a number of geometric and group-theoretic topics, all of which involve
the 'parabolic' subgroups generated by sets of simple reflections (1.10),
e.g., Poincare polynomials (1-11), fundamental domains (1.12), and the
Coxeter complex (1.15).

1.1 Reflections
Recall what is meant by a reflection in a (real) euclidean space V
endowed with a positive definite symmetric bilinear form (A,/z). A re-
flection is a linear operator s on V which sends some nonzero vector a
to its negative while fixing pointwise the hyperplane Ha orthogonal to
a. We may write s = sa, bearing in mind however that sa = sc« for
any nonzero c € R, There is a simple formula:

sQA = A - -y fa.
(a, a)

Indeed, this is correct when A = a and when A € Ha; so it is correct for
all A € V = Ha © Ha. A quick calculation (left to the reader) shows
that sa is an orthogonal transformation, i.e., (saX, san) = (A,/i) for all
A , / J G F . It is clear that s£ = 1, so sa has order 2 in the group O(V) of
all orthogonal transformations of V.

A finite group generated by reflections (or finite reflection group,
for short) is an especially interesting type of finite subgroup of O(V).
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4 Finite reflection groups

The purpose of this chapter and the next will be to classify and describe
all such groups. In doing so, we shall explore alternately the internal
structure of the group itself (e.g., the relations satisfied by the generating
reflections) and the geometric aspects of the action of the group on V
(e.g., fundamental domains).

Here are some basic examples, which should be kept in mind as the
story unfolds. (They are labelled by 'types', in accordance with the
classification to be carried out in Chapter 2.)

(I2(rn), m > 3) Take V to be the euclidean plane, and define Vm

to be the dihedral group of order 2m, consisting of the orthogonal
transformations which preserve a regular m-sided polygon centered at
the origin. Vm contains m rotations (through multiples of 27r/m) and
m reflections (about the 'diagonals' of the polygon). Here 'diagonal'
means a line bisecting the polygon, joining two vertices or the midpoints
of opposite sides if m is even, or joining a vertex to the midpoint of the
opposite side if m is odd. Note that the rotations form a cyclic subgroup
of index 2, generated by a rotation through 2n/m. The group Vm is
actually generated by reflections, because a rotation through 2ir/m can
be achieved as a product of two reflections relative to a pair of adjacent
diagonals which meet at an angle of 0 := w/m (see Figure 1). Let

\
\

\

Figure 1: The case m = 4

the reflecting lines Ha and Hp contain these diagonals, and choose the
orthogonal unit vectors a — (sinO, — cos#) and /? = (0,1) which form
an obtuse angle of TT — 0, so (a, /?) = —cos 0. To see that sas0 is a
(counterclockwise) rotation through 20, take Hp to be the x-axis and
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1.1. Rejections 5

compute with 2 x 2 matrices relative to the standard basis of R2:

/ cos 20 sin 20 \ f 1 0 \ _ / cos 29 -sin 26 \
\ sin 26 -cos 26 ) \ 0 - 1 ) ~ \ sin 26 cos 26 )

Exercise 1. The reflections form a single conjugacy class in Vm when m
is odd, but form two classes when m is even.

(An_i, n > 2) Consider the symmetric group Sn. It can be
thought of as a subgroup of the group O(n,R) of n x n orthogonal
matrices in the following way. Make a permutation act on Rn by per-
muting the standard basis vectors £\,... ,en (permute the subscripts).
Observe that the transposition (ij) acts as a reflection, sending Si — Sj
to its negative and fixing pointwise the orthogonal complement, which
consists of all vectors in Rn having equal ith and jth components. Since
Sn is generated by transpositions, it is a reflection group. Indeed, it is
already generated by the transpositions (i,i + 1),1 <i <n — 1.

Exercise 2. Regarding «Sn in this way as a subgroup of O(n, R), prove
that the transpositions are the sole reflections belonging to Sn.

When Sn acts on Rn in the way just described, it fixes pointwise the
line spanned by £i + ...+£„ (these are clearly the only fixed points) and
leaves stable the orthogonal complement, the hyperplane consisting of
vectors whose coordinates add up to 0. Thus <Sn also acts on an (n — 1)-
dimensional euclidean space as a group generated by reflections, fixing
no point except the origin. This accounts for the subscript n — 1 in
the label An_i. When a reflection group W acts on V with no nonzero
fixed points, we say that W is essential relative to V. It is clear that
any subgroup W of O(V) stabilizes the orthogonal complement V of its
space of fixed points and is essential relative to V.

(Bn, n > 2) Again let V = Rn, so <Sn acts on V as above. Other
reflections can be defined by sending an £» to its negative and fixing all
other £j. These sign changes generate a group of order 2n isomorphic to
(Z/2Z)n, which intersects <5n trivially and is normalized by Sn: conju-
gating the sign change e* >-» — £i by a transposition yields another such
sign change. Thus the semidirect product of Sn and the group of sign
changes yields a reflection group W of order 2nn!. It is easy to check
that W is essential.

(Dn, n > 4) We can get another reflection group acting on Rn, a
subgroup of index 2 in the group of type Bn just described: Sn clearly
normalizes the subgroup consisting of sign changes which involve an even
number of signs, generated by the reflections e» +Ej >—* — (ej + £j), i ^ j .
So the semidirect product is also a reflection group (and is essential).
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6 Finite reflection groups

1.2 Roots

Prom now on we denote by W a finite reflection group, acting on the
euclidean space V. The letter W is used because 'most' finite reflection
groups turn out to be 'Weyl groups' (associated with semisimple Lie
algebras or Lie groups). Much of the theory to be developed in this
book is in fact motivated by the problems of Lie theory, cf. Bourbaki [1].

In order to understand the internal structure of W as an abstract
group, we first explore the way in which W acts on V. Each reflection
sa in W determines a reflecting hyperplane Ha and a line LQ = Ra
orthogonal to it. The following result implies that W permutes the
collection of all such lines.

Proposition Ift'€ O(V) and a is any nonzero vector in V, then
tsat'1 = sta- In particular, ifw&W, then swa belongs to W whenever
sa does.
Proof. Obviously tSat*1 sends ta to its negative. So we need only show
that tsat~

l fixes Hta pointwise. Note that A lies in Ha if and only if
tX lies in Hta, since (A, a) = (tX, ta). In turn, (fsQt-1)(<A) = tsaX = tX
whenever A lies in Ha. •

Thus W permutes the lines La, where sa ranges over the set of re-
flections contained in W, via w(La) = Lwa. Only the lines La are
determined by W, not the vectors a. However, if we select the pairs of
unit vectors lying in all such lines, the collection of vectors so obtained
will be stable under the action of W. It is this sort of geometric con-
figuration which we shall emphasize below. Actually, we need not insist
that the vectors be of equal length: only the stability under W is sig-
nificant for our purposes. For example, the dihedral group 2?4 preserves
the collection of eight vectors in R2:

±(1,0), ±(1,1), ±(0,1), ±(-1,1)

For flexibility in some future arguments, it is most convenient to
axiomatize the situation as follows. Take $ to be a finite set of nonzero
vectors in V satisfying the conditions:

(Rl) $ f l R a = {Q, -a} for all a G $;
(R2) sQ$ = $ for all a € $.

Then define W to be the group generated by all reflections sa, a € $.
Call $ a root system with associated reflection group W. The elements
of $ are called roots because of the historical connection between Weyl
groups and semisimple Lie algebras, where the notion of 'root' goes
back ultimately to the characteristic roots of certain operators on the
Lie algebra. However, our notion of 'root system' differs somewhat from
that encountered in Lie theory; see 2.9 below.
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1.3. Positive and simple systems 7

As the previous discussion shows, any finite reflection group can be
realized in this way, possibly for many different choices of $. Conversely,
any group W arising from a root system is in fact finite. Indeed, each
sa(a € $) and hence each element of W fixes pointwise the orthogonal
complement of the subspace spanned by $. So only w = 1 can fix all
elements of $. This means that the natural homomorphism of W into
the symmetric group on $ has trivial kernel, forcing W to be finite.

To recapitulate: our finite reflection group W C O(V) is henceforth
to be studied in conjunction with a root system $ C F , subject only to
(Rl) and (R2) above. The choice of $ is somewhat flexible. It might
consist of unit vectors, or not. The reflections sa(a € $) might or might
not be known to exhaust all reflections in W. The set $ might span V,
or not. All that really matters for later arguments is that (Rl) and (R2)
hold.

Remark. Given a root system $ and corresponding reflection group W,
define <&' to be the set of unit vectors proportional to the vectors in $.
Then .$' is clearly a root system, with W as corresponding reflection
group.

1.3 Positive and simple systems

Fix a root system $ in the euclidean space V, so that W is the finite
reflection group generated by all sa(a € $). While W is completely de-
termined by the geometric configuration $, there is one serious drawback
to using $ as a tool in the classification of possible reflection groups: $
may be extremely large compared with the dimension of V. For exam-
ple, when W is a dihedral group, $ may have just as many elements as
W, even though dim V = 2.

This leads us to look for a linearly independent subset of $ (a 'simple
system') from which $ can somehow be reconstituted. More precisely,
we ask that each root be an R-linear combination of 'simple' roots with
coefficients all of like sign. In this way a simple system will yield a
partition of $ into 'positive' and 'negative' roots, with precisely one of
each pair {a, —a} labelled as positive. Partitions of this sort are easy
to find (by totally ordering V), so we take this as our starting point in
the search for a simple system.

Recall that a total ordering of the real vector space V is a transitive
relation on V (denoted <) satisfying the following axioms.

(1) For each pair \,fi&V, exactly one of A < fi, A = fi, fj, < A holds.
(2) For all A, fi, v in V, if fi < v, then A + fi < A + v.
(3) If fi < v and c is a nonzero real number, then c/x < cv if c > 0,

while cv < cfi if c < 0.
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8 Finite reflection groups

Given such an ordering, we say that A € V is positive if 0 < A. The
sum of positive vectors is positive, as is the scalar multiple of a positive
vector by a positive real number.

To construct a total ordering of V is easy: choose an arbitrary or-
dered basis Ai,. . . , An of V and adopt the corresponding lexicographic
order, where J2 a»Ai < 5Z h^i means that a* < 6* if k is the least index
i for which a* ^ bi. The reader can quickly verify the axioms above.
Note too that all A, are positive in this ordering.

Returning to the root system $, we call a subset II a positive sys-
tem if it consists of all those roots which are positive relative to some
total ordering of V. It is clear that positive systems exist. Moreover,
since roots come in pairs {a, —a}, it is clear that $ must be the disjoint
union of II and —II, the latter being called a negative system. When
II is fixed, we can write a > 0 in place of a € II.

Call a subset A of $ a simple system (and call its elements simple
roots) if A is a vector space basis for the R-span of $ in V and if
moreover each a € $ is a linear combination of A with coefficients all of
the same sign (all nonnegative or all nonpositive). It is not at all evident
that simple systems exist.

Theorem (a) If A is a simple system in $, then there is a unique
positive system containing A.

(b) Every positive system II in $ contains a unique simple system;
in particular, simple systems exist.

Proof, (a) Suppose the simple system A is contained in a positive system
II. Then all roots which are nonnegative linear combinations of A must
also be in II (and their negatives cannot be in II). So II is characterized
uniquely as the set of all such roots. To see that such a positive system
exists, extend the linearly independent set A to an ordered basis of V
and take II to be the set of positive elements of $ in the corresponding
lexicographic ordering. Evidently A C II.

(b) Suppose for a moment that the given positive system II (coming
from some total ordering of V) does contain a simple system A. Then
A may be characterized as the set of all roots in a € II such that a is
not expressible as a linear combination with strictly positive coefficients
of two or more elements of II. (This follows easily from the definitions.)
So A is the unique simple system in II.

How can we actually locate a simple system in II? Choose as small
a subset A C II as possible subject to the requirement that each root in
II be a nonnegative linear combination of A. Obviously such a subset
exists. We need only prove that A is linearly independent. This will
follow from a key geometric condition, to be verified below:

(a, /3) < 0 for all pairs a / /? in A. (1)
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1.3. Positive and simple systems 9

Assuming the truth of (1), consider what would happen if A failed to
be linearly independent: J2asA a « a = 0» with not all aa = 0. Rewrite
this as ]T) b@0 = ]T) <hl-> where the sums are taken over disjoint subsets
of A and the coefficients are strictly positive. If a denotes the sum just
written, we have a > 0. But, thanks to (1),

0 <

This forces a = 0, which is absurd. Thus A must be linearly indepen-
dent.

It remains to verify (1). Suppose it fails for some pair a, /?. Then the
formula for a reflection gives sa0 = 0 — ca, with c = 2(/3, a)/(a, a) > 0.
Since sa/3 e $, either it or its negative must lie in II. Say sa(l =
53 C77 (sum over 7 € A, &y > 0). In case cp < 1, we get sQ/3 = J3 — ca =
Cf}0 + Yl-i^p ^YTJ o r (1 ~" cp)P — nonnegative linear combination of A\
{/?}. Since 1 — cp > 0, this allows us to discard /?, contradicting the
minimality of A. In case c/j > 1, we get instead 0 = (c@ — l)/3 + ca +
12f^p 'hi- But a nonnegative linear combination of A with at least one
positive coefficient cannot equal 0, by definition of total ordering. So
sa0 cannot be positive. A similar argument shows that sa0 cannot be
negative either; here the cases to consider are c -f- cQ > 0 and c+c a < 0.
This contradiction implies that (1) must be true. •

Because of the uniqueness statements in the theorem, the proof ac-
tually shows that (1) must hold for any simple system. This is an im-
portant geometric constraint, which plays a role in the classification of
possible reflection groups (Chapter 2):

Corollary (of proof) If A is a simple system in $, then (a, 0) < 0
for all a ± 0 in A. D

The cardinality of any simple system is an invariant of $, since it
measures the dimension of the span of $ in V\ We call it the rank of
W. For example, Vm has rank 2, while Sn has rank n — 1.

Exercise 1. If $ has rank 2, prove that W is a dihedral group. [This will
be easier to do after Theorem 1.5.]

Exercise 2. Find simple systems for the various groups described in 1.1,
taking for $ in each case a convenient set of vectors (not necessarily unit
vectors).
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10 Finite reflection groups

1.4 Conjugacy of positive and simple sys-
tems

We have shown that positive and simple systems in $ determine each
other uniquely. However, we have not ruled out the unpleasant pos-
sibility that differently chosen simple systems might differ drastically
as geometric configurations. Here we examine the relationship between
different systems.

It follows directly from the definition that, for any simple system A
and for any w e W, wA is again a simple system, with corresponding
positive system wH (if II is the positive system determined by A). To
understand better the passage from II to wH, consider the special case
w = sa (a € A). We find that II and sall differ only by one root:

Proposition Let A be a simple system, contained in the positive
system U. If a € A, then sQ(II\{a}) = n\{a} .
Proof. Let /? € 11,/? ̂  a, and write 0 = £ 7 6 A <^7 (with all Cy > 0).
Since the only multiples of a in $ are ±a, some Cy > 0 for 7 ^ a.
Now apply sa to both sides: saj3 = /? — ca is a linear combination of A
involving 7 with the same coefficient c-y. Because all coefficients in such
an expression have like sign, sa0 must be positive. It cannot be a, for
then we reach the contradiction: /? = sasa0 = s aa = —a (which is not
in II). Thus sa maps n\{cfc} into itself (injectively), hence onto itself. •

Besides being the key step in the proof of the theorem below, this
result is often helpful in recognizing when a root is in fact equal to a
given simple root a: it characterizes a as the sole positive root made
negative by sa.

Theorem Any two positive (resp. simple) systems in $ are conjugate
under W.
Proof. Let II and II' be positive systems, so each contains precisely half
of the roots. Proceed by induction on r = Card(II n —II'). If r — 0,
then II = n ' and we are done. If r > 0, then clearly the simple system
A in II cannot be wholly contained in II'. Choose a € A with a € —II'.
The proposition above implies that Card(sQIln—II') = r — 1. Induction,
applied to the positive systems sall and II', furnishes an element w & W
for which w{sall) = II'. D

1.5 Generation by simple reflections

Fix a simple system A and corresponding positive system II in $. (The-
orem 1.4 shows that it makes no great difference which A we choose.)
Our next goal is to show that W is generated by simple reflections,
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1.5. Generation by simple reflections 11

i.e., those sa for which a G A. First, a definition: if 0 G $, write
uniquely 0 = £ Q e A caa, and call X) ca the height of 0 (relative to A),
abbreviated ht(/3). For example, ht(/3) = 1 if 0 G A.

Theorem For a /tied simple system A, W is generated by the reflec-
tions sa(a G A).

Proof. Denote by W the subgroup of W so generated. We proceed in
several steps to show that W — W.

(1) If 0 G II, consider W'0 DII. This is a nonempty set of positive
roots (containing at least 0), and we can choose from it an element 7 of
smallest possible height. We claim that 7 G A. Write 7 = J ] a € A caa,
and note that 0 < (7,7) = $3ca(7, a), forcing (7, a) > 0 for some
a G A. If 7 = a, we are satisfied. Otherwise consider the root sQ7,
which is positive according to Proposition 1.4. Since sQ7 is obtained
from 7 by subtracting a positive multiple of a, we have ht(sQ7) < ht(7).
But Saj G W'0 (since sa G W), contradicting the original choice of 7.
So indeed 7 = a must be simple.

(2) Now we can argue that W'A = $. We just showed that the
W'-orbit of any positive root 0 meets A, so that II c W'A. On the
other hand, if 0 is negative, then —0 G II is conjugate by some w G W
to some a G A. Then —0 = wa forces 0 = (wsa)a, with wsa € W'.
Thus - I I C W'A.

(3) Finally, take any generator sp of W. Use step (2) to write 0 = wa
for some w G W' and some a G A. Then Proposition 1.2 shows that
S0 = wsaiv'1 G W'. This proves that W = W'. D

A useful byproduct of the proof is the fact that every root can attain
the status of a simple root (relative to some positive system):

Corollary (of proof) Given A, for every 0 G $ there exists w G W
such that w0 G A. •

Exercise 1. Let $ be a root system of rank n consisting of unit vectors. If
^ C $ is a set of n roots whose mutual angles agree with those between
the roots in some simple system, then $ must be a simple system.

Exercise 2. Given a simple system A, no proper subset of the simple
reflections can generate W. [Otherwise find a 6 A for which sa is not
needed as a generator of W. Consider w € W for which w(—a) G A.]

Exercise 3. If 0 G II\A, prove that ht(#) > 1.

Having seen that W can be generated by relatively few reflections,
we may go on to seek an efficient presentation of W as an abstract group,
using these generators together with suitable relations. Certain relations
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12 Finite reflection groups

among the sa(a € A) are obvious: those of the form

where m(a, /?) denotes the order of the product in W. It turns out
(Theorem 1.9 below) that these obvious relations completely determine
W. This is not difficult to verify in the case of P m , but is already rather
challenging in the case of Sn (try it!).

1.6 The length function

In order to obtain the promised presentation of W, we need to study
closely the way in which an arbitrary w 6 W can be written as a product
of simple reflections, say w = si - • • sr (where «» = sai for some Oi € A).
Define the length £(w) of w (relative to A) to be the smallest r for
which such an expression exists, and call the expression reduced. By
convention, ^(1) = 0 .

Clearly £(w) = 1 if and only if w = sa for some a G A. It is also clear
that £{w) = ^(to"1), since w'1 = sr---si implies £(w~1) < £(w), and
vice versa. Another easy property of the length function follows from
the fact that each reflection has determinant —1 as a linear operator:

det(w) = (-l)e(w).

Indeed, det(w) = (—l)r whenever w can be written as a product of r
reflections, so any such r has the same parity as £(w). Prom this it
follows that £(ww') has the same parity as £{w) + £(w'). In particular,
if £(w) = r and a 6 A, then £{saw) is either r + 1 or r — 1.

It will be shown in 1.7 that £{w) can be characterized geometrically
as the number of positive roots sent by w to negative roots. In case
w = sa{a € A), this is the content of Proposition 1.4. Here we lay some
of the groundwork.

Having fixed A and the corresponding positive system II, define
n(w) ;= Card(II n tt;~1(—II)) = number of positive roots sent to nega-
tive roots by w. Observe that n(w~l) = n(w), because Ilnu;~1(—II) =
w~l(wll D —II) = — w~1(H n w(—II)), which has the same number of
elements as II fl w(—II). This is reassuring, given the similar property
of the length function.

Lemma Let a € A,w € W. Then:
(a) wa > 0 => n(wsa) = n(w) + 1.
(b) wa < 0 =>• n(wsa) = n(w) — 1.
(c) w~1a > 0 =4> n(saw) = n(w) + 1.
(d) w~1a < 0 =*• n(saw) = n(w) — 1.

Proof. Set Il(w) := II D w-^-II ) , so that n(w) = Card II(w). If
wa > 0, observe that U(wsa) is the disjoint union of sall(w) and {a},
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1.7. Deletion and Exchange Conditions 13

thanks to Proposition 1.4. If wa < 0, the same result implies that
sall(wsa) = Il(w)\{a}, whereas a does lie in II(«;). This establishes
(a) and (b). To get (c) and (d), replace w by w~1 and use the fact that
n(w~1sa) = n(saw). O

Corollary If w € W is written in any way as a product of simple
reflections, say w = Sf-sr, then n(w) < r. In particular, n(w) <
l(w).
Proof. As we build up the expression for w in r steps, the value of the n
function (initially 0) can increase by at most 1 at each step, according
to the lemma, n

Some further properties of the length function which are shared by
the n function are described in the following exercise.

Exercise 1. (a) If w € W, prove that det(w) = ( - l ) n M. (b) If
w, w' e W, prove that n(ww') < n(w) + n(w') and n(ww') = n{w) +
n(w')(mod 2).

Exercise 2. Taking the simple reflections in Sn to be the transpositions
(i, i +1), show that the length of a permutation IT is the number of
'inversions': the number of pairs i < j for which ir(i) > ir(j).

1.7 Deletion and Exchange Conditions

The following crucial result reveals how a product of simple reflections
may be shortened if it is not already as short as possible.

Theorem Fix a simple system A. Let w = Si • • • sr be any expres-
sion of w G W as a product of simple reflections (say Sj = sai, with
repetitions permitted). Suppose n(w) < r. Then there exist indices
1 5: * < j ; < T satisfying:

(a) ai = (ai+i---8j-i)aj,
(b) Si+iSi+2 •• -Sj = SiSi+\ • • • Sj-i,

(c) w = si • • • ii • • • Sj • • • sr (where the hat denotes omission ) .

Proof, (a) Because n(w) < r, iteration of part (a) of Lemma 1.6
shows that, for some j < r, we have (si • • -Sj-i)aj < 0. But since
ctj > 0, there is an index i < j for which Si(sj+i • • • Sj-i)ctj < 0 while
(si+i • • • Sj~.i)acj > 0. (In case i = j — 1, s i+i • • • Sj-i is interpreted to
be 1.) Now Proposition 1.4, applied to the simple reflection Si, implies
that the positive root (SJ+I • • • Sj_i)aj made negative by Sj must be a*,

(b) Set a = ctj,w' = Sj+i • • • s_j-i, so that w'a = oti by part (a). By
Proposition 1.2, w'saw'~l = sw>a = Si, which means that

( S i + i • • • Sj-i)8j(8j-i •••Si+i) = Si.
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14 Finite reflection groups

Multiply both sides on the right by Sj+i • • • Sj-i to get the desired iden-
tity.

(c) This is just another way to express (b): multiply both sides of (b)
on the right by Sj to obtain Si+i • • • Sj-i = s» • • • Sj, and then substitute
in the original expression for w. D

Corollary IfweW, then n(w) = £(w).

Proof. By Corollary 1.6, n(w) < £(w). Suppose n(w) < £(w) — r, and
write w = S\ • • • sr (reduced expression). Then part (c) above allows
us to rewrite w as the product of r — 2 simple reflections, contrary to
£(w) = r. O

Having identified the functions £ and n, we can restate Lemma 1.6:
multiplying w on the right by sa(a € A) increases the length by 1 if
wa > 0 and decreases the length by 1 if wa < 0, etc.

We can also reinterpret part (c) of the theorem, which may be
called the Deletion Condition: given an expression w = si •• • sr

which is not reduced, there exist indices 1 < i < j < r such that
•w = si • • • £i • • • Sj • • • sr. Thus successive omissions of pairs of factors
will eventually yield a reduced expression.

To get a better feel for what the corollary says, it is useful to ask how
we might enumerate for a given w the set H(w). Since Card n(iu) =
n(w) = £(w), the answer ought to have something to do with the nature
of a reduced expression w = si • • • sr(si — sOi). Indeed, given such an
expression, consider the r roots

Pi := srsr~i • • • si+i(ai), with 0r := ar.

We claim that U.(w) — {0\,... ,/3r}, where the & are distinct. To see
this, let /3 e II(u;). Since /? > 0 but wfi < 0, we can find an index i < r
such that (si+i • • • sr)j3 > 0 while (siSi+i • • • sr)(3 < 0; in case i = r,
interpret Si+i • • • sr as 1. Thus the positive root (SJ+I • • • sr)0 is sent by
Si to a negative root; Proposition 1.4 forces (si+i • • • sr)(3 = aj, whence
(3 = ft. As a result, II(w) c {0i,...,0r}- Because Card U(w) = r,
equality must hold (and the ft must be distinct).

There is a nice way to reformulate the essence of the theorem:

Exchange Condition Let w = si---sr (not necessarily reduced),
where each s% is a simple reflection. If£(ws) < £(w) for some simple re-
flection s = sa, then there exists an index i for which ws = si • • • Si • • • sr

(and thus w = si • • s, • • • srs, with a factor s exchanged for a factor Si).
In particular, w has a reduced expression ending in s if and only if
£(ws) < £(w).

Proof. The hypothesis £(ws) < £(w) is now known to be equivalent to:
wa < 0. Repeating the proof of the above theorem for the expression
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1.8. Simple transitivity and the longest element 15

ws = si • • -srs, we can therefore take j = r + 1 in part (a) and then
conclude in part (c) that

WS = Si • • • ii • • • 8r-

This yields the desired expression for w. O

Remark. In Bourbaki [1] (and elsewhere in the literature), the Exchange
Condition is stated under the stricter condition that the given expression
for w is reduced. This is easily seen to be equivalent to our Deletion
Condition. It is clearly implied by the Deletion Condition. In the other
direction, let w = 8f-sr (not reduced). Say s x " - s j - i is reduced,
but Si • • • Sj is not. By the stricter version of the Exchange Condition,
there is an index i < j for which si • • • Sj-i = si • • • Sj • • • Sj, whence
w — s\ • • • a, • • • s~j • • • sr, as required. It is less obvious that our Exchange
Condition is a formal consequence of Bourbaki's (our derivation being
based on the way W acts on roots). This turns out to be true, as the
result of some indirect arguments given in the setting of general Coxeter
groups; see 5.8 below. The reader might want to attempt a more direct
line of argument.

Exercise 1. In the Exchange Condition, suppose £(w) = r. Prove that
the index i in the conclusion is uniquely determined.

Exercise 2. Formulate a 'left-handed' version of the Exchange Condition,
under the hypothesis £(sw) < t(w).

1.8 Simple transitivity and the longest ele-
ment

Theorem 1.4 expressed the fact that W permutes the various positive
(or simple) systems in a transitive fashion. Corollary 1.7 immediately
implies the following result, which shows that the permutation action of
W is simply transitive.

Theorem Let A be a simple system, U the corresponding positive sys-
tem. The following conditions onw€\Vare equivalent:

(a) wll = II;
(b) wA = A;
(c) n(w) = 0;
(d) e(w) = 0;
(e) w=l. D

One corollary of the simple transitivity is well worth exploring. It is
clear from the definition that —II is a positive system whenever II is. So
there must exist a unique element wo eW sending II to —II. Moreover,
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16 Finite reflection groups

£(wo) — n(wa) = Card II is as large as possible, and no other element
of W has as great a length. In particular, w~l = w0. Using Lemma 1.6
we can characterize wo as the unique w € W satisfying £(wsa) < £{w)
for all a € A. This has an interesting consequence. Given a reduced
expression w = s% • • • sr, we can successively multiply w on the right
by simple reflections (increasing the length by 1) until this is no longer
possible and wo is obtained. Thus wo = W with £(wo) = £(w) + £(w')
for some w' € W. The conclusion can also be reformulated as follows:

£{wow) = £{wo) - £{w) for all w € W. (2)

Exercise 1. What is wo in the case of Sn, relative to the simple system

Exercise 2. In any reduced expression for wo, every simple reflection
must occur at least once.

1.9 Generators and relations
Now we are prepared to verify the presentation of W described at the
end of 1.5. Recall that m(a, 0) denotes the order of sasp in W, for any
roots a,0. For example, m(a,a) = 1. (We could also write Tn(sa,Sj3).)

Theorem Fix a simple system A in $. Then W is generated by the
set S := {sa, a € A}, subject only to the relations:

Proof. Rather than introduce notation for a free group on a set having
the cardinality of A, with normal subgroup generated by appropriate
words in the free generators, we argue informally that each relation in
W is a consequence of the given relations. It has to be shown that each
relation

si • • • sr = 1 (where Si = sai for some a* € A) (3)

is a consequence of the given relations. Note that r must be even,
since det(sj) = —1. If r = 2, the equation reads s\S2 = 1, forcing
sx = s^1 = s2 because of the relation s | = 1. So (3) becomes sf = 1,
one of the given relations. Proceed now by induction on r = 2q, and let
q > 1. The relations s? = 1 will henceforth be used tacitly whenever
needed to rewrite expressions. For example, (3) can be rewritten as

• srsi •••si = l. ( 4 )
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1.9. Generators and relations 17

We will repeatedly invoke the Deletion Condition (1.7). Apply it first
to the element

Sl • • • Sq+i = Sr • • • Sq+2-

Since the length of the right side is at most q — 1, the left side cannot be
a reduced expression. Part (b) of Theorem 1.7 (which is equivalent to
the Deletion Condition) then yields indices 1 < i < j < q + 1 for which

Si+i-•• Sj = Si---Sj-i, (5)

which is equivalent to the relation

= 1. (6)

In case (6) involves fewer than r simple reflections, the induction hy-
pothesis says that it can be derived from the given relations. Then it is
permissible to replace Sj+j • • • 8j by s, • • • Sj-i in (3) and rewrite (3) as

Si • • • Si(Si • • • Sj-i)Sj+i • • • Sr = Si • • • Si • • • Sj . . . Sr = 1.

Again by induction, this last relation is a consequence of the given ones;
so the same is true of (3). The only catch comes when (6) still involves
r simple reflections: then i = l,j = q + 1, and (5) becomes

«2 • • • Sq+i = si • • • sq. (7)

We could attempt to avoid this impasse by using another version (4) of
our original relation (3), say

s2 • • • srsi = 1.

Repetition of the above steps will now be successful unless

(8)

In the presence of both (7) and (8), a different strategy is needed. If we
can just show that (8) is a consequence of the given relations, we can
substitute it in (3) and conclude as before. Rewritten once more, (8)
becomes

S3(S2S3 • • • Sg+i)sq+2Sq+i • • • S4 = 1.

The left side is a product of r simple reflections, just like (3), so we can
again try our original line of argument. This will be successful unless

$2 • • • 8q+i = S3S283 • • • 8q. (9)

But (9) and (7) together force si = S3. Similarly, we could cyclically
permute factors and reach a successful conclusion unless S2 =84. Con-
tinuing step-by-step in this way (another induction!), we reach a total
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18 Finite reflection groups

impasse only in case s\ = s3 = .. . = sr_i and s2 = S4 = . . . = sT. But
then (3) has the form

SaSf)SaS/3 • • • SaSp = 1 ,

which is a consequence of the given relation (sasp)m(-a'0) = l.D

The presentation of W just obtained is about as simple as could
be hoped for. Any group (finite or infinite) having such a presentation
relative to a generating set S is called a Coxeter group; more precisely,
the pair (W, S) is called a Coxeter system. It is required that all
m(a,a) — 1, but a relation (sas^)m^Q'^ = 1 may be omitted to allow
the product to have infinite order. Part II will be devoted to the detailed
study of this rather large class of groups. Eventually (in Chapter 6)
it will be seen that the finite Coxeter groups are precisely the finite
reflection groups.

While the proof of the theorem is still fresh in the reader's mind, we
point out that the steps depend formally just on the Deletion Condition.
(This fact will be invoked in Chapter 4.) It will be seen in Chapter 5
that groups which satisfy a condition of this type are essentially the
same thing as Coxeter groups, so our choice of strategy in the present
proof was not accidental.

1.10 Parabolic subgroups and minimal coset
representatives

Let us pause to take stock of where we are in our study of finite reflection
groups. We have been studying such a group W in tandem with a root
system, which leads to a small set of generating reflections (correspond-
ing to a simple system). The simple system must be an independent
set of vectors at mutually obtuse angles, constrained strongly by the
fact that distinct pairs of reflections generate finite dihedral groups. In
Chapter 2 we shall classify the possible geometric configurations of this
sort and thereby classify the groups.

Meanwhile, we want to explore further the subgroup structure of W,
in conjunction with various geometric features of the action of W on V.
Much of what we do in the remainder of this chapter will be essential
in the latter half of Chapter 3; but the results are also of interest in
themselves.

We begin by looking more closely at the subgroups of W generated
by sets of simple reflections (for any fixed simple system A). In order
to be consistent with the notation to be introduced in Chapter 5, we
label these subgroups as follows. Having fixed A, let S be the set of
simple reflections sa, a e A. For any subset I C S, define Wi to be the
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1.10. Parabolic subgroups 19

subgroup of W generated by all sa e I, and let A/ := {a € A\sa € / } .
At the extremes, WQ = {1} and Ws — W. Replacing A by another
simple system wA would just replace Wj by its conjugate wWfW'1. All
subgroups of W obtainable in this way are called parabolic subgroups
(for somewhat arcane reasons which we won't attempt to explain here).
They arise constantly in the further study and application of reflection
groups, in part because they facilitate inductive arguments.

Proposition Fix a simple system A and the corresponding set S of
simple reflections. Let I C S, and define $/ to be the intersection of $
with the Tt-span Vj of A/ in V.

(a) $i is a root system in V (resp. Vj), with simple system A/ and
with corresponding reflection group Wi (resp. Wj restricted to Vj).

(b) Viewing Wj as a reflection group, with length function £j relative
to the simple system A/, we have £ = £i on Wi.

(c) Define W1 := {w € W\£(ws) > £{w) for all s € / } . Given
w € W, there is a unique u € W1 and a unique v € Wj such that
w = uv. Their lengths satisfy £(w) = £(u) + £(v). Moreover, u is the
unique element of smallest length in the coset wWi.
Proof, (a) It is clear that Wj stabilizes Vi and that conditions (Rl) and
(R2) in 1.2 are satisfied by 3>j (viewed as a subset of either V or V/). It
is also clear that A/ is a simple system. Therefore the group Wj (acting
on either V or Vi) is the corresponding reflection group.

(b) We invoke the characterization of the length function given in
1.7: £(w) is the number of positive roots sent to negative roots by w,
and similarly for l\ (where the 'positive' roots relative to A/ are clearly
those in $ + D $/). Now suppose a € 4>+ \ $/. Then a involves some
simple root 7 ^ A/, so for all (3 € A/, spa still involves 7 with a
positive coefficient. It follows that spa > 0. In turn, for all w £ Wj, we
get wa > 0. Thus the roots in $ + sent by w € Wi to negative roots
are precisely the roots in $j" sent by w to negative roots. This means
e(w) = £j(w).

(c) Given w € W, choose a coset representative u € wWj of smallest
possible length, and write w = uv for v € Wj. Since us € wWj for
all s € /, it is clear that u € W1. Now write reduced expressions:
u = s\ • • • sq (si € 5) and v = s[ • • • s'r (where we may assume s£ € / ,
thanks to (b)). Then £(w) < £(u) + £(v) = q + r. If the inequality were
strict, the Deletion Condition (1.7) would allow us to omit two of the
factors Si or s^ in uv without changing w. But omitting any factor from
u would yield a coset representative in wWj of smaller length than u,
contrary to the choice we made. So two factors s^s'j can be omitted
without changing v, contrary to the fact that the expression for v is
reduced. Therefore £(w) = £(u) + £(v).

The only fact about w used in this argument is that it belongs to the
coset wWj\ so we have actually shown that any element of this coset can
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20 Finite reflection groups

be written in the form uv, with £{uv) = £(u) + £(v). Here u is a fixed
coset representative of smallest length (forcing u € W1). In particular,
u is the unique coset representative of smallest length.

Suppose there were another element u' € W1 lying in wWi, with
u' y£ u. We could then write u' = uv with £(v) = r > 0, say v =
si • • • sr (si € / ) . But then £(u'sr) < £{u') contrary to u' € W1. •

The distinguished coset representatives W1 in part (c) of the propo-
sition may be called minimal coset representatives. They will play
an essential role in the following section, as well as in 1.15.

Exercise 1. Is there a result analogous to (c) describing minimal repre-
sentatives of the double cosets WJWWJ (I, J C S)?

Exercise 2. When W = Sn, prove that each parabolic subgroup of W is
isomorphic to a direct product of symmetric groups.

Exercise 3. Given s ^ s' in 5, set v := ss'ss' • • • (m factors, where
TO is the order of ss' in W), so also v = s'ss's-- (m factors), and
v2 = 1. If w € W satisfies £(ws) < £(w) and £(ws') < £(w), prove that
£(wv) = £(w) — m. [Consider Wj, I = {s,s'}. Since w = (wv)v with
v € Wx, it suffices to show that wv € W1. Look at the action on the
roots corresponding to s, s'.\

1.11 Poincare polynomials
Part (c) of Proposition 1.10 has a nice application to the study of the
'growth' of W relative to the generating set S. This is measured by the
sequence

an := Card {w € W\£(w) = n},

which in turn defines a polynomial in the indeterminate t:

n>0

For example, when W = S3, W(t) = 1 + It + 2t2 +13. Because of its
homologicai interpretation in special cases (see the remark at the end of
3.15), we refer to W(t) as the Poincare polynomial of W.

More generally, for an arbitrary subset X cW,v/e can define

X(t) :=
wex

Note for example that for I C S, Wj(t) coincides with the Poincare
polynomial of the reflection group Wi (since £ agrees with the length
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1.12. Fundamental domains 21

function £i). It is an immediate consequence of part (c) of Proposition
1.10 that

W{t) = W^^W'it).
This can be used to derive an effective algorithm for computing W(t)
by induction on \S\. For brevity, write (—I)1 instead of (—1)'JI. Recall
(1.8) that W has a unique element wo of maximum length N := |Et|.

Proposition

ICS v ' ICS

Proof. The equality of the first and second sum follows from the above
remarks. In turn, consider the contribution which a fixed w € W
makes to the second sum. Set K :— {s G S\£(ws) > C(w)}. Then
w € W1 precisely when / C K, so te<-w^ occurs in the sum with co-
efficient YIIQK (~^Y• Unless K is empty, it is an easy combinatorial
exercise to show that this quantity is 0. But K — 0 precisely when
w = wo, thereby accounting for the surviving term tN on the right. •

Exercise 1. When W = S3, use the formula in the proposition to com-
pute W(t) inductively, starting with the fact that W(t) = 1 +1 for a
group of rank 1. Do the same for W — Vm in general.

Note that when 1 is substituted for t, Wi(t) becomes \Wi\. So the
formula in the proposition yields an identity (due originally to Witt [1],
Satz 3):

ICS

Exercise 2. The identity just obtained permits an inductive calculation
of \W\ when |5 | is odd. Suppose for example that \S\ = 3, and that the
dihedral subgroups Wi are of respective orders 4, 6, 10. What is |W|?

1.12 Fundamental domains
The goal of this section (and the ones following) is to refine the descrip-
tion of the action of W on V (in terms of orbits and isotropy groups),
with emphasis on the role of the reflecting hyperplanes. In the pro-
cess we get a nice geometric interpretation of the simple transitivity of
W on simple systems, as well as further information about parabolic
subgroups.

Fix a positive system II, containing the simple system A. Associated
with each hyperplane Ha are the open half-spaces Aa and A'a, where

Aa:={\€V\(\,a)>0}
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22 Finite reflection groups

and A'a := — Aa. Define C := f]aGA Aa. As an intersection of open
convex sets, C is itself open and convex. It is also a cone (closed under
positive scalar multiples). Let D be the closure C, the intersection of
closed half-spaces Ha U Aa. Thus

D = {Xe V|(A, a) > 0 for all a G A}.

Clearly D is a closed convex cone. We intend to show that D is a
fundamental domain for the action of W on V, i.e., each A G V is
conjugate under W to one and only one point in D. One part of this is
straightforward:

Lemma Each A € V is W-conjugate to some fi G D. Moreover, /x — A
is a nonnegative H-linear combination of A.

Proof. Introduce a partial ordering of V (not to be confused with ear.ier
total orderings, which are no longer needed): A < fi if and only if /x — A
is a linear combination of A with nonnegative coefficients. It is trivial
to verify that this is a partial ordering. Consider those W^-conjugates n
of A which satisfy A < \i. Prom this nonempty set (which contains at
least A), choose a maximal element fi. If a G A, sajx is obtained from
/x by subtracting a multiple of a, namely 2(/x, a)/(a, a). Since this is
another W-conjugate of A, the maximality of /x forces (ix, a) > 0. This
holds for all a G A, so (j, G D as desired. D

To see that each A is VF-conjugate to at most one /x G D, it is enough
to show that no pair of distinct elements of D can be W-conjugate. In
the course of the proof, we can get some sharper information about the
isotropy group {w G W]u;^ = /i} for an arbitrary fi G V.

Theorem Fix II D A (hence D), as above.
(a) IfwX = n for \,fi G D, then A = fi and w is a product of simple

reflections fixing A. In particular, if A G C, then the isotropy group of X
is trivial.

(b) D is a fundamental domain for the action ofW onV.
(c) If X eV, the isotropy group ofXis generated by those reflections

sa {a G $) which it contains.
(d) IfU is any subset ofV, then the subgroup ofW fixing U pointwise

is generated by those reflections sa which it contains.

Proof, (a) Proceed by induction on £(w) = n(w). If n(w) = 0, then
w = 1 and there is nothing to prove. If n(w) > 0, then w must send
some simple root a to a negative root (otherwise wA and hence u>H
would consist of positive roots). Thanks to part (b) of Lemma 1.6,
n(wsa) = n(w) — 1. Moreover, since A, (j, G D, with UIQ < 0, we have:
0 > (fi,wa) = (w~1fj,,w~1wa) = (A,a) > 0, which forces (A,a) = 0
and saX = X. Therefore wsaX — /i. By induction, A = /x and wsa is a
product of simple reflections fixing A; so w is also such a product.
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1.12. Fundamental domains 23

(b) This follows at once from part (a), together with the above
lemma.

(c) Given A € V, use the lemma to find w £ W for which /x := wX lies
in D. By part (a), the isotropy group W of/i is generated by the simple
reflections it contains. It is clear that w~1W'w is the isotropy group W
of A. Since conjugates of simple reflections are again reflections with
respect to roots, it follows that W is generated by those sa which it
contains.

(d) The subgroup W° fixing pointwise the span of U (or a basis
A!,...,A< of this span) is clearly the same as the subgroup fixing U
pointwise. In turn, W° is just the intersection of the isotropy groups
of the X{. Proceed by induction on t, the case t — 1 being settled by
part (c). We know that the isotropy group W of Ai is generated by the
set of all reflections sa which it contains (a running over a subset $ '
of $ containing pairs of roots a, —a). Proposition 1.2 implies that W
stabilizes 4>'. So this reflection group (with root system $') can take
the place of W. By induction (formulated to cover all possible reflection
groups!), its subgroup fixing {A2,..., Xt} pointwise is generated by some
of the reflections sa, a € $'. But this subgroup is just W°. O

Exercise 1. Show how the theorem can be used to solve the Word Prob-
lem for W: given a product of simple reflections, decide whether or not
it equals 1 in W.

Exercise 2. If U C D in part (d) of the theorem, then the subgroup of
W fixing U pointwise is generated by simple reflections.

Exercise 3. If w € W is an involution (an element of order 2), prove that
w can be written as a product of commuting reflections. [Use induction
on the dimension of V.]

We have now associated with each simple system A an open con-
vex cone C in V whose points all have trivial isotropy group in W.
It is clear that replacing A by wA just replaces C by wC. Thus the
simply transitive action (1.8) of W on simple systems translates into
a simply transitive action on this family of open sets, which we call
chambers. The chambers are characterized topologically as the con-
nected components of the complement in V of \Ja Ha. Given a chamber
C corresponding to a simple system A, its walls are defined to be the
hyperplanes Ha (a € A). Each wall has a 'positive' and a 'negative'
side (with C lying on the positive side). Then the roots in A can be
characterized as those roots which are orthogonal to some wall of C and
positively directed. Note finally that the angle between any two walls of
a chamber is an angle of the form ir/k for a positive integer k > 2. This
follows from our discussion of dihedral groups in 1.1.
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24 Finite reflection groups

Exercise 4. Prove that £(w) equals the number of hyperplanes Ha(a > 0)
which separate C from wC.

1.13 The lattice of parabolic subgroups
We can use part (d) of Theorem 1.12 to obtain a clearer picture of the
collection of parabolic subgroups of the form Wi, where / runs over the
subsets of the set S of simple reflections relative to a fixed choice of A.

Proposition Under the correspondence I i-> Wi, the collection of
parabolic subgroups Wi (I C S) is isomorphic to the lattice of subsets of
S.
Proof. It is clear that WIUJ is the group generated by Wi and Wj
(I, J C S). We claim that Wj D Wj = WInJ, from which it will follow
immediately that the map / i-> Wj is one-to-one and defines a lattice
isomorphism. Only one inclusion is obvious: Wmj C Wi C\ Wj.

Recall from 1.10 the subspaces Vj and Vj of V. It is clear from the
definition that Vj D Vj = Vmj- Now recall from linear algebra the fact
that, for any two subspaces A, B C V, (A n B)-1 = Ax + Bx (proved by
comparison of dimensions). Prom this we get:

Now suppose w € Wi D Wj, so w fixes each vector in Vj- + V/ = Vj^j.
According to part (d) of Theorem 1.12, w is a product of reflections sa

which also fix this space pointwise. But then each such a is orthogonal
to this space, hence lies in $ D Vmj = $inj- It follows that w € Wmj
as required. •

Exercise. If s\,..., sr are distinct elements of S, then t(si • • • sr) = r.

1.14 Reflections in W
Theorem 1.12 also helps to clear up a possible ambiguity in the way W is
specified. Recall that our study of W has depended on a fixed choice of a
root system $, with W defined as the group generated by the reflections
sa (a € $). There was no requirement that these sa should exhaust the
reflections in W. But this turns out to be true anyway.

Proposition Every reflection in W is of the form sa for some a 6 $ .
Proof. Let s be a reflection in W, with reflecting hyperplane H fixed
pointwise by s. Thus s lies in the isotropy group of H, which is nontrivial
and thus (thanks to part (d) of Theorem 1.12) is generated by some of the
reflections sa (a € $). But sa cannot fix H pointwise unless H = Ha,
in which case s = sa. •
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1.15. The Coxeter complex 25

Exercise. Let * be any subset of $ for which the reflections sa (a € \P)
generate W. Prove that every a € $ is W-conjugate to some element
of *. [Consider $' := {wa\w € W, a e * } . This set satisfies the axioms
for a root system (1.2), with W as the associated reflection group.]

1.15 The Coxeter complex

We can give a more detailed description of the fundamental domain D in
1.12 in terms of parabolic subgroups. As before, fix a simple system A
and corresponding set S of simple reflections. It is convenient to assume
that A spans V. For each subset / of S, define

Cj := {A € D\(X,a) = 0 for all a e A/, (A,a) > 0 for all a € A \ A/}.

Thus Ci is an intersection of certain hyperplanes Ha and certain open
half-spaces Aa. It is clear that the sets C/ partition D, with CQ = C
and Cs = {0}. Moreover, the linear span of Ci has dimension n — \I\,
where n = dim V.

Thanks to Theorem 1.12, V is partitioned by the collection C of all
sets wCi(w e W, I C S). More precisely, for each fixed I the sets wCj
and w'Ci are disjoint unless w and w' lie in the same left coset in W/Wi,
in which case they coincide. For distinct / and J, all sets wCj and w'Cj
are disjoint. We call C the Coxeter complex of W. Any set wCi is
called a facet of type / .

Proposition For each I C S, the isotropy group of the facet Ci of
C is precisely Wi. Thus the parabolic subgroups of W are the isotropy
groups of the elements ofC.

Proof. From the definition of C/, it is clear that Wj fixes it pointwise.
Now suppose w £ W satisfies: wCi = C/. By part (a) of Theorem 1.12,
w fixes Cj pointwise.

Use part (c) of Proposition 1.10 to write w = uv, where v € Wi and
u satisfies: £(usa) > £(u) for all a e / . Thanks to 1.6, this condition
implies that uAi C $ + . If u ^ 1, there must be some a € A for
which ua < 0, and (as just observed) a £ A/. Choose any A € Ci, so
wX = uX — A. Since a ^ Aj, we have by definition: (A, a) > 0. On
the other hand, ua < 0 forces (A, a) = (uX, ua) = (A, ua) < 0, which is
absurd. •

The characterization of parabolic subgroups as isotropy groups yields
an interpretation of C as an abstract simplicial complex: The 'vertices'
are the left cosets wWi, where / is maximal in S (obtained by discarding
one simple reflection). A finite set of vertices determines a 'simplex' if
these vertices (left cosets) have a nonempty intersection. The dimension
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26 Finite reflection groups

of the complex is n — 1 (one less than the cardinality of the largest
possible simplex).

When A spans V, C has a natural geometric realization: by inter-
secting its elements with the unit sphere in V, one gets a simplicial
decomposition of the sphere. Because W preserves the simplicial struc-
ture, it also acts on the integral homology groups of the sphere. This
leads to an interesting formula for the character det of W (realized on
the top homology) in terms of the permutation characters of W on the
cosets of parabolic subgroups, via the Hopf trace formula. In the follow-
ing section we shall derive an algebraic version of this formula.

1.16 An alternating sum formula

In this section we obtain an alternating sum formula for det(w), which
involves counting how many elements of each dimension are fixed by w
in the Coxeter complex C. This formula will be a key ingredient in 3.15,
and could be deferred until then. (We present it here while the features
of the Coxeter complex are still fresh in the reader's mind.) First we
derive a general combinatorial formula, which the reader may recognize
as an Euler characteristic computation.

Let Hi,..., HT be an arbitrary collection of hyperplanes in the eu-
clidean space V (of dimension n), and form a complex K in the same way
we formed the Coxeter complex. Each hyperplane H = H° determines
a positive half-space H+ and a negative half-space H~. Then a typical
element of K. is a (nonempty) intersection of the form

K = f | iffS where et € {0, +, - } .

We write dim if = i if the linear span has dimension i. Note that
this linear span L is obtained by intersecting all Hf which occur in
the definition of if. In turn, K is the open subset of L obtained by
intersecting various open half-spaces with L.

Lemma Denote by rii the number of elements of K. having dimension
i. Then E i ( - l ) j n* = (-1)"-
Proof. We use induction on the number r of hyperplanes used to define
K (the case r = 1 being clear). What is the effect of adding to the
list Hi,..., Hr a new hyperplane HI New elements of the complex are
created just in case H intersects some K in a proper nonempty subset.
Let L be the linear span of K in V. If x € if n if, we can find an
open neighborhood U of x in L contained in K, by the above remarks.
Since HDL has codimension 1 in L, it is clear that U meets both H+

and H~. Thus we replace the single element K by two new elements
H+ (~l K, H~~ n K of dimension i, together with an element H° C\ K of
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1.16. An alternating sum formula 27

dimension i — 1. This increases the original n, and nj_i by 1, leaving
the alternating sum unchanged. O

Fix A and S as before. Consider, for each I C S, the facets vCj of
type /; these are in bijective correspondence with left cosets vWi. For
to € W, define fi(w) to be the number of such facets stabilized (i.e.,
fixed pointwise) by w. This is the same as the number of left cosets vWi
fixed under left multiplication by w. As before, we write (—I)1 instead

l'l

Proposition

ics

Proof. Fix w and let V be the subspace of V fixed pointwise by w (the
1-eigenspace). Then the facets in C fixed by w are precisely those which
lie in V'. Let K. be the complex obtained by intersecting the elements of
C with V. Then the number rii of facets of dimension i in C which lie
in V' is just the number of facets of dimension i in AC, so we can apply
the above lemma to this situation, with c := dim V:

If n := dim V, dim Ci =n— |/|, so we see that

nt =

Combining, we get

ics

But w is an orthogonal transformation, so its possible eigenvalues are 1
(with multiplicity c), 6 pairs of complex conjugate numbers of absolute
value 1, and - 1 (with multiplicity n- c- 26). Accordingly, det(tu) =
(_1)n-c-26 _ (_!)n-c gQ t h e p r o p o s i t i o n follows. D

Notes
We follow the approach in the Appendix to Steinberg [4], supplemented
by Chapter 2 of Carter [1] (where the arguments are given only for
Weyl groups, but usually remain valid for all finite reflection groups).
See also Curtis-Reiner [3], §64. The treatment in Grove-Benson [1]
(or the earlier edition, Benson-Grove [1]) is more leisurely, giving for
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28 Finite reflection groups

example a detailed account of finite groups of orthogonal transformations
in dimensions 2 and 3. For more of the geometry of finite reflection
groups, see Coxeter [1], Chapter XI.

(1.9) This sort of presentation was apparently first studied system-
atically by Coxeter [2] [3] and Witt [1]. Emphasis on the Exchange Con-
dition came later, in Matsumoto [1], Iwahori-Matsumoto [1], Bourbaki
[1], IV, §1.

(1.11) The proposition, due to Solomon [3], will be used in 3.15 below.
(1.15) Coxeter complexes (for general Coxeter groups) are studied in

detail in Brown [1], Ronan [1]; this is directed to the study of 'buildings',
as developed by Tits [1][6] (etc.). See also Carter [1], Chapters 2, 15.

(1.16) Solomon [3] gave a topological proof of the proposition; the
version here is due to Steinberg [5], §2. It will be used in 3.15 below.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623646.002
https:/www.cambridge.org/core


Chapter 2

Classification of finite
reflection groups

The goal of this chapter is to determine all possible finite reflection
groups, in terms of their 'Coxeter graphs' (2.3). Although a general
existence proof will be given in Chapters 5 and 6, we shall describe
in some detail how to construct each (irreducible) type of group and
compute its order. Groups satisfying a crystallographic condition (2.8)
are especially important in Lie theory, where they arise as Weyl groups
and can be studied uniformly.

Throughout the chapter we reserve the index n for the rank of W.

2.1 Isomorphisms

The presentation of W obtained in Theorem 1.9 shows that (as an ab-
stract group) W is determined up to isomorphism by the set of integers
m(a,ft), a, 0 € A. A convenient way to encode this information in a
picture is to construct a graph F with vertex set in one-to-one corre-
spondence with A; join a pair of vertices corresponding to a ^ /? by
an edge whenever m(a,/3) > 3, and label such an edge with m(a,0).
(For a pair of vertices not joined by an edge, it is then understood that
m(a, (3) = 2.) This labelled graph is called the Coxeter graph of W. It
determines W up to isomorphism. Since simple systems are conjugate,
it does not depend on the choice of A.

For example, the graph of Vm is

while the graph of 5n+i has n vertices:

3 3
o — o o — o.

29
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30 ClassiScation of finite reflection groups

The classification of finite reflection groups given in this chapter will rely
heavily on the study of possible Coxeter graphs.

We can give a somewhat more precise criterion for reflection groups
to be isomorphic, in the geometric setting:

Proposition For i = 1,2, let Wi be a finite reflection group acting on
the euclidean space Vi. Assume Wi is essential. IfW\ and W2 have the
same Coxeter graph, then there is an isometry of V\ onto V2 inducing an
isomorphism ofW\ onto W^. (In particular, ifV\ = V2, the subgroups
W\ and W2 are conjugate in O(V).)

Proof. Fix a simple system A* for Wi. By assumption, Ai is a basis of Vi.
As remarked in 1.2, we may assume that all roots are of unit length. Let
tp map Ai to A2 in a way compatible with the common Coxeter graph,
and extend by linearity to a vector space isomorphism of Vi onto V2. If
a ^ 0 lie in Ai, the angle 6 between them is TT — ir/m(a, 0). Since roots
are unit vectors, we get (a, 0) = cos 9 = —cos (7r/m(a,/3)). The same
calculation applies to the inner product of the roots in A2 corresponding
to a, 0, since the same m(a,0) occurs. Thus <p is an isometry, which
clearly induces an isomorphism of W\ onto W2. O

2.2 Irreducible components

We say that the Coxeter system (W, S) is irreducible if the Coxeter
graph F is connected. (We also call $ irreducible in this case.) In
general, let F i , . . . , Fr be the connected components of F, and let A*, Si
be the corresponding sets of simple roots and simple reflections. Thus
if a 6 Ai and 0 G Aj (i / j), we have m(a,0) = 2 and therefore
sas@ = s@sa. The following proposition shows that the study of finite
reflection groups can be largely reduced to the case when F is connected.

Proposition Let (W, S) have Coxeter graph F, with connected com-
ponents F i , . . . , F r , and let S\,...,Sr be the corresponding subsets of S.
Then W is the direct product of the parabolic subgroups Wsiy- • •, Wsr,
and each Coxeter system (Wsi,Si) is irreducible.
Proof. Use induction on r. Since the elements of Si commute with the
elements of Sj when i ^ j , it is clear that the indicated parabolic sub-
groups centralize each other, hence that each is normal in W. Moreover,
the product of these subgroups contains 5 and therefore must be all of
W. By induction, Ws\Si is the direct product of the remaining WSJ , and
Proposition 1.13 implies that W/si intersects it trivially. So the product
is direct. •

Exercise. Let W be the dihedral group T>e of order 12, with standard
Coxeter generators S = {s, s'}. The Coxeter system {W,S) is irre-
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ducible. However, W has another set 5' of Coxeter generators leading
to a Coxeter system which is not irreducible: S' :— {s, (s's)3, s(s's)2}.

2.3 Coxeter graphs and associated bilinear
forms

We start with a general definition, applicable not only to finite reflection
groups but also to other Coxeter groups encountered later on. Define
a Caxeter graph to be a finite (undirected) graph, whose edges are
labelled with integers > 3 or with the symbol oo. If 5 denotes the set of
vertices, let m(s, s') denote the label on the edge joining s ^ s'. Since
the label 3 occurs frequently, we omit it when drawing pictures. We also
make the convention that m(s, s') = 2 for vertices s / s' not joined by
an edge, while m(s,s) = 1. (It will be seen in Chapter 5 that every
Coxeter graph comes from some Coxeter group.)

We associate to a Coxeter graph T with vertex set S of cardinality n
a symmetric n x n matrix A by setting

a(s, s ) := — cos
m(s, s')'

Recall some terminology. Any symmetric nxn matrix A = A*1 defines a
bilinear form x^Ay (x, y 6 Rn), with associated quadratic form x^Ax. It
is well known that the eigenvalues of A are all real. A is called positive
definite if x * Ax > 0 for all x / 0, positive semidefinite if xMx > 0
for all x. Equivalently, A is positive definite if all its eigenvalues are
(strictly) positive, positive semidefinite if all its eigenvalues are nonneg-
ative. By abuse of language, we also say that A is of positive type if
it is positive semidefinite, including positive definite. (This should not
be confused with the notion of 'positive matrix', meaning one whose
entries are strictly positive.) For brevity, we call T positive definite or
positive semidefinite when the associated matrix (or bilinear form) has
the corresponding property.

There is another well-known characterization of positive type in terms
of determinants, which we shall use in the following two sections. The
principal minors of A are the determinants of the submatrices ob-
tained by removing the last k rows and columns (0 < k < n). Then
A is positive definite (resp. positive semidefinite) if and only if all its
principal minors are positive (resp. nonnegative).

When F comes from a finite reflection group W, the matrix A is in
fact positive definite, because it represents the standard euclidean inner
product relative to the basis A of V (assumed for convenience to consist
of unit vectors). Our strategy for classifying finite reflection groups
is to assemble a list of all possible connected positive definite Coxeter
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32 Classification of finite reflection groups

graphs, then to show that each of them does in fact correspond to a
finite reflection group.

2.4 Some positive definite graphs

We claim that the graphs in Figure 1 are all positive definite. To verify

BB(«>2)

H4

I2 (m)
Figure 1: Some positive definite graphs

this we should compute the principal minors of the corresponding matrix
A. It is clear by inspection that (with suitable numbering of vertices)
each minor is itself the determinant of the matrix belonging to one of the
graphs in Figure 1. So by induction on n (the number of vertices), it will
be enough to compute det A itself in each case. Because the denominator
2 occurs so often, it is actually more convenient to compute det 1A.

The cases n < 2 can be checked directly. For example, the matrix A
corresponding to the graph I2(m) is

1
—cos (TT/TO)

-cos (7r/m)
1
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2.5. Some positive semidefinite graphs 33

Thus det 2A = 4(1 - cos2(7r/m)) = 4sin2(7r/m) > 0.
If n > 3, a glance at Figure 1 shows that it is possible to number

vertices in such a way that the last vertex (numbered n) is joined by an
edge to only one other vertex (numbered n — 1), this edge being labelled
m = 3 or 4. Let di be the determinant of the upper left ixi submatrix
of 2A. Then an expansion of det 2A along the last row shows that

det2>i = 2d n _ 1 -cd n _2 , (1)

where c = 1 (resp. 2) if m = 3 (resp. 4). Keeping in mind that we
multiply each matrix by 2, we compute inductively the values in the
following table.

An

n + 1
Bn

2
Dn
4

E6

3
E7

2
E8

1
F4

1
H3

3--/5
H4

(7-3V5)/2 4
h(m)

sin (ir/m)

Table 1: Determinant of 2A

The reader should carry out the required verification as an exercise,
recalling the values:

7T 1 TT V2 n 1 + VE TT V3
c o s - = - , cos^ = T , c o s - = - T - , c o s - = — .

(If the value of cos TT/5 is not so familiar, look at the derivation in
Bourbaki [1], p. 192 (footnote).)

As an example, we work through the cases of H3 and H4. For H3 the
smaller minors come from graphs of types 12(5) and Ax, so formula (1)
reads:

det 2A = 8 sin2(7r/5) - 2 = 3 - VS.

For H4 the smaller minors are of types H3 and 12(5), yielding:

det 2A = 2(3 - V5) - 4 sin2(7r/5) = (7 - 3VS)/2.

2.5 Some positive semidefinite graphs

As a tool in the proof that the Coxeter graphs in Figure 1 of 2.4 are the
only connected positive definite ones, we assemble some auxiliary graphs
in Figure 2. We claim that all of these are positive semidefinite (but not
positive definite). The labels are suggestive of the fact that each graph
is obtained from a graph in Figure 1 by adding a single vertex. In each
case, the subscript n therefore indicates that the number of^yerticesjs
n + 1. (For type Bn there are two related graphs, labelled Bn and Cn.
We write G2 in place of 12(6).) The actual significance of the graphs in
Figure 2 will only become clear in Chapter 4.
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34 Classification of finite reflection groups

Ai

Figure 2: Some positive semidefinite graphs

Since the removal of a suitable vertex from each graph in Figure 2
leaves one of the positive definite graphs in Figure 1, all we have to check
is that the determinant of the matrix A belonging to each graph is 0.
This is immediately clear for type An, since the sum of all rows in A
is 0 and hence A is singular. For the remaining types we can use the
inductive formula (1) and the table in 2.4. For example, consider F4.
The relevant subgraphs are of types F4 and B3, so formula (1) reads:

det24 = 2 - 2 = 0.

It will be useful later on to know that the Coxeter graphs Z4,Zs
shown below are not of positive type. This follows from the fact that
the determinant of 2A is (respectively) 3 - 2-\/5,4 - 2\/% (each of which
is strictly negative). These axe quickly computed via (1) in 2.4, using
the determinants found there for types H3 and H4.
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2.6. Subgraphs 35

Z4 O O —- O O

Z5 o — o— o — o -

2.6 Subgraphs

Here we obtain a crucial fact for the classification program: each (proper)
'subgraph' of a connected graph of positive type is positive definite. By
a subgraph of a Coxeter graph T we mean a graph V obtained by
omitting some vertices (and adjacent edges) or by decreasing the labels
on one or more edges, or both. We also say that F 'contains' V. To
simplify statements, we choose not to call the graph itself a subgraph.

We shall need some standard (but possibly unfamiliar) facts from
matrix theory, usually associated with the Perron-Frobenius theory of
nonnegative matrices and M-matrices. The following general proposi-
tion will also play a key role in 3.17 and 6.5 below.

A real n x n matrix A is called indecomposable if there is no
partition of the index set into nonempty subsets I, J such that ay = 0
whenever i € I,j G J. Otherwise, after renumbering indices, A could
be written in block diagonal form. (The less exact term 'irreducible'
is more commonly used in linear algebra texts.) It is clear that the
matrix belonging to a Coxeter graph is indecomposable precisely when
the graph is connected.

Proposition Let A be a real symmetric nxn matrix which is positive
semidefinite and indecomposable. (In particular, the eigenvalues of A
are real and nonnegative.) Assume that aij < 0 whenever i ^ j . Then:

(a) N := {x € 'B.n\xi'Ax = 0} coincides with the nullspace of A and
has dimension < 1.

(b) The smallest eigenvalue of A has multiplicity 1, and has an eigen-
vector whose coordinates are all strictly positive.

Proof, (a) It is clear that the nullspace of A lies in N. For the reverse
inclusion, we diagonalize A. Since A is symmetric, there is an orthogonal
matrix P for which D := PlAP = diag(di,... ,dn). If 0 = ytDy =
]T dtyf, then for each i either a\ = 0 or else j/i = 0 (since d» > 0). Thus
S diVi = 0, and y lies in the nullspace of D. In turn, if x = Py satisfies
x Ax = 0, we see that x lies in the nullspace of A.

Suppose N has positive dimension, say 0 / 1 € JV. Let z be the
vector whose coordinates are the absolute values of those of x. Since
a^ < 0 whenever i =£ j , we have

0 < ztAz < x%Ax = 0,
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36 Classification of finite reflection groups

forcing z to lie in N. We claim that all coordinates of z are nonzero.
To see this, let J be the (nonempty) set of indices j for which Zj ^ 0,
and let I be its complement. Since N is the nullspace of A, we have
Y^j o,ijZj = 0 for each i, where the sum need only be taken over j € J.
Since Zj > 0 and dij < 0, each term in the sum is nonpositive. If /
were nonempty we would get a^ = 0 for all i € / , j € J, contrary to the
indecomposability of A. Thus N contains a vector whose coordinates are
all strictly positive. The argument also shows that an arbitrary nonzero
element x G N has no zero coordinate. If dim N were larger than 1, it
would be easy to find a nonzero linear combination of such vectors with
a coordinate equal to 0, so we conclude that dim N < 1.

(b) Recalling that the eigenvalues di of A are nonnegative, let d be
the smallest one. Observe that A — dl satisfies all the hypotheses of the
proposition. (It is positive semidefinite, since it is orthogonally similar
to the matrix D — di with nonnegative entries.) Moreover, A — di is
singular. So its nullspace has dimension exactly 1 and is spanned by a
vector with strictly positive coefficients, according to the argument in
(a). This means that d occurs as an eigenvalue of A with multiplicity 1,
and there is a corresponding positive eigenvector. O

Corollary If T is a connected Coxeter graph of positive type, then
every (proper) subgraph is positive definite.

Proof. Let I" be a subgraph, and denote by A and A' the associated
matrices, so that A' is fc x fc for some k < n. The edge labels in V satisfy
fn'ij < witj) whence a'^ = — cos(7r/m^) > — cos{n/rriij) = a,j. Suppose
A' fails to be positive definite. Then there is a nonzero vector x € Rfc

such that x^A'x < 0. Applying the quadratic form associated with A
to the vector with coordinates |# i | , . . . , |xfc|,0,... ,0 in Rn, we get the
comparison:

0

where each sum is taken over all t, j < k. (In the next-to-last inequality,
we used the fact that a\j < 0 for i ^ j.) So equality holds throughout.
The first equality shows that we have a null vector for A, which by
the proposition is possible only if fc = n and all coordinates of x are
nonzero. But then the second equality forces all atj = a'^, contrary to
the assumption that T' is a (proper) subgraph. D

2.7 Classification of graphs of positive type

Theorem The graphs in Figure 1 of 2.4 and Figure 2 of 2.5 are the
only connected Coxeter graphs of positive type.

Proof. Suppose there were a connected Coxeter graph F of positive type
not pictured in either Figure 1 or Figure 2. We proceed in 20 easy steps
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2.7. Classification of graphs of positive type 37

to obtain a contradiction, relying repeatedly on Corollary 2.6 to rule out
various subgraphs. Let F have n vertices, and let m be the maximum
edge label.

(1) All Coxeter graphs of rank 1 or 2 are clearly of positive type (Ai,
I2(m), Ai), so we must have n > 3.

(2) Since Ai cannot be a subgraph of F, we must have m < oo.

(3) Since An(n > 2) cannot be a subgraph of F, F contains no circuits.

Suppose for the moment that m = 3.

(4) F must have a branch point, since F ^ An.

(5) F contains no Dn, n > 4, so it has a unique branch point.

(6) F does not contain D4, so exactly three edges meet at the branch
point (with a < b < c further vertices lying in these three direc-
tions).

(7) Since E6 is not a subgraph of F, a = 1.

(8) Since E7 is not a subgraph of F, b < 2.

(9) Since F ^ Dn, b cannot be 1, so b = 2.

(10) Since Eg is not a subgraph of F, c < 4.

(11) Since F ^ E6, E7, E8, the case m = 3 is impossible. Thus m > 4.

(12) F does not contain Cn, so only one edge has a label > 3.

(13) F does not contain Bn, so F has no branch point.

Now consider what happens if m = 4.

(14) Since F / Bn, the two extreme edges of F are labelled 3.

(15) Since F does not contain F4, n must be 4.

(16) But F ± F4, so the case m = 4 is impossible. Thus m > 5.

(17) Since F does not contain G2, we must have m = 5.

(18) F does not contain the nonpositive graph Z4 in 2.5, so the edge
labelled 5 must be an extreme edge.

(19) F does not contain the nonpositive graph Z5, so n < 4.

(20) Now F must be either H3 or H4, which is absurd. So we have
eliminated all possibilities. D
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38 Classification of finite reflection groups

The theorem limits the possible finite reflection groups which can
exist. In fact, there does exist a group belonging to each graph in Figure
1 of 2.4. A uniform existence proof will be given in Chapters 5 and
6, along the following lines. Define W abstractly by generators and
relations, as in Theorem 1.9. (It will not yet be obvious whether W is
finite or not.) Then show how to represent W faithfully as a subgroup
generated by reflections in a suitable GL(V), and argue that W is finite
(being a discrete subgroup of the compact group O(V)).

In the rest of this chapter we shall discuss concretely how to construct
finite reflection groups of all types, and thereby determine their orders.

2.8 Crystallographic groups

A subgroup G of GL(V) is said to be crystallographic if it stabilizes a
lattice L in V (the Z-span of a basis of V): gL C L for all g € G. (Since
G is a group, it is automatic that gL = L.) The name comes from low-
dimensional crystallography, where the classification of possible crystal
structures depends heavily on the available symmetry groups. It turns
out that 'most' finite reflection groups are crystallographic.

First we obtain a necessary condition for W to be crystallographic.
The crucial thing to notice is that, for any choice of basis in V, the
traces of the matrices representing a crystallographic group must be in
Z (since the trace could equally well be computed relative to a Z-basis
oil).

Proposition IfWis crystallographic, then each integer m(a, (3) must
be 2,3,4, or 6 when a ^ (3 in A.

Proof. If a ^ 0, we know that sas@ ^ 1 acts on the plane spanned
by a and ft as a rotation through the angle 8 := 2n/m(a,f3), while
fixing the orthogonal complement pointwise. Thus its trace relative to
a compatible choice of basis for V is (n - 2) + 2 cos# (n = dim V). So
cos 8 must be a half-integer, while 0 < 8 < ir. The only possibilities are
cos 8 = - 1 , -1 /2 , 0, 1/2, corresponding to the cases ra(a, j3) = 2,3,4,6.
•

This criterion rules out the groups of types H3 and H4 as well as all
dihedral groups except those of orders 2, 4, 6, 8, 12. For all remaining
cases, we shall see in the following sections a 'natural' construction of a
W-stable lattice. But it is easy enough to show in an ad hoc way that
such lattices exist:

Exercise. If W satisfies the necessary condition in the proposition (and
is essential), show how to modify the lengths of the roots in a simple
system A so that the resulting Z-span is a lattice in V stable under W.
[Use the fact that the Coxeter graph has no circuits.]
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2.9. Crystallographic root systems and Weyl groups 39

2.9 Crystallographic root systems and Weyl
groups

The notion of 'root system' introduced in 1.2 differs somewhat from that
commonly used in Lie theory. To avoid confusion, we say that a root
system <J? is crystallographic if it satisfies the additional requirement:

(R3) ^ ^ 6 Z for all a,/? € $.

These integers are called Cartan integers. It is actually enough to re-
quire that the ratios be integers when a, /? € A. The group W generated
by all reflections sa (a € $) is known as the Weyl group of $.

The effect of the added condition on $ is to insure that saf3 is ob-
tained from /3 by adding an integral multiple of a. This in turn implies
that all roots are Z-linear combinations of A, and that (in case W is
essential) the Z-span of A in V is a ^-stable lattice. So W is crystal-
lographic in the sense of 2.8.

We shall not give details of the classification (up to 'isomorphism') of
crystallographic root systems, since it is similar in spirit to the classifi-
cation of positive definite Coxeter graphs given earlier. (See Chapter VI
of Bourbaki [1] or Chapter III of Humphreys [1].) The conclusion is that
the resulting Weyl groups are precisely the reflection groups for which
all m(a,(3) € {2,3,4,6} (when a ^ /3). So Weyl groups are the same
thing as crystallographic reflection groups. However, there are distinct
crystallographic root systems Bn and Cn, each having as Weyl group
the group previously labelled Bn-

It turns out that when $ (or W) is irreducible (in the sense of 2.2),
at most two root lengths are possible. If there are both 'long' and 'short'
roots, the ratio of the squared lengths can only be 2 or 3. (If there is just
one root length, all roots are called 'long'.) This information is added
to the Coxeter graph by directing an arrow toward the short root when
adjacent vertices represent a long and a short root. By convention, the
label 4 or 6 is replaced in each case by a double or triple edge. (When
only one root length occurs, the graph is therefore 'simply-laced'.) The
resulting Dynkin diagrams are easily derived from Figure 1 in 2.4
together with 2.10 below. (See Bourbaki [1], p. 197 or Humphreys [1],
p. 58.)

The construction of the various crystallographic root systems will be
outlined in the following section, following Bourbaki. For later reference,
we summarize a few general facts:

(1) Setting av := 2a/(a,a), the set $ v of all coroots av (a € $)
is also a crystallographic root system in V, with simple system Av :=
{av|a e A}. It is called the inverse or dual root system. The Weyl
group of $ v is W, with wav = w(a)v. In most cases $ v is isomorphic to
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40 Classification of finite reflection groups

$; however, the root systems of types Bn and Cn are dual to each other.
Short roots a in a system $ of type Bn give rise to long roots a v in the
system $ v of type Cn (and vice versa). (Note: Rather than working
in a euclidean space, Bourbaki defines root systems in an arbitrary real
vector space, with coroots belonging to the dual vector space. This does
not significantly alter any of the results we are quoting.)

(2) The Z-span !,(#) of $ in V is called the root lattice; it is a
lattice in the subspace of V spanned by $, which we can usually assume
to be V itself. Similarly, we define the coroot lattice £($v)- Both
lattices are W^-stable. In Chapter 4 it will also be important to introduce
related W-stable lattices (which arise in representation theory). Define
the weight lattice

£(*) := {A € V|(A,av) € Z for all a € $},

and the coweight lattice

v) := {A € V|(A,a) € Z for all a € $}.

Then L($>) contains L($) as a subgroup of finite index / , and similarly
L($v) contains L($v) as a subgroup of index / . Here / is just the
determinant of the matrix of Cartan integers (a,/?v) (a,/? e A). (It is
called the index of connection in Lie theory: L/L is isomorphic to
the fundamental group of a compact Lie group of adjoint type having
W as Weyl group; so / is the order of the kernel of the associated map
from the simply connected covering group.)

(3) There is a natural partial ordering on V (when A is fixed): /x < A
if and only if A — fi is a nonnegative Z-linear combination of A. When
3> is irreducible, there exists a unique highest root (a long root) relative
to this ordering, denoted a; it plays a crucial role in 2.11 below as well
as in Chapter 4. There also exists a unique highest short root. (This is
easy to prove in the axiomatic framework of root systems, but is most
easily understood in terms of the adjoint representation of the simple
Lie algebra over C having $ as root system.)

(4) The long (resp. short) roots form a single orbit under the per-
mutation action of W on $, assuming W is irreducible. This is seen as
follows if all roots are long. By Corollary 1.5, each root is TV-conjugate
to a simple root, and since the Dynkin diagram is connected, it then suf-
fices to see that roots belonging to adjacent vertices are W-conjugate.
But they are clearly in the same orbit under the subgroup (isomorphic
to T>3) generated by the two simple reflections involved. (More gener-
ally, it is easy to check that all reflections are conjugate in T>m whenever
m is odd.) If there are two root lengths, the argument is similar, since
simple roots of each length correspond to a connected part of the Dynkin
diagram in types Bn, Cn, F4, G2.
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2.10. Construction of root systems 41

Remark. In Lie theory, one sometimes wants to allow both a and 2a to
be 'roots'. If the condition (Rl) in 1.2 is dropped from the definition of
crystallographic root system, $ may be 'nonreduced' (as permitted in
Bourbaki's definition of 'root system'). The only new (irreducible) type
one gets is called BCn: superimpose root systems of type Bn and Cn,
the long roots of Bn coinciding with the short roots of Cn-

2.10 Construction of root systems

Denote by £i , . . . ,£n the standard basis of Rn. Whenever we write
combinations such as ie* ± £j below, it is understood that the signs
may be chosen arbitrarily.

We shall outline briefly the construction of (crystallographic) root
systems of all possible types, following Chapter VI of Bourbaki [1] (which
should be consulted for further details). The basic strategy is simple
enough. In a suitably chosen lattice L in Rn, define 4? to be the set of
all vectors having one or two prescribed lengths. Then check that the
resulting scalars 2(a, /?)/(/?, /?) lie in Z. It follows automatically that the
reflections with respect to vectors in $ stabilize L and hence permute
$ as required. (The actual choices to be made are not so obvious; they
arose historically from a close scrutiny of the adjoint representation of a
simple Lie algebra.) The reader should be able to fill in the calculations
without difficulty.

In effect we already encountered root systems of types An, Bn, Dn in
1.1 (and Cn is just the dual of Bn). In these cases W has a fairly simply
description. In the 'exceptional' cases E6,E7,E8,F4,G2, it is harder to
deduce from the description of $ a concrete description of W (apart
from the easy case of G2). In particular, the order of W remains to be
calculated. We shall develop a general method for this in 2.11 below,
and in 2.12 we shall describe some realizations of the exceptional Weyl
groups.

(An, n > 1) Let V be the hyperplane in Rn + 1 consisting of vectors
whose coordinates add up to 0. Define $ to be the set of all vectors
of squared length 2 in the intersection of V with the standard lattice
Zei + .. . + Zen+i- Then $ consists of the n(n + 1) vectors:

ti-Bj (l<i^j<n + 1).

For A take

ai = £\ — £2, a-x = £2 — £3, • • •, otn = £„ - £n+i-

Then a — £\— £n+i- W is <Sn+i, which acts as usual by permuting the
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42 Classification of finite reflection groups

(Bn, n > 2) Let V = Rn, and define $ to be the set of all vectors of
squared length 1 or 2 in the standard lattice. So $ consists of the 2n
short roots ±£j and the 2n(n—1) long roots ±£i±£j(i < j), totalling 2n2.
For A take «i = ex - £2, c*2 = £2 - £3, • • •, "n- i = £n-i - en, "n = en-
Then 6c = £j + £2. W is the semidirect product of <Sn (which permutes
the £j) and (Z/2Z)n (acting by sign changes on the £*), the latter normal
in W.

(Cn,n > 2) Starting with Bn, one can define Cn to be its inverse
root system. (Note that B2 and C2 are isomorphic.) It consists of the
2rc long roots ±2ei and the 2n(n — 1) short roots ±e» ±£j (i < j). For A
take QI = ei - £2, a2 = £2 - £3, • • •,otn-i = £n-i ~ £n> <*n = 2£n. Then
d = 2e\.

(Dn, n > 4) Let V = Rn, and define $ to be the set of all vectors of
squared length 2 in the standard lattice. So $ consists of the 2n(n - 1)
roots ±£i ± e0; (1 < i < j < n). For A take <x\ •= e\ — £2, ct-z =
£2 - £3, • • • , ttn-l = £ n - l ~ £n, " n = £n-l + £n- Then & - £X + £2. W is
the semidirect product of Sn (permuting the £*) and (Z/2Z)n - 1 (acting
by an even number of sign changes), the latter normal in W.

(G2) Let V be the hyperplane in R3 consisting of vectors whose
coordinates add up to 0. Define $ to be the set of vectors of squared
length 2 or 6 in the intersection of V with the standard lattice. So $
consists of six short roots ±(e» — e,) (i < j) and six long roots ±(2e* —
£j — £fc) (where {i, j , k} = {1,2,3}). For A take c*i = £1 — £2, «2 =
—2£i + £2 + £3. Then a = 2£3 — £\— £2-

(F4) Let V = R4. If V is the standard lattice, let L := V +
Z ( | $2i=i £i)- This is also a lattice, and we define $ to be the set of all
vectors in L of squared length 1 or 2. So $ consists of 24 long roots and
24 short roots:

±£i ± £j (i < j),

±£i, -

For A take

cti = £2 — £3, 0:2 = £3 — £4, "3 = £4, 014 — - ( £ 1 — £2 — £3 — £4) .

Then a = £\ + £2.

Since a root system of type Es must contain canonical copies of both
E7 and E6, the main task is to construct the former.

(Eg) Let V = R8. The choice of lattice is somewhat subtle. Start
with the lattice L' consisting of all ]>3 <?*£, with c e Z and Yl °i even.
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2.11. Computing the order of W 43

Then let L = V + Z ( | ]£i=i £i)- Define $ to be the set of all vectors of
squared length 2 in L. So $ consists of 240 roots:

±£i ± £j (i < j), - 2_j ±£i (even number of + signs).

For A take

1.
on = ^(£i-e2-e3-

a» = £i_i — £j_2 (3 < i < 8).

Then & = £7 + £g.

(E7) Starting with the root system of type Es just constructed, let
V be the span of the at (1 < i < 7) in R8, and let $ be the set of 126
roots of Es lying in V:

±£i ±Sj (1 < i < j < 6),

±(£7 - £8),

2^7 -£8 +
1 = 1

where the number of minus signs in the sum is odd. The roots aj (1 <
i < 7) form a simple system. Then d = £s — £7.

Start again with the root system of type Es, and let V be the
span of the a» (1 < i < 6), with $ defined to be the set of 72 roots of Eg
lying in V:

Sj (l<i<j< 5),

±^(e8 ~ £7 - e6

where the number of minus signs in the sum is odd. The roots ctj (1 < i <
6) form asimple system. Then a = |(£i+£2+£3+£4+£5-£6-£7+£8)-

Exercise. In each case, express a as a Z-linear combination of the simple
roots.

2.11 Computing the order of W

In cases where we have a 'natural' construction of W (types An, Bn, Dn,
him)), there is no problem about computing \W\. But in other cases
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44 Classification of finite reflection groups

the order is not immediately apparent even after $ is exhibited. Here
we describe a general method, based on the elementary group-theoretic
fact: if a finite group G acts as a permutation group on a set X then,
for each x € X, \G\ = \Gx\\Gx\, where Gx is the orbit of x and Gx is the
isotropy group of x in G. In our situation, W acts on the set $, and for
a well-chosen root we can describe the isotropy group explicitly. Here
we consider just Weyl groups, deferring discussion of H3 and H4 to 2.13.

The key fact, stated as (4) in 2.9, is that all long (resp. short) roots
form a single W-orbit (when W is irreducible). Consider the unique
highest root d (which is long). If a € A, we claim that (d, a) > 0.
Otherwise saa would equal d plus a positive multiple of a, hence would
be higher in the partial ordering. Thus d lies in the fundamental domain
D for W described in Theorem 1.12. According to part (a) of that
theorem, the isotropy group of d is generated by the reflections belonging
to simple roots orthogonal to d. These are easily determined in each
case from the data assembled in 2.10. This gives an inductive method
for calculating \W\, which we apply now to the remaining types.

(F4) There are 24 long roots. The highest root d is orthogonal to all
simple roots except ce\, so its isotropy group is of type C3 (having order
48). Therefore \W\ = 24 • 48 = 1152 = 2732.

(EQ) The 72 roots form a single orbit. The highest root d is orthog-
onal to all simple roots except 0:2, so its isotropy group is of type A5
(having order 6!). Therefore \W\ = 6172 = 27345.

(E7) The 126 roots form a single orbit. The highest root d is orthog-
onal to all simple roots except a\, so its isotropy group is of type D6
(having order 256!). Therefore \W\ = 256!126 = 21O345 7.

(Eg) The 240 roots form a single orbit. The highest root d is orthog-
onal to all simple roots except a$, so its isotropy group is of type E7
(having the order just computed). Therefore |W| = 21435527.

To summarize this discussion, the following table gives the orders of
all irreducible Weyl groups (along with the number of roots):

An

(n + 1)!
n(n +1)

Bn/Cn

2nn!
2nz

Dn
on—1

2 n ( n -
n!
-1)

E6
2V34

72
5

E7
21O345

126
7

E8
21 4355: i

240
7

F4
273 i !

48

G2

12
12

Table 2: \W\ and |#| for Weyl groups

Some other formulas for \W\ will be developed in 3.9 and 4.9.

Exercise. Use the method of this section to derive again the orders of
the groups of types An, Bn, Dn.
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2.12. Exceptional Weyl groups 45

2.12 Exceptional Weylgroups

Here we survey briefly some of the interesting ways in which the Weyl
groups of types F4, E6, E7, Eg can be described. Only F4 arises as the
group of symmetries of a regular solid, but the other three groups have as
close relatives certain simple groups: orthogonal and symplectic groups
over F2 or F3. (See the exercises in Bourbaki [1], pp. 228-229, as well
as the references given below to the Atlas, Conway et al. [1].)

Recall that W always has a normal subgroup W+ of index 2 (the
'rotation subgroup' consisting of elements of determinant 1).

(F4) This is the group of symmetries of a regular solid in R4 hav-
ing 24 (three-dimensional) faces which are octahedra; see Coxeter [1].
Readers who share the author's inability to visualize such things may
also welcome a purely group-theoretic description of W (see Bourbaki
[1], p. 213). Observe that the 24 long roots in $ form a root system $ '
of type D4. It turns out that W is precisely the automorphism group
of $', in which the Weyl group W of type D4 is a normal subgroup
of order 192. (Recall that W is the semidirect product of 54 and an
elementary abelian group of order 8.) Other automorphisms of $ ' arise
naturally from symmetries of the Dynkin diagram: one can interchange
the three outer vertices using S3. So W/W = 53 (in agreement with
the calculation \W\ = 2732 in 2.11 above). In fact, W is the semidirect
product of W and £3.

W has a number of interesting realizations (see the discussion
in the Atlas under U4(2) 3* 84(3)). For example, W is the group of
automorphisms of the famous configuration of 27 lines on a cubic surface.
The rotation subgroup W+ of W is a simple group of order 25 920, which
has a variety of descriptions as a group of Lie type in the Atlas: SU4(2),
PSp4(3), SOs(3), Ojj"(2). One way to make such identifications is to
pass to quotients of the root lattice. For example, L($)/2L(<&) is a
six-dimensional vector space over F2. The usual inner product (divided
by 2) induces a nondegenerate quadratic form on this space, invariant
under the induced action of W. This yields an isomorphism of W onto
the orthogonal group of the form.

(E7) The rotation subgroup W+ of W has two realizations as a sim-
ple group of Lie type, denoted Se(2) in the Atlas. On the one hand,
X($)/2L($) is a seven-dimensional vector space over F2. The usual in-
ner product (divided by 2) induces a nondegenerate quadratic form on
this space, invariant under the induced action of W. This yields a homo-
morphism of W onto the orthogonal group of the form, with kernel {±1},
inducing an isomorphism of W+ onto 07(2). (This is a simple group of
Lie type Bs(2).) On the other hand, L($)/2L($) is a six-dimensional
vector space over F2, on which the usual inner product induces a non-
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46 Classification of finite reflection groups

degenerate alternating form with associated symplectic group Sp6(2) (a
simple group of Lie type €3(2)). Again W+ is identified with this group.

(Eg) JL($ ) /2L($ ) is an eight-dimensional vector space over F2- The
usual inner product (divided by 2) induces a nondegenerate quadratic
form on this space, invariant under the induced action of W. This
yields a homomorphism of W onto the orthogonal group of the form,
with kernel {±1}. The rotation subgroup W+ of W maps onto a simple
subgroup of index 2 in the orthogonal group, denoted Og"(2) in the Atlas.
This is a simple group of Lie type D4(2) having order 21235527.

2.13 Groups of types H3 and H4

Finally, we consider the non-crystallographic groups of types H3 and H4.
Both of these arise naturally as symmetry groups of regular solids. The
group of type H3 is the symmetry group of the icosahedron (with 20
triangular faces) in R3, or dually, of the dodecahedron (with 12 pentag-
onal faces). W has order 120, contains 15 reflections, and is abstractly
isomorphic to the direct product of its center {±1} and the simple group
of order 60. (See Grove-Benson [1] for a detailed discussion of the 'icosa-
hedral' group.) The group of type H4 is the symmetry group of a regular
120-sided solid (with dodecahedral faces) in R4, or dually, of a regular
600-sided solid (with tetrahedral faces); see Coxeter [1], p. 153. It has
order 14 400 and contains 60 reflections.

Rather than attempt a geometric construction of either group, we
look for a suitable root system in R3 or R4. The existence of a group
of type H4 will of course imply the existence of a subgroup of type H3,
so we concentrate on the former. However, we can see in advance that
the order of a group of type H3 (if it exists) must be 120, by a simple
application of the alternating sum formula derived in 1.11:

- 1

Unfortunately, this formula is effective only for groups of odd rank, so
the order of a group of type H4 is not a priori obvious.

Probably the most insightful way to construct the root system of
H4 in R* is to identify vectors with elements of the ring H of real
quaternions: A = (ci,02,03,c4) corresponds to A = c\ + C21 + C3J + 04k
(where {l,i,j,k} is the usual basis of H). Under this identification the
inner product (A, fi) in R4 becomes:

where A := c\ — C2i — C3J — c4k is the usual conjugation. Using the
resulting norm ||A|| := AA, inverses in the division ring H are computed
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2.13. Groups of types H3 and H4 47

by

If a € H has norm 1, a quick calculation shows that the reflection sa

transforms H by the rule
A >—* — aAa.

How can we locate the root system of H4 as a subset of H? The
following (somewhat surprising) observation provides a clue:

Lemma Any finite subgroup G of even order in H is a root system
(when regarded as a subset 0 /R 4 ) .

Proof. Note first that each element of G must be of norm 1, since Ar = 1
implies ||A||r = 1 and hence ||A|| = 1 (being a positive real number). In
turn, since G is closed under inverses, it is closed under conjugation.

It is easy to check that no quaternion except —1 has multiplicative
order 2. Since any group of even order contains an element of order 2,
— 1 must lie in G (and thus G contains the negatives of its elements).
In turn, the formula for sa shows that saG = G (G being closed under
conjugation). Thus G satisfies the axioms of 1.2 for a root system. •

For a systematic discussion of finite multiplicative subgroups of H,
consult DuVal [1], §20. Here we just specify a particular subgroup of
order 120, without attempting to motivate the choice. It can be seen
directly (or indirectly, using the classification) to be a root system of
type H4. This will prove the existence of a reflection group of type H4
(and with it a subgroup of type H3).

As the Coxeter graph suggests, the angle ir/5 should figure in the
construction. Set

•K 1 + y/B , 2?r - l + \/5
a := cos - = — - — , b := cos — = .

5 4 5 4

Then one checks that

2a = 26+1, 4a6= l , 4a2 =

Let $ consist of the unit vectors in H obtained from 1, | ( l + i + j )
and a + \i + 6j by even permutations of coordinates and arbitrary sign
changes. It is routine (but tedious) to check that $ is a group of order
120, hence is a root system. Let W be the resulting reflection group.
It is easy to check that W is irreducible: it is impossible to partition $
into two nonempty orthogonal subsets. From the classification it follows
that W must be of type H4. We can exhibit a simple system:

1.
"i = a--i
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48 Classification of finite refiection groups

1.
= - a + -i

a4 = ai + 6k

The resulting inner products are obviously consistent with the graph of
type H4. Rather than check directly that this is a simple system, the
reader might consult Exercise 1 in 1.5.

To compute the order of W, we use the method of 2.11. Observe
first that the 120 roots form a single W-orbit. Since every root is W-
conjugate to a simple root, it is enough to check that simple roots belong-
ing to adjacent vertices of the Coxeter graph are W-conjugate. Whether
the edge is labelled 3 or 5, we can appeal as before to the general fact
that all roots of a dihedral group I?m are in a single orbit when m is
odd.

Note that the roots a 1,02,03 form a simple system for the subgroup
of type H3, whose 30 roots are precisely the roots orthogonal to the root
k = (0,0,0,1). By part (c) of Theorem 1.12, the isotropy group of this
root has order 120. Finally, \W\ = 120 • 120 = 14400.

Notes
In 2.3-2.7 we follow Witt [1]. (See also Chapter XI of Coxeter [1].)

(2.12) Coxeter [6] has more discussion of the groups of type En .
(2.13) For another description of the group of type H4, exhibiting its

structure, see Huppert [1]. We have mainly followed Witt [1]; note that
the description in Grove-Benson [1] is slightly different. Sekiguchi-Yano
[2] show how to embed H3 in D3; similarly, Shcherbak [1] embeds H4 in
E8.
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Chapter 3

Polynomial invariants of
finite reflection groups

If W is a finite subgroup of GL(V) generated by reflections, it acts in
a natural way on the ring of polynomial functions on V. This chapter
will be devoted to the study of this action, emphasizing the remarkable
features of the subring of invariants, which turns out to be a polynomial
ring on generators of certain well-determined degrees (whose product is
\W\). This is a far-reaching generalization of the fundamental theorem
on symmetric polynomials (the case of a symmetric group).

After some generalities on invariants of arbitrary finite groups (3.1)-
(3.2), we prove the fundamental theorem of Chevalley giving an alge-
braically independent set of generators for the ring of invariants (3.3)-
(3.5) and observe (3.7) that their degrees are uniquely defined. More-
over, the sum and product of the degrees have natural interpretations
(3.9). A standard Jacobian criterion for algebraic independence of poly-
nomials (3.10) allows us to work out some examples (3.12). The degrees
enter in a surprising way into the factorization of the Poincare polyno-
mial of W (3.15).

In 3.16-3.19 we find a completely different interpretation of the de-
grees, in terms of the eigenvalues of a 'Coxeter element' of W (the prod-
uct of simple reflections in some order). For Weyl groups the calculation
of degrees can also be done by counting roots of each height (3.20).

3.1 Polynomial invariants of a finite group

Before dealing specifically with reflection groups, let us consider what
can be said about the polynomial invariants of an arbitrary finite sub-
group of GL(V), where V is an n-dimensional vector space over a field
K of characteristic 0. Denote by S the symmetric algebra S(V"") of

49
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50 Polynomial invariants of finite reflection groups

the dual space V*, which is the algebra of polynomial functions on V.
Relative to a fixed basis of V, S may be identified with the polynomial
ring K[xx,... ,xn], where the Xi are the coordinate functions. When
no confusion can result, we sometimes write K[x],f(x), etc., for short.
(The letter S has been used in Chapters 1 and 2 to denote a set of simple
reflections generating W, and will be used again for that purpose later in
this chapter. Meanwhile, the use of 5 to denote the symmetric algebra
should cause no confusion.)

There is a natural action of G on S as a group of if-algebra automor-
phisms, coming from the contragredient action of G on V*: (g • f)(v) =
f(g~1v), where g e G, v € V, f € V*. This action preserves the natural
grading of 5 by 'degree'. We adopt the usual conventions that deg 0 =
—oo and that deg / is the maximum degree of the homogeneous parts of
/ . We say that / € S is G-invariant if g • f = / for all g € G. Denote
by JR = SG the subalgebra of G-invariants. Note that it is homogeneous
relative to the grading of S.

We want to get some feeling for the nature of R — for example,
how 'big' is it? (The only obvious invariants are the constants.) It is
instructive to compare the induced action of G on the field of fractions
L of 5, which is isomorphic to K(xi,... ,xn), a purely transcendental
extension of K of transcendence degree n. Here G acts as a group of
field automorphisms. Prom field theory we know that L is a finite Galois
extension of the fixed field LG, with Galois group G. It follows that LG

also has transcendence degree n over K.
But how is L° related to Rl Obviously the field of fractions of

R is included in LG'. We claim that the reverse inclusion is also true:
Suppose p/q G LG (p, q € 5). Both numerator and denominator may be
multiplied by fj g • p, where the product is taken over all g ^ 1 in G.
The new numerator is visibly G-invariant, forcing the denominator to
be G-invariant as well. Thus LG is precisely the field of fractions of R.
This shows that R is a reasonably large subalgebra of S.

To summarize:

Proposition Let V be a finite dimensional vector space over a field
K of characteristic 0. Let G be a finite subgroup of GL(V), acting
canonically on the symmetric algebra S ofV*, and letR be the subalgebra
of G-invariants. Then the field of fractions of R coincides with the
subfield of G-invariants in the field of fractions of S. In particular, it
has transcendence degree n over KifV has dimension n. Q

3.2 Finite generation

Having seen in 3.1 that the ring of invariants R is not 'too small', we
show next that it is finitely generated as a .fiT-algebra (and therefore
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3.2. Finite generation 51

is not 'too big'). Our strategy (following Hilbert) is to exploit the fact
that ideals in polynomial rings such as S are finitely generated (Hilbert's
Basis Theorem); indeed, it follows easily from Hilbert's Theorem that a
finite generating set can be extracted from any given set of generators.
Accordingly, we consider the ideal I — SR+ of S generated by the ideal
R+ of R consisting of elements with constant term 0. Choose a finite
set of homogeneous generators for I from R+. We shall show that any
such set (together with 1) generates R as a if-algebra.

For the proof (and for later proofs), we need a sort of projection
operator taking arbitrary elements of S into R, defined by 'averaging'
over G. For any f € S, define /" by the formula:

It is clear that the assignment / *-* / ' is a linear map of S onto R,
preserving degrees and leaving all elements of R fixed. Of course, the
fact that \G\ is not divisible by the characteristic of if is essential to
the definition. Notice the following useful property of the averaging
operator:

(pq)* = ffiq whenever p € S, q € R. (2)

Proposition With notation as above, suppose fi,...,fr are homoge-
neous elements of R+ which generate the ideal I = SR+ of S. Then R
is generated as a K-algebra by these elements (together with 1).

Proof. We have to show that every element / € R is a polynomial in
fi,.-.,fr- It is enough to do this for homogeneous elements / . Proceed
by induction on the degree of / , the case of degree 0 being obvious.
When deg/ > 0, we have / € I, allowing us to write

/ = «i/i + • • • + srfr, where Sj € 5. (3)

Since f,fi,...,fr are homogeneous, we may assume (after removing
redundant terms from the Sj) that the Si are also homogeneous, with
deg Si = deg / — deg fc for all i. Next we apply our averaging operator
to (3), recalling (2), to obtain

Now the si are homogeneous elements of R of degree less than deg / , so
by induction they are polynomials in / i , . . . , fr, and then so is / . D

This proposition suggests a strategy for the proof of Chevalley's The-
orem: select a minimal finite set of (homogeneous) generators for / from
R+, and go on to show that they must be algebraically independent.
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52 Polynomial invariants of finite reflection groups

Remark. Evidently the above proof of finite generation of R breaks down
badly if we work over a field whose characteristic divides the order of
G. The conclusion is still true, but requires a more subtle analysis due
originally to E. Noether (see, e.g., Flatto [3]). In any case, our proof
of finite generation is only qualitative; much more work is required to
exhibit (for a given G) actual generators.

3.3 A divisibility criterion
Before launching into the proof of Chevalley's Theorem we record an
easy lemma which will be needed a couple of times. Readers with some
experience in algebraic geometry will see it as an immediate consequence
of more sophisticated ideas (such as Hilbert's Nullstellensatz).

Lemma Let I be a homogeneous polynomial of degree 1 in the indeter-
minates X i , . . . , x n , and suppose the polynomial f vanishes at all zeros
of I. Then I divides f in the polynomial ring K[x] = K[xi,... ,xn].

Proof. Suppose (without loss of generality) that xn occurs with a nonzero
coefficient in I. Then we can carry out the usual division algorithm in
one variable (without leaving K[x]) to obtain

f = h + r, (4)

where q € K[x] and r has degree 0 in xn, i.e., r € K[xi,... ,xn-i]- Un-
less r = 0 we get a contradiction as follows. Find elements a\,...,an_i
in the infinite field K for which r(oi,. . . ,an_i) ^ 0. Plugging these
values into I, we can solve a single linear equation to find on for which
I(oi,...,an) — 0. By hypothesis, f(ax,...,an) = 0, contradicting (4).
D

3.4 The key lemma
For the rest of this chapter we return to the setting of Chapters 1 and
2: W is a finite (essential) group generated by reflections, acting on
the n-dimensional euclidean space V over R, which may be identified
with Rn. As in the preceding sections, W then acts naturally on the
ring S of polynomial functions on V, which we identify with the ring
R[xi, . . . , zn]. Again we denote by R the ring of WMnvariants in S, and
by / the ideal in S generated by i?+, the set of elements of R having
constant term 0.

Exercise 1. Prove that W has an invariant of degree 2 in S. [Hint: W
is a subgroup of the orthogonal group.]
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3.4. The key lemma 53

We formulate as a lemma the step in the proof of Chevalley's The-
orem which uses explicitly the fact that W is generated by reflections.
The statement of this lemma obviously has something to do with de-
pendence relations among polynomials, but is otherwise rather hard to
motivate at this point. The reader will probably want to skip ahead to
the next section, deferring the study of the lemma until it is actually
needed.

Lemma Let / i , . . . , / r 6 R, with f\ not in the ideal ofR generated by
fit• • • >/r• Suppose gi,...,gr owe homogeneous elements of S satisfying

+ • • • + frgr = 0. (5)

Then gi € / .
Proof. Observe first that f\ cannot be in the ideal of 5 generated by

/2i • • • > /r- Otherwise we would have

h = hh-2 + ••• + frhr for some ht e S. (6)

Apply the averaging operator together with (2) of (3.2) to (6) to obtain

h = ft = hh\ + ... + frhl (7)

Since hf e R, equation (7) implies that fi is in the ideal of R generated
by the other fi, contradicting the hypothesis.

In order to prove that g\ e I, we use induction on deg gi. If g\ is
constant, it must be 0 (hence in / ) , since otherwise (5) would contradict
the hypothesis on f\. Now assume deg pi > 0.

Consider a typical reflection s — sa in W, and let / be a linear
polynomial (uniquely determined up to a scalar multiple) whose zero
set is the reflecting hyperplane Ha in Rn. It is immediate that the
polynomial s • gi — gi vanishes at all points of Ha, since s = s~l fixes
such points. We can therefore invoke Lemma 3.3 to find polynomials hi
for which

sgi-gi-lK. (8)

Both gi and s • gi are homogeneous (of the same degree), so (8) shows
that hi is also homogeneous and of lower degree than g^. Now apply s
to equation (5) to obtain:

fi(s-gi) + ... + fr(s-gr) = O. (9)

Subtract (5) from (9) and then substitute (8) to get

Since I is not identically zero, this in turn implies

+ ... + frhr = 0.
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54 Polynomial invariants of finite reflection groups

By induction, since deg/ii < deggi, we get hi € / . By (8), s-gi —gi € I,
or s-gi =gi{modl).

Since W stabilizes R+ and hence also / , it acts naturally on the
quotient ring S/I. We have just seen that each reflection s acts trivially
on the image of 51; since the reflections generate W, this implies that
w • g\ = <7i(mod / ) for all w € W. In turn, g\ ~ g\ (mod / ) . But g\ is in
R+ (hence in / ) , forcing g% € I as desired. •

Exercise 2. In the proof above, avoid the use of Lemma 3.3 to obtain
equation (8) by working with an explicit expression for the action of s
on V (hence on S).

3.5 Chevalley's Theorem

In this and later sections, it will be essential to work with partial deriva-
tives of polynomials. As long as the base field is R, all the usual proper-
ties of partial differentiation for polynomial functions (notably the chain
rule) may be invoked. Alternatively, one can develop these properties
for polynomials in n indeterminates in a purely formal algebraic way
(valid for any field). In any case, we shall need a familiar identity due
to Euler for an arbitrary homogeneous polynomial f(xi,...,xn):

(10)

The proof of this formula reduces at once to the special case when / is
a monomial.

Theorem Let R be the subalgebra of R [ x i , . . . , xn] consisting of W-
invariant polynomials. Then R is generated as an H-algebra by n homo-
geneous, algebraically independent elements of positive degree {together
with 1).

Proof. As in 3.2 we consider the ideal / of 5 generated by the homo-
geneous invariants of positive degree. We can select (by Hilbert's Basis
Theorem) a minimal generating set / 1 , . . . , fr for I consisting of homo-
geneous invariants of positive degree. Our main task is to show that
these polynomials are algebraically independent. Once we do that, it
will follow from Proposition 3.2 that (together with 1) they generate R
as an algebra. In turn, it will follow from Proposition 3.1 that r = n,
since the field of fractions of R must have transcendence degree n over
R.

The proof of algebraic independence is a bit tricky. Suppose fi,...,fr

are dependent, i.e., there exists a polynomial h(yi,..., yr) 9̂  0 for which

. - - , / r ) = 0 . (11)
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3.5. Chevalley's Theorem 55

In order to keep track of degrees very precisely, we first refine the choice
of ft. Let

be any monomial occurring in ft. If di = deg/i, set d — ^ d j e j , the
degree of

in xi,...,xn- Evidently the various monomials in ft which yield the
same d add up to a nonzero polynomial with the same property (11) as
ft. So we may discard all other monomials in ft.

Given the equation (11), it is reasonable to differentiate both sides
with respect to Xk for each fixed k (using the chain rule):

Vjfti7:—^ = 0, where ft* = ——(/i,... , / r ) - (12)

Note that ft* is a homogeneous element of R having degree d — di, while
the dfi/dxk are homogeneous elements of 5. We would like to apply
Lemma 3.4 to this situation, but unfortunately the hypothesis of that
lemma might not be satisfied by the ftj. Renumber them if necessary so
that hi,..., ftm is a minimal generating set for the ideal of R generated
by all of the ft». Here 1 < m < r. (If m = r, the rest of the argument
will look much simpler.)

For each i> m, write

m
hi = y^gtjhj, where g^ e R. (13)

As a polynomial in x\,..., xn, hi is homogeneous of degree d—di, so after
discarding redundant terms we can assume that each </,.,• is homogeneous
of degree dj — di (= degft* — degftj). After substituting the equations
(13) into (12), we obtain for each fixed fc:

Abbreviate the expression in parentheses by pi(l < i < m) and note
that pi is homogeneous in x\,... ,xn of degree di — 1.

Now we can apply Lemma 3.4 to (14) and conclude that pi € / .
Thus

where <ft G S.
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56 Polynomial invariants of finite reflection groups

At first sight this does not appear helpful. But if we multiply both
sides of (15) by x& and sum over &, we can use Euler's formula (10) to
get:

j=m+l t=l

where now degr* > 0. The terms on the left side are homogeneous of
degree d\, so the term f\T\ on the right side must cancel with other terms
of degree different from d\. After discarding all but terms of degree di,
we see that (16) expresses / i as an element of the ideal in S generated
by /2» • • -, fr» contrary to the original choice of the /* to be a minimal
generating set of / . •

For brevity, we may refer to a set of algebraically independent homo-
geneous generators of R (of positive degree) as a set of basic invariants
of R.

Exercise. State and prove a version of Chevalley's Theorem over an
arbitrary field K of characteristic 0, defining a 'reflection' in GL(F) to
be an element of order 2 which fixes a hyperplane pointwise.

Remark. When W is a Weyl group, a theorem of Harish-Chandra (see
Humphreys [1], §23) allows one to derive from Chevalley's Theorem a de-
scription of the center of the universal enveloping algebra of a semisimple
Lie algebra over C: it too is a polynomial algebra.

3.6 The module of covariants
Our proof of Theorem 3.5 follows closely the original proof in Cheval-
ley [2], Implicit also in that paper is a complementary description of
the it-module S, which follows readily from Lemma 3.4. While this re-
sult is inessential for what we do in the remainder of this chapter, it
has an interesting cohomological interpretation (see the remark below).
Moreover, it turns out to be equivalent to Chevalley's Theorem; for ar-
rangements of the proof emphasizing this equivalence, see Bourbaki [1],
V, §5, Hiller [3], II.3, Springer [3], 4.2.

Proposition Viewed as an R-modulej S is free of rank \W\.

Proof. The idea is to compare the it-module S with the vector space
S/I) where as before I denotes the ideal generated by the homogeneous
invariants of positive degree. Start with a set of homogeneous polyno-
mials ga € S whose cosets gQ + I span S/L We claim the ga must span
the it-module S. Clearly the submodule T which they do span is graded
by degree, so it is enough to show by induction on d that T<j = Sd-
Since SQD I = 0, some gQ must have degree 0, so To = So. Next take
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3.6. The module of covariants 57

/ S Sd, d > 0, and write it as a finite linear combination

where ca e R, hp € R has positive degree, and fp is homogeneous of
degree less than d. By induction, all fp G T, forcing / € T.

Now suppose g\,..., <?„, are homogeneous elements of 5 whose cosets
gi +1 are linearly independent in S/I. Using induction on m, we show
that these elements are independent in the i?-module 5, the case m = 1
being clear. If there is an i2-linear combination of the <fc equalling 0,
there must be such a relation

fi9i + ••• + f m g m = 0

with all fi homogeneous in R. Since <?i ^ I, we can appeal to Lemma
3.4 to conclude that

/ + ... + f

for some (homogeneous) elements hi € R. After substituting, this yields:

/2(ff2 + h2gi) + ... + fm(gm + hmg{) = 0.

Note that the & + /i^i are homogeneous, and their cosets are linearly
independent in S/I. By induction, / 2 , . . . , / m are all 0, and in turn
/i = 0.

Combining these steps, we see that a vector space basis of S/I leads
to an i?-module basis of 5. Recalling the well-known exercise below,
this in turn immediately yields a basis for the extension of the field
of fractions of 5 over the field of fractions of R, which we know has
dimension \W\ (3.1). •

Exercise. Let B be a subring (with 1) of the integral domain A; denote
the respective fields of fractions by F and E. Suppose E/F is a finite
extension. If the B-module A is free of rank r, then [E : F] = r. (In
fact, a module basis of A over B is also a vector space basis of E over
F.)

The proof shows that the vector space S/I has dimension |W|. More-
over, W acts naturally as a group of linear operators on this space. It
can be shown without too much difficulty that this representation of W
is equivalent to the regular representation, using some standard informa-
tion from Galois theory (Normal Basis Theorem) to analyze the action
of W on the field of fractions of 5. (See Chevalley [2] or Bourbaki [1],
V, 5.2.) The action of W preserves the natural grading of S/I, and the
decomposition of the graded pieces turns out to be very interesting (see
Beynon-Lusztig [1]).
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58 Polynomial invariants of finite reflection groups

Remark. The study of the 'coinvariant algebra' 5 / / is a central theme
of Hiller [3]. When W is a Weyl group, its invariant theory is closely
related to the topology of the corresponding compact Lie group and
its 'flag manifold'. Early work of A. Borel showed how to identify the
cohomology algebra of the flag manifold with 5/7; this also has an in-
terpretation in terms of the Bruhat cell decomposition (indexed by W).
See Bernstein-Gelfand-Gelfand [1], Demazure [1], Hiller [l]-[3].

3.7 Uniqueness of the degrees

The algebraically independent generators of R provided by Theorem
3.5 need not be uniquely determined, e.g., x\ + X2 and x\ + x\ work
just as well as the elementary symmetric polynomials Xi + x 2 and X\X^-
However, the degrees do turn out to be independent of the choice of
generators.

Proposition Suppose that fi,..-,fn ond g\,...,gn are two sets of
homogeneous, algebraically independent generators of the ring RofW-
invariant polynomials. Denote the respective degrees by di and ej. Then,
after renumbering one of the sets if necessary, we have di = e» for all i.

Proof. Each set of polynomials can be written as polynomials in the
other set. For each pair of indices (i, j), we can use the chain rule to
evaluate the partial derivative dfi/dfy.

This shows that the matrices

and m
are inverses, and therefore each has nonzero determinant. The expansion
of the first determinant as a sum of signed products must involve a
nonzero product

for some permutation n. After renumbering the g, we may assume that TT
is the identity. Thus when / , is written as a polynomial in g\,..., gn, gt

must actually occur. After discarding redundant terms, we may assume
that each monomial
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3.7. Uniqueness of the degrees 59

occurring in / , satisfies: di = Ylejkj- So di >e{. In turn,

» = 1 t = l

By interchanging the role of the fi and g», the same argument produces
the reverse inequality. Finally, we conclude that di = ej for all i. O

For brevity, we may refer to the numbers d i , . . . , dn (usually written
in increasing order of magnitude) as the degrees of W. The rest of this
chapter will be largely devoted to studying their remarkable properties
and to computing them in all cases. It was noted as an exercise in 3.4
that W must have an invariant of degree 2: as a group of orthogonal
transformations, it leaves invariant the polynomial x\ + ... + x\ when
V is identified with Rn with its usual euclidean structure. (Of course,
the degree 1 would also occur if W failed to be essential.)

Exercise. The scalar transformation —1 lies in W if and only if all
degrees are even. [—1 induces an automorphism of S, acting on Sd as
( - l ) d . One implication is easy, but the other may require some Galois
theory.]

Type
An
Bn
Dn
E6
E7
E8
F4
G2
H3
H4
h(m)

di,...,dn
2,3,...,n + l
2,4,6,...,2n
2,4,6,..., 2n - 2, n
2,5,6,8,9,12
2,6,8,10,12,14,18
2,8,12,14,18,20,24,30
2,6,8,12
2,6
2,6,10
2,12,20,30
2,m

Table 1: Degrees of basic invariants

After some further generalities, we shall be better able to discuss
concrete examples (3.12). At the risk of lessening the suspense, we
provide in Table 1 the list of degrees for each type of irreducible W. It
will be some time before we succeed in verifying the table completely, but
meanwhile the reader can compare it with the partial results obtained.
(Notice that, when n is even, the degree n occurs twice in the list for
Dn. This is the only case involving such a repetition.)
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60 Polynomial invariants of finite reflection groups

3.8 Eigenvalues

The study of invariants may be viewed as the study of eigenspaces of
certain operators for the eigenvalue 1. But a deeper probe of the de-
grees of W requires some consideration of all eigenvalues, together with
related traces and determinants. First we note a convenient descrip-
tion of the dimension ofthe space of ^-invariants in an arbitrary linear
representation. (Here W could be any finite group.)

Lemma Let E be any finite-dimensional W-module over a field of
characteristic 0. Then the dimension of the space of W-invariants in E
is given by the trace of the linear operator on E defined by

Proof. Note that wz — z for all w € W. Using this, a quick calculation
shows that the operator z is idempotent. Thus it is diagonalizable (with
possible eigenvalues 0,1), since its minimal polynomial divides x2 — x
and therefore has distinct roots. Let E = EQ ® E\ be the eigenspace
decomposition (possibly one of these subspaces is 0). It is clear that the
trace of z is dim E\. But E\ is the space of all W-invariants in E. Say
e € Ei. Then e = z • e = wz • e = w • e for all w € W. In the other
direction, if e is VF-invariant, then

1

so e € E\. O

Now we can develop a combinatorial identity of the frequently occur-
ring type 'sum = product', involving the degrees of W on the 'product'
side. The 'sum' is a formal power series, involving the action of W on
S.

In order to work explicitly with eigenvalues, we have to extend the
base field from R to C. As an element of finite order in GL(F), each
w € W acts via a diagonal matrix relative to a suitable basis of VQ.
Moreover, the eigenvalues of w are roots of unity; they are real or else
occur in complex conjugate pairs (since w is represented by a real ma-
trix). The eigenvalues of w on V* are just the reciprocals (= complex
conjugates) and therefore are the same as the eigenvalues on V. Now if
t is a complex number, it makes sense to write

det(l - tw) = (1 - at) • • • (1 - Cnt), (18)

where w has eigenvalues c i , . . . , cv We can also regard t as an indeter-
minate (by formally extending the base field to C(t)), in which case the
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3.8. Eigenvalues 61

reciprocal of (18) has an expansion as a formal power series:

53 cJ'-eMt*. (19)
fc>0 \fcl+...+fcn=fc /

Proposition Viewing both sides as formal power series in t, we have:

W\ J-J, det(l - tw)

Proof. Fix w € W, with eigenvalues c* as above. Earlier we viewed 5 as
the algebra of polynomials in xi,..., xn (a basis of V*). After extending
the base field to C, we can instead work with a basis z\,...,zn of the
complexified dual, space consisting of eigenvectors for w. To compute
the eigenvalues of w on the homogeneous component S* of 5 , we can
use the basis of the complexified space consisting of monomials

^l1 • • • *n"> where fci + . . . + fcn = k.

These are eigenvectors for w corresponding to the eigenvalues c*1 • • • c*n.
The sum of these eigenvalues is the trace of w on Sk, and agrees with
the coefficient of tk in the power series (19).

In view of this interpretation of (19), the coefficient of tk in the left
hand side of (20) is the trace of the linear operator

on 5fc. By the above lemma, this is precisely the dimension of the
space Rk of homogeneous invariants of degree k. But the dimension of
this space can be computed another way. If / i , . . . , / „ is a basic set of
invariants, of degrees d\,..., dn, the monomials

ft1 •••/*» with

form a basis of Rk- The number of such n-tuples ( e i , . . . , en) is evidently
the coefficient of tk in the formal power series

(1 + tdl + t2dl + . . . ) • • • (1 + td" )

which is the same as the product on the right hand side of (20). •
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62 Polynomial invariants of finite reflection groups

3.9 Sum and product of the degrees
From the identity in Proposition 3.8 we can easily derive computable
expressions for the sum and the product of the degrees of W. Since
the trace of each it; € W is real, it is clear that the only elements of W
having n — 1 eigenvalues equal to 1 are the identity and the N reflections
(where N is the number of positive roots, by 1.14). Thus the polynomial
det(l - tw) is equal to (1 - t)n if w = 1, or is equal to (1 - 1 ) " - 1 ^ +1)
if w is a reflection, but is otherwise not divisible by (1 - i)™"1.

Theorem Let d\,...,dn be the degrees of W, and N the number of
reflections in W. Thendxd2 •••dn = \W\ anddi +d2 + .. .+dn = N+n.

Proof. Multiply both sides of (20) in Proposition 3.8 by ( l - t ) n to obtain

Here g(t) is a rational function with denominator not divisible by 1 — t.
Set t = 1 to get

1 1

or\W\=di---dn.
If instead we (formally) differentiate both sides of (21), we get

2N 1

W\ W

where h{t) is a rational function with numerator divisible by 1 — t. Now
set t = 1 in (22) to obtain

N l 1 f
2\W\ 2 d 1 - - - d £ f

Substituting for \W\ the product of the degrees, this yields the desired
expression for the sum of the degrees. •

When W is a symmetric group, the reader should have no trouble
verifying these formulas directly. When W — Vm, the degrees d\,d-i
satisfy did% = 2m and d\ + d^ — rn + 2, forcing di = 2, d2 = m.

Exercise. Check that the degrees listed in Table 1 of 3.7 are compatible
with the theorem above, referring to Table 2 in 2.11.
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3.10. Jacobian criterion for algebraic independence 63

In order to treat more complicated examples, we need to develop (in
the following section) an effective way to test a given set of polynomi-
als for algebraic independence. This will also make it easy to prove a
theorem of Shephard and Todd (3.11) which asserts that only for re-
flection groups can the ring of invariants be generated by algebraically
independent polynomials.

For use in the proof of Theorem 3.11, we make a simple but important
observation. In 3.8 as well as in the proof of the above theorem, the only
fact about W used in an essential way is that its ring of invariants is gen-
erated by algebraically independent homogeneous polynomials. (Check
this!)

Remark. It is natural to wonder whether the other elementary symmet-
ric polynomials in d\,..., dn can be interpreted in an interesting way.
Actually, it is better to consider the related numbers di — 1 (whose sig-
nificance will become clear later in the chapter). The theorem shows
that their sum is N, the number of reflections in W. It was observed by
Shephard-Todd [1] that

n

JJ(1 + (di - l)t) = a0 + ait + • • • + ant
n,

«=i

where ajt is the number of elements of W whose fixed point space in
V has dimension n — k. Note that setting t = 1 in the formula re-
covers the fact that \W\ is the product of the di. A uniform proof of
the formula, involving study of the ring of invariant differential forms,
was later given by Solomon [1] (see the review by Steinberg, Math. Re-
views 27 #4872). Following work of V.I. Arnol'd on symmetric groups,
Brieskorn [1] gave a nice topological interpretation of the formula: the
left side is the Poincare polynomial of the complement of reflecting hy-
perplanes (in the complexified setting), cf. Lehrer [2], Orlik-Solomon
[2]-

3.10 Jacobian criterion for algebraic inde-
pendence

There is a simple criterion for the algebraic independence (over an arbi-
trary field of characteristic 0) of n polynomials / i , . . . , / „ in n indetermi-
nates x\,..., xn , expressed in terms of the Jacobian determinant. Write
J{fi i • • • > fn) for the determinant of the nxn matrix whose (i, j)-entry
is

Proposition The polynomials / i , . . . , / „ in indeterminates x\,...,xn

are algebraically independent (over a field K of characteristic 0) if and
onlyifj(fl,...,fn)?0.
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64 Polynomial invariants of finite reflection groups

Proof. One implication is straightforward. Suppose the polynomials
are algebraically dependent, so that ft(/i,..., /„) = 0 for some nonzero
polynomial h(yi,..., yn). We may assume that the degree of h is as small
as possible. For each fixed j , differentiate this relation with respect to
Xj (using the chain rule) to get an equation:

V* dh (f f \dfr n

The equations (23) for 1 < j < n form a system of linear equations over
the field K(x\,... ,xn) with coefficient matrix of determinant
J{f\y • •) fn) and with 'unknowns'

f£(/i,..,/»). (24)
Because h is not constant, not all of the partial derivatives dh/dyi can
vanish; since each has smaller degree than h, the choice of h shows that
the polynomials (24) cannot all be 0. Thus the linear system has a
nontrivial solution, forcing its coefficient matrix to have determinant 0.

The reverse implication is less transparent. Suppose fi,...,fn are al-
gebraically independent. Since K(x\,... ,xn) has transcendence degree
n over K, the polynomials Xj, / i , . . . , / „ are algebraically dependent for
each fixed i. Let hi(yo, y\,..., yn) be a polynomial of minimal positive
degree for which

hi(Xi, fu..., fn) = 0. (25)

Now differentiate (25) with respect to x* to obtain:

§ £ f £ f!>,A,....A)fa-o. (26)
Since the / , are algebraically independent, hi must have positive degree
in J/0- So dhi/dxi is nonzero and of smaller degree than hi, forcing the
value of this polynomial at Xj, / i , . . . , fn to be nonzero. Transpose these
terms to the right side of the equations (26) for 1 < i, k < n, and write
the equations in matrix form as

- ( 2 7 )

The matrix on the right side of (27) is a diagonal matrix with nonzero
determinant, so the Jacobian determinant on the left side is also nonzero.
•
Corollary Suppose / i , . . . , / „ are algebraically independent and ho-
mogeneous, of respective degrees di,...,dn- Then J(fi,.. •, fn) is ho-
mogeneous of degree X)(^i — 1) = iV*.
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3.11. Groups with free rings of invariants 65

Proof. The above proposition shows that the Jacobian is nonzero. It
can be expressed as a sum of signed products, each product being of the
form

dfi dfn

for some permutation •K of the indices. For each nonzero product of this
type, the individual terms are nonzero and homogeneous, of respective
degrees di—1,.. .,dn—l. In turn, thanks to Theorem 3.9, £3(di—1) = N.
D

Exercise. Set fk(x) = J2t x* for each k = 1, . . . , n. Verify that / i , . . . , / „
are algebraically independent.

3.11 Groups with free rings of invariants
There is a sort of converse to Theorem 3.5, proved by Shephard-Todd [1].
While it is not essential to the further study of degrees in this chapter,
it helps to underscore the special status of finite reflection groups among
all finite linear groups.

Theorem Let V be an n-dimensional euclidean space over R, and
let G be a finite subgroup o/GL(V), acting naturally on the polynomials
S = R[zi , . . . , xn]. Suppose the ring of invariants SG is generated by n
algebraically independent homogeneous polynomials gi,...,gn- Then G
is generated by the reflections it contains.
Proof. Denote by H the (possibly trivial) subgroup of G generated by
the reflections in G. Theorem 3.5 says that the ring SH is generated by
n algebraically independent homogeneous polynomials / i , . . . , /„. Say
deg/» = ^ and degift = e*. Evidently SG C SM, so the <;< can be
written as polynomials in the ft- After discarding redundant terms, we
may assume that each monomial

h in

occurring in gt satisfies: e, =
Now we use an argument similar to that in the proof of Proposition

3.7 to compare degrees. Use the chain rule to differentiate:

dxk ^dj

Thanks to Proposition 3.10, the Jacobian determinant involving the dgi/
dx/t is nonzero, so the corresponding Jacobian involving the dgt/dfj on
the right side of (28) must be nonzero. After renumbering if necessary,
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66 Polynomial invariants of finite reflection groups

we can assume that a product of the form

dgj_ dgn
dfl'" dfn

is nonzero. In turn, this forces et > di for all i. As observed in 3.9,
Theorem 3.9 can be applied to G as well as H. Therefore

£(*-!) = N = £><-!), (29)

where TV is the number of reflections in H (= the number of reflections
in G). Thus e* = di for all i. But Theorem 3.9 also shows that

\G\ = [[(* and \H\ =

forcing G = H. •

Remark. This theorem, as well as Chevalley's Theorem, is actually valid
in a wider setting. Define an endomorphism of a finite-dimensional vec-
tor space over C to be a pseudo-reflection if it has finite order and its
fixed point space is of codimension 1; see Shephard [1]. (This is some-
times called a 'unitary' or 'complex' reflection, or just a 'reflection'.)
The previous arguments apply with only minor changes to the ring of
polynomial invariants of a finite group generated by pseudo-reflections
(called a unitary reflection group or complex reflection group). In
particular, one has well-determined degrees whose product is the group
order. Among these groups are the reflection groups we have been study-
ing (complexified). But in general the complex reflection groups are not
Coxeter groups in any obvious way, so we do not pursue them here.
They were classified using geometric methods by Shephard-Todd [1].
Suggestions of Coxeter [5] led Cohen [1] to a more elegant formulation,
using 'root graphs'. (Cohen [2] has also studied quaternionic reflection
groups.)

The formula of Shephard-Todd in the remark at the end of 3.9 re-
mains valid in the setting of groups generated by pseudo-reflections.
There has also been much interest in the topology of the complement
of hyper planes for a complex reflection group. See the papers of Orlik-
Solomon as well as Terao [1] for further results.

3.12 Examples

We return to the study of a finite (real) reflection group W. In some
cases it is easy to exhibit a set of basic invariants and thereby compute
the degrees directly. This approach relies on the following criterion.
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Proposition Suppose gi,..., gn are homogeneous W-invariants, hav-
ing respective degrees ei,...,en. If gi, •.. ,gn are algebraically indepen-
dent and Y[ei = |W|> then they are a set of basic invariants.

Proof. We may assume that e\ < e?. < . . . < en. Let fi,...,fn be aset of
basic invariants, of degrees d\ < d% < ... < dn. Since g\ is a polynomial
in the /», it is clear that e\ > d\. We claim that this inequality holds
for each i. Otherwise, let k be the first index for which e* < dk- Then
each of git...,gic must be a polynomial in / i , . . . , fk-i • But the field
of rational functions generated by g\,..., gk has transcendence degree
k over R, so cannot be contained in a field of smaller transcendence
degree. This proves our claim.

Thanks to Theorem 3.9 and the hypothesis, l\di = \W\ = Ha,
forcing di = ej for all i. In turn, we see that the dimension of the space
of homogeneous invariants of degree d generated by the gi agrees with
that of the space generated by the /i , for every d. Thus the gi are a set
of basic invariants for W. •

We apply this criterion to groups of types An ,Bn ,Dn . From the
description of $ in 2.10, one sees immediately how W acts on the poly-
nomial functions.

Consider first the symmetric group W = <Sn+i, of type An. Since W
is required to be essential, it acts by permuting x\,... ,xn+i subject to
the relation xn + i = — {x\ +... + xn). Rather than work with elementary
symmetric polynomials, we let

(These are related to the elementary symmetric polynomials by New-
ton's identities.) The product of degrees of the fi is (n + 1)! = |W|, so
it just has to be checked (using the Jacobian criterion) that the /» are
algebraically independent. For 1 < i, j < n,

Thus J = J(fi, . . . , /„ ) is (n + 1)! times the n x n determinant K with
(i, j) entry xlj — xl

n+1, which in turn is a close relative of the familiar
Vandermonde determinant V =
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Now V is well-known to equal

n &-*)•

By subtracting the last column of V from each of the earlier columns,
one gets V = (-l)nK. Expressed in terms of x\,.. .xn, we see that

J = ( n

where z := x\ + ... + xn. Thus J / 0.
For W of type Bn the reasoning is similar. Here W acts on x\,..., xn

by permutations and sign changes, leaving invariant

fi~x? + ... + x2: (1 < i < n),

whose degrees have product 2™n! = \W\. A quick computation yields

J = 2"n!x1---xn

(Note that we might also have chosen as basic invariants the elementary
symmetric polynomials in the squares of the variables.)

The group W of type Dn acts on x\,..., xn by permutations and by
changes of an even number of signs, so we can easily find invariants by
modifying the preceding choice slightly:

xT O - ^ i ^ n - !)> f n - = x i - - - x n .
.7 = 1

The product of the degrees is 2n-1n! = |W |̂. With somewhat more effort
than before, one finds

J = ( - 2 ) " - 1 ( n - l ) !

Exercise. Find basic invariants for the dihedral groups.

3.13 Factorization of the Jacobian

In preparation for a deeper study of the degrees of W, we have to look
more closely at the Jacobian determinant
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where / i , . . . , / n is a set of basic invariants. So far we have only been
concerned with the fact that the Jacobian is not identically zero. We
can actually describe how J factors in S and what its precise role there
is. To this end, let la (a € $) be a linear polynomial whose zero set is
the hyperplane HQ in V orthogonal to a. Since la is only determined up
to a nonzero scalar multiple, we specify it (in coordinate-free fashion)
to be the map: A >-* (a, A). A quick calculation shows that for all roots
a, /?: S0-la= lsga. Also, /_ Q = -la.

Define a polynomial / € S to be alternating if w • f = (det w)f for
all w € W. (The terms 'anti-invariant' and 'skew-invariant' may also
be met in the literature.) The alternating polynomials form a subspace
A of S, which is clearly the direct sum of its homogeneous components
Ak :=ADSk.

Proposition Fix a set of basic invariants fi,...,fn for W, and let J
be the corresponding Jacobian. For each root a € $ , define la as above,
so that its zero set is the orthogonal hyperplane Ha.

(a) J — k n«€*+ l<* for some k € R (depending on the choice of the
fi)-

(b) A polynomial f € S is alternating if and only if it can be written
as the product of J and an invariant polynomial.

(c) For each k, dim Ak = dim Rk-N •
Proof, (a) Define a mapping <p : R" —> R n by setting

Suppose a = ( a j , . . . , an) € Ha for some root a. Then every open
neighborhood of a contains a pair of distinct points b, c for which sab = c.
But then /<(c) = fi(sab) = (sa • ft)(b) = fi{b), forcing <p(c) = <p(b).
According to the Inverse Function Theorem, for every point a at which
J does not vanish, <p maps some open neighborhood of a one-to-one
onto some open neighborhood of <p(a). We conclude that J must vanish
on Ha for all a € $. Thanks to Lemma 3.3, ZQ divides J. Since the
irreducible polynomials la,a € $ + are nonproportional, their product
also divides J. But this product has degree N, which is also the degree of
J according to Theorem 3.9 and Corollary 3.10. (For a purely algebraic
proof, avoiding the Inverse Function Theorem, see Flatto [3], p. 253.)

(b) In view of (a), we can assume without loss of generality that

<*€*+

It has to be shown that a polynomial is alternating if and only if it is
the product of an invariant polynomial with J. We check first that J
really is alternating, using the fact that sp-la = lS0a. When /? is simple,
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70 Polynomial invariants of finite reflection groups

sp maps /3 to its negative and permutes the other positive roots (1.4).
Therefore s? n i°=- n *«•
Iterating this calculation, we get w • J — (detw) J as desired. Moreover,
it is obvious that the product of J with any invariant is alternating.

Now take / to be any alternating polynomial, so sa • f = —/ for any
reflection sQ. If a 6 Ha it follows that

-f(a) = (sa • f)(a) = f(sa(a)) = ff(a),

forcing /(a) = 0. Since / vanishes on the zero set of la, Lemma 3.3 says
that la divides / . As in the proof of (a) above, it follows that J divides
/ : f — 9J for some g € S. Applying an arbitrary w €W to both sides,
we get: (det w)f = w- f = (w- g)(w • J) = (det w)(w • g)J, and therefore
w • g = g. So / is the product of J with an element of R.

(c) This follows immediately from (b), since J has degree N. •

We shall use part (c) right away in 3.15, while part (a) is needed
again in 3.19.

Example. Consider again the group of type Bn discussed in 3.12. The
factorization of J found there agrees with the above proposition, since
each of the linear functions Xi = 0 defines a hyperplane orthogonal to
one of the short roots ie* and each of the factors Xj + Xi or Xj — Xi
defines a hyperplane orthogonal to a long root ±(£j — £») or ±(£j +£i);
see 2.10.

3.14 Induction and restriction of class func-
tions

In preparation for the theorem in the following section, we have to recall
some simple facts about class functions on finite groups (that is, C-
valued functions which are constant on conjugacy classes). Fix a finite
group G and subgroup H. If x '• G —* C is a class function on G, it
is obvious that the restriction to H (denoted \H) is a class function on
H. In the other direction, given a class function ip on H, we obtain an
induced class function <pG by setting

VG{9) := rs r

where the sum runs over those x € G for which xgx~l G H.
In the special case tp = In (taking value 1 at all elements of H), the

induced class function has a useful interpretation: l%(g) is 1/\H\ times
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3.15. Factorization of the Poincare polynomial 71

the number of x e G with xgx'1 € H, or gx^H = x~lH. So l%(g) is
the number of distinct left cosets x~^K fixed by g. Recalling the set-up
of 1.16, we can therefore describe the function / / on W introduced there
as the class function induced from lw,- Using this language, we can
reformulate Proposition 1.16 as follows:

- l ) J C ( w ; ) = det(w) for all w G W.
ics

In the next section we shall need two further observations about
induction and restriction:

Lemma (a) If x is any class function on G, then x(l#) = (XH)G-
(b) If ip is any class function on H, then

Proof, (a) We calculate as follows:

(xH)°(g) = j^j

In each step the summation is taken over those x € G for which xgx~l G
H. In the second equality we used the fact that x is a class function on
G, and in the final equality we used the definition of induction.

(b) By definition, the left side involves a double summation over
those (g,x) eGxG for which xgx'1 € H, divided by |G||ff|. A little
bookkeeping shows that each element of G (in particular, each element
of if) occurs in the form xgx~x for \G\ distinct pairs (g,x). This yields
the right hand side, n

3.15 Factorization of the Poincare polyno-
mial

By combining a number of the previous results, we can now obtain a
beautiful factorization of the Poincare polynomial W(t) = J2w€W t*^
introduced in 1.11; the factors will involve the degrees d\,... ,dn. For
easy reference, we list the key ingredients needed in the proof:
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72 Polynomial invariants of Bnite reflection groups

(A) According to Proposition 1.11,

) N

(B) Proposition 1.16, recalled above in 3.14, expresses det(w) as an
alternating sum of class functions induced from the constant function 1
on the various parabolic subgroups of W.

(C) Lemma 3.8 allows us to compute the dimension of the space of
WMnvariants in a finite-dimensional W-module as the trace of the linear
operator

1
\W\
1 '

(D) As observed in the proof of Proposition 3.8, the coefficient of tk

in the power series expansion of the product

is the dimension of the space Rk of homogeneous invariants of degree k.
(E) By part (c) of Proposition 3.13, the dimension of the space Ak of

homogeneous alternating polynomials of degree k is equal to dim Rk-N-

We also need an alternating sum formula based on the techniques just
developed in 3.14. For this we define Ri to be the space of invariants of
Wj in 5; it is clearly the direct sum of its homogeneous components.

Lemma
VJ(—l)/dim(i?/)jt = dimAfc.
ics

Proof. Fix A: and define a class function on W by x{w) : = T^sk(w).
Denote by \i its restriction to Wj. From part (a) of Lemma 3.14, we
get:

whence by (B) above:

/r )x(«o (30)
ICS

for all w 6 W. Now average the left side of (30) over W and apply part
(b) of Lemma 3.14:

zew,
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which by (C) is the same as

Averaging the right side of (30) over W yields:

— Y, det(w)X{w).
1 ' wew

Thanks to (C) again, this gives the dimension ofthe space of W-invariants
in Sk under the action w >-* det(w)w. But the invariants under this
action are just the alternating polynomials, so the right side of (30)
becomes dim A*, as required. •

Theorem

Proof. The idea is to use induction on the rank of W, taking advantage
of the alternating sum formula (A) for Poincar6 polynomials. Define

and similarly define Qi(t) for Wj in terms of its degrees. The problem
is to prove an analogue of (A) for these polynomials:

(31)
TEs v / w

or, equivalently,

tN

(32)

We have to compare the coefficient of tk in the power series expansion
of the rational function occurring on each side of (32). The right side
equals

tN 1

so by (D) the coefficient of tk is dim Rk-N, which in turn equals dim.<4fc
according to (E).

To analyze the left side of (32), consider the action of W/ on the span
of A/ in V. Denote by e%,..., ej the degrees of basic invariants. (Since
Wj fixes pointwise the orthogonal complement of this span, its degrees
relative to its action on V are e\,..., e/, 1 , . . . , 1.) Now

(1-*)»<?/(*)
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74 Polynomial invariants of Unite reflection groups

So the coefficient of tk here is dim(i?j)fc. Now the above lemma implies
equality in (32).

By induction, for each proper parabolic subgroup Wi, we have Wj(t)
= Qi{t). Comparing (A) and (31), we conclude that W(t) = Q(t) as
required. Q

The theorem does not help directly to compute the degrees, but in
the special case of Weyl groups it plays a key role in deriving a very
effective method of computation (3.20).

Remark. The factorization of W(t) in the theorem was worked out in
the case of Weyl groups by Chevalley [3], as a means of simplifying
his formula for the orders of finite simple groups of Lie type. Such
groups have a 'Bruhat decomposition' (a double coset decomposition
indexed by a Weyl group), leading to an additive expansion for the group
order involving the Poincare polynomial. To prove his formula, he relied
on a related factorization of the Poincare polynomial of a compact Lie
group G having W as Weyl group; see Chevalley [1). The Poincare
polynomial of W also plays a role here, since W parametrizes a cell
decomposition of the flag manifold of G. Solomon [3] realized that the
factorization of W{t) is also valid for other finite reflection groups, so he
developed a more elementary proof which avoids Lie groups. However,
he still used a topological argument to obtain one key ingredient (our
Proposition 1.16); see Solomon [4] for an algebraic version. Steinberg
[5], §2, substituted a more combinatorial argument (and also generalized
the theorem to cover the case of 'twisted' groups of Lie type).

3.16 Coxeter elements
Calculation of the eigenvalues of a single well-chosen element of W is
enough to determine the degrees explicitly. This striking fact will be
proved in 3.19, after we lay the appropriate groundwork. We assume
throughout that W is irreducible and essential. It is also convenient to
assume that $ consists of unit vectors.

Enumerate a simple system A as a\,..., an , with corresponding sim-
ple reflections s\,..., sn. Then s\- • • sn is called a Coxeter element
of W. Of course it depends on the choice of A as well as on the way A
is numbered.

Proposition All Coxeter elements are conjugate in W.

Proof. Since all simple systems are W^-conjugate (1.4), it will be enough
(in view of Proposition 1.2) to show that for a fixed A = {a\,..., an},
the Coxeter elements resulting from different orderings of indices are
conjugate.
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3.16. Caxeter elements 75

Notice that a cyclic permutation of the indices yields a conjugate
element:

Sn«i • • • s n - i = sn(si • • • sn)sn, etc.

It is also clear that an interchange of an adjacent commuting pair Si, Sj
leaves the Coxeter element unchanged. We claim that all permutations
of the indices 1,2,..., n can be achieved by combining these two types
of permutations. To get started, we can assume that n corresponds to a
vertex of the Coxeter graph which is adjacent to only one other vertex.
(Recall that the graph is a tree, or look at the actual list of connected
Coxeter graphs in 2.4.) There is nothing to prove if n = 1; so we proceed
by induction on n.

By induction, any permutation of 1,2,..., n—1 alone can be achieved
by a sequence of cyclic permutations and interchanges of adjacent num-
bers i, j for which SiSj = SjSi. But we have to keep track of n as well.
Whenever a cyclic permutation is needed, we let n be carried along in
the obvious way. The only transposition with which n can interfere in-
volves two numbers i and j which are currently adjacent to n. But sn

commutes with at least one of Sj and Sj, say the former. So the suc-
cessive interchanges of i with n and i with j are legal, and yield the
desired interchange of i with j (where SiSj = SjSi). Thus all permu-
tations of 1,2,..., n — 1 are achievable by cyclic permutations of all n
numbers combined with interchanges of adjacent numbers correspond-
ing to commuting reflections. In the process, n itself may get moved to
an unpredictable position in the list. But because sn commutes with all
but one Si, n can afterwards be moved to any desired position by using
the permitted transpositions (and, if necessary, a further cyclic permu-
tation). So an arbitrary permutation can be achieved by these moves.
Q

Since all Coxeter elements in W are conjugate, they have the same
order h, which we call the Caxeter number of W. In some cases this is
easy to compute directly. For the dihedral group T>m, a Coxeter element
is just the product of two generating reflections, hence is a rotation
through 27T/TO, of order m. For the symmetric group Sn, we can take Sj
to be the transposition (i,i+l), 1 < i < n, so the corresponding Coxeter
element is an ra-cycle. (Thus the Coxeter number of the group of type
An_i is n.) The reader might try to compute h for groups of type Bn
orDn.

The fact that Coxeter elements are all conjugate in W (hence similar
in GL(V)) also insures that they have the same characteristic polyno-
mial and eigenvalues. If C is a primitive hth root of unity in C, these
eigenvalues are of the form £m, where 0 < m < h. The exponents of
W are defined to be the various m involved, written as

mi <m,2 < ... < mn.
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76 Polynomial invariants of finite reflection groups

For W of type An, these axe easily seen to be: 1,2, ...,n.
Our main goal will be to show that (miraculously) the degrees of W

are obtained by simply increasing all the exponents by 1. This is clear
already for symmetric and dihedral groups. Since the smallest degree
is 2 (W being essential), we must expect that the smallest exponent is
1. In particular, w should have no nonzero fixed points. This much is
easily checked:

Lemma A Coxeter element has no eigenvalue equal to 1. Thus the
numbers h — mi are a permutation of the m*, forcing ^ m^ = nh/2.

Proof. Suppose s\ • • • sn fixes some A. Then S2 • • • snX = siA. The left
side is congruent to A modulo the span of c*2,... ,an, while the right
side is congruent to A modulo the span of <*i. Since the simple roots
are linearly independent, this forces S2 • • • snk = A = SiA. In particular,
(A,ai) = 0 and S2---sn fixes A. Repetition of the argument shows
eventually that A is orthogonal to all the basis vectors Oi , . . . , a n of V.
Hence A = 0.

Since w is a real linear transformation, its nonreal eigenvalues come
in complex conjugate pairs, corresponding to exponents TO* and h — nn.
We just saw that 1 is not an eigenvalue. The only other possible real
eigenvalue is - 1 , which would have to be of the form Ch/2. But then
m,i = ft/2 = h — TOi. So the numbers h - m< are a permutation of the
rrii. This forces Y^mi — S C 1 ~ mi)i an<i ' n t u r n 52 m t = nh/2. •

Exercise. When W is not irreducible, Coxeter elements and the Coxeter
number are defined just as above. How are they related to the Coxeter
elements and numbers of the various irreducible factors of Wl

3.17 Action on a plane

Consider a Coxeter element w = si • • • sn. To avoid trivialities, we
always assume n > 2.

How can we determine the eigenvalues of wl The most obvious
approach would be to write down the matrix of w relative to the basis
c*i,..., an of V. This is actually feasible (see Coxeter [4]), but would still
leave us with the formidable task of evaluating the eigenvalues in some
uniform way and then relating them to the degrees of the polynomial
invariants of W. A less direct way is to study the action of w on a
carefully chosen plane P in V. This leads in 3.18 to a simple formula
for the Coxeter number h and also paves the way to the main theorem
in 3.19.

It is a familiar fact from linear algebra that V can be decomposed
into the orthogonal sum of a number of lines and planes invariant under
any given orthogonal transformation (such as w). But the choice of the
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particular plane P we are seeking is somewhat delicate.
We claim that the simple roots can be numbered in such a way that

« i , . . . ,s r commute pairwise, as do sr+i> •••,sn, for some r < n. As in
3.16, this relies on the fact that the Coxeter graph is a tree, so that some
vertex is connected to only one other vertex. By removing this vertex
and using induction, our claim follows at once. We fix this numbering
of simple roots, and the corresponding Coxeter element w.

Now we have a partition of K := {l,2,...,n}aaK = IUJ, where
/ := {1 , . . . , r} and J := {r + 1,..., n}. This induces a factorization w =
yz, where y := Si • • • sr and z := sr+i •••sn. The choice of numbering
implies that each of y and z has order 2 (as a product of commuting
reflections).

Next define wi, . . . , un to be the dual basis of a i , . . . , an in V. For
reasons of dimension, the span Y of wr+i,. . . , wn has orthogonal com-
plement Y1- spanned by a\,..., ar. Similarly, the span Z of w\,..., uir

has orthogonal complement spanned by a r + i , . . . , a n . If Hj is the hy-
perplane orthogonal to a*, it is clear that Y C Y' := Hi D ... D HT and
that Z C Z' := Hr+X n...DHn. At the same time, Y'nZ' = 0 (since
only 0 is orthogonal to all ai). Since V = Y © Z, we conclude that
Y = Y' and Z = Z'. Obviously y fixes Y pointwise and acts on Yx as
—1. Similarly, z fixes Z pointwise and acts as —1 on Zx.

The final ingredient we need is the (positive definite) matrix A of
the bilinear form associated with the Coxeter graph: A = (a^), where
a,j = (ati,aj). In our current set-up, A is the matrix (relative to the
dual basis) of the linear operator on V sending each w* to the corre-
sponding ai, since aj = ^2iO.ijWi. Now we can appeal to the general
fact proved in Proposition 2.6 (in the case of an indecomposable posi-
tive definite symmetric matrix with nonpositive off-diagonal entries): A
has a positive eigenvalue c with a corresponding eigenvector (ci,...,€„)
in Rn having all Cj > 0.

Set

'•= 5 Z CiUJi'

Thus A € Z and n eY. We want to show that w stabilizes the plane P
spanned by the lines L := RA and M := R/t. By choice of the eigenvalue
c (and the description of A as a linear operator), we have

fc€/C

Taking the inner product of each side with at(i 6 / ) , we get

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623646.004
https:/www.cambridge.org/core


78 Polynomial invariants of finite reflection groups

since (aj, aj) = 0 for all i ^ / in I. We use this to calculate as follows
(with sums over i € I,j € J,k € K respectively):

(c - l )A = (c-

where v is orthogonal to u\,..., wr (hence to Z). In the fourth step we
were able to sum over all of K by using the fact that a/tj = 0 for k € J
(unless k = j , in which case a# = 1). In the fifth step we used again
the fact that Ylk akjL°k = atj.

The calculation shows that the linear combination v = (c — 1)A + fi
is orthogonal to Z (hence is sent to its negative by z), while A lies in Z
(hence is fixed by z). It follows that z stabilizes the span of these two
vectors, which is just P. A similar argument shows that y stabilizes P.
Moreover, y (resp. z) acts on P as a reflection with fixed line M (resp.
L). Thus w acts on P as a rotation.

What is the order of w, acting on P? Note that A and /x lie in
the fundamental domain C of W defined in 1.12, since C consists of
the positive linear combinations of the w», and C of the nonnegative
combinations. Clearly P D C consists of all a\ + 6/x with a, 6 > 0; in
particular, P meets C. If to* fixes P pointwise, then it fixes some element
of C n P, so by 1.12 tu* = 1. It follows that w has order precisely h on
P (so that w acts as a rotation through 2n/h).

As a corollary of this discussion, we see that the primitive hth root
of unity C actually does occur as an eigenvalue of w (since it occurs al-
ready as an eigenvalue of the plane rotation through 2ir/h). The inverse
(complex conjugate) of this eigenvalue also occurs, of course. So mi = 1,
as our preview of the main theorem led us to expect, and mn = h — 1.
(This is true even when n = 1, since then h = 2.)

Proposition If the exponents ofW are listed as mi < m.2 < •.. < mn,
we have mi = 1 and mn = h — 1. D
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Exercise. Is the partition K = / U J unique? Describe such a partition
for each individual Coxeter graph.

3.18 The Coxeter number
Now we can exploit the way w acts on the plane P to derive a simple
formula for h. The promised comparison between exponents and degrees
(to be carried out in the next section) suggests what the formula should
look like. Recall from Lemma 3.16 that the sum of the exponents is
nh/2. On the other hand, Theorem 3.9 implies that the sum of the
numbers dj — 1 is JV. The two answers do agree:

Proposition The Coxeter number h — 2N/n, where N is the number
of positive roots.
Proof. We may assume n > 1. The idea is to see how the N reflecting
hyperplanes Ha (a € $ + ) intersect the plane P. Since P contains points
of C, no Ha contains P, so each such intersection is a line.

From our previous description of P, we see that rotating the lines L
and M by powers of w produces a total of h lines, all in one orbit under
w if h is odd, but in separate orbits containing L and M respectively if h
is even. All points of P not in these lines are obtained by rotating points
of C. In particular, each Ha must intersect P in one of the indicated
lines.

Since L C Z = Hr+\ fi- • -nHn, it is clear that these n—r hyperplanes
intersect P in L. We claim no other Ha can do so. Suppose HaC\P = L,
and write a = Yl rfca* (with r* > 0). To say that X € Ha is to say that

0 = (A,a) = I Y^Ci^i' X) r*afc ) =

Vie/ kex }

Since all Cj > 0, this forces r* = 0 (i < r). But the choice of J insures
that the only positive roots obtainable as linear combinations of the
c*j (j € J) are the ctj themselves (see Proposition 1.10).

Similarly, the only hyperplanes intersecting P in M are H\,...,HT.
If h is even, it is clear that the number of hyperplanes Ha intersecting

P in each of the h/2 distinct lines wtL is n—r, giving a total of (n—r)h/2.
The remaining h/2 distinct lines wlM account for an additional rh/2
hyperplanes, giving a grand total of N = nh/2.

If h is odd, the number of Ha intersecting P in each of the h lines
wlL is (n - r), giving a total of N = (n - r)h. But the h lines are also of
the form wlM, giving a total of N = rh. This forces r = n/2, so again
N = nh/2. •
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Recalling the discussion at the start of this section, we conclude:

Corollary EJUro, = N = £?=i (* - 1).D

Prom the proposition we see that h — 2 can occur only if N = 1 = n,
which happens only for W of type Ai. (In all other cases £ is nonreal, a
fact which will be needed in the following section.) By comparing Table
2 in 2.11, one quickly finds all values of h as listed in the table below.

An
n(n + 1)/S

n + 1 2n

Dn

n(n —
2 ( n -

1)
1)

E6

36
12

E7

63
18

E8

120
30

F 4

24
12

G2

6
6

H3
15
10

H4

60
30

h (m)
m
m

Table 2: Number of positive roots and Coxeter number

Example. The group of type H3 has three exponents, whose sum must
be AT = 15 by the corollary above. Proposition 3.17 insures that 1 and
h — 1 = 9 are exponents, so the remaining one must be 5 = h — 5. (What
can be said at this point about groups of type H4 and F4?)

3.19 Eigenvalues of Coxeter elements
At last we are ready to relate the exponents and the degrees of W. In
order to bring the eigenvalues of the Coxeter element w into the picture,
we have to complexify the situation. Embed V in its complexification
VQ, and view the inner product on V as the restriction of a (unitary)
inner product on VQ. With respect to an ordered basis of V, we are
just embedding R" in C". Similarly, the ring 5 of polynomial functions,
identified with R[ i i , . . . , xn], has the ring of complex polynomials as its
complexification.

In the complex setting, we make an important observation about
eigenvectors of w. Still excluding the group of rank 1, we found as a
consequence of Proposition 3.18 that the eigenvalue Q (a primitive /ith
root of unity) is nonreal. So the plane P contains no eigenvector, though
its complexification PQ does contain an eigenvector K along with the
distinct complex conjugate vector R; these vectors span PQ. We claim
that K cannot be orthogonal to any root a. Prom (K, a) = 0 we would get
(k, a) — 0 as well, forcing PQ to be orthogonal to a. This is impossible,
because P contains points of C and therefore does not lie in Ha.

Let Ai,.. . , Xn be a basis of VQ consisting of eigenvectors for w, rel-
ative to the eigenvalues (,mi, and denote by j / i , . . . , yn the corresponding
coordinate functions, which generate SQ. In view of the way W acts on
polynomial functions, we have
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Now let / i , . . . , / „ be a basic set of invariants in S (of degrees d i , . . . ,
dn), and express them as polynomials (with complex coefficients) in the
j/{. Since the change of variables is linear (over C), the original Jacobian
determinant J = J(fi,-..,fn) described in 3.10 is altered only by a
nonzero scalar factor, which we can ignore. Recall from 3.13 that J can
be factored into the product of linear polynomials whose zero sets are
the N root hyperplanes Ha,cx € $ + . Such a factorization still remains
after the change of coordinates from x» to yi.

Theorem If mi,..., mn are the exponents of W, then the degrees of
W are mx + 1, . . . , mn + 1. Therefore \W\ = \[{mi + 1).
Proof. As before, we may assume n > 1. We choose the numbering of
the eigenvectors of w so that Ai has eigenvalue C (mi = 1). As observed
above, this eigenvector lies in no hyperplane Ha, so J(l , 0, . . . , 0) ^ 0.
Thus at least one of the n! products involved in the determinant is
nonzero at this point. By renumbering the invariants fi,...,fn suitably,
we can therefore assume that all dfo/dyi are nonzero at (1,0,...,0).
This just means that

ft •f

-5-1 = aivt'1 + terms involving y2, • • ., yn,oy

with Oj ̂  0. In turn,

h = QiJ/i ~Xyi + terms involving other monomials.

Now apply w to this equation, bearing in mind that wyi = C,~miyi:

fi = w • fi = ai£1~di~miyfi~1yi + terms involving other monomials.

This forces
£l-di-mi _ j

whence
dj — 1 = —TOj = h — mi (mod ft).

By Lemma 3.16, the numbers ft — m» are a permutation of the
numbers mi and, by Corollary 3.18, their sum equals the sum of the
di — 1. From dk — 1 = ft — rrii (mod ft) and 0 < mj < ft we finally get
di — 1 = ft — rrii. This shows that the di — 1 are equal to the exponents,
as required. Finally, Theorem 3.9 shows that |W] = r i ( m i + !)• n

Example. Now we can easily determine the exponents (and degrees) of
the group of type H4, for which N = 60, ft = 30, \W\ = 14400. Since 1
and 29 must occur, the other exponents a,b must add up to 30, while
(a+l)(6+l) = 14400/60 = 240. The solutions of the resulting quadratic
equation are 11 and 19. Thus the degrees are 2, 12, 20, 30, in agreement
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82 Polynomial invariants of finite reflection groups

with Table 1. (The reader should do a similar calculation for the group
of type F4.)

Exercise 1. In the list of exponents of W, show that 1 and h — 1 occur
only once.

Corollary The scalar transformation — 1 € GL(V) lies in W if and
only if all exponents ofW are odd (or if and only if all degrees are even).
In this case, h must be even and, for any Coxeter element w, we have
-l = wh'2.

Proof. The transformation —1 on V induces in a canonical way an
automorphism of the symmetric algebra S, acting on Sd as (—l)d. If
— 1 € W, it follows that no W-invariant polynomial of odd degree can
exist. So the degrees are all even, and (by the theorem) the exponents
are all odd.

Conversely, let all exponents be odd. Since h — 1 occurs as an ex-
ponent, h must be even. Consider z := wh/2, where w is a Coxeter
element. Then z acts on eigenvectors of w by the scalars

f-m.ih/2

which are square roots of 1 but not equal to 1 (since mj is odd). Thus
z = - 1 . In particular, - 1 € W. •

A glance at Table 1 in 3.7 shows in which irreducible cases we have
— 1 € W. The exceptions are types An (n > 2), Dn (n odd), E6,12(wi) (jn
odd).

Exercise 2. If h is even and w — s\ • • • sn is a Coxeter element, set
z :— wh!2. Show that z is the longest element wo of W (relative to A),
so l(z) = TV, and exhibit a reduced expression for z. [Use 3.17 to show
that z maps C to — C]

3.20 Exponents and degrees of Weyl groups

In this final section we explore some special features of crystallographic
reflection groups (Weyl groups). The first result gives a surprisingly easy
way to determine many of the exponents.

Proposition Let W be an irreducible Weyl group, with Coxeter number
h. If 1 < m < h~ 1 and m is relatively prime to h, then m is an exponent
ofW.

Proof. Since W stabilizes its root lattice L($), the matrix of a Coxeter
element w relative to a basis of V consisting of simple roots will have en-
tries in Z. In turn, the characteristic polynomial has integral coefficients.
According to Proposition 3.17, a primitive hth root of unity £ occurs as
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3.20. Exponents and degrees of Weyl groups 83

an eigenvalue of w. The distinct primitive /ith roots of unity are precisely
the powers £m, with m relatively prime to h and 1 < m < h — 1. Now
it is well-known that the corresponding cyclotomic polynomial (having
all primitive /ith roots of unity as roots) is irreducible over Z, so it must
divide the characteristic polynomial of w, with which it has a greatest
common divisor of positive degree. •

This makes it easy to complete the determination of exponents (and
hence degrees) for the exceptional Weyl groups. In the case of the group
of type F4, we could do the computation earlier by combining several
facts. But our new criterion is much quicker, since 1, 5, 7, 11 are all
relatively prime to 12.

In the case of the groups of type En, none of the previous techniques
is adequate to complete the list, unless we are willing to analyze the
matrices of Coxeter elements. But now the task is easy.

For the group of type Es, with h = 30, there happen to be precisely
eight values of m between 1 and 29 which are relatively prime to 30:

1,7,11,13,17,19,23,29

So these must be the exponents! For E7, with h = 18, we find only six of
the seven exponents this way: 1,5,7,11,13,17. But then the missing m
must equal h — m, forcing m = h/2 = 9 (cf. Lemma 3.16). For Ee, with
h = 12, the numbers 1,5,7,11 must all be exponents. The remaining
ones are forced to be 4 and 8, since the sum of exponents is N — 36 and
the product of degrees is \W\ = 27345.

Exercise 1. Does the proposition remain valid for any of the non-crystal-
lographic groups?

Exercise 2. The exponents whose existence is guaranteed by the propo-
sition occur with multiplicity 1.

We conclude by stating a theorem which provides a completely dif-
ferent approach to the computation of exponents (hence degrees), based
on the 'height' of roots in a crystallographic root system. Because the
theorem is valid only for Weyl groups, and because its proof requires
some ideas most naturally developed in the context of representations of
Lie groups, we shall be content with a rough outline of the proof. (See
Carter [1], 10.1-10.2, for complete details.)

Fix a set A of simple roots in the (crystallographic) root system $,
and define the height h(a) of a root a to be the sum of the coefficients
of a when expressed as a linear combination of A. Then let fc* be the
number of positive roots of height i, for each i > 0. For example,
fei = n, since only the n simple roots have height 1. By examining each
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root system, one finds (somewhat surprisingly) that in all cases:

h > k2 > •..

Thus we have a partition of the number N of positive roots, written
in standard nonincreasing order. Such a partition has a dual partition
i-x > (-2 > • • •, where tj is defined to be the number of h > j . (This
corresponds to transposing the 'Young diagram', a topheavy array of
boxes with ki boxes in the ith row.) Note that the dual partition has n
parts, since fci = n. Now we can state:

Theorem Let W be a Weyl group, with exponents 1 = m,\ < ... <
mn = h — 1. Written in reverse order mn > ... > mj as a partition of
N, its dual partition isn = ki > ... > kh-i = 1, where ki is the number
of positive roots of height i. (In particular, the highest root a has height
h-1.)

Before sketching the proof, we should emphasize that a rigorous case-
by-case proof is possible, based on close study of the individual root
systems. Indeed, the theorem was first verified empirically in this way.
For the exceptional Weyl groups, one can consult the explicit lists of
positive roots (arranged by height) in Springer [1]. But naturally one
would prefer a general proof which explains what is going on.

In view of 3.19, the theorem can be derived by factoring the Poincare
polynomial W(t) = J ^ g ^ te^ in a new way and comparing the fac-
torization obtained previously in 3.15 (for an arbitrary finite reflection
group W):

fr- (33)

The new factorization makes sense only for Weyl groups:

th(a)+l _ i

^ ) = II -p&nrr-
a>0

The product in (34) is taken over all positive roots, but permits a con-
siderable amount of cancellation (when N is large compared with n).
The idea is already cleax for the root system of type B2. Say a is the
long simple root, /? the short simple root. The other positive roots are
a + 13 and a + 2/J, so (k\,&2,£3) = (2,1,1), and the dual partition is
(3,1). The right side of (34) looks like

t2-! t2-! t 3 - ! t4-!
t-1 ' t-1 ' t2 -I ' * 3 - l "

After cancelling some numerators with subsequent denominators, this
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3.20. Exponents and degrees of Weyl groups 85

becomes the right side of (33):

(f2 - l)(f4 - 1)
(t - 1)2 •

The identity (34) is actually a specialization of a more sophisticated-
looking identity, which requires the introduction of the group algebra B
(over Q) of the abelian group L(<&) (the root lattice). To write the group
operation multiplicatively, use symbols e(A) in bijection with elements
A € L(<&), with e(\)e(fi) = e(A + fi). Then B consists of the formal
Q-linear combinations of the e(A), and is easily seen to be an integral
domain. * We can also work in the polynomial ring B[t] or its fraction
field. With this notation, the more general identity reads:

To specialize this to (34), define a homomorphism ip : B[t] —> Q[t, t~*],
viewing the latter as the group algebra of the infinite cyclic group with
generator t. Here tp sends t to t and sends a typical e(a) to t~h(-a\ The
fractions occurring in (35) actually represent elements of B[t], so we can
apply V (leaving W(t) unchanged). In the sum over W, all terms for
which w ± 1 get sent to 0, since there exists a > 0 for which wa has
height —1 (i.e., w~l ̂  1 sends some element of —A to $ + ) .

Where does (35) come from? One needs to work with the weight
lattice £($) and its rational group algebra B (which includes B). The
particular weight p :— \ ]C<*>o a occurs very often in Lie theory. There
is a notion of 'alternating' element for the action of W on B, like that
in 3.13. The operator 0 := ^2w€W det(w) w maps B into its alternating
elements. In the framework of Weyl's character formula, one finds the
identity:

6(e(p))=e(-p)H(e(«)-l).
a>0

Because the right side is an alternating element, we get for any w € W

- c(-«;o)) = e(-wp)det(w)9(e(p)),
a>0

to be substituted for the denominator in (35). Expand the product
in the numerator into a sum (over subsets of $ + ) and interchange the
order of summation. After some delicate manipulation, one finds that
6(e(p)) also appears in the numerator, and can therefore be cancelled.
Eventually just W(t) is left.
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86 Polynomial invariants of Unite reflection groups

Notes

As indicated by the length of this chapter, the invariant theory of finite
reflection groups is a rich and highly applicable subject. Useful accounts
are found in many places, including Bourbaki [1], V, §5-6, Carter [1],
Chapters 9-10, Flatto [3], Hiller [3], Chapter II, Springer [3], Steinberg
[4], §9.

(3.5) Case-by-case treatments of rings of invariants appear in Cox-
eter [4] and Shephard-Todd [1], but Chevalley [2] gave the first unified
approach.

(3.11) See Shephard-Todd [1]. A version valid for arbitrary fields is
given by Kac-Watanabe [1].

(3.12) Explicit (or algorithmic) descriptions of basic invariants ap-
pear in many places, e.g., Coxeter [4], Flatto [1][3], Ignatenko [1], Mthta
[1], Saito-Yano-Sekiguchi [1], Sekiguchi-Yano [1][2].

(3.13) According to Coxeter [4], 6.2, this factorization of the Jacobian
was conjectured by J.A. Todd and proved by G. Racah.

(3.16)-(3.19) After initial observations by W. Killing and others,
these ideas were systematized by Coxeter [2] [4], whose proofs sometimes
involve case-by-case verifications. He remarks ([4], p. 765), 'Having com-
puted the m's several years earlier, I recognized them in the Poincare
polynomials while listening to Chevalley's address at the International
Congress in 1950.' Theorem 3.19 explains neatly a symmetry in the
exponents observed by Chevalley [1]. Coleman [1] gave a more unified
proof of the theorem, using however Coxeter's empirical observation that
h — 2N/n; then Steinberg [1] provided a uniform proof of the latter,
which we have followed. (At about the same time Kostant [1] gave a
Lie-theoretic proof of this formula.) For accounts similar to ours, see
Carter [1], Chapter 10, Bourbaki [1], V, §6. See also (8.4) below for
generalizations to other Coxeter groups.

(3.20) The proposition appears in Bourbaki [1], VI, 1.11, along with
other interesting facts about the Coxeter number. (Note that the proof
of Prop. 33 was revised in the later edition.) The theorem was apparently
first discovered by A. Shapiro (unpublished), then proved uniformly in
a Lie algebra context by Kostant [1]. Macdonald [2] instead derives
the theorem from the identity (35), of which he proves a more general
version. Recently Akyildiz-Carrell [1] have placed the theorem itself in
a more general geometric setting.
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Chapter 4

Affine reflection groups

In this chapter we describe a class of infinite groups generated by affine
reflections in euclidean space, which are intimately related to Weyl
groups and which turn out to have a presentation like that of finite reflec-
tion groups (1.9). This will help to motivate the general study of Coxeter
groups in Part II. For the most part we follow Iwahori-Matsumoto [1].
(See also Bourbaki [1], VI, §2.)

Throughout this chapter W denotes a Weyl group (a finite crystallo-
graphic reflection group), acting on the euclidean space V, as described
in 2.9. The corresponding (crystallographic) root system is denoted $.
We also need the set $ v of coroots a v = 2a/(a, a), which is a root
system in V in its own right with Weyl group W.

4.1 Affine reflections
We want to consider not just orthogonal reflections (leaving the origin
in V fixed), but also afiine reflections relative to hyperplanes which
do not necessarily pass through the origin. To this end we introduce the
affine group Aff(V), which is the semidirect product of GL(V) and the
group of translations by elements of V. To each A e V we associate the
translation t(X), which sends fj, € V to fj, + A. Then we see immediately
that, for any g 6 GL{V) and A € V,

gt^g-1 = t(gX),

showing that the group of translations is indeed normalized by GL(V).
For each root a and each integer k, define an affine hyper plane

Note that Ha>k = i?-Q,-fc and that Ha<o coincides with the reflecting
hyperplane Ha. Note too that Ha^ can be obtained by translating Ha
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88 AfRne reflection groups

by | a v . Define the corresponding affine reflection as follows:

aa,fc(A):=A-((A,a)-*)ov.

This is geometrically correct, because it fixes Ha^ pointwise and sends
the 0 vector to kav. We can also write sO)fc as t(kav)sa. In particular,
sa,0 = Sa.

Denote by W the collection of all hyperplanes Hatk (<* € $, k € Z).
The following proposition (the proof of which is an immediate calcula-
tion) shows that the elements of "H are permuted in a natural way by
W as well as by certain translations in Afi(V).

Proposition
(a) If w € W, then wHa,k = Hwa,k and wsa^w~l = «tua,fc-
(b) If X e V satisfies (A, a) € Z for all roots a, then t(X)Hatk =

4.2 AfRne Weyl groups
We define the affine Weyl group Wa to be the subgroup of
generated by all affine reflections sa!k, where a € $, k G Z.

Example. If \W\ = 2, the corresponding group Wo is generated by sa

together with sa,i subject only to the obvious relations (the square of
each reflection is 1). This group is called the infinite dihedral group,
denoted Poo. To emphasize^ the connection with the group of type Ai,
we say that Wa is of type Ai. (Similar notation is used for other types.)

We can make the structure of Wa more transparent. Recall from 2.9
the root lattice L($) (the Z-span of $) and the weight lattice

£(*) = {A e V|(A, av) e Z for all a € 0}.

Similarly, we obtain lattices associated with the root system $ v . Set
L := £($v) and L := L($v), the latter characterized by:

L = {A € V|(A,Q) € Z for all a e $.}

(This is the condition appearing in part (b) of Proposition 4.1.) W
stabilizes each of these lattices, which we identify with the corresponding
translation groups in Aff(V).

Proposition Wa is the semidirect product of W and the translation
group corresponding to the coroot lattice L = L($v).
Proof. W normalizes L, and obviously they have trivial intersection;
denote their semidirect product by W'. We saw in 4.1 that satk =
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4.3. Alcoves 89

t(kav)sa, so the generators of Wa all lie in W. The same equation
shows that t(fcav) = sa,ksa lies in Wa, so both L and W are included
in Wa. a

Since the translation group corresponding to^L is also normalized by
W, we can form the semidirect product (called Wa), which contains Wo
as a normal subgroup of finite index. Indeed, Wa/Wa is isomorphic to
L/L. As a matter of notation, we shall use letters such as w to denote
arbitrary elements of Wa throughout this chapter.

Prom Proposition 4.1 we deduce that Wa permutes the hyperplanes
in H. More precisely:

Corollary IfweWa and Ha,k 6 H, then wHa# = Hp,i for some
P € $, I 6 Z, and thus ws^kW^ = spj. •

4.3 Alcoves

To study how the groups Wa and Wa permute the hyperplanes in H, we
examine how they permute the collection A of connected components
of V° := V \ UH6W H- Each element of A is called an alcove. It is
clear (since elements of Aff(V) act as homeomorphisms) that Wa does
permute A.

What do alcoves look like? Notice first that V° is open in V. Given
A € V°, for each root a there is some k € Z such that A lies between
Ha,k and Ha,k+i, so we can find an open neighborhood Ua of A meeting
no a-hyperplane. Intersecting these neighborhoods for all roots a yields
an open neighborhood of A in V°. Since V° is open, its connected
components are also open.

From now on, we fix a set A of simple roots in $. We assume more-
over that $ is irreducible. It is convenient to single out one particular
alcove:

Ao := {A e V\0 < (A,a) < 1 for all a e $+}.

This really is an alcove. On the one hand, it is clearly included in V°.
On the other hand, it is convex (hence connected), but any element
outside Ao is separated from it by one of the hyperplanes Ha or Hay,
so Ao is a connected component of V°. In general, an alcove is defined
by a set of inequalities (some of which may be redundant) of the form:
ka < (A,a) < ka + 1, a € $ + .

Example. The alcoves associated with Wa when W has rank 2 are tri-
angles having angles n/k, n/l, ir/m, where (k,l,m) — (3,3,3), (2,4,4),
(2,3,6), in the respective cases A2,B2,G2.
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Exercise. An alcove A consists of all A G V satisfying strict inequalities
ka < (A, a) < ka +1, where a runs over $ + and ka G Z. Its upper clo-
sure consists of those A satisfying the inequalities obtained by replacing
the second < by < in each case. Prove that each A G V lies in the upper
closure of a unique alcove.

Since $ is irreducible, there is a unique highest root a (which is long
if there are two root lengths), having the property that, for all positive
roots a, a — a is a sum of simple roots (2.9). We claim that

Ao = {\€ V\0 < (A, a) for all a € A, (A, a) < 1}.

It is obvious that Ao is included in this set. On the other hand, if
A satisfies the indicated inequalities, note that also (A, a) > 0 for all
positive a. Since a — a is a sum of simple roots, (A, d — a) > 0, so
(A,a) < (A, a) < 1 and thus A G Ao.

This description shows that Ao is simply an intersection of open half-
spaces. Moreover, it is a euclidean simplex (whereas if $ has a number of
irreducible components, Ao will be a product of simplexes). (Question:
What are the vertices of Ao?)

Define the walls of Ao to be the hyperplanes Ha, a G A and Hs,,i,
and define Sa to be the corresponding set of reflections:

Sa:={sa,ae A}U{sd,i}-

The walls of wA0 can then be defined to be the images of these hyper-
planes under w for any w G Wa. As soon as we show that Wa acts
transitively on A, we will have well-defined walls for each alcove.

Proposition The group Wa permutes the collection A of all alcoves
transitively, and is generated by the set Sa of reflections with respect to
the walls of the alcove Ao.
Proof. Let W be the subgroup of Wa generated by Sa- We first prove
that W permutes A transitively. For this it is enough to show: for any
alcove A, there exists w € W for which wA = Ao. Fix any two elements
A G Ao, fj, € A. It is clear that the orbit of \i under the translation group
L = i ( $ v ) is a discrete subset of V. Since Wa is an extension of this
lattice by a finite group, the Wo-orbit (and a fortiori the W'-orbit) of
\i is also discrete in V. So this orbit contains an element v = wy, of
smallest possible distance from A. If we can show that v G Ao, it will
follow that wA n Ao ^ 0, and thus wA = Ao.

Suppose instead that v £ Ao. Then A and u must lie in different
half-spaces relative to some wall H of Ao. Let s be the corresponding
reflection (so s G W). Consider the trapezoid in V (which H bisects)
having vertices f, sv, sX, A. It is an elementary geometric fact (proved
using the Law of Cosines, for example) that the length of a diagonal
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is greater than the common length of the two nonparallel sides of the
trapezoid. This translates into the inequality: \\sv — A|| < \\v — A||.
Because su is in the W'-orbit of /z, this contradicts the choice of u.

We have shown that W permutes A transitively. In particular, each
alcove has well-defined 'walls' (the images of the walls of Ao), and every
hyperplane Ha<k occurs as a wall of two or more alcoves. To show that
W = Wa we just have to see that each sa<k lies in W. Let A be any
alcove having Ha,k as a wall, and find w €W' for which wA = Ao. Then
wHatk coincides with one of the walls H of Ao, whose corresponding
reflection s lies in W. By Corollary 4.2, ws^kW'1 — s, forcing sa<k €
W as desired. •

Since Sa generates Wa, it is natural (imitating the procedure in
Chapter 1) to define the length £(w) of an element w e Wa to be
the smallest r for which w is a product of r elements of Sa; such an
expression is called reduced. Our next task is to give a geometric char-
acterization of the length function.

4.4 Counting hyperplanes
Given a hyperplane H = Ha,k 6 H, each alcove A € A lies in one or the
other of the half-spaces defined by H. We say that H separates two
alcoves A and A' if these alcoves lie in different half-spaces relative to
H. For example, Hs separates Ao and sA0, for each s 6 5O.

Note that, for a fixed pair of alcoves, the number of H € H which
separate them is finite: indeed, a bounded set (such as the line seg-
ment joining a pair of points from the two alcoves) obviously meets only
finitely many of the parallel hyperplanes Ha,k for each fixed a. This
allows us to define an integer-valued function on Wa by letting n(w) be
the cardinality of the set

C(w) := {H e H\H separates Ao and wAo}.

In the following section we shall show that the restriction of n to Wa

is nothing but the length function L Of course, n(l) = 0 = ^(1). It is
also easy to see that n(s) = 1 if s e Sa, which amounts to showing that
C(s) = {Hs}: the line segment joining A € Ao to s\ meets no H € H
other than Hs.

As a further comparison with the length function, observe that n(w)
= n(w~1): H separates Ao and wAo if and only if w~1H separates
w~1Ao and Ao, so w~1C(w) = C{w~l).

Note that, if C(w) is nonempty, then it must contain at least one of
the hyperplanes Hs,s € Sa- Otherwise wAo ^ Ao lies in the same open
half-space as Ao relative to each Ha. But Ao is precisely the intersection
of these half-spaces, yielding the contradiction Ao — wA0.
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As in the case of the length function, it is crucial to determine how
the n function changes when we multiply by an element of Sa-

Proposition Let w € Wa and fix s € Sa-
(a) H3 belongs to exactly one of the sets C(w~1), C(sw~1).
(b) «(£(«,-!) \ {H3}) = C(sw-1) \ {H8}.
(c) n(ws) — n(w) — 1 if Hs € C(w~l), and n(ws) = n(w) + 1 other-

wise.

Proof, (a) Suppose Hs lies in both sets. This implies that wHg separates
AQ from wAo as well as from wsA0, so the latter two alcoves lie on the
same side of wHs. This forces Ao and sAo to lie on the same side of Hs,
which is absurd. We get a similar contradiction by supposing that Hs

lies in neither set.
(b) Suppose H — Ha,k ^ Hs belongs to C{w~l), so wH e C{w).

Since s fixes Hs, sH j= Hs. We have to show that sH € C(sw~l).
Suppose the contrary: sH does not separate Ao and sw~1Ao, hence H
does not separate sAo and w~1A0, hence wH does not separate wsAo

and Ao, i.e., wH $. £(ws). But, by assumption, wH G C(w), so wH
must separate wAo and wsAo. Thus H € C(s) = {Hs} contrary to
the choice of H. This proves one inclusion in (b). To get the reverse
inclusion, just replace w by ws.

(c) This follows immediately from (a) and (b). •

Corollary For any w € Wa, we have n(w) < £(w).

Proof. This is clear if w = 1. Otherwise let w = s\ • •• sr be a reduced
expression, and use induction on r. Part (c) of the proposition shows
that the value of n can increase at most 1 each time we multiply by a
factor s, so n(w) < r •=• £(w). Q

4.5 Simple transitivity

In order to prove that t = n on Wa, as well as to show that Wa acts
simply transitively on A, we want to write down an explicit list of the
hyperplanes separating Ao and wAo. The key step is contained in the
following lemma.

Lemma If w ^ 1 in Wa has a reduced expression w = s\- • • sr, with
Si € Sa, then (setting Hi := HSi) the hyperplanes

H\, S1H2, S1S2H3, . . . ,S\ • • • Sr-\Hr

are all distinct.
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Proof. Suppose on the contrary that for some indices p < q we have
«! •Sp-i-Hp = Si--sq-iHq. Then Hp = sp---sq^iHq. By Corol-
lary 4.2, this implies sp = (sp • • • sq-\)sq(sq-i • • • sp). Thus sp • • • sq =
Sp+i • • • Sq-\, allowing us to reduce the length of the already reduced
expression for w, which is absurd. •

By combining this lemma with Proposition 4.4, we can easily derive
the promised conclusions:

Theorem (a) Let w ^ 1 in Wa have a reduced expression w =
s\ • • • sr. Then we have (setting Hi := HSi)

C(w) = {Hi,s1H2>s1s2H3,... ,8i- • • Sr-iHr}.

Moreover, these r hyperplanes are all distinct.
(b) The Junction n on Wa coincides with the length function I.
(c) The group Wa acts simply transitively on A.

Proof, (a) We have already observed that £(s) = {Hs} when s € Sa.
Now proceed by induction on r = £(w). When r > 1, the induction
hypothesis says that

£(S 2 • • • Sr) = {H2, S2H3, . . . , S2 •• • S r - l # r } -

Moreover, these r — 1 hyperplanes are distinct. If Hi were to occur in
this list, then we would have

Hi = s\Hi € {siH2,sis2Hs,... ,s\ •• • sr-iHr},

contrary to the above lemma. Thus H% (fc C(siw). We now apply
Proposition 4.4 (taking s = Si and replacing w~l there by s2 • • • sr).
Part (a) forces H\ to lie in C(w). Then part (b) forces C(w) to be the
desired set of r hyperplanes (all distinct, by the lemma).

(b) follows immediately from (a).
(c) We already know from 4.3 that Wa acts transitively on A, so

it remains to show that no element w ̂  1 can fix an alcove, say Ao

(without loss of generality). But wAo — Ao means that C(w) — 0,
contrary to (a). •

It is worth observing that the above list of hyperplanes separating
Ao from wAo corresponds precisely to a sequence of r aiBne reflections
whose product is w. This is seen by rewriting w in the form

(Si • • • 8r-iSrSr-i • • • Si)(«i • • • Sr_2Sr_iSr_2 • • • Si) • • • (siS2Si)si.
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94 AfEne reflection groups

Exercise 1. Show by example that Wa does not in general permute A
simply transitively.

Exercise 2. When restricted to the subgroup W, the length function on
Wa agrees with the length function defined in Chapter 1.

Exercise 3. Each H G K divides V into 'positive' and 'negative' half-
spaces. Associate to any pair of alcoves A, B an integer d(A, B) as
follows: To each hyper plane H G Ti which separates A from B, assign
+1 if B lies on the positive side of H or — 1 if B lies on the negative side
of H. Sum these values over the (finitely many) hyperplanes separating
A from B to get d(A, B). For all A,B,C G A, prove that

d(A, B) + d(B, C) + d(C, A) = 0,

by considering each family of parallel hyperplanes separately. If we
assign to each alcove A the unique element w € Wa for which A = wAo,
how does d(AQ,A) compare with t{w)l (See Lusztig [2], 1.4.)

The simple transitivity of Wa on A has a nice consequence for the
structure of Wa. If w G Wa, then the transitivity of Wa on alcoves
already implies that wAo = w'A0 for some w' € Wa. Thus w(w')~1 Ao =
Ao- If fi is the subgroup of Wa stabilizing Ao, this shows that Wa

is the product of Wa and fi. Simple transitivity further̂  implies that
WanQ, = 1, so in fact the product is semidirect and fi ̂  Wa/Wa = L/L.

4.6 Exchange Condition

Now we are in a position to derive an analogue of the Exchange Con-
dition for finite reflection groups (1.7), equivalent to the Deletion Con-
dition. This in turn will allow us to deduce that {Wa,Sa) is a Coxeter
system, just as in 1.9.

Exchange Condition Let w G Wa have a reduced expression w =
Si ---Sr, with Si G Sa- If £(ws) < £(w) (s G 5a), then there exists an
index 1 < i < r for which ws = si • • • Si • • • sr.
Proof. By part (c) of Theorem 4.5,

Therefore

C(w~l) = w~lC(w) = {sr • • • SiH\,sr • • • S2H2,... ,srHr}.

Of course, SiHi = Hi in each case. By the hypothesis on s together with
part (c) of Proposition 4.4, Hs must lie in C(w~l), say Hs = sr- • • Si+
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4.7. Coxeter graphs and extended Dynkin diagrams 95

for 1 < i < r. Then Corollary 4.2 forces (sr • • • si+i)si(si+i • • -sr) =
s, or SiSi+i • • • sr = Si+i • • • srs. After substitution, this yields ws —
sj • • • ii • • • sr as desired. •

As discussed in 1.7, this version of the Exchange Condition is equiva-
lent to the Deletion Condition. That condition alone is enough to make
the argument in 1.9 work, allowing us to conclude:

Theorem The pair {Wa,Sa) is a Coxeter system. Q

Exercise. The affine Weyl group of type An_x can be realized as a
group of permutations of Z, as follows. List the elements of Sa as
SQ,SI, ... ,sn_i, so that, for i > 0, Sj is the transposition (i,i + 1) in
W = 5 n . Then associate to Sj (0 < i < n) the permutation of Z sending
t *-* t — 1 if t = i + 1 (mod n), t >-* t + I if t = i (mod n), t H-> t
otherwise. Prove that this assignment extends to an isomorphism of Wo
onto a subgroup of the permutation group, which may be characterized
as the set of permutations TT satisfying: ir(t + n) = ir(t) + n for alK 6 Z
and Yl t = X) ^W (sums taken from 1 to n). How is the length function
described in this realization?

4.7 Coxeter graphs and extended Dynkin
diagrams

It is not difficult to construct, for each irreducible Weyl group W, the
Coxeter graph belonging to the Coxeter group Wa. One just needs to
work out the order of sasa,i for each a e A, to see what new edges
and labels occur when the new vertex is adjoined to the Coxeter graph
of W. Geometrically, this product of reflections depends only on the
angle between the associated hyperplanes, which is the same as the angle
between the parallel hyperplanes (through 0) orthogonal to a and a. So
the calculation is easily done using the data about roots in 2.10. The
resulting Coxeterjraphs are precisely_£hose occurring in Figure 2 of 2.5,
with labels An, Bn, etc. Note that Ai is the only graph involving the
label oo.

In Lie theory it is convenient to codify in an extended Dynkin
diagram the information about relative root lengths, when an extra
root is added to A. Since the angles between simple roots are obtuse,
it is natural to use — a (often labelled c*o) as the extra root. Indeed, its
angle with any simple root is also obtuse: d forms an acute angle with
any simple root a, for otherwise saa would be a higher root obtained by
adding a positive multiple of a. Imitating the construction of Dynkin
diagrams (2.9), we obtain the extended diagrams in Figure 1.
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E8

G2

Figure 1: Extended Dynkin diagrams

Example. Consider the crystallographic root system of type Bn de-
scribed in 2.10. In terms of the standard basis of Rn, the simple roots
are

Oil = £l — £2, O12 = £2 ~ £3, • • •, <*n-l = £n-l - £n, « „ = £ n ,

while d = £1 + £2. Thus for n = 2 a double edge joins the vertex
associated with the short root c*2 and the new vertex associated with
the long root —d. When n > 3 both of these roots are long, so a single
edge joins the vertex associated with «2 and the new vertex.

Exercise. If / is a proper subset of Sa, the resulting 'parabolic subgroup'
generated by / is finite. (What can be said about its order?)

4.8 Fundamental domain

Returning to the geometric discussion which led up to the presentation
of Wo, we can imitate in a straightforward way the description of funda-
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4.9. A formula for the order ofW 97

mental domains for finite reflection groups (1-12). Here the appropriate
subset of V is the closure Ao of Ao.

Theorem The closure of Ao is a fundamental domain for the action
ofWa onV.

Proof. Obviously each element of V lies in the closure of at least one
alcove. So Proposition 4.3 implies that Wa sends each element of V"
to some element of Ao. It just has to be shown that no two distinct
elements X,fi & Ao can be conjugate under Wa. Suppose the contrary:
wX = fi for some w € Wa. We may assume that £(w) > 0 is as small as
possible.

Now we imitate the proof of Theorem 1.12. Find a € Sa for which
t(ws) < £(w). Thanks to the fact that l{w) = n(w) (Theorem 4.5), part
(c) of Proposition 4.4 shows that Hs e £(w~1). Thus HB separates Ao

from w~1Ao. Since A = w~ln lies in w~1Ao, we must have (A, a) < 0 (in
case s = sa for a simple root a) or else (A, a) > 1 (in case s = sa,i)- But,
by assumption, (A, a) > 0 and (A, a) < 1, so we get either (A, a) = 0 or
else (A, a) = 1. In either case, sX = A, and thus wsX = (/, contrary to
the minimality of £(w).

(As in the proof of Theorem 1.12, this argument actually shows that
the stabilizer of an element of Ao is generated by those elements of Sa

which it contains.) D

4.9 A formula for the order of W
Comparison of fundamental domains for Wa and for one of the related
translation groups leads to a beautiful formula for the order of the Weyl
group W, which is independent of the earlier methods developed in 2.11
and 3.9.

Recall the lattices L = L($v) and L = L($v). The index of L
in L is denoted by / and called the index of connection (2.9). It is
easy to compute / in each case from the matrix of Cartan integers (see
Humphreys [1], §13); see the table below.

Another ingredient in the formula is the expression of the highest
root Q as a linear combination of simple roots:

, where A = {e*i,.. . , a n } .

The integers c< are listed in the table below; they can be derived easily
from the data in 2.10.

Theorem If W is an irreducible Weyl group of rank n, then

\W\ = n\c1--.cnf,
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Type
An
Bn

cnDn
E6

E7
E8

F4

G2

Coefficients of a
1,1,..
1,2,2,
2,2,..
1,2,..
1,2,2,
2,2,3,
2,3,4,
2,3,4,
3,2

. ,

• »
3,
4,
6,
2

1
• 1

2,
2,
2,
3,
5,

2
1
1,1
1
2,1
4,3,2

/
n + 1

2
2
4
3
2
1
1
1

Table 1: Coefficients of highest root and index of connection

where f is the index of connection and the c* are the coefficients of the
highest root.
Proof. The idea is to compare the volumes of two fundamental domains
in V (identified with Rn) relative to the usual Lebesgue measure. Since
hyperplanes have measure 0, we do not have to be too precise about the
boundaries involved.

Let P be the (open) parallelepiped determined by the basis vectors
w^ of L dual to the a* € A:

P := {A € V\0 < (A,Oi) < 1 for all »}.

Since P is bounded by some of the hyperplanes in H, it is clear that P
is a union of certain alcoves (including Ao) and parts of their closures.
Moreover, P together with part of its boundary forms a fundamental
domain for the translation group corresponding to L.

We want to compare Ao with P. Since (n^ay) = %, we see that
the vertices of Ao are the points (l/ci)w^ together with 0. Indeed,
these are precisely the points obtained by intersecting all but one of the
hyperplanes in Sa. An elementary calculation with multiple integrals
shows that the volume of the standard n-simplex in Rn is 1/n!. If the
standard basis is modified by factors 1/ci, the resulting volume is just
multiplied by these factors. A change of basis to the vectors ro/ in
turn modifies the volume by a factor equal to the absolute value of the
determinant of the coordinate matrix of these vectors. The same factor
changes the volume of the standard unit parallelepiped into the volume
of P. So this factor does not affect the ratio:

vol(P)/vol(i4o)=n!ci---cn.

Another way to compute the ratio of volumes is simply to count how
many alcoves are contained in P. We claim that the number of these is
\W\/f, which will yield the desired formula for
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4.10. Groups generated by affine reSections 99

To prove the claim, we first look for all possible elements of Wa which
map Ao into P. Any such element is the product of a translation by
some (j, € L and an element of W. Let A € Ao be arbitrary, and w € W.
Suppose translation by fx = ^2aiW^ takes wX into P, so (wX + /j,,a>i)
lies between 0 and 1 for all i. Now (wX, o )̂ = (A, w~loii) lies between
0 and 1 (resp. 0 and —1) provided w~1ai is positive (resp. negative),
since A € Ao. Moreover, all such values are attainable as A varies. On
the other hand, (A*, at) = Oj is an integer. Therefore, (wX + /x, a,) lies
between 0 and 1 precisely when we have a» = 0 (resp. 1) for w~lon > 0
(resp. < 0). Denote by p^ the sum of all w^ for which w~lai < 0. We
have shown that t(p^) w is the unique element of Wa involving w which
maps Ao into P.

Now for each such element of Wa, its product with each of the /
elements of fi, the subgroup stabilizing Ao denned in 4.5, takes Ao to
the same alcove in P. On the other hand, two elements of Wa which
map Ao to the same alcove obviously differ by an element of O. It follows
that the number of distinct alcoves in P (those which are images of Ao

under Wa) is \W\/f, as claimed. •

Remark. The fact that / divides \W\ is not a priori obvious, but becomes
clear when one sees how to locate naturally a subgroup of W isomorphic
to Q. This and other refinements, such as the precise determination of
which elements p£ lie in L, may be found in Verma [3] (in a formulation
dual to ours) and Iwahori-Matsumoto [1].

Exercise 1. Use the table to check (case-by-case) that the formula in the
theorem is in agreement with the earlier formulas for \W\ developed in
2.11 and 3.9.

Exercise 2. Verify (using the table) that /—I is the number of coefficients
of a equal to 1.

4.10 Groups generated by affine reflections

In this chapter we have constructed a particular class of groups generated
by affine reflections, which turn out to be Coxeter groups. It is natural
to ask whether some larger class of 'discrete' groups generated by affine
reflections may be found. In a word, the answer is no (if the limitation to
'discrete' groups is formulated appropriately). This question is explored
exhaustively in Chapters V and VI of Bourbaki [1] (cf. Coxeter [2], Witt
[1]). For a very helpful outline (with some proofs filled in) see Brown
[1], Chapter VI, §1. Here we offer just a brief guide to what is done in
Bourbaki, with references to sections.

(1) Start with an arbitrary collection fi of affine hyperplanes in V,
and consider the group G generated by the corresponding reflections.
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100 Atiine reflection groups

Using Proposition 4.1, we may enlarge H if necessary so that G permutes
Ti. To insure that G is not 'too big', we might require that 7i be 'locally
finite' (any compact set meets only finitely many H £'H). This follows
from the formal requirement that G (given the discrete topology) act
'properly' on V: given two compact sets, only finitely many G-translates
of the first meet the second. In particular, G will be discrete in the
natural topology of Aff(V). [See V, §3.]

(2) With these assumptions in place, the complement of the union
of hyperplanes in Ti will be open; its connected components may be
called 'chambers'. They have naturally defined 'walls' in H. G then
permutes the collection of all chambers. (Lower dimensional cells and
faces can also be defined in a natural way by systems of equalities and
inequalities.) [See V, §1, §2.]

(3) Study of the action of G on chambers leads to a number of
familiar-looking conclusions: If C is any fixed chamber, and R the col-
lection of reflections with respect to its walls, then R is finite, G is gener-
ated by R and acts simply transitively on the collection of all chambers.
Moreover, (G, R) is a Coxeter system, and 7i consists of all affine hy-
perplanes whose reflections lie in G. [See V, §3.]

(4) Note that G might actually be finite (if it fixes a point of V).
In general, there are only finitely many parallel classes of hyperplanes
in Ti, and there exist 'special points' where hyperplanes from all these
classes intersect. [See V, §3.]

(5) Suppose G is infinite, and 'irreducible' in a natural sense (which
does not limit the generality significantly). Then G contains a transla-
tion lattice of rank equal to the dimension of V, which is the root lattice
of a (crystallographic) root system. Moreover, the stabilizer in G of a
special point (which we may as well take to be 0) is a finite subgroup
generated by reflections, which normalizes the translation lattice (its
root lattice). The conclusion is that G is an affine Weyl group. [See VI,
§2.]

Related to this line of reasoning in Bourbaki is a discussion which
characterizes such affine reflection groups among all possible Coxeter
groups, in terms of the 'geometric representation' and associated bilinear
form. [See V, §4 and VI, 4.3.] We shall discuss these matters in Chapters
5 and 6 below.

Notes

For the notion of upper closure in the exercise in 4.3, and various refine-
ments, see Jantzen [3], p. 261.

(4.5) The arrangement of the arguments here was suggested by J.B.
Carrell.

(4.6) The exercise is due to Lusztig [3] (see Shi [1], p. 67). He has
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4.10. Groups generated by aJEne reflections 101

worked out similar descriptions for other affine Weyl groups; see Bedard

(4.9) This formula is due to Weyl (see Coxeter [1], 11.9). Our treat-
ment follows Verma [3]. The proof in Bourbaki [1], VI, 2.4, prop. 7 (p.
178) uses some facts about Haar measure. For a different proof, based
on a comparison of Poincare series for W and Wa, see Proposition 1.32
of Iwahori-Matsumoto [1].
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Chapter 5

Coxeter groups

Motivated by the examples of finite reflection groups (Chapter 1) and
affine Weyl groups (Chapter 4), we embark on the general study of Cox-
eter groups. After introducing the basic notions in 5.1-5.3, we examine
the 'root system' in 5.4-5.7, following Deodhar [4]. This leads to the
'Strong Exchange Condition' (5.8). Then we study the Bruhat ordering
in 5.9-5.11. Finally, we look more closely at parabolic subgroups, deriv-
ing an inductive formula to express Poincare series as rational functions
in 5.12 and finding a fundamental domain for the action of our group in
5.13.

5.1 Coxeter systems
We define a Caxeter system to be a pair (W, S) consisting of a group
W and a set of generators S C W, subject only to relations of the form

where m(s, a) = 1, m(s, s') = m(s', s) > 2 for s ^ s' in 5. In case no
relation occurs for a pair s, s', we make the convention that m(s, s') = oo.
Formally, W is the quotient F/N, where F is a free group on the set S
and N is the normal subgroup generated by all elements

Call \S\ the rank of (W, S). The canonical image of 5 in W is a gen-
erating set which might conceivably be smaller than 5, but in fact it
will soon turn out to be in bijection with S (5.3). In the meantime, we
may allow ourselves to write s € W for the image of s G S, whenever
this creates no real ambiguity in the arguments. Moreover, we may refer
to W itself as a Coxeter group, when the presentation is understood.

105
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106 Coxeter groups

Although a good part of the theory goes through for arbitrary 5, we
shall always assume that 5 is finite.

This definition is of course motivated by the two geometric examples
studied earlier: finite groups generated by reflections (Chapter 1) and
affine Weyl groups (Chapter 4). However, the subject becomes vastly
more general when the choices of the m(s, s') are essentially unrestricted.
As a result, the reader may well be skeptical at this point about the
depth or interest of such a generalization. It will be seen presently that
Coxeter groups do admit a sort of geometric interpretation as groups
generated by 'reflections' (in a weak sense), and that they share many
interesting features. The special cases just mentioned are the ones most
often encountered in applications, but there are further useful classes
of Coxeter groups (e.g., the 'hyperbolic' ones, and the 'Weyl groups'
associated with Kac-Moody Lie algebras). While the general theory
may be regarded at first as mainly a nice unification of existing theories,
it also suggests new viewpoints and problems.

To specify a Coxeter system (W, S) is to specify a finite set S and a
symmetric matrix M indexed by S, with entries in Z U {oo} subject to
the conditions: m(s, s) = 1, m(s, s') > 2 if s ^ s'. Equivalently, one can
draw an undirected graph F with S as vertex set, joining vertices s and
s' by an edge labelled m(s, s') whenever this number (oo allowed) is at
least 3. If distinct vertices s and s' are not joined, it is then understood
that m(s, s') = 2. As a simplifying convention, the label m(s, a') = 3
may be omitted. As in 2.1, T is called a Coxeter graph.

Here are a couple of examples not previously encountered.

Example 1. In case all m(s, s') = oo when s ^ s', we call W a universal
Coxeter group (see Dyer [2]). If \S\ = 2, W is just the infinite dihedral
group Z>o<>, an affine Weyl group of type A\.

Example 2. Let S = {si,S2,S3}, with m(si,S2) = 3, m(si,S3) = 2,
wi(s2, S3) = 00, so the Coxeter graph is

00
—• o

The resulting Coxeter group W turns out to be isomorphic to PGL(2, Z)
= GL(2, Z)/{±1}. Denote the canonical map GL(2, Z) - • PGL(2, Z) by

Ci) a b
c d

Then send the generators «i, «2» «3 to the respective elements of order 2
inPGL(2,Z):

00 1 ] [ - 1 1 ] [ - 1 0 ]
1 0 J ' l 0 1 J ' [ 0 1 J -
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By checking the orders of the products, we see that this assignment in-
duces a homomorphism <p : W —* PGL(2, Z). The image of <p includes
the subgroup PSL(2, Z) of index 2, since <p(siS3) and <p(«2S3) respec-
tively come from elementary matrices

( -Si ) - ( iO-
which are well known to generate SL(2, Z). Because PSL(2, Z) does not
contain the images of matrices of determinant —1 representing the Si,
we conclude that ip is surjective. To see that <p is injective, one can use
the standard fact that PSL(2, Z) is the free product of the groups of
orders 2 and 3 generated by <p(siS3) and y(sis2)- (W is an example of
a 'hyperbolic' Coxeter group; see 6.8 below. It is discussed from several
perspectives in Brown [1], pp. 40-46.)

It is notoriously difficult to say much about a group given only by
generators and relations — for example, is the group trivial or not? In
our case, we can see right away that W has order at least 2. Start
with a homomorphism from the free group F onto the multiplicative
group {1,-1}, denned by sending each element of S to — 1. It is obvious
that all elements (ss')m(*'s) lie in the kernel, so there is an induced
epimorphism e : W —* {1, —1} sending the image of each s £ S to —1.
In particular, each of these generators of W does have order 2. The
map e is the generalization for an arbitrary Coxeter group of the sign
character of the symmetric group.

Proposition There is a unique epimorphism e : W —* {1, —1} sending
each generator s € S to — 1. In particular, each s has order 2 in W. O

Note that when |5| = 1, W is just a group of order 2. When \S\ =
2, W is dihedral, of order 2m(s,s') < oo if 5 = {s,s'}. So we are
already well acquainted with these types of Coxeter groups in the guise
of reflection groups.

Exercise 1. Denote the kernel of e by W+. If S = {si,..., sn}, prove
that W+ is generated by the elements s*sn (1 < i < n — 1).

Exercise 2. If W has rank n and all m(s,s'), s ^ s', are even, then
2n.

5.2 Length function
Since the generators s £ S have order 2 in W, each w ^ 1 in W can be
written in the form w = sis? • • • sr for some s» (not necessarily distinct)
in S. If r is as small as possible, call it the length of w, written £(w),
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and call any expression of w as a product of r elements of 5 a reduced
expression. By convention, ^(1) = 0. More formally, a reduced expres-
sion should be viewed as an ordered r-tuple (s i , . . . , sr). Note that the
lengths of partial products are predictable when w = si • • • sr is reduced:
£(si • • • sr-i) = r — 1, £(s2 • • • sr-i) — r - 2, etc. However, the length
function has its subtleties, because a typical element of W may have
numerous reduced expressions.

Exercise. Prove that W is of 'universal' type (5.1) if and only if each
element has a unique reduced expression.

Here are some elementary properties of the length function:

( L I ) £(w) - t i n ) - 1 ) . [If W = S l - - - S r , W-1 = S r - - - S i , SO { ( W 1 ) <

£(w), and similarly for w-1 in place of w.]

(L2) £(w) = 1 if and only if w G S.
(L3) l{ww') < £(w) + e(w'). [If w = si • • • sp and w' = s[ • • • s'q, then

the product ww' = si • • • SpSj • • • s'q has length at most p + q.\

(L4) e(ww') > £(w) - £(w'). [Apply (L3) to the pair ww\ (w1)'1, then
use (LI).]

(L5) e(w) -1 < £(ws) < i(w) +1 , for s € 5 and w e W. [Use (L3) and
(L4).]

Proposition The homomorphism e:W—»{1,—1} of 5.1 is given by
e(w) = (-l)^w\ As a result, £(ws) = t{w) ± 1, for alls € S,w eW,
and similarly for £(sw).
Proof. Write a reduced expression w = s\ • • • sr- Then

as required. Now e(ws) = — e(w) implies that £(ivs) ̂  £(w). By property
(L5) above, the lengths must differ by precisely 1. •

In our study of Coxeter groups (as in the special cases treated earlier),
we shall often prove theorems by induction on £(w). It will therefore be
essential to understand the precise relationship between £(w) and £(ws)
(or £(sw)). For this we need a way to represent W concretely.

5.3 Geometric representation of W

Given a Coxeter system (W, S), it is too much to expect a faithful rep-
resentation of W as a group generated by (orthogonal) reflections in a
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5.3. Geometric representation of W 109

euclidean space. But we can get a reasonable substitute if we redefine a
reflection to be merely a linear transformation which fixes a hyperplane
pointwise and sends some nonzero vector to its negative. The idea is to
begin with a vector space V over R, having a basis {as\s e S} in one-
to-one correspondence with 5, and then to impose a geometry on V in
such a way that the 'angle' between as and aa> will be compatible with
the given m(s, s'), i.e., with the previously studied geometry of dihedral
groups. Accordingly, we define a symmetric bilinear form B on V by
requiring:

B(aM) =-cos ^ r y

(This expression is interpreted to be —1 in case m(s, s') = oo.) Evidently
B(aa,as) = 1, while B(as,as>) < 0 if s ± s'. Since a, is non-isotropic,
the subspace Hs orthogonal to aa relative to B is complementary to the
line RQ S .

For each s 6 S we can now define a reflection aa : V —* V by the
rule:

<7SX = A - 2B(as, \)aa.

Clearly crsaa = —aa, while qa fixes Ha pointwise. In particular, we see
that oa has order 2 in GL(F).

A quick calculation (left to the reader) shows that <ra preserves the
form B, i.e., B(oa\,aay) — B(XJ/J.) for all A,/* 6 V. As a result, each
element of the subgroup of GL(V) generated by the cra(s 6 S) will also
preserve B.

Our first task is to show that there exists a homomorphism from W
onto this linear group, sending s to <ra. For this it is enough to check
that

(ffs<v)m(sy) = 1 whenever s ^ s'.

Set m := m(s, s') and consider first the two-dimensional subspace VSySi
:= Ras © RaS'. We claim that the restriction of B to VSt3> is positive
semidefinite, and moreover is nondegenerate precisely when m < oo. To
check the first part, just take any A = aaa+bas> (a, b G R), and compute

J5(A, A) = o2-2a6cos(7r/m) + 62 = (a-6cos(7r/m))2+62sin2(7r/m) > 0.

In turn, the form is positive definite on Vs>a' if sin (ir/m) ^ 0, i.e.,
m < oo (whereas otherwise the nonzero vector aa + cta> is isotropic).

Having seen precisely how the form B behaves on Vay, we note fur-
ther that aa and oa> leave VSt,> stable: just look at the defining formula
for each reflection. So it makes sense to calculate the order of vaoa>
viewed as an operator on VStS'. Two cases are possible:

(a) m < oo. Here the form is positive definite, so we find ourselves
in the familiar situation of the euclidean plane. Both os and aa> act as
orthogonal reflections. Since B(aa,aa') = —cos(jr/m) = COS(TT—(7r/m)),
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110 Coxeter groups

the angle between the rays R+a« and R + ay is TT — (n/m), forcing the
angle between the two reflecting lines to be TT/TO. From our previous
study of dihedral groups (1.1), we recognize asaa> as a rotation through
the angle 2n/m; it therefore has order ra.

(b) TO = oo. Here B(as,as>) = —1. If A = a, + ov, B(X,a3) —
0 = B(X,as>), so that both as and ov fix A. In turn, asas>as =
as(as + 2av) = 3as + 2as< = 2A + as, and by iteration, (<rsov)fcas =
2A:A + as (k € Z). This implies that CTSCTS' has infinite order on VStS> (and
therefore also on V).

In case (a), the fact that B is nondegenerate on VStS' implies that
V is the orthogonal direct sum of Vs,s' and its orthogonal complement;
evidently both as and oy fix the latter subspace pointwise. Thus asas>
also has order m on V. To summarize:

Proposition There is a unique homomorphism a : W —* GL(V)
sending s to <rg, and the group a(W) preserves the form B on V. More-
over, for each pair s,s' € S, the order of ss' inWis precisely m(s,s').
a

This last observation removes any possible ambiguity in the status of
the generators s 6 5: if s ^ s' in the subset S of the free group F, then
also s ,•£ s' in W, as promised in 5.1, and the subgroup of W generated
by s, s' is dihedral of order 2m(s, s'). Now we know that W is not 'too
small'. It remains to be seen that W is not 'too big', i.e., that a has
trivial kernel (Corollary 5.4 below). This will require a closer study of
the action on V.

For convenience we shall refer to the homomorphism a as the geo-
metric representation of W. (However, it should be emphasized that
there may be other interesting ways to represent W as a group generated
by 'reflections', e.g., acting in a hyperbolic space. See Vinberg [l]-[5].)

Question. If W is an affine Weyl group, how does the geometric rep-
resentation compare with the action on euclidean space described in
Chapter 4? (This will be discussed in 6.5.)

Exercise. Prove that s,s' € S are conjugate in W if and only if the fol-
lowing condition is satisfied: (*) There are elements s = si, «2> • • •, Sfe =
s' in 5 for which every SjSi+i has (finite) odd order.

(-*=) In case w = ss' itself has odd order 2p+1, note that wpsw~p =
s'. Iterate!

(=>•) Fix s € 5, and consider the set S' of all s' satisfying (*). It
must be shown that no element of S" := S \ S' is conjugate to s. Define
/ : 5 -* {1,-1} by f(S') = 1, f(S") = - 1 . Show that / induces a
homomorphism from W to {1,-1}. Then all conjugates of s must lie in
Ker/ .
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5.4. Positive and negative roots 111

5.4 Positive and negative roots

In this section we obtain a precise criterion for £(ws) to be greater or
smaller than £(w), in terms of the action of W on V. This will be the key
to all further combinatorial properties of W relative to the generating
set S. To avoid cumbersome notation, we may write w(aa) in place of
cr(w)(as).

First we introduce the root system $ of W, consisting of a set of
unit vectors in V permuted by W. Define $ to be the collection of all
vectors w(as), where w € W and s € S. These are unit vectors, because
W preserves the form B on V. Note that $ = — $, since s(as) = —aa.
If a is any root, we can write it uniquely in the form

aa(ca eR).

Call a positive (resp. negative) and write a > 0 (resp. a < 0) if all
ca > 0 (resp. all c, < 0). For example, each aa is positive. Write $ +

and $~ for the respective sets of positive and negative roots. It will be
an immediate consequence of the theorem below that these sets exhaust

Note that, in contrast to the situation in Chapter 1, we have in effect
specified once and for all a set of 'simple' roots.

We also have to introduce at this point the parabolic subgroup Wj
of W, defined as in 1.10 to be the subgroup generated by a given subset
I C S. (More generally, we refer to any conjugate of such a subgroup as
a parabolic subgroup.) In the following section, Wj will be seen to be
a Coxeter group in its own right. For the present, we just note that it
has a length function £/ relative to the generating set of involutions / .
It is clear that £{w) < £i(w) for all w € W/. (It will be seen in 5.5 that
equality holds.)

Theorem Letw £W and s € S. If £(ws) > l(w), then w(as) > 0.
Ift{ws) < £(w), then w(as) < 0.
Proof. Observe that the second statement follows from the first, applied
to ws in place of w: indeed, if £(ws) < £(w), then £((ws)s) > £(ws),
forcing ws(a3) > 0, i.e., w(—as) > 0, or w(aa) < 0.

To prove the first statement, we proceed by induction on £(w). In
case £{w) = 0, we have w = 1, and there is nothing to prove. If £(w) > 0,
we can find an s' e S for which £(ws') = £{w) — 1, say by choosing s' to
be the last factor in a reduced expression for w. Since £(ws) > £(w) by
assumption, we see that s ^ s'. Set / := {s, s'}, so that Wi is dihedral.
Now we make a crucial choice within the coset wWi. Consider the set

A:={ve W\v~lw e Wi and £{v) + £i{v~lw) = £(w)}.
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112 Caxeter groups

Evidently w £ A. Choose v € A for which £(v) is as small as possible,
and write vi := t;"1^; 6 Wj. Thus w = w/ , with £(w) = £{v) + ti{vi).
The strategy now is to analyze how each of v and vi acts on roots.

Observe that ws' € A: Indeed, (s'w'^w = s' lies in Wj, while
l(ws')+</(s') = (l(w) - 1) + 1 = £(w). The choice of v therefore forces
£(v) < (.{ws') = £(w) — 1. This will allow us to apply the induction
hypothesis to the pair v, s. But for this we need to compare the lengths
of v and vs.

Suppose it were true that £(vs) < £(v), i.e., £{vs) = £(v) — 1. Then
we could calculate as follows:

£{w) < £(vs) + tdsv-^w) [use (L3) from 5.2]
< £(vs) + lilsv-1™) [since sv^w € Wj and £ < £t)

^ ) ( )
= £(v) + £i{v~lw)
= £{w).

So equality holds throughout, forcing £(w) = £(vs) + £i((sv~1)w)
and therefore vs S A, contrary to £{vs) < £{v). This contradiction
shows that we must instead have £{vs) > £(v). By induction, we obtain:
v(as) > 0. An entirely similar argument shows that £(vs') > £(v),
whence v(asi) > 0.

Since w = Wi, we will be done if we can show that uj maps as to a
nonnegative linear combination of as and aa>.

We claim that £I(VIS) > £r(vi). Otherwise we would have:

£{ws) = livv^ws) < £(v) + iiv^ws) = £(v) + £{vjs)

< £(v) + //(»/«) < t(v) + £i(vi) = £(w),

contrary to £(ws) > £(w). In turn, it follows that any reduced expression
for vi in Wi (an alternating product of factors s and s') must end in s'.
Consider the two possible cases:

(a) If m(s,s') = oo, an easy direct calculation shows that vi(as) =
aas + bas>, with a,b > 0 and \a — b\ = 1. Indeed, B{as,aa>) = —1, so
that s'(aa) = aa + 2aa>,ss'(ota) — 2aa> + 3aa,s'ss'(cta) = 3a s + 4aa>,
and so on.

(b) If m := m(s,s') < oo, notice that £I{VJ) < m. Indeed, m is
clearly the maximum possible value of £i, and an element of length m
in Wj has a reduced expression ending with s. So vj can be written as
a product of fewer than m/2 terms ss', possibly preceded by one factor
s'. Direct calculation will now show that f/(as) is a nonnegative linear
combination of aa and aa>. (A rough sketch should make the argument
transparent.) Recall that we are now working in the euclidean plane,
with unit vectors as and aa> at an angle of TT — ir/m, and ss' rotates
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as through an angle of 2-x/m toward a,'. So the rotations involved
in vi move as through at most an angle of w — 2n/m, still within the
positive cone defined by aa and asi. If vi further involves a reflection
corresponding to s', the resulting vector still lies within this positive
cone, because the angle between as and the reflecting line is (TT/2) —
(7r/m). O

Corollary The representation a : W —» GL(V) is faithful.

Proof. Let w € Ker a. If w ^ 1, there exists s € S for which £(ws) <
£(w). The theorem says that w(as) < 0. But w(as) = as > 0, which is
a contradiction. O

5.5 Parabolic subgroups

With Theorem 5.4 in hand, we can get more precise information about
the internal structure of W. First we want to clarify (as promised)
the nature of the parabolic subgroups Wi (I C S). The set / and the
corresponding values m(s, s') give rise to an abstractly defined Coxeter
group Wi, to which our previous results apply. In particular, Wj has
a geometric representation of its own. This can obviously be identified
with the action of the group generated by all aa (s € I) on the subspace
Vjr of V spanned by all as (s € / ) , since thejbilinear form B restricted
to Vj agrees with the form Bi denned by Wj. The group generated by
these os is just the restriction to Vj of the group <r(W7). On the other
hand, Wj maps canonically onto Wi, yielding a commutative triangle:

W? GL(Vr)

Since the map Wi —» GL(V}) is injective by 5.4, we conclude that Wj is
isomorphic to Wi and is therefore itself a Coxeter group.

Theorem (a) For each subset I of S, the pair (Wi,I) tvith the given
values m(s, s') is a Coxeter system.

(b) Let I C S. If w = si • • • sr (si G S) is a reduced expression, and
w € Wi, then all Sj e / . In particular, the function £ agrees with ti on
Wi, and Wif\S = I.

(c) The assignment I >—» Wi defines a lattice isomorphism between
the collection of subsets of S and the collection of subgroups Wi ofW.

(d) 5 is a minimal generating set for W.

Proof. We have just verified (a). For (b), use induction on £(w), noting
that £(1) = 0 = £i(l). Suppose w ^ 1, and set s = sr. According to
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Theorem 5.4, w(as) < 0. Since w 6 W/ , we can also write w = t\- • -tq

with all ti € I. Therefore

w{as) = as + ] P Cjat4 (c* € R).
t=i

Because w(as) < 0, we must have s = ti for some i, forcing s € I.
In turn, ws — 8\---sT~\ G Wi, and the expression is reduced. By
induction, all s, € I. The remaining assertions of (b) are clear.

To prove (c), suppose /, J C 5. If W{ <zWj, then / = Wj D S C
HO n 5 = J, thanks to (b). Thus I C J (resp. / = J) if and only
if Wi C Wj (resp. Wj — Wj). It is clear that WIUJ is the subgroup
of W generated by Wi and Wj. On the other hand, (b) implies that
Wmj — Wj ("1 Wj. This yields the desired lattice isomorphism. To
prove (d), suppose that a subset I of S generates W, so Wj = W = Ws-
According to (c), / = S. P

Example. When the Coxeter group in question is an affine Weyl group
Wa associated with a Weyl group W (Chapter 4), W itself is a parabolic
subgroup of Wa: its Coxeter graph is obtained from that of Wa by
removing a single vertex. In particular, the length functions of these
groups are compatible.

5.6 Geometric interpretation of the length
function

Our next goal is to extract from Theorem 5.4 a more precise description
of the way in which W permutes $. Once we have this information in
hand, we can explore more deeply the internal structure of W itself.
Recall that $ is the disjoint union of the sets 4>+ and $~ of positive and
negative roots. For brevity, write II = $ + .

Proposition (a) J/s 6 S, then s sends as to its negative, but permutes
the remaining positive roots.

(b) For any w € W, £(w) equals the number of positive roots sent by
w to negative roots.
Proof. Note that part (a) is a special case of part (b); but it is needed
in the proof of (b).

(a) Suppose a > 0, but a ^ as. Since all roots are unit vectors, a
cannot be a multiple of aa. We can therefore write

tes
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where all coefficients are nonnegative and some Ct > 0, t y= s. Applying
s to a only modifies this sum by adding some constant multiple of as,
so the coefficient of at remains strictly positive. It follows that s(a)
cannot be a negative root, so it lies in II and is obviously distinct from
ct3. Thus s(H \ {as}) C II \ {as}. Apply s to both sides to get the
reverse inclusion.

(b) If w € W, define n(w) to be the number of positive roots sent by
w to negative roots, so

n(w) = Card II(u>), where II(«;) := IID uT^-I I ) .

(It is not instantly obvious that n(w) is finite, but this will follow from
the proof that n(w) = £(w).) Notice that part (a) implies that ra(s) = 1
for s € S.

To see that n(w) behaves like the length function, we first verify that,
for s € 5, w € W, the condition w(aa) > 0 implies n(ws) = n(w) + 1,
whereas w(as) < 0 implies n(ws) = n(w) — 1. Indeed, if w(as) > 0,
part (a) implies that II(ics) is the disjoint union of s(II(u;)) and {as}.
Similarly, if w(as) < 0, we get'II(w;s) = s(II(u;)\{as}), with a« € II(ty).

Now we proceed by induction on £(w) to prove that n(w) = £(w) for
all to € W. This is clear if t{w) = 0, and also (by part (a)) if £{w) = 1.
Theorem 5.4 says that £(ws) = £{w) + 1 (resp. £(w) — 1) just when
w(a3) > 0 (resp. < 0). Combining this with the preceding paragraph
and the induction hypothesis completes the proof. D

As in the case of finite reflection groups, part (a) of the proposition is
invoked frequently, usually as a device for recognizing that a positive root
obtained in the course of an argument is none other than a, (because s
sends it to a negative root).

Exercise 1. Given a reduced expression w = s% • • • sr (a, S S), set o^ :=
a8i and & := srsr_i • • • Si+i(ai), interpreting /3r to be ar . Prove that
U(w) consists of the r distinct positive roots (3\,...,f3T.

Exercise 2. If W is infinite, prove that the length function takes ar-
bitrarily large values, hence that $ is infinite. (Therefore the scalar
- 1 G GUy) does not lie in a(W).) If W is finite, prove that there is
one and only one element wo € W of maximum length, and that wo

maps II onto —II.

Exercise 3. Use the fact that £(w) = n(w) to give another proof of part
(b) of Theorem 5.5. [Note that for w 6 Wj, n(w) > ni(w) is clear, if raj
has the obvious meaning.]
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5.7 Roots and reflections
By the way a : W —* GL(Vr) was defined, each a € S acts on V as a
reflection. More generally, we can associate a reflection in GL(V) with
each root a € $, as follows. Say a = w(as) for some to S W,s € S.
Consider how wsw~l acts on V:

tiwuT^A) = w[w-1(\)-2B(w-1{X),alt)as}
= X-2B(w-1(\),as)w(as)
= A - 2JB(A, w(as)) w(as)

= \-2B{\,a)a.

It follows that wsw~x depends only on a, not on the choice of w and
s. So we may denote it by sa. Moreover, sa acts on V as a reflection,
sending a to —a and fixing pointwise the hyperplane orthogonal to a. Of
course, both a and —a determine the same reflection sa — s_Q. Denote
by T the set of all reflections aa, a € $. Thus

T= (J

In order to pass back and forth freely between roots and reflections, we
should observe that the correspondence a •-+ sa is bijective (for a € II).
Indeed, suppose that sa — sp. Prom the above formula for sa (with
A = P) we get /3 = B(f3, a)a, forcing a = 0 since both are unit vectors
inll .

One other observation is useful:

Lemma Ifa,0 € $ and 0 = w(a) for some w € W, then wsaw~x =

Proof. This is immediate from the above formula for a reflection and
the fact that B is W-invariant. •

The following proposition generalizes Theorem 5.4 to arbitrary re-
flections.

Proposition Letw €\V,a€ II. Then £(wsQ) > £(w) if and only if
w(a) > 0.
Proof. As in the proof of Theorem 5.4, it will be enough to verify the
'only if part. Proceed by induction on £{w), the case £(w) = 0 being
trivial. If t(w) > 0, there exists s e S such that l(sw) < £(w). Then
£((sw)sa) = £(s(wsa)) > £(wsa) - 1 > £(w) - 1 = £(sw). By induction,
sw(a) > 0. Suppose w(a) < 0. The only negative root made positive
by s is — aa (5.6), so w(a) = — aa. But then sw(ct) = aa would imply
(sw)sa(sw)~1 = a (by the above lemma), whence wsa = aw. This
contradicts £(wsa) > £(w) > £(sw). As a result, w(a) must be positive.
D
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5.8 Strong Exchange Condition
We axe now able to prove a key fact about the nature of reduced ex-
pressions in W, which is at the heart of what it means to be a Coxeter
group.

Theorem Let w = si • • • sr (si € 5), not necessarily a reduced expres-
sion. Suppose a reflection t € T satisfies £(wt) < £(w). Then there is
an index i for which wt = si • • • s* • • • sr (omitting Si). If the expression
for w is reduced, then i is unique.
Proof. Write t = sa (say a > 0). Since £(wt) < £(w), Proposition
5.7 forces w(a) < 0. Because a > 0, there exists an index i < r
for which Si+i • • • sr(a) > 0 but SiS,+i • • • sr(a) < 0. According to
part (a) of Proposition 5.6, the only positive root which s; sends to
a negative root is aSi, so Si+i • • • sr(a) = aSi. Now Lemma 5.7 implies
( s i + i • • • s r ) t ( s r • • • s i + i ) = S i , o r w t = s i ••• s i ••• s r a s r e q u i r e d .

In case £(w) = r, consider what would happen if there were distinct
indices i < j such that wt = s% • • • $i • • • Sj • • • sr = s\ • • • Sj • • • s] • • • sr.

After cancel l ing, th i s g ives si+i • • • Sji = si • • • » j _ i , or st • • • s3•, = si+i • • •

Sj-i, allowing us to write w = s\ • • • si • • • Sj • • • sr. This contradicts the
assumption that £(w) = r. •

Exercise 1. Prove a version of the theorem in which the hypothesis reads:
£(tw) < £{w).

We shall refer to the main assertion of the theorem as the Strong
Exchange Condition. If t is required to lie in 5, the resulting weaker
statement is called the Exchange Condition, generalizing what we
proved in the case of finite reflection groups (1-7) and affine Weyl groups
(4.6):

Corollary (a) Suppose w = si • • • sr (si € S), with £(w) < r. Then
there exist indices i < j for which w = Si • • • si • • • Sj • • • sT. (This is
called the Deletion Condition.)

(b) If w — si • • • sr (si € S), then a reduced expression for w may be
obtained by omitting certain Si (an even number, in fact).
Proof, (a) The hypothesis implies that there exists an index j for
which £(W'SJ) < £(w'), where w' := s i - S j _ i . Applying the Ex-
change Condition to the pair w', Sj, we get W'SJ = si • • • s~i • • • Sj_i, or
w — s\ • • • si • • • Sj • • • Sv

(b) This follows inductively from (a). •

This brings us full circle: recall that the proof in 1.9 shows that any
group generated by a set S of involutions and satisfying the Deletion
Condition must be a Coxeter group. The theory developed so far in this
chapter should, in principle, allow us to answer any reasonable question
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about Coxeter groups. In practice, some ingenuity is often required.
For example, it turns out to be true that the subset of S involved in
writing a reduced expression for an element w € W is independent of
the particular reduced expression chosen. A related fact is the equality
Wi n Wj = Wmj- The reader might think about how to prove these
using the Exchange Condition (see 5.10 below for a less direct approach).

Exercise 2. Let I C S. Prove that Wj is normal in W if and only if all
s £ S\I commute with all s' € I. In terms of the Coxeter graph, this
means that I corresponds to a union of some connected components.
[Use the Exchange Condition to analyze the length of ss's in W/.]

Exercise 3. Suppose w € W acts on V as a reflection, in the sense that
there exists a unit vector a € V for which w(X) = A — 2B(X, a)a for all
A e V. Prove that a is a root and w = sa. [First show that, if s 6. S
and £(ws) < t{w), then either £(sws) = i(w) — 2 or else w(as) = — as,
using just the fact that w2 = 1: find a reduced expression w = s\ • • • sr

with sr = s, so w — sr---s\ is also reduced, and use the Exchange
Condition together with 5.6. Now proceed by induction on t{w), to
show that w(f3) = —0 for some root 0, whence /3 = a or —a, and w is
the reflection belonging to a.]

Exercise 4. If / C 5, set T/ := Utu€W/ wlw~1 (the set of reflections
in the Coxeter group Wi). Prove that T n W> = 7j . [If t € T n Wj,
write t = wsw~1 = si • • • sr, with s € 5, w € W, st £ I for all i, and
£(ws) > £(w). Use the Exchange Condition to show that t = (w')~1s'wf

for some s' = Si,w' = Sj+i • • • sr.]

5.9 Bruhat ordering

Among the possible ways to partially order W in a way compatible
with the length function, the most useful has proven to be the Bruhat
ordering, defined as follows.

As before, T is the set of reflections in W with respect to roots.
Write w' —> w if w = w't for some t € T with £(w) > £(w'). Then define
w' < w if there is a sequence w' = WQ —• w\ —>...—» wm = w. It is clear
that the resulting relation w' < w is a partial ordering of W (reflexive,
antisymmetric, transitive), with 1 as the unique minimal element. Fol-
lowing Verma [2], we call it the Bruhat ordering. The terminology
is motivated by the way this ordering arises for Weyl groups in connec-
tion with inclusions among closures of Bruhat cells for a corresponding
semisimple algebraic group. In view of the way the ordering is denned,
it should not be surprising to find the Strong Exchange Condition used
below in investigating its properties.
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5.9. Bruhat ordering 119

The definition has a one-sided appearance, since we have written
t on the right in defining the arrow relation. But this version could
just as well be replaced by a left-sided version. Say w = w'sa, with
£(w) > £(w'). Setting j3 = w'(a), we get (w'^spw' = sa, hence
w = spw'. (On the other hand, if we had insisted that t belong to 5, the
resulting partial ordering, sometimes called the weak ordering, would
actually have a one-sided nature, as the reader can check for dihedral
groups. We won't pursue this possibility here, but see Bjorner [2].)

One other remark about the definition: when w' —> w, the precise
length difference is not specified; it must be odd but need not be 1 (as
seen already in dihedral groups). So it is not clear at first whether two
immediately adjacent elements in the Bruhat ordering must differ in
length by just 1. This turns out to be true, but requires some delicate
arguments (5.11).

Another natural question about the ordering will also be deferred.
If / C 5, the Coxeter group Wi has a Bruhat ordering of its own; does
this agree with the restriction to Wi of the Bruhat ordering of WI The
answer will be given in 5.10.

Exercise. Prove that v < w if and only if v~l < w~1.

Example 1. If W is a dihedral group Dm, TO < oo, all elements of
distinct lengths are comparable in the Bruhat ordering (but not in the
weak ordering): v < w if and only if £(v) < £(w).

Example 2. If W is the symmetric group Sn, each element n can be
represented by the string of n integers (TT(1), . . . ,7r(n)). Then TT < a if
and only if a is obtainable from TT by a sequence of transpositions (ij),
where i < j and i occurs to the left of j in TT. For example, when n = 5,
we have 24153 -+ 42153 -> 45123 -»• 54123, or more directly, 24153 ->
54123. Another criterion, due to Deodhar, goes as follows. Given a
sequence of integers (ai , . . . ,a t) , denote by [ai,...,a*] the sequence
rewritten in increasing order. Order Zfc by (ai,...,at) < (&i,..., bk) iff
at < bi for all i. Then -K < a iff [TT(1), . . . ,7r(Jb)] < [<r(l),..., a(fc)j for
1 < Jfc < n.

Example 3. There is added symmetry in case W is finite, with longest
element wo (see Exercise 2 in 5.6). One sees easily that v < w if and
only if wow < wov. (This will be used in 7.6.)

One rather subtle property of the Bruhat ordering is needed in 5.10:

Proposition Let w' < w and s € S. Then either w's < w or else
w's < ws (or both).
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120 Coxeter groups

Proof. The proof reduces quickly (as the reader should check) to the
case w' -* w, where w = w't (t € T) and £(w) > £{w'). If s = t, there is
nothing to prove, so we assume s ^ t. Two cases have to be analyzed:

(a) If £{w's) = £{w') — 1, then w's —*w'—>w, forcing w's < w.
(b) If £(w's) = £(w') + 1, we shall argue that w's < ws. Since

(w's)t' = ws for the reflection t' = sts, it is enough to show that
£(w's) < £{ws). Suppose the contrary, i.e., £{ws) < £{w's). Then the
Strong Exchange Condition (5.8) can be applied to the pair t',w's as
follows. For any reduced expression w' = Si- •• sr, w's = si • • • srs is
also reduced, since £(w's) > £(w') by assumption. Then ws = (w's)tf is
obtained from w's by omitting one factor in this reduced decomposition.
This factor cannot be s, since s ^ t. Thus ws = s\ • • • Si • • • srs for some
i, or w = si • • • Si • • • sr, contradicting £(w) > £(w'). •

5.10 Subexpressions

There is a very simple and useful characterization of the Bruhat or-
dering in terms of subexpressions of a given reduced expression w =
siS2---sr, by which we mean products (not necessarily reduced, and
possibly empty) of the form s^-'-s^ (1 < i\ < i^ < . . . < iq < r).
Formally, the given reduced expression is an ordered r-tuple of elements
of S, and a subexpression is a g-tuple obtained by discarding some or
all of these elements.

Theorem Let w = si • • • sr be a fixed, but arbitrary, reduced expression
for w. Then w' < w if and only if w' can be obtained as a subexpression
of this reduced expression.

Proof. Let us first show that any w' < w occurs as a subexpression of
the given reduced expression for w. Start with the case w' —* w, say
w — w't. Since £(w') < £(w), the Strong Exchange Condition can be
applied to the pair t, w to yield w' = wt = s\ • • • Si • • • sr for some i. This
argument can be iterated. If in turn w' —* w', with w' = w't', apply the
Strong Exchange Condition to the pair t', w' = si • • • Si • • • sr (which is
not required to be a reduced expression!) to obtain

w' = w't' = Si • • • Si • • • Sj • • • s r

or else
w' = si • • • Sj • • • Si • • - s r .

In the other direction, we are given a subexpression s^ • • • Siq and
must show it to be < w. Here we can use induction o n r = £(w), the
case r = 0 being trivial. If iq < r, the induction hypothesis can be
applied to the reduced expression si • • • sr_i to yield:

Si, • • • Si. < Si • • • Sr-1 — tVSr < W.
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5.11. Intervals in the Bruhat ordering 121

If iq = r we first use induction to get s^ • • • Siq_1 < Si • • • sr-1> and then
apply Proposition 5.9 to get either

or else
-Sr-W. •

This characterization of the Bruhat ordering would be awkward to
use as the initial definition, because of the apparent dependence on a
fixed choice of reduced expression, e.g., transitivity would be far from
obvious. But it helps to make explicit computations more transparent, as
in the exercise below. And it answers a natural question about parabolic
subgroups:

Corollary If I C S, the Bruhat ordering of W agrees on Wi with the
Bruhat ordering of the Coxeter group Wi.
Proof. If w € Wi, it has a reduced expression (in W) involving just
elements of I, thanks to 5.5. By the theorem, the elements < w in
the Bruhat ordering of either W or Wi are the subexpressions of this
reduced expression. •

Exercise. Describe the Bruhat ordering of 54, and verify that directly
adjacent elements always differ in length by 1. Further verify that in
each closed interval

\w', w] := {x G W\w' <x<w),

the number of elements of even length equals the number of elements
of odd length. For example, if we write S = {81,82,83} with S1S3 =
5351, the interval from 1 to S1S2S3S2 contains the following intermediate
elements:

81, 82, S3, S1S2, S1S3, S2S3, S3S2, S1S2S3, S1S382, S2S3S2-

(For a picture, see Shi [1], p. 20, or Bjorner [2].)

5.11 Intervals in the Bruhat ordering

To show that elements of W directly adjacent in the Bruhat ordering
must differ in length by just 1, we first examine closely a configuration
which will arise in the proof.

Lemma Let w' < w, with £(w) = £(w') + 1. Suppose there exists
s € S for which w' < w's (i.e., £(w') < £(w's)) and w's =£ w. Then both
w <ws and w's < ws.
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122 Coxeter groups

Proof. Proposition 5.9 implies that w's < w or w's < ws. The first is
impossible since the lengths are equal and w's ̂  w. Since w' ^ w, we
get w's < ws. In turn, £(w) = £(w's) < £(ws), forcing w < ws. D

Exercise 1. Prove a dual version of the lemma: supposing ws < w and
ws 7̂  w', conclude that both w's < w' and w's < ws.

Proposition Let w' < w. Then there exist Wo,... ,wm € W such that
w' = wo < wi < . . . < wm = w, and £(wi) — £(to,_i) + 1 for 1 < i < m.

Proof. Proceed by induction on £{w) + £(w'). If this is 1, then w' = 1
and w € S, so there is nothing to prove. Now w =/= 1, so £{ws) < £{w)
for some s G S, say s = sr in a reduced expression w = s\ • • • sr (from
the Exchange Condition). By Theorem 5.10, w' = s^ ---s^ for some
i\ < . . . < iq. Two cases are possible:

(a) Suppose w' < w's. If iq = r, note that w's is also a subexpression
of ws = Si • • • sr_i < w, so we have w' < w's < ws < w. By induction,
we can find a chain of the desired type from w' to ws, and one more
step gets us to w. On the other hand, if iq ^ r, then w' is itself a
subexpression of ws < w, and induction similarly applies.

(b) Suppose w's < w'. Now induction provides a chain from w's up
to w:

w's = Wo < W\ < . . . < Wm = W,

with £(wi) = £(wi-i)+l. Choose the smallest index i for which w*s < Wi.
Note that WQS = w' > w's — wo, while wms = ws < w = wm, so such
an i > 1 does exist. We claim that Wi = Wj_is. Otherwise we could
apply the above lemma to the situation:

iUj_l < Wi-iS / Wi

to get ii>i < WiS, contrary to the choice of i. Thus Wi = Wi-\s. However,
for 1 < j < i, we have instead Wj ̂  Wj-\s, because Wj < WjS. For such
indices j , the lemma can be applied to the situation:

M/j_l < Wj-iS 7̂  Wj

to obtain Wj-\s < WjS. Combining these observations, we find a chain
of the desired type:

w' = WQS < W\S < . . . < Wi-iS = Wi < Wi+\ < . . . < Wm = W. D

Exercise 2. An order-preserving bijection W —> W also preserves lengths.
(Examples of such bijections?)

5.12 Poincare series

In the remainder of this chapter we examine more carefully the parabolic
subgroups of W, in both combinatorial and geometric settings.
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5.12. Poincare series 123

First we generalize straightforwardly the description in 1.10 of a dis-
tinguished set of coset representatives for W/Wj, I C S. Define

W1 := {w G W\£(ws) > £(w) for all s G / } .

Then the proof of part (c) of Proposition 1.10 can be repeated word-for-
word to obtain the same result for an arbitrary Coxeter group:

Fix I C S. Given w G W, there is a unique u € W1 and a
unique v G Wj such that w = uv. Then £{w) = £{u) + £{v).
Moreover, u is the unique element of smallest length in the
coset

With this in hand we can generalize to W the construction of Poincare
polynomials in 1.11. But when W is infinite, we get a formal power series
in the indeterminate t. As before, we define

n>0

where an := Card {w G W\£(w) = n}. (This is finite, since S is finite.)
We call W(t) the Poincar^ series of W.

As in 1.11, we can similarly define X(t) for an arbitrary subset X
of W, by counting only the number of elements of X of each length. In
particular, W/(t) coincides with the Poincare series of the Coxeter group
Wi, since £ = £i on W[. It also follows immediately from the discussion
above that

W(t) = W^W'it).

Before stating the analogue of Proposition 1.11, we recall Exercise 2 in
5.6: when W is infinite the length function takes arbitrarily large values
whereas, when W is finite, there is a unique element wo of maximum
length N (sending all positive roots to negative roots). This is an imme-
diate consequence of Proposition 5.6. To simplify notation, write (—I)1

instead of (-1)171.

Proposition (a) In the field of formal power series int, we have the
identity

ics n ' ics

unless W is finite, in which case the right side equals tN.
(b) W(t) is an explicitly computable rational function oft.

Proof, (a) When W is finite, the proof of Proposition 1.11 may be
repeated verbatim. When W is infinite, the set K := {s G S\£(ws) >
£(w)} used in that proof is nonempty for all w, so the calculation there
results in a right hand side equal to 0.
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124 Coxeter groups

(b) Proceed by induction on \S\; if this is 1, then W(t) = 1 +1. In
general, use the equation in part (a), first moving the term for which
I = S from the left side to the right side and then dividing both sides
by W(t). This yields:

y r ,,/

where f(t) := - ( - l ) s unless W is finite, in which case f(t) := tN —
(—l)s. The left side involves only those Wj(t) for which I ^ S, and is
therefore a computable rational function of t, by induction. Therefore
W(t) can also be computed as a rational function. •

What is involved in carrying out the computation of W(t) by this
method can be illustrated quickly in the case of the infinite dihedral
group W = Poo, where 5 = {s, s'} and m(s, s') = oo. It follows directly
from the definition that W(t) = l+2t + 2t2 +... The inductive approach
to computing W(t) as a rational function requires knowing that Wi(t) =
1 when / = 0, while Wi(t) — 1 + 1 when I = {s} or {s1}. Accordingly,
the left side above becomes

1 + t 1+t

and the right side is —1/W(t). Thus we get the expected result

1+t
W{t) =

1-t

Exercise. Let Wa be the affine Weyl group of type C2, with 5 =
{so,s\,S2} and m(so,si) = 4 = m(si,82), 7n(so,S2) = 2. Show that

a{)~

How is this related to the Poincare polynomial of the corresponding Weyl
group? (This and the example V^ illustrate a general theorem of Bott
on affine Weyl groups (8.9).)

5.13 Fundamental domain for W

Theorem 5.4 is the key fact about how W acts on V in the geometric
representation a : W —> GL(V). To get more insight into the action
of parabolic subgroups, we must make the geometry of the situation
more explicit, along the lines of 1.12. But we no longer have a euclidean
inner product to work with; indeed, the bilinear form B may well be
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5.13. Fundamental domain for W 125

degenerate. There is no direct analogue here of the positive and negative
half-spaces defined by a reflecting hyperplane. To restore at least part of
the analogy with 1.12, we consider the contragredient action a* : W —>
GL(y) . Elements of V* will be denoted by f,g, h,..., and the natural
pairing with V will be denoted by (/, A). Then the action of W on V*
is characterized by:

(w(f), w(X)) = (f, A) for w G W, f G V\ A € V.

We can now introduce for each s G S the hyperplane

Za:={feV*\(f,as)=0},

together with the associated half-spaces

As:={f€V*\(f,as)>0},

A's:={feV*\(f,as)<O} = s(As).

Finally, let C be the intersection of all A8, s G S.
Observe that s fixes Zs pointwise. Take as to be the first element in

an ordered basis of V, followed by a basis of the fixed point space of as.
Denote the dual basis by / i , . . . , / n , n = |5|. Then, for all i > 1, the
effect of s(fi) on the basis of V is clearly the same as that of fa.

If we identify V with R™ (n = \S\), say by fixing the basis consisting
of all as (s G S), then V* with the dual basis may also be identified with
R". Relative to the standard topology of Rn (which has nothing to do
with the bilinear form B), Za is closed, while each of As and A's is open;
therefore C is open. It is clear that the closure As of 4̂S is ASUZS, and
in turn D := C is the intersection of all Aa. Note too that the action of
each w € W on V or V* is continuous. While we might avoid the use
of such topological information in the theorem below, some steps would
become less transparent. (And in determining the finite Coxeter groups
in Chapter 6 below, the topological viewpoint will be essential.)

The object now is to study the action of the parabolic subgroups Wi
by partitioning D into corresponding subsets Cj, defined by

At the extremes, C0 = C, while Cs = {0}. Since s fixes Zs pointwise,
Wi fixes each point of C/. In the other direction, if s G S fixes a point
/ G Ci, then s must belong to /: {/,as) = (s(/),s(as)) = — (/,as)
forces / € Zs. But it is not yet clear that Wi is the full stabilizer of
each point.

Define U to be the union of all w(D), w € W. This is a W-stable
subset of V"*, the union of the family C of all sets of the form w{Cj),
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where w € W and I C S. It will be shown below that these sets in fact
form a partition of U. Note that D is a convex cone. This implies at
once that U is a cone: the Tits cone. It will be seen below that U is
also convex. The action of W on the Tits cone is what we can describe
rather well. (However, it is easy to see that U is a proper subset of V*
unless W is finite; see the exercise below.)

Lemma Let s G S and w 6 W. Then £(sw) > £(w) if and only if
w{C) C As, whereas £(sw) < £{w) if and only ifw(C) C A's.

Proof. This is just a translation of Theorem 5.4. Indeed, £(sw) > £(w)
means that £(w~ls) > £(w~1), which is equivalent to w~1(as) > 0.
If / e C, then (w(f),cxa) > 0 means that (/,w~1(aa)) > 0, which is
equivalent (by the way C is defined) to saying that w~1(as) > 0. So
w(C) C As if and only if £(sw) > £{w). •

Theorem (a) Letw €W andI,JcS. Ifw(Cj)nCj ^ 0, thenI = J
and w € Wi, so w(Ci) = Cj. In particular, Wi is the precise stabilizer
in W of each point of Cj, and C is a partition of U.

(b) D is a fundamental domain for the action of W on U: the W-
orbit of each point of U meets D in exactly one point.

(c) The cone U is convex, and every closed line segment in U meets
just finitely many of the sets in the family C.

Proof, (a) Proceed by induction on £(w), the case w = 1 being obvious.
If £(w) > 0, write w = s(sw) with £{sw) < £(w) for some s € S.
The lemma above forces w(C) C s(As) = ^4 ,̂ whence by continuity
w(D) C A's. Combined with the fact that D C As, this implies that
Dnw(D) c Zs. Thus s fixes each point in the intersection - in particular,
each point in the (nonempty!) set CJC\W{CI). Two things follow. First,
s fixes some point of Cj and hence (as remarked earlier) s 6 J. Second,
Cj D sw{Cj) = s(Cj n w(Ci)) is nonempty. The induction hypothesis,
applied to sw, shows that I = J and sw € Wj. Since s € J — I, we get
w 6 Wj as required. We conclude that the sets w(Ci) comprising the
family C are all disjoint, as w runs over coset representatives in W/Wj
and I runs over the subsets of S.

(b) By definition of U, each W-orbit in U meets D in at least one
point. Suppose f,g € D both lie in the same W^-orbit: w{f) = g for
some w e W. Say / G Ci,g € Cj, so that w{Cj) PI Cj is nonempty. By
part (a), / = J and w € Wj, forcing / = w(f) = g.

(c) It is enough to prove: if f,g € U, the closed segment [f g] joining
them is covered by finitely many of the sets in C.

This is clear when both / and g belong to D, which is convex and is
covered by the sets Cj. In general we may replace f,g by their images
under some element of W; so without loss of generality we may assume
that / € D and g G w{D). Now proceed by induction on £(w), the case
w — 1 having just been dealt with. Let £{w) > 0. The segment [/ g]
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intersects D in a closed segment [/ h], which can be covered by finitely
many sets from C. It remains to cover [h g}. We may assume g £ D. Say
g 6 A's for s € / and g G Aa for s £ / . If we had h € Aa for all s € / ,
then all nearby points k on [h g] would also satisfy k G As(s e I),k e
As (s £ I) and hence lie in D, which is absurd. Therefore h 6 Zs for
some s £ I. Since g € A^, we must have w(D) C Ag, hence w(C) C A^.
By the above lemma, £(sw) < £(w). So the induction hypothesis may
be applied to h e D and s(g) e sw(D). Thus the segment from h to
s(g) has a finite cover from C, and transforming the picture by s yields
a finite cover of the segment from s(h) = h to s2(g) = g. •

Exercise. If the Tits cone 17 is equal to V*, prove that W is finite. [Find
w € W for which w(C) meets — C. Then show that w~1(as) < 0 for all
s £ S, and deduce that W is finite.] Conversely, if W is finite, it will be
seen in 6.4 that V* is a euclidean space, with W acting as in Chapter 1;
thus U = V will follow.

Remark. The theorem provides a concrete (though rather impractical)
way to solve the Word Problem for W. Fix the basis of V consisting
of the as (s € 5) and let {/s|s 6 5} be the dual basis. Then / := £ fs

lies in C, and is therefore fixed by no element of W except 1. To decide
whether or not a given product of elements from S is equal to 1 in
W, apply the corresponding product of elements cr*(s) to / and see
whether or not the result is / . (See 8.1 for another approach to the
Word Problem.)

As in 1.15, we can formulate the geometry here as a Coxeter com-
plex, based on the family of parabolic subgroups of W. It can be re-
garded as an abstract simplicial complex, and provides an essential in-
gredient in the more elaborate complexes introduced by Tits and known
as buildings. For a thorough account of all this, see Brown [1], Ronan
[1], Tits [6].

Notes

The basic facts about Coxeter groups are developed in Bourbaki [1], IV,
§1, following earlier work of Coxeter, Witt, Tits, and others.

(5.3) The exercise is based on Bourbaki [1], IV, 1.3, Prop. 3.
(5.4)-(5.7) Our treatment is heavily influenced by Deodhar [4][7],

who developed the general notion of root system for a Coxeter group.
The proof of Theorem 5.5 follows suggestions of E. Neher.

(5.8) Verma [2] introduced the Strong Exchange Condition. Exercise
4 here is due to him. We follow Deodhar [4] (from which Exercise 3 is
drawn).
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(5.9)-(5.11) The Bruhat ordering of a Weyl group had been im-
plicit in the literature for some time, notably in Chevalley's study of
Schubert varieties, before its formal development in Verma's 1966 thesis
and Verma [1], Steinberg [4], Bernstein-Gelfand-Gelfand [2], Deodhar
[1][2][5][7][8][9]. See also Bjorner [2], Hiller [3], Proctor [1], Shi [1], Stan-
ley [3], and (8.5)-(8.8) below. While it would be more apt historically
to adopt the terminology 'Chevalley ordering' (as pointed out recently
by A. Borel), there is by now a large amount of literature referring to
the 'Bruhat ordering'.

(5.12) See Steinberg [5], 1.25.
(5.13) We follow Bourbaki [1], V, 4.6.
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Chapter 6

Special cases

Having laid out the general theory of Coxeter groups in Chapter 5, we
turn our attention to some of the most important special cases. First
we indicate how to reduce most questions to the case when the Coxeter
graph is connected (6.1). Then we reconsider the geometric representa-
tion of W relative to the bilinear form B, and show in 6.4 that the only
finite Coxeter groups are the finite reflection groups studied in Part I.
The treatment follows Bourbaki [1], V, §4, based on Witt [1].

We also compare in 6.5 the geometric representation of an affine Weyl
group with the description given in Chapter 4. In 6.6 we characterize
'crystallographic' Coxeter groups. Another large class of interesting ex-
amples consists of 'hyperbolic Coxeter groups' (6.8).

As a matter of notation, we use both a and t to denote elements of
S, when (W, 5) is a Coxeter system.

6.1 Irreducible Coxeter systems

We say a Coxeter system (W, S) is irreducible if the Coxeter graph F is
connected, as in 2.2. The argument of Proposition 2.2 can be repeated
here:

Proposition Let (W,S) be any Coxeter system. IfTi,...,rr are the
connected components of the Coxeter graph T, let Si,..., Sr be the corre-
sponding subsets of S. Then W is the direct product of the parabolic sub-
groups Wsx,..., Wsr, and each Coxeter system (Wst, Si) is irreducible.

Proof. Use induction on r. Since the elements of Si commute with the
elements of Sj when i ^ j , it is clear that the indicated parabolic sub-
groups centralize each other, hence that each is normal in W. Moreover,
the product of these subgroups contains S and therefore must be all of
W. By induction, Ws\Si is the direct product of the remaining Wst,
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and part (c) of Corollary 5.10 implies that Wsi intersects it trivially. So
the product is direct. •

6.2 More on the geometric representation

Recall from 5.3 the construction of the representation a :W —• GL(V),
which was shown in 5.4 to be faithful. The elements of S are represented
by 'reflections' crs relative to the bilinear form B on V. On the basis
{as\s € 5}, B is defined by:

B(as,at) — -cos
s, t)'

We need to examine more closely some topological features of this
situation, based on the discussion in 5.13. Relative to any fixed ordered
basis of V, we may identify V with R n and GL(V) with GL(n, R), the
latter in turn being viewed as a subspace of Rn in an obvious way.
Note that GL(n, R) is an open set, being the set of non-zeros of the
determinant polynomial on the set of all n x n matrices. Note too
that multiplication of a set of matrices by one fixed matrix induces a
homeomorphism of the space of n x n matrices.

By using a dual basis for V*, we get similar identifications for V*
and GL(V*). Recall from 5.13 the open set C in V* (an intersection of
finitely many open half-spaces), whose closure is a fundamental domain
for the action of W on the union of all its W-translates. It is clear that,
for any fixed / E V*, the orbit map GL(V*) —• V* sending g i—• g • f
is continuous (being given in coordinate form by linear polynomials).
Thus the inverse image of C (call it Co) is an open neighborhood of
the identity element 1 in GL(F*). Choose f e C. Then Theorem 5.13
implies that <r*(W)C\Co = {1}. In turn, an arbitrary element g = a*(w)
has an open neighborhood gCo intersecting a*(W) in {g}. This means
that a*(W) is a discrete subset of GL(F*). By 'transport of structure'
we obtain:

Proposition cr(W) is a discrete subgroup of GL(F), topologized as
above. •

Corollary / / the form B is positive definite, then W is finite.

Proof. If B is positive definite, V is just a euclidean space, which may
be identified with V*. By using an orthonormal basis of V in the discus-
sion above, we identify a(W) with a subgroup of the orthogonal group
O(n, R) C GL(n, R). It is well-known that O(n, R) is a compact subset
of the set of all n x n matrices : it is closed by virtue of being denned
by polynomial equations (matrix times transpose equals 1), and it is
bounded because the rows (or columns) of an orthogonal matrix are
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6.3. Radical of the bilinear form 131

unit vectors. On the other hand, the proposition shows that cr(W) is a
discrete subgroup of O(n, R). Since a discrete subgroup of a compact
Hausdorff group is closed (hence finite), W 2* <r(W) is finite. •

We shall prove the converse of this corollary in 6.4 below, thus show-
ing that finite Coxeter groups are the same as finite reflection groups.
The characterization in terms of positive definiteness of B of course fits
in well with the strategy we adopted in Chapter 2 for classifying finite
reflection groups.

6.3 Radical of the bilinear form

As illustrated by dihedral groups (finite and infinite), the symmetric
bilinear form B on V may or may not be nondegenerate. Here we look
more closely at the radical of B:

Vx := {X € V\B(X,n) = 0 for all ft G V}.

Note first of all that V^ is a W-invariant proper subspace, since B is
W-invariant and not identically 0. We claim that V1- = C\a€S Hs (where
Ha is the orthogonal complement of as relative to B) and is therefore
fixed pointwise by W. One inclusion is clear. In the other direction,
B(X, as) = 0 for all s G S forces A G V±, since the as span V.

Proposition Assume that (W, S) is irreducible.
(a) Every proper W-invariant subspace ofV is included in the radical

Vx of the form B, where V1- = Hggs ^s ** ^ ^ P0"^10^6 &!/ W.
(b) If B is degenerate, then V fails to be completely reducible as a

W-module.
(c) If B is nondegenerate, then V is irreducible as a W-module.
(d) The only endomorphisms of V commuting with the action of W

are the scalars.
Proof, (a) Let V ^ V be a W-invariant subspace. Suppose first that no
root as (s G S) lies in V'. Each as acts semisimply on V' (with possible
eigenvalues 1,-1). But the (-l)-eigenspace (spanned by as) does not
occur in V, by assumption. This forces aB to fix V pointwise, so that
V lies in the intersection of all Hs, which has been observed to be Vx.

What happens if some as does lie in V'l Take any neighbor t of s
in the Coxeter graph F, so that o~t(as) = as + cat for some nonzero c.
Since o-t(cts) G V, this forces at € V as well. But T is connected, so
we can proceed step-by-step to get all at (t G S) in V, whence V = V
contrary to hypothesis.

(b) If B is degenerate, Vx is a proper nonzero W-invariant subspace,
which according to part (a) cannot have any W-invariant complement.
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(c) If B is nondegenerate, part (a) implies that V has no nonzero
proper W-submodules.

(d) Suppose an endomorphism z of V commutes with all <r(w), w €
W. Fix any s S S. Since z commutes with <rs, the line L spanned by <xa

is z-invariant, so z acts there with an eigenvalue c. We claim that z is
just c times the identity operator 1. Consider the kernel V of t — c • 1.
This is clearly stable under cr(W), and contains L, which does not lie in
VL. Thanks to part (a), we must have V = V. D

Exercise 1. Assume that (W,S) is irreducible. Determine the center
Z{W) of W as follows. If W is finite and wo = — 1 (where w0 is the
unique longest element, as in Exercise 2 of 5.6), then Z(W) = {1, - 1 } .
Otherwise Z(W) = {1}.

Exercise 2. Suppose p : G —> GL(£) is an irreducible representation of a
group G, with dim E < oo. If G contains at least one pseudo-reflection
(an element of finite order whose 1-eigenspace has codimension 1 in E),
then the only endomorphisms of E commuting with p(G) are the scalars.

6.4 Finite Coxeter groups

Our goal is to show that the finite Coxeter groups are precisely the finite
reflection groups studied in Chapter 1. For this we need to review some
standard facts about group representations.

Lemma Let p : G —* GL(E) be a group representation, with E a finite
dimensional vector space over R.

(a) If G is finite, then there exists a positive definite G-invariant
bilinear form on E.

(b) / / G is finite, then p is completely reducible.
(c) Suppose the only endomorphisms of E commuting with p{G) are

the scalars. If fi and 0' are nondegenerate symmetric bilinear forms on
E, both G-invariant, then j3' is a scalar multiple of /3.

Proof, (a) Start with any positive definite symmetric bilinear form /? on
E, and 'average' it over G to obtain one which is also G-invariant:

£ • A, 0-M),

where A, /x € E and g • X = p(g)(X), etc.
(b) Now E is the direct sum of any subspace and its orthogonal

complement relative to the positive definite form (3 constructed in (a),
by nondegeneracy. On the other hand, the orthogonal complement of
a G-invariant subspace is also G-invariant, since /? is an invariant form.
Complete reducibility follows.
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6.5. Affine Coxeter groups 133

(c) Any nondegenerate form sets up a vector space isomorphism be-
tween E and its dual space E* in the usual way. When the form is
invariant, this becomes an isomorphism of G-modules (relative to p and
its contragredient). Composing the isomorphism defined by /? with the
inverse of that denned by /3' gives a G-module isomorphism of E onto it-
self, i.e., an endomorphism of E commuting with p(G). By assumption,
this is just a scalar, so f3 and (3' are proportional. O

Theorem The following conditions on the Coxeter group W are equiv-
alent:

(a) W is finite.
(b) The bilinear form B is positive definite.
(c) W is a finite reflection group (in the sense of Chapter 1).

Proof. Without loss of generality, we may assume that (W, S) is an
irreducible Coxeter system.

(a) => (b). Thanks to part (b) of the lemma above, W acts completely
reducibly on V. Then part (b) of Proposition 6.3 implies that B must
be nondegenerate. In turn, part (c) of that proposition says that W acts
irreducibly, and (d) says that the scalars are the only endomorphisms of
V commuting with the action of W. Prom part (c) of the lemma above,
we conclude that (up to scalar multiples) B is the unique nondegenerate,
W-invariant symmetric bilinear form on V. But, by part (a) of the
lemma, there exists a positive definite WMnvariant form on V, say B'.
So B' = cB for some nonzero c ? R Since B(aa,as) = 1, we must have
c > 0. Therefore B is also positive definite.

(b) =* (c). Apply Corollary 6.2.
(c) => (a). This is immediate. O

Note that when W is a finite subgroup of GL(V) generated by re-
flections (V euclidean), its geometric representation as a Coxeter group
(5.3) looks just like its given representation on V: the angles between
simple roots (in the sense of Chapter 1) agree with the angles between
the as relative to B.

6.5 Affine Coxeter groups
We found in 4.7 that the Coxeter graphs of (irreducible) afiine Weyl
groups are precisely the positive semidefinite ones which are not positive
definite. These graphs were completely determined in Chapter 2.

The affine Weyl group Wa was constructed in Chapter 4 as a group
generated by affine reflections in a euclidean space. On the other hand,
the geometric representation of Wa as a Coxeter group (5.3) provides
another concrete realization. In this section we discuss briefly how the
two constructions are related.
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Begin with the irreducible Coxeter system (W, S) of rank n whose
graph is one of those in Figure 2 of 2.5; so n > 2. Let a : W -* GL(V) be
its geometric representation, with associated bilinear form B and matrix
A relative to the basis (as),s 6 5. Since A is indecomposable and
positive semidefinite (but not positive definite), Proposition 2.6 shows
that its nullspace is one-dimensional, spanned by a vector with strictly
positive coordinates ca,s € S. Moreover, the corresponding vector A :=
Y^ c3as spans the radical V1- of B. The quotient space V/Vx becomes
a euclidean space (of dimension n — 1) relative to the positive definite
form induced by B.

By Proposition 6.3, Vx is the intersection of the hyperplanes Hs and
is therefore fixed pointwise by W, i.e., w(X) = A for all it; € W. As a
result, W leaves stable the hyperplane orthogonal to Vx in the dual
space V*:

Z:={f€V\(f,\)=0}.
As in 5.13, we write (/, A) for /(A). Moreover, Z identifies naturally with
the dual space of V/V1- and thus acquires the structure of a euclidean
space.

Note that W also stabilizes the translated affine hyperplane

E:={feV\(f,\) = l}.

The euclidean structure on Z transfers naturally to E, making it an
affine (euclidean) space with translation group Z. It is clear that E (like
any other affine hyperplane not containing 0) spans the vector space V*,
so the action of If on £ is faithful. Because of the euclidean structure,
the isotropy group in W of any point in E acts on E as a group of
orthogonal transformations.

Now consider how the various hyperplanes

Z.:={f€V*\(f,a.)=0}

intersect E. Since |5| > 1 and all c8 > 0, A is not proportional to any
as and thus Z ̂  Zs. This forces Zs to intersect E; the intersection is an
affine hyperplane Es in E (fixed pointwise by s). Since s acts on E as
a transformation of order 2, it acts as an orthogonal reflection relative
to Es. Thus we have realized W as a subgroup of GL(E) generated by
affine reflections.

Unless we are in type Ai, pictured in Figure 1, all m(s, t) < oo. Since
st acts on E as a transformation of order m(s, t), the angle between the
hyperplanes Es and Et must agree with the corresponding angle in the
realization of W as an affine Weyl group in Chapter 4. So the affine hy-
perplanes Es yield the same geometric configuration as the hyperplanes
bounding the alcove Ao: indeed, Ao corresponds to the region in E ob-
tained by intersecting the cone C of 5.13 with the positive half-spaces
of the various Es. This recovers the geometric description of the affine
Weyl group given in Chapter 4.
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Figure 1: The case Ai

6.6 Crystallographic Coxeter groups

In 2.8 we determined which of the finite reflection groups (acting in a
euclidean space V) can stabilize a lattice in V. The answer turned out to
be very simple: all integers m(s, t),s ^ t in S, must take one of the values
2, 3, 4, 6. We want to ask a similar question about arbitrary Coxeter
groups, relative to the geometric representation <r : W —» GL(V). Call
W crystallographic relative to a if W stabilizes a lattice L in V.

It should be emphasized that this definition depends on the way
we have chosen to represent W as a group generated by 'reflections'.
There may well be other interesting representations for special classes of
Coxeter groups (see the remark below). We are following Bourbaki [1],
V, §4, exercise 6.

Some of the reasoning used in the finite case can be adapted easily
to the general case, to yield a necessary condition for W to be crystallo-
graphic, based on the fact that the trace of a(w) must then lie in Z for all
w G W. Recall from 5.3 that, for s ^ t in S, the corresponding reflections
as and at generate a dihedral subgroup acting on a plane and leaving
pointwise fixed its orthogonal complement relative to B. The product
crscrt acts on the plane as a rotation through 2n/m(s, t), if m(s, t) < oo,
from which we deduce as in the finite case that m(s, t) G {2,3,4,6}.
If m(s, t) = oo, the trace of <7s<7t is n = dim V. So a crystallographic
group must at least satisfy m(s, t) G {2,3,4,6, oo} for all s ^ t G S.

Unfortunately, this simple condition is not always sufficient to insure
the existence of a lattice stabilized by W, in case the Coxeter graph F
contains a circuit. If there is a circuit, label its vertices consecutively
by si,...,sr (with corresponding roots a\,..., a r ) and consider w =
s\-- -sr. If s = Si, write crs((*j) = otj + bijOti, so bij = —2B(an,oij) =
2cos(n/m(si,Sj)). Assuming that all m(s,t) G {2,3,4,6,00} when s ^
t, the respective values of 6y are 0,1, \/2, \/3,2.

To compute the trace of <r{w), note that cr(w)(\) = A modulo the
span of the roots e*i,... ,otr, so we need only consider how <r(w) acts
there. A direct calculation shows that a(w)(a\) = cai modulo the span
of the other ati, where c = b\2 + \%.x — 1 4- 612623 • • • &r-i,r&ri- On the
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other hand, for i = 2 , . . . , r — 1, we get cr(w)(ai) = (6? i+1 — l)aj modulo
the span of the other a,, and a(w)(ar) = —ar modulo the span of
a i , . . . , a r - i - Since the squares all lie in Z, it follows that the trace of
<r(w) lies in Z if and only if 612623 • • • &ri € Z. This is true if and only
if the number of edges of the circuit labelled 4 (resp. 6) is even. This
gives another necessary condition for W to be crystallographic (relative
to a).

To see whether these necessary conditions are actually sufficient, we
ask how we might construct a suitable lattice in V. The easiest pro-
cedure would be to choose a basis for the lattice consisting of vectors
\ s = csas,s G S. Suppose we are able to find scalars c, satisfying the
following conditions:

m(s, t) = 3 =>• cs = Ct

m(s, t) = 4 =*• cs = V2ct or ct = V2cs

m(s, t) = 6 => cs = y/Zct or ct = VHcs

m(s, t) = 00 => cs = ct

Then we see at once that <ra(\t) = Xt + d(s,t)\a for some d(s,t) € Z,
whence W stabilizes the lattice with basis Xs,s € S.

The only problem is to see that consistent choices of the ca can be
made, under our assumptions on m(s, t). If F contains no circuit this is
straightforward: start at a terminal vertex s (having only one adjacent
vertex), and choose cs to meet the above conditions, assuming the other
ct already chosen (by induction on |5|).

If F contains one or more circuits, we have to invoke the evenness
assumption on the number of edges of each circuit labelled 4 or 6. The
idea is to fix an arbitrary vertex s in F, for which cs is defined to be 1.
Then assign values ct by the following algorithm. Take a path of minimal
length from s to t, and choose successive values of ca> along the path
by the rule: keep the previous value if the edge is labelled 3 or 00, but
alternate multiplication and division of the previous value by s/2 (resp.
\/3) as successive edges labelled 4 (resp. 6) are encountered. Eventually
ct is defined. This is ambiguous only if distinct minimal paths from s
to t exist, but combining two such paths makes a circuit. The evenness
assumption is just what is needed to make ct well defined in this case.

Proposition In cose the Coxeter graph of W contains no circuit, W
is crystallographic (relative to a) if and only if m(s, t) & {2,3,4,6,00}
for all s ^fit in S. Otherwise W is crystallographic (relative to a) if and
only if the same condition is fulfilled and, moreover, for each circuit in
the Coxeter graph, the number of edges labelled 4 (resp. 6) is even, n

Exercise 1. If W is crystallographic relative to a, then every parabolic
subgroup Wj (I C S) is also crystallographic (relative to its geometric
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representation).

Exercise 2. Multiply the matrix of B by 2 to obtain a matrix A; for
a parabolic subgroup W/, denote by Ai the similarly defined matrix.
Then W is crystallographic relative to a if and only if det A/ e Z for
all / c 5. (See Monson [1].)

Remark. In the literature the notion of crystallographic Cooceter
group is usually denned to mean simply that all m(s, t) € {2,3,4,6, oo},
for s / t . One reason for this is the fact that such Coxeter groups are
precisely the 'Weyl groups' of Kac-Moody Lie algebras; see Kac [1],
Chapter 3. These Lie algebras are denned by generators and relations,
starting with a 'generalized Cartan matrix' (ay), whose entries are in-
tegers subject to the requirements: an = 2, ay < 0 if i ^ j , ay = 0 if
and only if aj% = 0. Such a Lie algebra has a 'root system' and a cor-
responding 'Weyl group' W, which stabilizes the root lattice. W turns
out to be a Coxeter group on a set of generators indexed by the same
index set as the matrix. The resulting values m(s,t) may be labelled

and are correlated with the ay as follows: my = 2,3,4,6, oo when
ji = 0,1,2,3, > 4 (respectively), i ^ j . (Many generalized Cartan

matrices may lead to the same group W.)

6.7 Coxeter groups of rank 3
Having classified the Coxeter graphs of positive type (2.7), we see that
there are many other connected graphs of rank 3. These in fact have a
unified characterization, which will be a first step toward the discussion
of 'hyperbolic' Coxeter groups in 6.8 below.

Let F be a connected Coxeter graph of rank 3. Two cases should be
distinguished. First, suppose T is not a cycle, and label its two edges by
TO, n > 3:

m n
O — O — O

Set a := cos(7r/m), 6 := cos(7r/n). The matrix of the form B is then

Its characteristic polynomial is (t — l)(t2 — 2t + c), where c = 1 — a2 — b2.
Thus the eigenvalues are 1,1 ± Va2 + b2.

These are all positive just when a2 + b2 < 1. Since the cosines
in question range in value from 1/2 to 1, there are only three such
possibilities: (ro, n) = (3,3), (3,4), (3,5). These correspond respectively
to the finite groups of types A3, B3, H3.
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The eigenvalue 0 occurs only when a2 + b2 = 1, which can happen in
just two cases: (m,n) — (4,4), (3,6), corresponding to the affine Weyl
groups of types B2, G2.

In all other cases, a2 +b2 > 1, so precisely one eigenvalue is negative,
and B has signature (2,1).

Consider now what happens when F is a cycle. Label the edges
m,n,p > 3, with a and b as before and with c := cos(ir/p). Now the
matrix of B is

1 —a —c
- a 1 -b
-c -b 1

The determinant is d = 1 - a2 - b2 - <? - 2abc < 0, since a, 6, c > 1/2,
and d = 0 just when a = b — c= 1/2, or m = n = p — 3, corresponding
to the affine Weyl group of type A2. Suppose on the other hand that
d < 0. Since the trace is 3, not all eigenvalues are negative. Therefore
the signature must be (2,1).

Thus all but the finite and affine types lead to the same signature
(2,1).

There is a suggestive way to summarize the possibilities just dis-
cussed. Denote by c the sum of the reciprocals of the three labels
m(s, t), s ^ t. Then c > 1 if and only if B is positive definite, c = 1 if
and only if B is positive semidefinite (but not positive definite), c < 1
if and only if B is nondegenerate of signature (2,1). (Here CK can be
interpreted as the sum of angles of a triangle in a geometry which is
respectively spherical, euclidean, hyperbolic.)

6.8 Hyperbolic Coxeter groups

We concentrate now on the case when (W, S) is irreducible and the form
B is nondegenerate, allowing us to identify V with its dual. As in 6.2,
topological concepts such as connectedness come from an identification
of V with Rn relative to some (hence any) fixed basis.

Denote by u>s (s € S) the basis dual to the basis as (s € S), relative
to B. Recall from 5.13 the cone C (now viewed as a subset of V):

C = {A € V\B{X,as) > 0 for all s € S} = {^csuis\cs > 0}.

In particular, all u>s lie in the closure D of C, which is a fundamental
domain for the action of W on the union of all w(C), w € W. Note that
D is the convex hull of the vectors ua.

Define the (irreducible) Coxeter system (W, S) to be hyperbolic if
B has signature (n— 1,1) and B(X, A) < 0 for all A G C. We also say that
W is hyperbolic. (The motivation for this terminology will be discussed
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6.8. Hyperbolic Coxeter groups 139

below.) Note that the definition forces B(X, A) < 0 for all A e D; this
applies in particular to the dual basis elements ua.

Our aim is to characterize the corresponding Coxeter graphs in a
way which will make it reasonable to carry out a complete classification.
The following general lemma will be helpful.

Lemma Let E be an n-dimensional real vector space, endowed with a
symmetric bilinear form B of signature (n — 1,1). Fix a nonzero vector
X&E, and set H := {/* G E\B{X,fi) = 0}. Then the restriction of B to
H is of positive type if and only if B(X, A) < 0.

Proof. Note that, if B(X, A) ^ 0, so A ^ H, E is the orthogonal direct
sum of H and the line through A. In this case the restriction of B to
H is nondegenerate, and is of positive type (in fact, positive definite)
precisely when B(X, A) < 0 because of the hypothesis on the signature.

Suppose the restriction of B to H is of positive type. The preceding
remarks imply that B(X, A) cannot be strictly positive.

Conversely, suppose B(X, A) < 0. If B(X, A) < 0, the above re-
marks already show that the restriction of B to H is of positive type.
If B(A, A) = 0, so A € H, the restriction of B to H is degenerate. But
since B has signature (n—1,1), its restriction to some hyperplane H' is
positive definite, and the same is true of its restriction to the hyperplane
H' D H in H (not containing A). It follows that B is of positive type on
H. a

Proposition Let {W, S) be an irreducible Coxeter system, with graph
F and associated bilinear form B. It is hyperbolic if and only if the
following conditions are satisfied:

(a) B is nondegenerate, but not positive definite.
(b) For each s € S, the Coxeter graph obtained by removing s from

F is of positive type.
Proof. Suppose first that W is hyperbolic, so (a) follows from the as-
sumption on the signature of B. To verify (b), fix s 6 5. As remarked
above, B(u}s,u>s) < 0. Let Ls be the hyperplane orthogonal to us. The
at (t ^ s) form a basis of Ls. The lemma shows that the restriction of
B to La is of positive type. But the matrix of this restricted form is the
matrix associated with the Coxeter graph obtained by removing s from
F, so (b) follows.

Conversely, suppose W satisfies (a) and (b). Thanks to (a), the set
N := {A € V\B(X, A) < 0} is nonempty. Because of (b), the intersection
of N with each hyperplane Ls is empty, so each connected component of
N lies in one of the connected components of the complement of \Js€S Ls.
These are sets of the form {X)s€S cs<**}> with cs > 0 for certain s, and
cs < 0 for the others. Now we can see why the signature of B must
be (n—1,1). Otherwise, owing to (a), we would have at least a two-
dimensional subspace Z of V for which Z \ {0} C N. But Z is connected
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and therefore lies in one of the sets just described, which contradicts the
fact that Z is closed under taking negatives.

Finally, we show that C lies in N, which is now a standard cone
(minus the origin) with two connected components, each of them convex.
According to (b), B is of positive type on the hyperplane L8 orthogonal
to UJS, and therefore the above lemma shows that B(wa,u)s) < 0. So each
u>s lies in the closure of iV. It follows that their convex hull D lies in the
closure of N, so C C N. •

Exercise. Hyperbolic Coxeter groups can only exist in ranks > 3. In
rank 3, all connected Coxeter graphs which are not of positive type yield
hyperbolic Coxeter groups (see the discussion in 6.7 above). Determine
the hyperbolic Coxeter groups of rank 4.

As promised above, we discuss briefly some of the motivation behind
the definition of hyperbolic Coxeter groups. See Bourbaki [1] (pp. 131—
135) and Koszul [1] for further details.

In the situation where B is nondegenerate, W is a discrete subgroup
of the corresponding orthogonal group G := O(V). Now G is a real Lie
group, with a Haar measure which provides a notion of volume for the
homogeneous space G/W. It can be shown that this volume is finite
if and only if B is positive definite (in which case W is finite), or else
B has signature (n-1,1) and B(X, A) < 0 for all A e C. When B has
signature (n— 1,1), one component of {A € V\B(X, A) = —1} provides a
standard model of (n —l)-dimensional hyperbolic space.

The finiteness of the volume is expressed by saying that W is a 'lat-
tice' in G. The study of lattices in Lie groups is an old and rich subject,
related to the nature of fundamental groups for manifolds on which G
acts, and involving such questions as whether the lattice is 'arithmeti-
cally' defined. It is useful to distinguish those lattices W (called 'uni-
form' or 'co-compact') for which G/W is compact. In the hyperbolic
case these were classified by Lanner [1] in his thesis. Here there is a very
neat criterion, refining the above proposition, which we state without
proof:

W is compact hyperbolic if and only if both conditions hold:

(a) B is nondegenerate, but not positive definite.

(b) For each s € S, the Coxeter graph obtained by removing
s from F is positive definite.

Remark. Hyperbolic Coxeter groups as defined here provide interest-
ing examples for the study of discrete groups acting on real hyperbolic
spaces. But they are not the only Coxeter groups which arise as discrete
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6.9. List of hyperbolic Coxeter groups 141

groups generated by 'reflections' in hyperbolic spaces: they are the par-
ticular ones having a simplex as fundamental domain. See the papers of
Vinberg for the general theory of hyperbolic reflection groups.

6.9 List of hyperbolic Coxeter groups

Armed with Proposition 6.8 and the remarks following it, one can hope
to determine all connected Coxeter graphs for which W is hyperbolic
(resp. compact hyperbolic). It is a lengthy exercise to fill in the details
rigorously, but the end result (when n > 4) is summarized below in
Figures 2 and 3. By direct inspection, each exhibited graph meets con-
ditions (a) and (b) of the proposition. Less trivial is the verification that
no graphs have been overlooked. The list here is taken from Chein [1],
who developed an algorithm which was programmed for a computer by
N. Spiridon; a version of this list appears in Koszul [1]. (There are some
obvious misprints both in Koszul's list and in the exercises in Bourbaki
[1]. We invite the skeptical reader to do an independent check!)

The most striking facts about the classification are these: hyperbolic
Coxeter groups exist only in ranks 3 to 10, and there are only finitely
many in each of ranks 4 to 10. (This is related to the fact that the
'exceptional' types of positive semidefinite Coxeter graphs have rank
< 9.) Compact hyperbolic groups exist only in ranks 3, 4, 5.

0>-4)

Figure 2: Compact hyperbolic Coxeter groups (n > 4)
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(n = 4) 4

4 . 4

Q—Q

4 4

4 „ 4 _ 4

JOS

Figure 3: Noncompact hyperbolic Coxeter groups (n > 4)
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(n=7)

o—o——6—o—o

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623646.007
https:/www.cambridge.org/core


144 Special cases

(n = 8)

(n = 10)
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Chapter 7

Hecke algebras and
Kazhdan—Lusztig
polynomials

This chapter is an introduction to the fundamental paper of Kazhdan-
Lusztig [1]. We begin with some generalities about Hecke algebras, which
arise in the study by Iwahori [1] and Iwahori-Matsumoto [1] of certain
groups of Lie type. The underlying idea is to replace the problem of
decomposing an induced representation by the equivalent problem of
determining irreducible representations of the associated algebra of in-
tertwining operators (the Hecke algebra); see Curtis [l]-[3]. Here the
Hecke algebra is a sort of deformation of the group algebra of the related
Weyl group or affine Weyl group. The later work shares this philoso-
phy, but is appreciably more subtle. In any case, what we do is hard to
motivate strictly in terms of Coxeter groups.

The treatment in 7.1-7.3 follows Couillens [1] (expanding Bourbaki
[1], IV, §2, Exercise 23), but the remainder of the chapter is drawn
almost entirely from Kazhdan-Lusztig [1], with added references to work
influenced by theirs. Throughout the chapter (W,S) is an arbitrary
Coxeter system. Both letters s and t may be used for elements of S,
while u, v, w, x, y, z will be used to denote arbitrary elements of W.

7.1 Generic algebras

We begin with a very general construction of associative algebras over a
commutative ring A (with 1). Such an algebra will have a free .A-basis
parametrized by the elements of W, together with a multiplication law
which reflects in a certain way the multiplication in W. The algebra will

145
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146 Hecke algebras and Kazhdan-Lusztig polynomials

also depend on some parameters os, ba G A (s 6 S), subject only to the
requirement that aa = at and ba — bt whenever s and t are conjugate in
W. The starting point for the construction is a free A-module £ on the
set W, with basis elements denoted Tw (w € W).

Theorem Given elements aa,bs as above, there exists a unique struc-
ture of associative A-algebra on the free A-module £, with T\ acting as
the identity, such that the follovring conditions hold for all s € S,w €
W:

TSTW = Tsw if £(sw) > £(w), (1)

TSTW = asTw + baTsw if £(sw) < £(w). (2)

The algebra described by the theorem, denoted £A(aa,bs), will be
called a generic algebra. The proof of the theorem will occupy the
next two sections. Here we shall make some preliminary remarks and
then sketch the idea of the proof.

The group algebra A[W] is one familiar example of a generic algebra:
set all aa = 0 and all ba = 1. Another choice of parameters leads to a
'Hecke algebra', to be defined in 7.4 below; this will be the main focus
of the present chapter.

Note that the 'right-handed' versions of (1) and (2) will follow from
the theorem, using induction on £(w). Consider the case £(wt) > £(w),
teS. Find s 6 S for which £(sw) < £(w). Evidently £{w) = £{{sw)t) >
£(sw), so induction yields TawTt = Tawt. By (1), TaTaw = Tw, so multi-
plying both sides by Ti yields:

wJ-t — J-a-l-awJ-t — J-a-l-awt = Wty

again by (1). Consider the contrary case £{wt) < £(w). By the right-
handed version of (1) just proved, TwtTt = Tw. Multiply both sides by
Tt to obtain:

TwTt = TwtTt = Twt(atTt + btT\) = atTwtTt + btTwt = atTw + btTwt,

using (2) to compute Tt
2.

Later on it will be helpful to have another set of relations equivalent
to (1) and (2), as follows:

TSTW = Taw if £(sw) > £(w), (3)

Tl=aaTa + baTx. (4)

Obviously (3) and (4) are consequences of (1) and (2). Conversely,
assume that £ has an algebra structure (with Ti as identity element)
satisfying (3) and (4). We have to verify (2), in case £{sw) < £(w). Note
that, when £(w) = 1, we must have w = s, so (2) is just (4). In general,
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7.2. Commuting operators 147

we have e(s(sw)) > t{sw), so (3) yields TaTaw = Tw. Then use (4) to get
TaTw = T%Taw — (asTs + bsTi)Tsw = asTsTaw + bsTsw = asTw + bsTsw,
as required.

Suppose for a moment that £ does admit an algebra structure satis-
fying (1) and (2). Iteration of (1) shows that Tw = Ts, • • • TSr whenever
w = s\ • • • sr is a reduced expression. So £ is in fact generated as an
algebra by the Ts (s e 5), together with 1 = T\. In turn, iteration of
conditions (1) and (2) enables us to write down the full multiplication
table for the basis elements Tw of £. So the uniqueness assertion in the
theorem is clear.

As to the existence of an algebra structure, it is very awkward to
introduce directly into the .4-inodule £ the extra structure required.
Instead, we exploit the existing ring structure in End £, the algebra of
all -A-module endomorphisms of 5. If £ has an algebra structure, the
left multiplication operators corresponding to elements of £ will generate
an isomorphic copy of this algebra inside End £. So it will be enough
to locate the appropriate subalgebra of End £. To conform with the
relations (1) and (2), the left multiplication operators As corresponding
to the elements Ts (s € S) would have to behave as follows:

A . ^ ) = Tsw if l{sw) > £(w), (5)
K(TW) = asTw + bsTaw if £(sw) < £(w). (6)

Similarly, there would have to be right multiplication operators pt{t € S)
behaving according to symmetric rules:

Pt(Tw) = Twt if e(wt) >e(w), (7)
pt(Tw) = atTw + btTwt if e(wt) < e(w). (8)

Now we can sketch briefly how the proof of the theorem goes. Simply
define endomorphisms Xa and p3 (s G S) of £ by the preceding rules
(extending by linearity from the given action on the basis). Check that
every A, commutes with every pt (s, t € S), which will be done in 7.2.
Then map the subalgebra of End £ (with 1) generated by all As onto
£ by sending an endomorphism to its value at T\. Use the commuting
property to see that this map is actually one-to-one, which allows the
algebra structure to be transferred to £. Finally, verify the relations (1)
and (2).

7.2 Commuting operators

In order to prove that every operator Xa commutes with every operator
pt (s, t € 5), we have to sort out a number of configurations of lengths.
The following lemma will simplify the task somewhat.
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148 Hecke algebras and Kazhd&n-Lusztig polynomials

Lemma Let w € W and s,t e S. If£(swt) — £(w) and£(sw) = £(wt),
then sw = wt {or equivalently, swt = w).

Proof. Write w = s\ •• • sr (reduced). There are two possibilities:
(a) £{sw) > £(w). Then £(w) = £{{sw)t) < £{sw), so the Exchange

Condition applies to the pair sw, t. We obtain sw = w't, where either
w' = ss\ • •• Si- • • sr or else w' = w. The first alternative is impossible,
since it would imply w = s(sw) = s(w't) — si • • • £i • • • srt, forcing wt —
s\ • • • ii • • • sr to be shorter than w, contrary to the hypothesis £(wt) =
£(sw) > £(w). Therefore w' = w and sw = wt.

(b) £(sw) < £{w) = £(s(sw)). Observe that the hypotheses of the
lemma axe now satisfied by sw in place of w, so we may apply the result
of case (a) to sw. Conclusion: s(sw) = (sw)t, i.e., w = swt. •

Proposition For all s,t € S, the operators X3 and pt commute.

Proof. Fix w G W and compare the effects of the two operators X3pt
and pt\a on Tw. Keeping in mind that multiplication by s or t changes
length by 1, we see readily that there axe just six possibilities for the
relative lengths of sw, wt, swt, w. For example, it is impossible for all of
these to have distinct lengths. We analyze each possibility in turn.

(a) £{w) < £{wt) = £{sw) < £{swt).

The description of the operators in 7.1 shows at once that Xspt(Tw) =
Tswt = ptXs(Tw).

(b) £{swt) < £(wt) = £(sw) < £{w).

By direct calculation, Xapt(Tw) = Xa(atTw + btTwt) = atXB(Tw)+
btXs (Twt) = at(aaTw + baTsw)+bt(aaTwt+bsTswt) = ataaTw+atbaTav,+
btaaTwt + btbaTawt. An entirely similar calculation of ptXa(Tw) yields the
same result.

(c) £(wt) = £(sw) < £(swt) = £(w).

Here we can invoke the above lemma to get sw = wt, which says that s
is conjugate to t in W, forcing aa = at and ba = bt. Substitute these into
the results of direct calculation: Xapt(Tw) = ataaTw + atbaTaw + btTswt,
whereas ptXa(Tw) = aaatTw + aabtTwt + baTawt.

(d) £(wt) < £{w) = £(swt) < £(sw).

Here we get XaPt(Tw) = atTaw + btTawt = ptXa(Tw).

(e) £{sw) < £{w) = £(swt) < £(wt).

Here Xapt(Tw) = aaTwt + baTswt — PtX3(Tw).

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623646.008
https:/www.cambridge.org/core


7.3. Conclusion of the proof 149

(f) e(w) = e(swt) < £(wt) = e(sw).

Just as in case (e), we have Xapt(Tw) = a3Twt + bsTawt. But ptXa(Tw) =
dtTaw + btTawt. We again invoke the above lemma to get sw = wt and
aa = at,ba = bt. •

7.3 Conclusion of the proof

We follow the outline in 7.1. Define £ to be the subalgebra of End £
(with 1) generated by the endomorphisms Xs (s € S). Then define a
map ip : £ —• £ by the formula <p(X) = A(Ti), thus sending 1 to 7\
and Xa to Ts for all s S 5. It is obvious that <p is an A-module map.
Moreover, it is surjective, since all basis elements Tw of £ lie in the
image: if w = s\ • • • sr (reduced), then clearly Tw = <p(XSl • • • ASr).

To show that <p is injective, suppose that tp(\) = 0, i.e., A(Ti) = 0.
We use induction on £(w) to show that X(TW) = 0 for all w € W,
whence A = 0. If l{w) > 0, find t e S for which l{wt) < £(w). Thanks
to Proposition 7.2, the endomorphism pt commutes with C, in particular
with A. Therefore X(TW) = X(T(wt)t) = X(Pt(Twt)) = Pt(X(Twt)) = 0 by
induction.

Now that ip is known to be an isomorphism of j4-modules, it follows at
once that £ has a free A-basis consisting of all Au, := ASl • • • ASr (w € W),
where w — s\ • • • sr is reduced and the endomorphism Xw is independent
of the choice of reduced expression. (Here Ai is the identity on £.)
Moreover, the algebra structure on £ can be transferred to £. It remains
only to check that this structure satisfies the relations (1) and (2) in 7.1.
The equivalent relations (3) and (4) are actually a bit easier to work
with.

Say t{sw) > £(w). We have to verify that AaAw = Xaw. Taking a
reduced expression as above for w, ssi • • • sr is clearly a reduced expres-
sion for the longer element sw. Now XaXw = XsXSl • •• ASr agrees with
the definition of Xsw.

The other relation to be verified reads: X\ = aaXa + baX\. It is
enough to check both sides at a typical basis element Tw of £. In case
£(sw) > £(w), we have:

X2
a(Tw) = Xa(Taw) - asTaw + baTw = {aaXs + b,Xi)(Tw).

In case £{sw) < £(w), we get instead:

X2
a(Tw) = Xa(aaTw+baTaw) = aaXa(Tw)+baTaTaw = (a,A,+&.A1)(T1B).a

Exercise 1. Mapping Tw toTffi-i defines an .A-module automorphism of
£. Prove that it is an anti-automorphism of any generic algebra based
on£.
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150 Hecke algebras and Kazhdan-Lusztig polynomials

Exercise 2. Show that the generic algebra £A{as,bs) has a presentation
as the A-algebra with 1 generated by the elements Ts (s € S), subject
only to the relations: Ts

2 = asTs + bs7\, (TaTt)i = (TtTs)'> if m(s,t) =
2q < oo, and {TsTt)

qTa = (TtTs)*Tt if m(s,t) = 2q + 1 < oo (as s,t
range over S).

7.4 Hecke algebras and inverses

Having constructed generic algebras £^(as,bs) over an arbitrary com-
mutative ring A, we now make a special choice: until further notice A
will be the ring Z[<?, q~l] of Laurent polynomials over Z in the indeter-
minate q. With the further convention that as = q — 1 and bs = q for
all s e S, we write W for the resulting generic algebra and call it the
Hecke algebra of W. (There should be no confusion with the use of
"H in Chapter 4 to denote a collection of hyperplanes.) Although we
are assigning the same value of as (resp. bs) to all s € S, it should
be emphasized that for some applications of Kazhdan-Lusztig theory,
more complicated versions are needed (cf. Lusztig [4]). For this reason
we allowed more flexibility in the earlier set-up.

The relations (3) and (4) in 7.1 now become:

TSTW = Tsw if e(sw) > l[w),

Exercise. Prove that the assignment Ts H-> — 1 (s € S) induces a ring
homomorphism H —* A, sending Tw to (—l)*^.

The first special feature to notice in TL is the existence of inverses
for the basis elements Tw, because of the presence of q~*. Indeed, the
relations imply that for all s € S:

T-l=q-lT3-{l-q-l)T1. (9)

If w = si • • • sr (reduced expression), we know that Tw = TSl • • -TSr.
Therefore every Tw is invertible in H. However, as l{w) increases it will
be progressively more complicated to work out the inverse explicitly as
a linear combination of the canonical basis of "H. What we can do in
this direction introduces an important family of polynomials (the lR-
polynomials').

We shall show that the inverse of a typical Tw-\ can be written as a
combination of those Tx for which x < w in the Bruhat ordering (5.9).
To do this we need to know how various elements of W are related in
the ordering:
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Lemma Let s G S,w € W satisfy sw < w. Suppose x < w.
(a) If sx < x, then sx < sw.
(b) If sx > x, then sx < w and x < sw.
Thus, in either case, sx < w.

Proof. In both cases we rely on Theorem 5.10, which characterizes the
Bruhat ordering in terms of subexpressions. Thanks to the Exchange
Condition, the hypothesis sw < w implies that w has a reduced expres-
sion w = si • • • sr with si = s. Since x is a subexpression of w, either
x is a subexpression of sw or else a subexpression for x begins with
s, forcing sx to occur as a subexpression of the (reduced) expression
sw = S2 • • • sT, whence sx < sw. In either case, (a) follows. Similarly, in
either case, (b) follows. •

To avoid excessive parentheses, we henceforth write ew = (—l)̂ ™)
in place of the notation e(w) used in Chapter 5. Similarly, we write qw

in place of qA1"'. When dealing with a polynomial in q alone, we allow
ourselves to write F in place of F(q) when no confusion can result.

Proposition For allw€W,

x<w

where RXtW(q) € Z[q] is a polynomial of degree t(w) — £(x) in q, and
where Rw,w{q) = 1.
Proof. This is clear when w = 1. Thanks to (9), it is also clear when
w = s lies in 5, if we set i?i,s := q — 1. Proceed by induction on £(w).
In the course of the proof, we shall actually obtain an algorithm for
computing the ii-polynomials, about which more will be said in 7.5.
For convenience, define Rx,w to be 0 whenever x ^ w.

Assuming £(w) > 0, we can write w = sv for some s £ S, with
£(v) < £(w). Thus ew = —ev and qw = qvq. Using the induction
hypothesis, we compute:

(T^-:)-1 = {TV-,TS)-
1

= q-Hn - ( 4 -
y<v

.(10)(q -1).
y<v

The second sum in (10) involves two sorts of terms. If sy > y, we
just get eyRy<vTsy. But if sy < y, we get instead:
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152 Hecke algebras and Kazhdan-Lusztig polynomials

the first term of which cancels a term in the first sum in (10). This
allows us to rewrite (10) as a sum over three kinds of terms:

y<v,y<sy (q - l)eyRyiVTy (11)

y<v,y<sy ~eyRy,vTsy (12)

y<v,y>sy -qeyRy,vT3y (13)

In each case, we have y < w and (thanks to the lemma above with
y in the role of x) sy < w. Notice too that every x < w occurs either
as a y < v or as an sy with y < v (or both), because of 5.10 again.
So it remains only to check that the coefficient of Tx in (10) meets the
criterion of the proposition.

Consider x < w with x > sx. Then Tx occurs only in case (12), with
x — sy for y < v, and we obtain as coefficient: —eyRy,v = £xRax,sw> of
degree £{sw)—£(sx) = £(w) — £(x). In the extreme case x — w, note that
y — v and Rv<v = 1 by induction. So the polynomial Rx,w '•= Rax,aw has
the required features.

Consider the contrary case x < w, with x < sx. Here there are two
possibilities:

(a) In case sx < v, Tx occurs both in a term of type (11), with
x — y < v, and in a term of type (13), with x = sy,y = sx < v. The
combined coefficient is

(q — l)exRXtV — qe3XRsx,v

However note that deg qRsx>v = £(v) — £(sx) + 1 = (£(w) — 1)—
(£(x) + l) + l =£(w)-£(x)-l, whereas deg {q-\)Rx<v = £(v)-£(x) + l =
(£(w) - 1) - £{x) + 1 = £(w) - £{x). Thus the combined coefficient has
degree £(w) — £(x) as required, and we can define

(b) In case sx ^ v, Tx occurs only in a term of type (11), with
coefficient equal to ex(q — l)RXyV. Using the convention Rsx,v = 0, we
see that RXiW can be defined precisely as in case (a). This completes the
induction step. Q

It is worth remarking that the Bruhat ordering is forced on us by the
way inversion works in H, whether or not we have previously felt moti-
vated to introduce this ordering for arbitrary Coxeter groups. Indeed,
the proposition shows that RXtW is nonzero if and only if x < w.

7.5 Computing the i?-polynomials

Let us first make explicit the algorithm for computing RX:W implied
by the proof of Proposition 7.4. The idea is to use induction on £(w),
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starting with the fact that Rw,w = 1 for all w & W, while Rx>w = 0 unless
x < w. For the induction step, we need to compute Rx,w, assuming that
all polynomials Ry,z are known for £{z) < £(w). Fix s £ S for which
sw < w. Then two configurations have to be dealt with, as in Lemma
7.4:

(A) x < w, sx < x (forcing sx < sw). Here we found that Rx,w —
Rsx,sw, which is already known since sw < w.

(B) x <w,x < sx (forcing sx <w and x < sw). Here we found that
Rx,w = (<7 — l)Rx,sw + QRSX,SW, both terms of which are already known.
(Recall that the first term has degree £(w) —£(x), while the second term
has lower degree and might be 0.)

It is sometimes useful to have alternate versions of (A) and (B),
with s occurring on the right rather than the left. These follow from
a 'symmetric' version of the proof of Proposition 7.4, as the reader can
check. For example:

(A') x < w,xs < x, ws < w (forcing xs < ws). Then Rx,w = RxafWS.

Exercise 1. Prove that Rx<w(l) — 0 unless x = w.

To get a better feeling for the way the il-polynomials are built up in-
ductively, we consider the special case £{w)—£{x) = 1. If w = si • • • sr is
a reduced expression, we can obtain x by omitting a single Sj. Repeated
use of (A) and (A') reduces matters to the situation: w = Si,x = 1.
As remarked at the beginning of the proof of Proposition 7.4, we get
Rx,w = 9 ~ 1 from the explicit formula (9) for T~*.

To carry this a step further, consider what happens when £(w) —
£(x) = 2. Fixing as before a reduced expression for w, we observe that
(for reasons of parity) x can be obtained by omitting precisely two of
the factors Si,Sj (i < j). Again we can apply (A) and (A') repeatedly
to reduce to the case: w = s, • • • Sj,x = s,+i • • • Sj-\. Taking s = Si, we
have the configuration: sw < w,sx > x. Therefore (B) applies and we
have Rx<w = (q — l)Rx<aw + QRSX,SW The first term is known from the
preceding calculation: Rx,sw — Q — 1- On the other hand, both sx and
sw have the same length but are unequal, forcing the second term to be
0. Conclusion: Rx,w = (q — I)2.

The intrepid reader may wish to press on with these explicit calcu-
lations. However, they rapidly become less manageable, because of the
more complicated possibilities for subexpressions when more than two
factors are omitted. For example, if £(w) — £(x) = 3, it is possible that
x is obtained by omitting only one factor in a reduced expression for w.
We shall be content to quote here a result of Deodhar [5], which gives
a closed formula for the .ft-polynomials (still involving some intricate
calculations with subexpressions). The formula expresses Rx,w as a sum
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of terms of the form (q — \)nqm. But the summation is over a set which
is defined in a delicate way, as follows.

Fix once and for all a reduced expression w = si • • -sr, so every
x < w occurs as a subexpression. Deodhar reformulates the notion
of 'subexpression' to mean an element <J = {OQ,O~\,. .. ,o~r) G Wr+1,
where UQ = l,0j = <Jj-\ or o~j-\Sj (1 < j < r) . Here o corresponds
to the subexpression s\ • • • s^ • • • s^ • • • sr, with {i\,..., ip} = {j\o~j —
CTJ-I}; the resulting x < w is just crr. Now define n{cr) :— p and define
m(er) := Card {j|<7j_i > (Tj). Finally, consider the set of 'distinguished'
subexpressions D(x) consisting of those a for which x = ar and <Tj <
o-j-iSj for all 1 < j < r. Note that it is not immediately clear from
the definitions that D(x) need be nonempty for x < w. However, this is
seen in the proof of Deodhar's formula:

Exercise 2. Check that Deodhar's formula agrees with our preceding
calculations of Rx,w in case £(w) — £(x) < 2.

Exercise 3. When W — S3, work out all Rx,w- Compare the results
with Deodhar's formula. For example, when x = l,w = wo (the longest
element), RXtW = (q- I ) 3 + q(q - 1).

7.6 Special case: finite Coxeter groups

When W is finite, the iJ-polynomials exhibit some extra symmetry,
which will be exploited in 7.13 below. Recall from 1.8 the longest ele-
ment wo of W, which satisfies £(wow) = £(w0) — £{w) for all w € W.
Recall also from Example 3 of 5.9 that x < w if and only if wow < wox.

Proposi t ion IfWis finite, then RXiW — Rwow,wox for all x <w.
Proof. Proceed by induction on £(w), starting with the fact that #1,1 =
Rw0,wo — 1- If l(w) > 0. find s € S for which ws < w. There are two
cases to consider, following the rules in 7.5.

(a) If xs < x, then also wox < woxs, so we can apply (A') to each
of these situations and appeal to the induction hypothesis to get:

*£x,W == **'X8,W8 ==: JlWoWBfiVoXS ~Z -^WoW^WoX'

(b) If x < xs, the situation is more complicated. Using the symmetric
version (B') of (B), we have

Rx,w = (9 ~
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7.7. An involution on 7i 155

By induction, this is equal to

Notice that (A') applies to the first term, allowing us to replace it with
(q - l)Rwow,wox8- In turn, (B') applies, yielding RweW,Wox, as required.
•

7.7 An involution on H

Having seen how to invert the basis elements Tw of H, we go a step
further by introducing an involution i: H —• H (a ring automorphism of
order 2). To define t, begin with the involution t of A = Z[q, q~x] sending
q to q~x, and then define t{Tw) := (Tw-i)~l. Combine these assignments
and extend additively to obtain a 'semilinear' map i:H.—*'H.

Using (9) in 7.4, the reader can easily check that i?{Ta) = Ta for all
s € S. To prove that i2 is the identity on H, it will therefore be enough
to prove that A is a ring homomorphism (since the Ts generate H as an
.A-algebra).

First we show:

t(TaTw) = L(TS)L(TW) whenever s 6 S, w € W. (14)

There are two cases to check, the first being straightforward. If £(sw) >
£(w), we just compute directly:

t(T.r.)=t(rw)=(rw-..)-1=(rw-,r.)-1=r(r
1(ru,-i)-1=*(r.)t(T.).

The second case is more complicated. If £(sw) < £(w), write v = (sw)*1,
so w~1 = us. Now

L(T,TW) = i(qTaw + (q- 1)TW) = q^T'1 + (g"1 - l j ^ - i ) - 1 .

Note here that q'1 - 1 = -q^iq - 1). Also, Tw-i = Tva = TvTa has
inverse equal to T~lT-1. Further, recall that T"1 = q-x(T,-(q-\)T\).
Substituting all of these expressions, we obtain:

On the other hand,

Again we can substitute the expression for T~x, and then substitute
T2 = (q- l)Ta + qTi, to get the same end result.

Having verified (14), it is easy to conclude by induction on £(w') that

i(Tw.Tw) = i(Tw,)i(Tw) for ail w,w' € W.
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156 Hecke algebras and Kazhdan-Lusztig polynomials

If e{w') > 1, find s € S for which t(w's) < £(w'). Then i(Tw>Tw) =
L(TW,STSTW) = (.(r^'^^TaT^) by induction (thinking of TSTW as some
A-linear combination of basis elements Tv). In turn, the special case
(14) together with another application of the induction hypothesis shows
that the last expression equals L(TWIS)I,(TS)L{TW) = L(TW>STS)L(TW) =
I(TW,)L(TW).

Exercise. Define another involution <r of H, as follows. On A let a = t,
while cr(Tw) := e^g"1!^. (Imitate the above steps.) Show that at = ur.

7.8 Further properties of ^-polynomials

The involution i will play a key role in the definition of Kazhdan-Lusztig
polynomials in 7.9. To get more familiar with its properties, we develop
some further useful facts about the ./^-polynomials, the first of which
requires only the involution on A, and the third of which doesn't mention
t explicitly (but would be harder to prove without using it). To avoid
excessive parentheses, we use a bar in place of i (applied to elements of
A) whenever convenient; thus Rx,w means the same thing as Rx^ii'1)-

Proposition For all x, w € W, we have:
(a) RXtW = £x£w(lx<lwlRx,w_

(b) (ivo-1 = EI<u,C1Vx.
(c) Ei<y<tt£«%^,»^i(,t» = SXtW(Kronecker delta).

Proof, (a) This is checked inductively, following the rules at the begin-
ning of 7.5. In the first case there, we have x < w, sx < x, sw < w, so
that RXtW — Rax,sw (and similarly after applying <.). By induction,

Rs Q Q

This yields the desired expression for Rx>w. In the second case, the
argument is less direct. Here we have x <w,x < sx,sw < w, with

J^x,iy = = \Q *-)-£*'X-,sw i" Q**&x,8W'

Applying t yields

Rx,w = ~Q~ (<7 — l)Rx,sw + Q Rax,sw

By induction

Rx,sw ~

while

*

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623646.008
https:/www.cambridge.org/core
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It remains to compare coefficients, using the fact that qsx = qxq and
Qaw = qv>q~l- The coefficient of RXySW is

-Q'HQ - ^x(-£w)qxqw1(i =(q-i)^™?*?™1,

as required. Similarly, the coefficient of Rax,sw is

as required.
(b) By Proposition 7.4,

) ~ £wqw
x<w
/ _,

Now substitute the result of part (a).
(c) Apply i to the formula in (b), using the variable y in place of x:

y<w

Then substitute for (T^-i)"1 the expression in Proposition 7.4 to get:

v J2 Rx,vTx. (15)
yKw x<y

Now compare the coefficient of Tx (equal to 0 or 1) on each side of (15).
a

Part (c) of the proposition shows how to 'invert' the matrix of R-
polynomials. This matrix is infinite if W is; but it has only finitely many
nonzero entries in each column and (when written in a way compatible
with the Bruhat ordering) it is upper triangular unipotent. In the lit-
erature (such as Kazhdan-Lusztig [1]), one may see (c) written with ew

in place of ex\ this does not change the formula!

Exercise. Verify part (c) of the proposition directly when W = S3, by
using the explicit matrix of i?-polynomials.

7.9 Kazhdan-Lusztig polynomials
We now look for a new basis {Cw} of the >l-module H, indexed again
by W, but consisting of elements fixed by the involution t. We can see
how to get started by experimenting with formula (9) in 7.4:
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158 Hecke algebras and Kazhdan-Lusztig polynomials

It is easy to check that i sends Ta — qT\ to q~l{Ta — qTi). If we are
willing to introduce a square root of q (written q?), we therefore have
an element fixed by t for each s € S:

qTx). (16)

Formally, we replace Zi[q,q~l] by the ring Z[q>z,<z~2] of Laurent poly-
nomials in the indeterminate q*, so that the previous ring A becomes a
subring of the new one. This has no effect on the previous formal calcu-
lations in H. For the remainder of this chapter A denotes the enlarged
ring.

It is tempting to construct further t-invariants simply by multiplying
various Cs(s € S), in the spirit of the way the original basis elements
Tw of H are built out of the Ts. For example, if s ^ t, we find

CsCt = q-1 (T3t - qTs -qTt+ q2^). (17)

We might label this element Cst- Note that if st = ts (the only other
possible reduced expression!), we would have obtained the same element
by multiplying Ct times Cs. But our naive approach becomes less satis-
factory if we go a step further (assuming £(sts) = 3):

C3CtCa = q-i{TaU-qT8t-qT
(18)

If we want to label this element Cata, there is an obvious ambiguity in
case sts — tst, because CtCaCt ^ CaCtCa. Moreover, the polynomials
appearing as coefficients of Ta and Ti in (18) are more complicated than
we would like. Notice that C3CtCa — Cs is an ^.-invariant which is also
a linear combination of the Tx for x < sts; but its coefficients are quite
simple. (And in case sts = tst, s and t are interchangeable throughout.)

What we are seeking in general is an t-invariant element Cw which
is a linear combination of the Tx for x < w (the coefficient of Tw be-
ing nonzero) and whose polynomial coefficients are as uncomplicated as
possible. The following basic theorem of Kazhdan-Lusztig [1] provides
an optimal choice:

Theorem For each w € W there exists a unique element Cw € H
having the following two properties:

(a) t(Cw) = Cw,

(b) Cw = ewqi,Ylexqx1Px,wTx {sum over x < tw), where Pw,w = 1
and Px,w(q) S Z[q] has degree < %{t(w) — £(x) - 1) if x < w.

The proof of the theorem will occupy the next two sections. In the
meantime, we make some observations about the formulation.

First, the elements C\ := Tx and Cs (s € S), Cst (s ^ t) defined by
(16) and (17) clearly meet requirements (a) and (b). (To check unique-
ness directly is a useful exercise at this point.) For W = S3, one can use
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the discussion after (18) to complete the verification of the theorem; in
this case, all Px<w = 1.

The polynomials Px,w (which are by no means always equal to 1)
turn out to be of fundamental interest. They are called the Kazhdan-
Lusztig polynomials. They are appreciably more subtle than the ear-
lier RXjW. For example, their precise degrees are not readily predictable.
It is conjectured in Kazhdan-Lusztig [1] that all coefficients of PXtW are
nonnegative, but this remains unproved (at the time of writing) except
in some important special cases; see 7.12 below.

As in the case of the fi-polynomials, it is convenient to make the
convention that PXiW = 0 whenever x % w.

Exercise. Assuming the truth of the theorem, prove that the elements
Cw (w € W) form a basis of the vl-module H.

Remark. The theorem can be reformulated in a way which may look sim-
pler. In place of the elements Cw we can require elements C'w satisfying
(a) together with

Cw = qw y ^ Px,wTx,
x<w

with Px,vs as in (b). The reader can easily verify that the two formula-
tions are equivalent, by first checking that C'w = ewa{Cw) (with a the
involution of H described in the exercise in 7.7). To be consistent with
most of the literature, we shall stick with the elements Cw.

7.10 Uniqueness

We first demonstrate for each w € W the uniqueness of the element

Cw = 2. °(a:! w)Px,wTx, where a(x, w) := ewexqSiqx , (19)
x<w

assuming that Cw has properties (a) and (b) in Theorem 7.9. This
amounts to showing that the polynomials Px,w can be chosen in at most
one way. For fixed w we proceed by induction on £(w) — £(x), starting
with the requirement that PWtW = 1. Thus we may assume that all PVtW

are uniquely determined, for x < y < w. We must show that this forces
the choice of Px,w.

Start with the formula (19) for Cw, written with y in place of x.
Apply t, replacing q by q~l and Tv by (Ty-i)"1, then substitute for the
latter the expression in Proposition 7.4 (with y in place of w there). This
yields (after obvious cancellations) a sum over all pairs x, y satisfying
x < y < w:
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160 fledce algebras and Kazhdan-Lusztig polynomials

Next equate the coefficient of a fixed Tx with the original coefficient in
Cw to get:

_ , -
*X,W =

Further cancellation of signs and multiplication of both sides by qx

yields:

Rx,yPy,w (20)
x<y<w

Finally, move the term for y = x to the left (using the fact that Rx,x — 1):

Q P ~ Qw qx P = 1w qx / , Rx,yPy,w (21)
x<y<w

Assuming that all Py,w (x < y < w) are already uniquely determined,
we have to argue that Px<w is also determined. Since x < w, the degree
assumption in (b) implies that the first term on the left is a polynomial
in q 5 without constant term, while the second term is a polynomial in
q~~ 5 without constant term. Thus no cancellation occurs, and there is
at most one choice for Px,w satisfying (21).

Remark. Note that (21) would provide an algorithm for computation
of the Kazhdan-Lusztig polynomials. (The reader might follow through
on this for W = £3, to get a better feeling for what it involves.) We
shall have more to say in 7.12 about the problem of computing the
polynomials efficiently.

Exercise. If £(w) — £(x) = 1, deduce from (21) that PXiW = 1 (using the
fact that Rx<w = q — 1 in this case).

7.11 Existence

Now we tackle the existence of the elements Cw, which is less straightfor-
ward. As we observed in 7.9, multiplication of various elements CB gives
at least a first approximation to what we want, but some 'correction'
terms may be needed. The choice of these turns out to be delicate. It
depends on which Kazhdan-Lusztig polynomials Px<w{x < w) have the
largest allowable degree \{£{w) —£(x) - 1 ) . When this degree is attained
(which is of course possible only if ew = — £x)> we write x -< w and let
/i(x, w) be the coefficient of the highest power of q in Px,w.

It is natural to proceed by induction on £{w) in proving the existence
of the desired elements Cw. (We have already disposed directly of the
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cases £(w) < 2.) For the induction step, find s € S for which £(sw) <
£(w) and set v = siv. So Cv has already been constructed. Note that:

a(x,w) = — q*a(x, v).

We now define:

Cw := C.CV - J2 A*(*. «)C> (22)
where the sum is taken over only those z which satisfy both z •< v and
sz < z. Obviously Cw is t-invariant. Recall that

This makes it clear that Cw is an A-linear combination of elements
Tx, x < w. We have to look closely at the coefficient of Tx for each fixed
x, starting with x = w. Evidently Tw occurs only in the product TSCV,
with coefficient q~2a(v,v)Pv,v = q'^qtqZ1 = q™2 • This agrees with
(19) when x = w (with Pw<v> — 1).

Next fix x < to. Tx might occur in two ways in CSCV, either straight-
forwardly in Cv (if x < v) or else indirectly in TSCV when Ts is multiplied
by T8X (if sx < v). We distinguish two cases.

First suppose x < sx, so that TSTSX = gTx + ( g - 1)TSX and qr^TsCt,
involves Tx with the coefficient:

q~iqa(sx,v)Pax,v = q^(-l~1)a(x,v)PSXzV = q~1a(x,w)PSXtV.

On the other hand, —qiTiCv involves Tx with the coefficient:

-q%a(x,v)PXiV = a(x,w)Px,v.

Combining these, we see that the coefficient of Tx in CSCV is

q~la(x,w)Psx,v + a{x,w)PXtV.

Instead suppose sx < x, so TSTBX = Tx and TBTX = qTsx + (q- l)Tx.
In 9~iTsCt, we therefore get respective coefficients of Tx equal to:

q~ia(sx,v)PSX)V = q~^{-q)a(x,v)P8X,v = a(x,w)PaXiV,

(q - l)q~ia(x,v)PX!V = (q~l - l)a(x,w)Px>v.

On the other hand, — qiT\Cv involves Tx with the coefficient:

-qia(x,v)Px<v = a(x,w)PX)U.

Combining these, we see that the coefficient of Tx in CSCV is

a(x, u;)Psx,« + q~xa{x,w)Px,v.
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Finally, the coefficient of Tx in — X)M(Z> V)CV is always of the form

-^2 fj,(z,v)a(x, z)PXiZ — - ^ n(z,v)ql q^1a(x,w)Px,z,

using the fact that ezew = 1 when z -< v = sw.
If we set c = 0 when x < sx and c = 1 when sx < x, we can combine

these calculations to express Cw in the form (19), with

* i , (23)

where as in (22) the summation is over those z -< v for which sz < z
(with the convention that PX]Z = 0 unless x < z).

Now a careful scrutiny of the terms in (23), using the inductive in-
formation about the previously defined polynomials, will show that Px,w
has degree at most \{l{w) — £(x) - 1). This is mostly routine to check,
except for the case sx < x, c = 1, when the middle term qPx,v could
have degree exactly 1 + \{£{v) - £(x) - 1) = \{£{w) - £(x)), which is
too large. But in this case we have x X v, and (since sx < x) there is a
term for z = x in the sum in (23) which is precisely equal to the highest
degree term of qPx,v (thanks to Px?x = 1). So this cancels the offending
term. Moreover, only in this situation does the sum involve Px,x, so all
terms in the sum have correctly bounded degrees. This completes the
proof of the theorem. D

Remark. We have reproduced here the original proof in Kazhdan-
Lusztig [1], because it yields very explicit information about the poly-
nomials Px,w and the way in which the elements Cw multiply. However,
Lusztig [4] sketches a more elegant existence proof (suggested by O. Gab-
ber) , as follows. The idea is to reverse the steps in the uniqueness proof
above, by showing inductively that (21) can be solved for Px,w- (Then
the bound on its degree will follow, and one can define an 4-invariant Cw

as in (19).)
The problem is to show that applying i to the right side of (21) just

changes the sign (since this must be true of the left hand side). So apply i
directly, then substitute for Py%w the formula of type (20) already known
inductively, and finally use the inversion formula for it-polynomials (part
(c) of Proposition 7.8).

Exercise. Use (23) to show that PXyW(0) = 1 for all x < w. If £(w) -
l(x) < 2, deduce that PXiW = 1.

7.12 Examples
In principle one can use (21) in 7.10 or (23) in 7.11 to compute Kazhdan-
Lusztig polynomials recursively (keeping in mind Lemma 7.4). But only
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in the simplest cases can one get definitive results in this way without
the help of a computer. Here are some indications of what has been
done.

(a) Suppose W is a dihedral group (finite or infinite), with S — {s, t}.
We claim that all Px<w = 1 (x < w). The idea is to use induction on £{w)
together with (23). This is feasible because of the very simple behavior
of the Bruhat ordering here: x < w if and only if £(x) < £(w). For
each w ^ 1, s, t there are precisely two elements of length £(w) — 1, one
each with a.reduced expression starting with s (resp. t). In the final
sum in (23), at most one of these two occurs, and by induction no other
term occurs: z <v only if £{v) — £{z) = 1. Then the formula typically
reads either Px>w = 1 or Px<w = l+q — q. (The reader should check the
details.)

(b) The first rank 3 group which yields polynomials different from 1 is
the group .£4. Let S = {si, S2, S3}, where si = (12), s% = (23), S3 = (34).
There are just two interesting cases, with x <w but £(w) — £{x) — 1 > 0:
s 2 -< S2S1S3S2 and S1S3 -< S1S3S2S3S1. In both cases PXiW = 1 + q.

(c) Alvis [1] has reported the computation of all the polynomials
for the non-crystallographic finite Coxeter group of type H4, and has
thereby verified in particular that their coefficients are always nonnega-
tive. He observes that there are 75 539 433 pairs x < w (but substantial
reductions can be made before the main computation is done).

(d) Dyer [2] has computed the polynomials for the 'universal' Coxeter
group W having all m(s, t) = 00 (for s ^ t). Again the coefficients are
seen to be nonnegative.

(e) Lascoux-Schutzenberger [1] have given an explicit combinatorial
description of some of the Kazhdan-Lusztig polynomials for symmetric
groups (in the 'grassmannian' case). (See Boe [1] for generalizations.)

(f) Goresky [1] has given the results of computer calculations for a
number of finite reflection groups of small rank: types A3, A4, A5, C3, C4,
D4,H3. His tables give complete information about the Betti numbers
and intersection homology dimensions for Schubert varieties in the flag
variety of a semisimple group having W as Weyl group (although the re-
sults for the non-crystallographic group of type H3 are just formal). His
computer program uses the version of the Kazhdan-Lusztig algorithm
developed by Gelfand-MacPherson [1]. He has also done calculations
for affine Weyl groups.

(g) An appendix to Boe-Collingwood [1] contains a Fortran program
developed by Boe for the computation of Kazhdan-Lusztig polynomials
together with other data of representation-theoretic interest. More re-
cently, F. du Cloux has created an interactive program Coxeter, allowing
the user to compute Kazhdan-Lusztig polynomials and related data for
Weyl groups of rank < 6.
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(h) As mentioned earlier, it is conjectured in Kazhdan-Lusztig [1]
that all coefficients of Px,w are nonnegative. This has been verified in
some of the most important special cases, where the coefficients can be
computed explicitly (as in Alvis [1] and Dyer [2]) or can be interpreted as
dimensions of cohomology groups (as in Kazhdan-Lusztig [2] for Weyl
groups and affine Weyl groups, Haddad [1] for Coxeter groups which
arise as 'Weyl groups' of Kac-Moody Lie algebras). Deodhar [11] has
proposed a closed formula for the polynomials (described combinatori-
ally), similar in spirit to his formula for i?-polynomials (7.5). This will
be correct if and only if the nonnegativity conjecture is true.

7.13 Inverse Kazhdan—Lusztig polynomials

Like the /^-polynomials, the Kazhdan-Lusztig polynomials form an up-
per triangular unipotent matrix (infinite if W is infinite) relative to a
total ordering of W compatible with the Bruhat ordering. Any such ma-
trix can in principle be inverted over the ring A. For the i?-polynomials,
the inverse matrix was described in part (c) of Proposition 7.8; its entries
are (up to sign) J?-polynomials. For the Px,w, nothing quite so simple
can be written down in general, unless W is finite:

Proposition IfW is finite, with longest element wo, then for all x < w
we have:

x<z<w

Proof. This is clear when x = w. Proceed by induction on £(w) — £(x),
assuming x < w. If Dx,w denotes the sum on the left side of (24), we just
have to show that Dx,w — 0. The strategy is to introduce i?-polynomials
into the picture, via (20) in 7.10, then use the inversion formula for them,
together with induction and the fact that Ry<z = RwoZ,w<,v for all y < z
(Proposition 7.6). First we write down two special cases of equation (20)
in 7.10:

Q

Using the fact that l{wow) — £(wo) — £(w), together with Proposition
7.6, the right side of the second equation can be simplified to:

1zQw / , Rv,wPwov,w0z-
z<v<w

x<u<z

/ j
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Now substitute both equations into Dx>w:

Dx,w
 = / A twez y j y j qw qxRx,uRv,w*u,zPwov,w0z-

x<z<w x<u<zz<v<w

Note that the product of P-polynomials here is the same one occurring
in DUtV, which we can substitute to obtain:

££<l Q R R D

By induction, £>„,„ = 0 for all u < v satisfying £(v) — £{u) < £(w) — £(x).
Inspection of the sum shows that only two kinds of terms survive (for
the extremes u = x, v = w and u = v):

x<u<w

Since x < w, part (c) of Proposition 7.8 shows that the last sum vanishes.
(As noted there, the result is the same if ew is written in place of ex.)
Thus:

Dx,w = q^QxDxyW, or

x iJx,w ~ Qw qx Ux,w

The degree bounds on the P-polynomials show that this A-invariant ex-
pression is a polynomial in q* without constant term, forcing it to be 0
as desired. Q

Exercise. Recall the pairing /z introduced in 7.11: if x < w, fJ,(x,w)
is the coefficient of gW«-)-<(*)-i)/2 m pxw_ If v^ is finite, prove that
fi(x, to) = fjb{wow, wox) for all x < w. [We may assume ex = —ew and
£wox = — £u>oM>- Rewrite the inversion formula:

*X,W = = / j

x<z<w

The key power of q does not occur on the right, so must occur with the
same coefficient in each term on the left.]

When we set q = 0, the formula has an interesting consequence for
the Bruhat ordering, to be explained in 8.5 below. Recall the exercise at
the end of 7.11, which asserts that Px,tt,(0) = 1 whenever x < w. (This
is easy to obtain by induction from formula (23) in that section.) Noting
that the inversion formula is unchanged if we replace ew by ex, we get
by substituting q = 0:
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Corollary For all x <w € W,

In particular, if x < w, Ylx<z<w£* = ®> *-c-> ^ e d°se^ interval [x,u>]
contains equally many elements of odd and of even length. •

Remark. Lusztig [2] has derived an explicit algorithm for inverting the
polynomials Px<w in the case of affine Weyl groups, cf. Andersen [1],
Kaneda [1], Kato [2]. The inverse polynomials are conjectured to have a
nice interpretation in the modular representation theory of semisimple
algebraic groups.

7.14 Multiplication formulas

In the program of Kazhdan-Lusztig [1], it is essential to see how the
elements Ts act on the new basis {Cw\w € W} of "H. The precise answer
involves the coefficients /x(x, w) and resulting relation x -< w introduced
in the first paragraph of 7.11, together with equation (22) in that section.

Proposition Let s € S,w £W.
(a) If sw < w, then TSCW = —Cw.
(b) Ifw < sw, then TSCW = qCw + q*Csw + q% £2/i(z,w)Cz, where

the sum is taken over all z -< w for which sz < z.

Proof. To prove (b), rewrite equation (22), with w in place of v (and sw
in place of w):

Csw = CSCW - ^2 A*(2i w)Cz,

where the sum is taken over 2 -< w for which sz < z. Substitute

and rewrite with TaCw on the left side to obtain (b).
Next consider (a), assuming sw < w, so £(w) > 1. If £(w) = 1, we

must have w = s and we can check directly:

TSCS = q-*T*-q*Ts

= -C..

Proceed by induction on £(w). Note that part (b) can be applied to the
situation s(sw) > sw:

TsCaw = qCaw + qiCw + q* ] P fi(z,sw)Cz, or
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Cw = q~^TaCaw - q i C a w

Since sz < z < w for each z involved in the sum, induction shows that
TSCZ = -Cz. Therefore

TaCw = q~ J [(q - l)Ts + qTi)Caw - q*TaCaw + ̂  /*(«, sw)Cz

Corollary Let x < w. If sw < w but sx > x for some s € S, then
P — P

Proof. By part (a) of the proposition, TaCw = —Cw. Compare the
coefficient of Tax on each side, using the formula for Cw in Theorem 7.9.
Thanks to Lemma 7.4, sx < w, so Tax does occur on the right side. On
the left side, Tax arises from the two terms in Cw involving Tx and Tax.
A quick calculation yields the corollary. Q

There are of course 'right-handed' versions of the proposition and
corollary, which the reader can easily work out.

Exercise. Let W be finite, with longest element wo. Prove that Px,Wo
 = 1

for all x € W. [Use the corollary repeatedly.]

7.15 Cells and representations of Hecke al-
gebras

A central goal of Kazhdan-Lusztig [1] is to understand the representa-
tions of Hecke algebras. The formulas in Proposition 7.14 show how H
acts on itself in the (left) regular representation, relative to the C-basis.
But H is still a very large module, so one looks for smaller submodules
(or subquotients). The advantage of the C-basis is that it leads to a
systematic construction of representations associated with sets ('cells')
which partition W. The description of cells is quite subtle, and combi-
natorially difficult to make explicit, but the applications in Lie theory
have amply motivated this approach (see the references below).

Recall that we write x -< w if x < w and the degree of PX)10 is as
large as possible: (£(w) — £(x) — l)/2. Write x—w if either x -< w or
w -< x. Next define subsets of S for each w € W by

L(w) := {s G S\sw < w}, R(w) := {s e S\ws < w}.

For example, L(l) = 0 = R(l) and (if W is finite, with longest element
wo) L(wo) = S = R(wo). Note that we get crude partitions of W by
calling elements w,w' equivalent if L(w) = L(w') (resp. R(w) — R(w')).
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168 Hecke algebras and Kazhdan-Lusztig polynomials

Now define i < t i o t o mean that there is a chain x = XQ, a?i,..., xr =
w such that Xi—xi+1 and L(xi) is not included in L(XJ + I ) for 0 < i < r.
(There is a similar definition using R in place of L.) This transitive
'preorder' yields an equivalence relation on W: x ~x, w if and only if
both x <L w and w <L X hold (or x = w). The resulting equivalence
classes are called the left cells of W. There is an analogous definition
of right cells.

We can also define x <LR w to mean that there exists a chain
x = xo,xi,...,xr = w such that for each i < r, either x» <L X*+I

or Xi <R Xi+i. This likewise yields an equivalence relation x ~L.R w,
whose equivalence classes are called the two-sided cells of W. It fol-
lows at once from the definitions that each two-sided cell is a union of
left cells (resp. right cells).

Exercise. The identity element of W lies in a two-sided cell by itself. If
W is finite, the same is true of wo-

Example. Let W = Vm, m < oo. Say 5 = {s,t}. We saw in 7.12 that
P*,w = 1 whenever x < w (i.e., whenever £(x) < t(w)). This implies at
once that xXutif and only if £(w) — ^(x) = 1. So x—w if and only if the
length difference is 1. Now each element (other than w0 if m < oo) has a
unique reduced expression. Clearly L(w) = {s} if this expression begins
with s; otherwise L(w) = {t}. Excluding 1 (and wo if W is finite), the
condition L(x) (jl L(w) therefore amounts to the requirement that x and
w begin differently. Now we can construct chains such as

s — t s — s t s — t s t s •••,

showing that x <LW whenever x,w have reduced expressions ending in
s. The reverse chain also meets the condition for w <L X, SO X ~J , W.
On the other hand, it is clear that we cannot construct such chains
joining elements which end differently. So there are exactly three left
cells if m = oo, four left cells if m < oo. Similarly, we get right cells by
considering elements which begin with s (resp. t). It is now clear that
all elements of W except 1 and wo lie in a single two-sided cell.

Shi [1], 1.7, discusses in detail a number of other examples, including
the much more complicated (and more interesting) case of symmetric
groups. Here the cells turn out to involve the Robinson-Schensted cor-
respondence, which sets up a one-to-one correspondence between group
elements and pairs of 'standard Young tableaux' of the same shape.

The following proposition shows that in general the decomposition of
W into left cells is a refinement of the decomposition mentioned earlier
into sets of elements having a common U-set.

Proposition If x <L y, then R(x) D R(y)- Thus, if x ~£ y, we have
R(x) = R(y).
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Proof. It is enough to consider the case x—y, with L(x) <f_ L(y).
(a) Suppose y -< x. Say s € L(x) \ L(y), so sx < x but sy > y. By

Corollary 7.14 (applied to the pair y,x in place of x,w), PVyX = Pay,x-
We claim this forces a; = sy. Otherwise, we would have

deg Py,x = deg Psy,x < i(*(z) - /(ay) - 1) < |(/(x) - /(y) - 1),

contrary to the assumption y -< x. Now a; = sy and y < x together
imply R{x) D R(y).

(b) Suppose x -< y. We reach a contradiction by supposing that there
exists some s € R{y) \ R(x). A 'right-handed' version of the argument
in (a) shows that y = xs, which (in view of x < y) forces L(y) D L(x),
contrary to assumption. •

With the language of cells in mind, we can reconsider what the for-
mulas in Proposition 7.14 tell us about the left regular representation
of W. In case (b) of the proposition, we have w < sw, so that w -< sw
with L(sw) <£. L(w), implying sw <L W. On the other hand, any ele-
ment z -< w in the sum satisfies sz < z for the given s, so L(z) (jL L(w)
(because sw > w). Thus z <L W. In either case of the proposition, it
follows that left multiplication by Ta takes Cw into the A-span of itself
and various Cx for which x <L w.

Now fix a left cell Z C W, and define %z to be the A-span of all
Cw (w € Z) together with all Cx for which x <t w (w € Z). The
preceding discussion shows that %z is a left ideal in H. Let Tz be the
span of those Cx for which x <L w for some w € Z but x g Z. Since <L
is transitive, the definition of left cell implies that I'z is also a left ideal
in H, so the quotient Mz '•= Zz/Z'z affords a representation of H. It
is not too hard to see that it has a free A-basis in natural one-to-one
correspondence with the elements Cw, w £ Z.

Similarly, one can use right cells and two-sided cells to define right
W-modules and W-bimodules. In Kazhdan-Lusztig [1], the notion of
'W-graph' is introduced to make it easier to visualize what is going on,
and numerous examples are given. The study of all these cell represen-
tations (especially in the case of Weyl groups) has been an important
and challenging problem.

By now there is a lot of literature on cells and their connections
with Lie theory. We conclude with a quick survey. For Weyl groups,
see Lusztig [5], Chapter 5, as well as his papers [4] [8]. Much of this
is motivated by the representation theory of finite groups of Lie type
(see Carter [4]). Representations and W-graphs associated with cells are
also discussed by Curtis [3], Garsia-McLarnan [1], Gyoja [1][2], Heck [1],
Kerov [1]. The group of type H4 is treated by Alvis [1], Alvis-Lusztig

[1]-
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170 Hecke algebras and Kazhdan-Lusztig polynomials

The cells of affine Weyl groups have been described in special cases
by Bedard [1][2], Du [1][2], Lawton [1], Lusztig [6], Lusztig-Xi [1], Shi
[l]-[3]. In numerous papers, Lusztig has gone deeply into the general
features of cells for affine Weyl groups, with applications to the repre-
sentations of p-adic groups. He proves for example that there are only
finitely many one-sided (hence two-sided) cells, and sets up a one-to-
one correspondence between two-sided cells and unipotent classes in an
associated simple algebraic group.

Some hyperbolic Coxeter groups of rank 3 have also been studied by
Bedard [1][3]: here there may be infinitely many left cells.

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511623646.008
https:/www.cambridge.org/core


Chapter 8

Complements

In this final chapter, we survey (without proofs) some related topics
which may stimulate the reader to do further reading in the extensive
literature of Coxeter groups. These deal with such matters as the inter-
nal structure of the groups, their representations, and the Bruhat order-
ing. The selection of topics and the order of presentation are somewhat
random, with no claims of balance or completeness intended. Unless
otherwise stated, (W, S) denotes an arbitrary Coxeter system.

8.1 The Word Problem

As noted at the end of 5.13, the concrete action of W on a fundamen-
tal domain in the dual of the vector space V affording its geometric
representation could in principle be used to test which words in the
generating set S are equal to 1. But this is extremely cumbersome in
practice. Even if programmed for a computer, serious round-off prob-
lems can be anticipated, since it is essential to decide whether certain
calculated coefficients are strictly positive.

A more attractive method was devised by Tits [5]. It allows one
to transform an arbitrary product of generators from S into a reduced
expression by making only the most obvious types of modifications com-
ing from the denning relations. Here is a brief description, in our own
notation. (For a nice reformulation of Tits' arguments, see pages 49-52
of Brown [1].)

Let F be a free group on a set £ in bijection with S (with a corre-
sponding to s), and let TT : F —• W be the resulting epimorphism. Since
each s2 = 1, the monoid F+ generated by E already maps onto W. If
w € F+ is a product of various elements a, we can define £(w) to be the
number of factors involved. If m = m(s,t) for s,t € S, the product of
m factors ara • • • maps to the same element of W as the product of m
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factors (in reverse order) TOT • • •. Replacement of one of them by the
other inside a given ui € F+ is called an 'elementary simplification' of the
first kind; it leaves the length undisturbed. A second kind of elementary
simplification reduces length, by omitting a consecutive pair era. Write
E(w) for the set of all elements of F+ obtainable from w by a sequence of
elementary simplifications. Since no new elements of S are introduced
and length does not increase at each step, it is clear that S(u>) is finite.
It is also effectively computable (though it may take some trouble to
devise an efficient algorithm). Clearly the image of S(w) under TT is a
single element of W.

Theorem Let w,u/ e F+. Then TT(U>) = f(w') */ and only ifE(w)
meets E(u/). In particular, n(ui) — 1 if and only if the empty word lies
in S(w).

One direction is obvious. To go the other way, Tits assumes the con-
trary and analyzes a minimal counterexample (in terms of lexicographic
ordering of pairs (u,ui')): both elements must have the same length and
E(u>) consists of elements of equal length, etc., leading eventually to a
contradiction.

Much less seems to be known about the Conjugacy Problem for Cox-
eter groups: given w, w' € W, decide whether or not they are conjugate.
Appel-Schupp [1] have shown how to solve the problem for 'extra-large'
Coxeter groups (those for which all m(s, s') > 4 when s ^ s').

8.2 Reflection subgroups

In 5.7 we defined 'reflections' in W to be the conjugates of elements of
5; denote by T the set of all reflections. Define a reflection subgroup
of W to be any subgroup W generated by a subset of T. Independently,
Deodhar [10] and Dyer [3] have proved that reflection subgroups of W
are also Coxeter groups. (When W "s finite, this is clear already from
Chapter 1.) To formulate this precisely, one first has to pick out a
suitable set of distinguished generators. Dyer proceeds as follows.

For any w € W, set N(w) := {t 6 T\£(tw) < t(w)}. This set is
especially interesting when w itself lies in T. If a reflection t' € W is to
behave like a 'simple' reflection, it should not be possible to reduce its
length by multiplying by another reflection t in W. Accordingly, define
S' to be the set of all t' € T for which N(f) D W consists of t' alone.
In particular, S' CW'.

Theorem Let T be the set of reflections in W, and let W be a subgroup
generated by some subset ofT. Then, with S' defined as above, (W, S')
is a Coxeter system.
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Dyer's idea is to view the function N (from W to subsets of T) as
a 'cocycle', which behaves well on restriction to W. His arguments
in fact apply to a larger class of 'reflection systems', with generators
not necessarily of order 2, which are characterized by the existence of
such a cocycle. In terms of the geometric representation of W, he can
also characterize the possible sets of canonical generators of reflection
subgroups in terms of the angles between corresponding roots.

Deodhar's proof that W is a Coxeter group relies instead on his
earlier characterization of Coxeter groups in terms of properties of their
root systems (Deodhar [4] [7]). His idea is to locate a 'simple system'
in the set of roots naturally associated to W, then define 5' to be the
corresponding set of reflections. Because his requirements on a root
system are all met by these data, (W, S") must be a Coxeter system.
(He also remarks that, according to Tits, another proof of the theorem
can be based on Proposition 3 in Tits [9].)

8.3 Involutions
There does not appear to be any uniform way to describe or parametrize
the conjugacy classes of an arbitrary Coxeter group. Even for Weyl
groups, where the classes have been determined explicitly, a unified ap-
proach turns out to be quite difficult (see Carter [3]). But in the case
of involutions (elements of order 2), a satisfying general method is given
by Richardson [1].

We want to locate a small set of involutions to which all others must
be conjugate. As in other investigations of the group-theoretic properties
of W, the geometric representation (5.3) plays a major role here. Recall
from 5.5 that, for a subset I C S, the geometric representation of the
parabolic subgroup Wi can be realized as the action of Wi on the sub-
space Vi of V spanned by the roots aa, s € I. It may or may not be true
that the operator —16 GL(Vj) lies in Wj: this would require that W> be
finite (thanks to part (b) of Proposition 5.6), and then that —1 be equal
to the unique longest element (as determined for each type by Corollary
3.19). This always happens, of course, when \I\ = 1. If —1 e Wi, call it
wi and say that / satisfies the '(—l)-condition'. Denote by J the col-
lection of all subsets of 5 satisfying the (—l)-condition. Finally, define
I, J € J to be W-equivalent' if some w € W maps {aa\s € /} onto
{a,\s € J}.

Theorem (a) Each involution inWis conjugate to some wi, I € J.
(b) For I,J € J, wj is conjugate to wj if and only if I and J are

W-equivalent.

While this gives a reasonably explicit description of the conjugacy
classes of involutions, it takes some work to make it effective. Using
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techniques of Deodhar [4] and Howlett [1], Richardson formulates an
algorithm for testing W-equivalence of subsets / , J (in terms of 'elemen-
tary' equivalences) and illustrates it for the affine Weyl group E7.

Besides parametrizing the conjugacy classes of involutions in an ef-
ficient way, one can study involutions by writing each as a product of
commuting reflections. Deodhar [4] actually obtains a canonical decom-
position of this sort: for each involution w there exists a unique 'totally
orthogonal' set of roots such that w is the product of the corresponding
(commuting) reflections. (See also Springer [5].)

8.4 Coxeter elements and their eigenvalues

Recall from 3.16-3.20 the discussion of Coxeter elements for a finite
Coxeter group. Such elements form a single conjugacy class, and their
eigenvalues turn out to determine in a very simple way the degrees of
basic polynomial invariants for the group. Here we consider what can
be said about an arbitrary (irreducible) Coxeter group.

Fix an enumeration 5 = {s\,..., sn}, and define w := s\ • • • sn to be
a Coxeter element of W. The proof of Proposition 3.16 shows that
all such elements form a single conjugacy class if the Coxeter graph T is
a tree. But this may fail when F contains circuits. Even so, the study
of Coxeter elements yields some interesting dividends.

When W is finite, one could study the eigenvalues of a Coxeter el-
ement by looking directly at the corresponding matrix and its charac-
teristic polynomial, as was done in Coxeter [4] (see Bourbaki [1], pp.
140-141). We actually used less direct methods, but the matrix ap-
proach has its advantages when W is no longer finite.

Howlett [2] gives the following description. Start with the geometric
representation a : W —» GL(V) as in (5.3) and let A denote the matrix
(for a chosen ordering of the roots as) of the associated bilinear form B,
whose values on the basis of V are given by

Write 2 A = U + £/*, where U is an upper triangular unipotent ma-
trix and {/* is its transpose. Then the matrix representing the Coxeter
element w defined by the chosen ordering is shown by Howlett to be
simply -U~lU^. Moreover, U is an 'M-matrix' (having nonpositive off-
diagonal entries, but positive principal minors), so the general theory of
such matrices can be used to study the eigenvalues of <j(tu).

For example, when W is the affine Weyl group of type Ai (an infinite
dihedral group), with 5 = {so,si}, w = so«i is conjugate to s\So (by
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so), and the matrix representing w is

Hewlett is able to prove:

Theorem W is infinite if and only if the Coxeter element w is of
infinite order, if and only if cr(w) has a real eigenvalue > 1. Moreover,
W is of affine type (with B positive semidefinite) if and only if 1 is an
eigenvalue of o(w) and all other eigenvalues have absolute value 1.

Earlier A'Campo [1] had shown, assuming F has no circuits, that W is
infinite precisely when w has infinite order. His analysis of the spectrum
of a Coxeter element (motivated by an application to singularity theory)
began by showing, if T has no circuits, that the eigenvalues of o(w) are
of absolute value 1 or else lie in R + . But this may fail when T contains
a circuit, according to an example of Berman-Lee-Moody [1].

Coxeter elements for affine Coxeter groups, or more generally for the
Weyl groups of Kac-Moody Lie algebras, have been studied recently
by a number of people, including Berman-Lee-Moody [1], Coleman [2],
Steinberg [6].

8.5 Mobius function of the Bruhat ordering

Next we survey some topics involving the Bruhat ordering of W (5.9).
The basic references for this section are Verma [1][2], Deodhar [1], and
Kazhdan-Lusztig [1].

We begin by recalling some general notions about a partially ordered
set (X, <) satisfying the condition: for each y € X, the set {x € X\x <
y} is finite. Define / := {(x, y) € X x X\x < y}. Then there is a unique
function fi : I —> Z (called the Mobius function of X) such that, for
any (x, y) 6 / ,

(j.(x, z) = 8x,y (Kronecker delta).
x<z<y

The summation could equally well be taken over all fj,(z, y).
With the aid of fi one gets a Mobius inversion formula of the following

type. Given any function / from X into an abelian group (written
additively), set g(x) :- J2y<xf(y)- T h e n

x<y

This generalizes the familiar formula for the set of positive integers,
partially ordered by the divisibility relation.
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The Bruhat ordering of W satisfies the finiteness condition above,
insuring the existence of a Mobius function fi. (Warning: This function
fi should not be confused with the unrelated function denned in 7.11!)
Prom the work of Kazhdan-Lusztig [1] we derived in Corollary 7.13 the
following formula for x < w when W is finite:

x<z<w

where ex = (—l)^x\ The uniqueness of the Mobius function then im-
plies a simple formula for fi, which turns out to be true for all Coxeter
groups:

Theorem Ifx<w inW, then n(x, w) = (-l)<(*)+<('°>.

As noted in 7.13, if x < w, the formula implies that the number
of elements of even length in the interval [x, w] equals the number of
elements of odd length. In particular, if £(w) — t{x) = 2, then there are
precisely two elements z satisfying x < z < w.

The history of these results is a bit complicated. Apparently the
result just mentioned on intervals of length 2 was first proved (for Weyl
groups) by Bernstein-Gelfand-Gelfand [2] as part of their construction
of the 'BGG resolution'; their argument can be generalized to cover
all Coxeter groups. They noted that the result would also follow from
Verma's then unpublished work giving the description of the Mobius
function (as in the theorem), which later appeared as Verma [1]. The
latter paper has a gap (in the fifth line of Case 2 in the lemma), which
Verma pointed out in an 'Erratum' and then filled in an unpublished
paper (Verma [2]). Subsequently Deodhar [1] proved a more compre-
hensive result on Mobius functions (formulated below). Then the paper
of Kazhdan-Lusztig [1] provided an indirect determination of the Mobius
function for finite W, as in our Corollary 7.13.

Deodhar [1] obtains a more general result, by considering the set
W1 of minimal coset representatives for the parabolic subgroup Wi in
W (5.12), with the partial ordering induced by the Bruhat ordering.
His result on the Mobius function fj.1 of this set may be formulated as
follows: if x < w in W1, then n*(x, w) = (-l^M+'O*) if the full interval
[x,w] in W lies in W1, but otherwise nT(x, w) — 0. When / is empty,
we recover the above theorem.

8.6 Intervals and Bruhat graphs

As noted in 8.5, intervals of length 2 in the Bruhat ordering contain ex-
actly two intermediate elements. Longer Bruhat intervals are potentially
much more complicated, when viewed as partially ordered sets (posets)
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in their own right. But in answer to a question of Bjorner [2], it is shown
by Dyer [4] that

Theorem For finite Coxeter groups, only finitely many isomorphism
types ofposets of a fixed length can occur as Bruhat intervals.

To prove this and related results, Dyer introduces a 'Bruhat graph' to
capture more refined information about the Bruhat ordering. Its vertices
are the elements of W, with an edge directed from tw to w if t is a
reflection (as in 8.2) and £(tw) < £(w). Normally one would picture the
Bruhat ordering by joining such vertices only when the length difference
is exactly 1. But this more detailed graph behaves better with respect
to inclusions of reflection subgroups.

For a closed Bruhat interval Z, Dyer shows that the isomorphism
type of the poset Z completely determines the isomorphism type of the
full subgraph of the Bruhat graph with vertex set Z. This provides some
support for his conjecture (originating in a question of Kazhdan-Lusztig)
that the polynomials Rx,w of 7.4 and hence the Kazhdan-Lusztig poly-
nomials PX)1U (7.9) should depend only on the isomorphism type of the
Bruhat interval [x,w\.

8.7 SheUability
If x < w, Proposition 5.11 implies that all maximal chains from x to w
have the same length l(w) — ^(a:). Maximal chains behave even more
nicely, from a combinatorial viewpoint, as formulated by Bjorner-Wachs
[1]:

Theorem Any closed interval [x, w] in the Bruhat ordering ofWis
lexicographically shellable.

Thek approach works more generally for intervals in W1 (or in 'de-
scent classes'; see Bjorner [2]). Rather than explain the precise mean-
ing of 'lexicographic SheUability' for a poset, we shall formulate the es-
sential idea for an interval [x, w] in W. Fix a reduced decomposition
w = s\ • • • sr, and suppose £(w) — £(x) = q. Consider a maximal chain

x = WQ < tvi <...< wq = w.

From the Strong Exchange Condition one sees that the Wi may be ob-
tained from w by systematic removal of one (uniquely determined) Si at
a time. So one can associate a 'label' to the maximal chain, consisting
of the sequence of subscripts i (taken in the order of removal of the cor-
responding Si). It can be shown that there is a unique maximal chain
whose label is an increasing sequence, and moreover this label comes
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earlier in the lexicographic ordering of sequences than any other label of
a maximal chain. This is (roughly) the content of the theorem.

As a consequence of the theorem, one recovers the formula for the
Mobius function of the Bruhat ordering described above in 8.5. There is
also an attractive topological formulation of shellability (Bjorner [2] [3]),
when one passes from a poset to its order complex: the simplicial com-
plex whose simplices are the chains in the poset. As a corollary of
shellability, one finds (for example) that the associated Stanley-Reisner
ring is Cohen-Macaulay.

For another proof of the Bjorner-Wachs theorem, see Deodhar [5],
§6-

8.8 Automorphisms of the Bruhat ordering

Viewing W just as a partially ordered set (relative to the Bruhat or-
dering), we can ask for a description of its automorphisms: bijections
9 : W —> W for which x < w if and only if 9(x) < 9(w). Since 1 is the
unique minimal element, 9(1) = 1.

One obvious example is the inversion map 9(w) = w~1. Another
type of automorphism arises whenever the Coxeter graph admits an
automorphism (a bijection of vertices preserving labels on edges): such
a graph automorphism respects the defining relations of W and hence
induces a unique group automorphism, which in turn clearly preserves
the Bruhat ordering as characterized in 5.10. Note that if the graph has
more than one connected component of the same type, a permutation
of these components is an example of a graph automorphism.

Thanks to Proposition 5.11, i(w) may be characterized as the length
of a maximal chain from 1 to w in the Bruhat ordering, so any au-
tomorphism 9 preserves lengths. In particular, 9(S) = 5. In turn, it
follows from 5.10 that, for any pair s ^ t in S, w € W{sty if and only if
9(w) € W{g(s)tg(t)}. Comparing orders, we see that the restriction of 6
to S induces a graph automorphism.

When |5 | = 2, W = T>m (where m < oo) and the Bruhat ordering is
uncomplicated: x < w if and only if £(x) < £(w), and there are precisely
two elements of each nonzero length < m. Thus the automorphisms of
the ordering correspond to all possible interchanges of elements of equal
length, and the automorphism group is isomorphic to (Z/2Z)m~1. It
turns out that this case is misleading, however. In higher ranks the
possibilities are much more limited:

Theorem Let \S\ > 3, and assume (W, S) is irreducible. Then every
automorphism of the Bruhat ordering is a graph automorphism or else
the composite of inversion with a graph automorphism.
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This was proved by van den Hombergh [1] (and recently rediscovered
by Waterhouse [1]). In case W has more than one irreducible component,
the statement of the theorem becomes slightly more complicated, since
6 might act as inversion on only some of the components (and W may
have dihedral factors as well).

8.9 Poincare series of affine Weyl groups
Recall from 3.15 the factorization of the Poincare polynomial W(t) =
Ylw te^ for a finite Coxeter group:

•A- td< - 1

where d\,..., dn are the degrees of basic polynomial invariants of W.
We followed Steinberg's version of Solomon's proof (using the Coxeter
complex), but the earlier proof for Weyl groups by Chevalley [3] was
based instead on the topology of a compact Lie group G having W as
Weyl group (Chevalley [1]): G has the same cohomology as a product
of spheres of dimensions 2d; — 1, and therefore its Poincare polynomial
factors as

From this one can derive (by a spectral sequence argument) the Poincare
series of the 'loop space' flG:

Using some Morse theory, Bott [1] worked out a cell decomposition of
HG indexed by the coroot lattice L($v) of W, thereby showing that
the Poincare series of L(#v) (viewed as a subgroup of the affine Weyl
group Wa) has the same form as that of QG, but with t replaced by
its square root to take into account the difference between real and
complex dimensions. (See 5.12 for the general notion of Poincare series
of a Coxeter subgroup or subset thereof.)

These results can be fitted together, using the fact that W is a
parabolic subgroup Wi of Wa (where / corresponds to the Coxeter graph
of W contained in the Coxeter graph of Wa). The distinguished coset
representatives W1 are then in bijection with the coroot lattice, and
we can obtain the Poincare series Wa(t) by multiplying the two series
together as in 5.12. The end result is Bott's theorem:

Theorem
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where the rrii — d, — 1 are the exponents ofW (3.19).

See Bott [2] and Hiller [3], V.6, for further details of Bott's method,
as well as later interpretations involving generalized Bruhat cells. (See
also Iwahori-Matsumoto [1], 1.10.) Steinberg [5], §3, gives a more self-
contained combinatorial proof of the theorem (in a more general 'twisted'
version), and Macdonald [2], §3, works out another expression for the
Poincare series in terms of heights of roots (cf. 3.20).

8.10 Representations of finite Coxeter
groups

Since the early work of Frobenius and Schur on representations of finite
groups, symmetric and dihedral groups have served as natural examples.
It is not difficult to work out explicitly the irreducible representations
(over C) of a dihedral group (see p. 339 of Curtis-Reiner [1]); their
degrees are all 1 or 2. The natural two-dimensional 'reflection represen-
tation' of course figures in the list. Representations of symmetric groups
are more complicated to construct, but these too have been rather com-
pletely worked out, in a combinatorial spirit: partitions of n parametrize
both the classes and the irreducible representations of <Sn (Curtis-Reiner
[1], §28).

One remarkable feature of the representation theory of symmetric
groups is the fact that all of their irreducible representations can be
realized over Q, i.e., the representing matrices can be chosen to have
rational entries. It follows that the character values (traces) lie in Z,
since they are in any case algebraic integers (sums of roots of unity). This
is not true for most dihedral groups. To see this, recall the discussion of
crystallographic groups in 2.8. The proof of Proposition 2.8 shows that
if all traces lie in Z, then the possible values of m(s, s') are limited to 1,
2, 3, 4, 6. Similarly, the characters of the group of type H3 are readily
found (from those of the alternating group of order 60), and are not all
Z-valued.

What can be said about representations of an arbitrary finite reflec-
tion group W (over C or its subfields)? The groups of types Bn and
Dn are close relatives of symmetric groups and have been studied in the
same explicit manner. Actual representations of the exceptional groups
are much harder to come by, but the individual character tables have all
been computed: see Frame [1] for the groups of type E6,E7,Eg, Kondo
[1] for F4, Grove [1] for H4. It turns out that all characters of Weyl
groups are Z-valued, whereas this fails for non-crystallographic groups
such as H4. Even more is true, but requires nontrivial arguments for the
exceptional types (Benard [1]):
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Theorem All irreducible representations of Weyl groups can be realized
over Q.

The distinction between having traces in a given field and having
all matrix entries in that field is a subtle one, measured by the 'Schur
index'. (See Kletzing [1], Chapter 5 and Appendix, for a discussion of
exceptional Weyl groups, including character tables. For type H4, see
Benson-Grove [2].)

The theorem was originally proved in case-by-case fashion, with no
unifying idea involved. A more sophisticated method of constructing
Weyl group representations (by making W act on rational cohomol-
ogy groups of certain algebraic varieties arising from an algebraic group
having W as Weyl group) yields a more uniform proof (Springer [4],
Corollary 1.15), though there is still some mild case-by-case analysis of
the algebraic groups. The paper of Kazhdan-Lusztig [1] on represen-
tations of Hecke algebras and Coxeter groups was partly motivated by
Springer's work, and achieved an even broader perspective. When W is
a symmetric group, their work on cells (sketched in 7.15 above) yields a
canonical basis over Q for each irreducible representation of W (see also
Garsia-McLarnan [1]). But in general the actual representations they
construct are not irreducible, a feature also of Springer's cohomology
construction. See Carter [4], Chapters 11, 12 (and especially 12.4-12.6)
for an account of the way these ideas interact with the study of charac-
ters of finite groups of Lie type.

8.11 Schur multipliers

To any group G is associated its Schur multiplier, which arose origi-
nally in connection with the lifting of projective representations to cov-
ering groups (Curtis-Reiner [1], §53). This is defined traditionally as the
set of equivalence classes of factor sets G x G —* C*, made into a group
via pointwise multiplication of factor sets. In more modern notation, it
becomes the cohomology group H2(G, C*). Some people instead define
the Schur multiplier to be the homology group i?2(G, Z), which can be
computed from a presentation G = F/N (F free) as ((F, F)(lN)/(F, N).
In general,

H2(G, C*) si Hom(#2(G, Z), C*).

We adopt the cohomology version here.
Following earlier work of Ihara-Yokonuma [1] and Yokonuma [1] on

finite and affine Coxeter groups (see Karpilovsky [1], 7.2-7.3), Howlett
[3] determines the Schur multiplier of an arbitrary Coxeter group. His
description involves the computation of some invariants attached to the
Coxeter graph F of W, as follows. Let ni be the rank (the number of
vertices of F). Let Ti2 be the number of edges of F having finite labels
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3 < m < oo. Let n.3 be the number of equivalence classes in the set of
pairs of non-adjacent vertices of F, for the equivalence relation generated
by:

{s, s'} « {s, s"} if m(s', a") is odd.

Finally, let n4 be the number of connected components of the graph
obtained from F by deleting all edges whose labels are even or 00.

Theorem The Schur multiplier ofW is an elementary abelian 2-group
of rank 712 + n^ + 714 — n\.

While the statement of the theorem is straightforward, the proof is
quite intricate; Howlett works in a very explicit way with the presenta-
tion of W .

See Maxwell [3] for the Schur multiplier of the subgroup W+ when
W is finite.

8.12 Coxeter groups and Lie theory

A major impetus for the study of Coxeter groups has been their con-
nections with semisimple Lie theory. Indeed, this is the raison d'etre of
Bourbaki [1]. In this brief concluding section, we have to be content with
pointing the reader toward a small sample of the relevant literature.

Weyl groups of simple Lie groups and Lie algebras play a pervasive
role in both structure theory and representation theory, beginning with
the work of W. Killing and E. Cartan (and, somewhat later, Weyl).
Consult Witt [1], Humphreys [1], and the other chapters of Bourbaki's
treatise, or any of the vast number of books on Lie groups and their
applications. For the topology of Lie groups, see Chevalley [1]. Recent
work on representations (often infinite-dimensional) gives an even more
prominent role to the Weyl group and associated Hecke algebra: see for
example Bernstein-Gelfand-Gelfand [2], Deodhar [3] [5] [8] [11], Gelfand-
MacPherson [1], Jantzen [1][2], Kazhdan-Lusztig [1][2], Springer [6], Vo-
gan [1].

Affine Weyl groups also play a major role in the study of compact
Lie groups, by E. Cartan, A. Borel and J. de Siebenthal, and others; see
Stiefel [1], Bott [2], Brocker-tom Dieck [1].

The study of p-adic Lie groups is more recent. Here the affine Weyl
group plays a new structural role, starting with Iwahori-Matsumoto [1]
(see the exposition in Brown [1]) and culminating in the general theory
of Bruhat-Tits. See also Lusztig [3], Macdonald [1], for some of the
associated representation theory.

Semisimple algebraic groups over fields of prime characteristic share
much of the structure of semisimple Lie groups, again depending heavily
on the Weyl group; see Humphreys [2]. In recent years affine Weyl
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groups and Hecke algebras have also become prominent in the study of
representations of semisimple groups in prime characteristic, though the
reason for this is only imperfectly understood: see Jantzen [3], Lusztig
[1][2], Verma [3]. All of this in turn has strong implications for the
study of finite groups of Lie type, including their ordinary and modular
representations: see Carter [1][2][4], Chevalley [3], Curtis [l]-[3], Curtis-
Reiner [3], Iwahori [1], Solomon [3], Steinberg [4].

Kac-Moody Lie algebras (and associated groups) generalize the en-
tire theory of semisimple Lie algebras (and Lie groups), and involve
'Weyl groups' which may be arbitrary crystallographic Coxeter groups:
see for example Kac [1], Macdonald [3] [5]. This part of Lie theory has
grown rapidly in recent years, because of its many connections with
theoretical physics, combinatorics, modular functions, etc.

Through much of this work runs a geometric thread: Schubert vari-
eties. Classically, these occur as closures of Bruhat cells, which figure in
the Bruhat decomposition of a semisimple group and are parametrized
by the Weyl group. Inclusions of Bruhat cells in the closures of others
are governed precisely by the Bruhat ordering of the Weyl group. This
theme recurs in p-adic groups and Kac-Moody groups. The work of
Kazhdan-Lusztig [1][2] makes a profound connection between the geom-
etry of Schubert varieties and the representation theory of semisimple
Lie algebras. Similar connections are found (or predicted) elsewhere in
Lie theory.

' . . . si les choses se repetent, c'est avec de grandes variations'
Proust, La Prisonniere
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inverse root system 39
irreducible Coxeter system 30,

129
irreducible 30
isotropy group 22

Jacobian criterion 63

Kazhdan-Lusztig polynomials
159

left cell 168
length 12, 91, 107
lexicographically shellable 177
longest element 15

Mobius function 175
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minimal coset representatives 20 universal Coxeter group 106
upper closure 90

negative root 111
negative system 8 wall 23, 90

weak ordering 119
parabolic subgroup 19, 111 weight lattice 40, 88
Poincare polynomial 20 Weyl group 39
Poincare series 123 Word Problem 127
positive definite 31
positive root 111
positive semidefinite 31
positive system 8
positive type 31
positive 8
principal minor 31
pseudo-reflection 66

rank 9, 105
reduced expression 12, 91, 108
reflection group 3
reflection subgroup 172
reflection 3, 109
right cell 168
root lattice 40, 88
root system 6, 111
root 6

Schur multiplier 181
separates 91
shellable 177
simple reflections 10
simple root 8
simple system 8
Strong Exchange Condition 117
subexpression 120
subgraph 35
symmetric group 5

Tits cone 126
total ordering 7
two-sided cell 168

unitary reflection group 66
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