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INTRODUCTION

“Graded Lie algebras have recently become a topic of interest in physics
in the context of ‘supersymmetries’ relating particles of different statistics”
(see the survey [22], from which this quotation is taken and which contains
an extensive bibliography).

In this paper, we attempt to construct a theory of Lie superalgebras or,
as the physicists call them, Z,-graded Lie algebras. We prefer the term “‘super-
algebra,” which is also inspired by physicists, because speaking generally,
Lie superalgebras are not Lie algebras.

A superalgebra is a Z,-graded algebra 4 = Ay @ A; (that is, if ac 4,,
be Ay, o,BeZ, = {0, T}, then ab € A,,;). A Lie superalgebra is a superalgebra
G = Gy @ Gj with an operation [ , | satisfying the following axioms:
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LIE SUPERALGEBRAS 9

[a, 8] = —(—1)*8[b, a] for aeG,, beG;,
[a, [b, c]] = [[a, 8], ] + (—1)*%[b, [a, c]] for aeG,, beG;.

We mention that the Whitehead operation in homotopy groups satisfies
these axioms; Lie superalgebras also occur in several cohomology theories,
for example, in deformation theory (see [22, 24]).

Lie superalgebras appear in [4] as Lie algebras of certain generalized groups,
nowadays called Lie supergroups, whose function algebras are algebras with
commuting and anticommuting variables, Recently, a satisfactory theory,
similar to Lie’s theory, has been developed on the connection between Lie
supergroups and Lie superalgebras [5].

We now give a brief account of the main features of the theory of finite-
dimensional Lie superalgebras. Let G be a finite-dimensional Lie superalgebra.
Then G contains a unique maximal solvable ideal R (the solvable radical).
The Lie superalgebra G/R is semisimple (that is, has no solvable ideals).
Therefore, the theory of finite-dimensional Lie superalgebras is reduced in a
certain sense to the theories of semisimple and of solvable Lie superalgebras.
(But note that Levi’s theorem on G being a semidirect sum of R and G/R
is not true, in general, for Lie superalgebras.)

The main fact in the theory of solvable Lie algebras is Lie’s theorem, which
asserts that every finite-dimensional irreducible representation of a solvable
Lie algebra over C is one-dimensional. For Lie superalgebras this is not true,
in general. In the paper we obtain a classification of finite-dimensional irreducible
representations of solvable Lie superalgebras (Section 5.2.2, Theorem 7).
In particular, we derive a necessary and sufficient condition for any finite-
dimensional irreducible representation to be one-dimensional (Section 5.2.2,
Proposition 5.2.4).

Next, it is well known that a semisimple Lie algebra is a direct sum of simple
ones. This is by no means true for Lie superalgebras. However, there is a
construction that allows us to describe finite-dimensional semisimple Lie
superalgebras in terms of simple ones (Section 5.1.3, Theorem 6). It is similar
to the construction in [21].

So we come to the fundamental problem of classifying the finite-dimensional
simple Lie superalgebras. A solution of this problem in the case of an alge-
braically closed field of characteristic 0 is the main aim of the paper and occupies
the major part of it (Chapters 2-4). The principal difficulty lies in the fact
that the Killing form (see the definition in Section 2.3.1) may be degenerate,
which cannot happen in the case of simple Lie algebras. Therefore, the classical
technique Killing-Cartan is not applicable here. The classification is divided
into two main parts (presented in Chapters 2 and 4, respectively).

In the first part we give a classification of the classical Lie superalgebras.
A Lie superalgebra G = Gy @ Gj is called classical if it is simple and the
representation of the Lie algebra G; on Gj is completely reducible. This clas-
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sification is divided into two parts, corresponding to the cases of a nondegenerate
and a zero Killing form. In Section 2.3 we give a classification of all finite
dimensional Lie superalgebras with a nondegenerate Killing form (Theorem 1).
This is the first key point of the classification. Here the usual technique is
applicable. In Section 2.4 we consider the second key point: the case of a zero
Killing form (Proposition 2.4.1). The fact that the Killing form is zero is used
to obtain severe restrictions on the index of the representations of G on Gj
(for the definition of the index see Section 1.4.3). Each of the parts corresponding
to Sections 2.3 and 2.4 is, in its turn, divided into two parts according to whether
or not the representation of Gj on Gj is irreducible (see Section 2.2). The
resulting classification of the classical Lie superalgebras that are not Lie algebras
is as follows (Theorem 2): (a) four series A(m, n), B(m, n), C(n), and D(m, n),
in many respects similar to-the Cartan series A, , B, , C,, and D, ; (b) two
exceptional Lie superalgebras: a 40-dimensional F(4) and a 31-dimensional
G(3), and a family of 17 dimensional exceptional Lie superalgebras D(2, 1; o),
which are deformations of D(2, 1); (c) two “strange” series P(n) and Q(n). The
construction of all these classical Lie superalgebras is carried out in Section 2.1.

In the second part we give a classification of the nonclassical simple Lie
superalgebras. For this purpose we construct a filtration G =L_; DL, DL, D -,
where L, is a maximal subalgebra containing Gy, and L; = {aelL; | [a, L] C
L, 4} for ¢>>0. Then we classify Z-graded Lie superalgebras with the
properties that the associated graded Lie superalgebra Gr G = @, , Gr; G
necessarily has (Section 4.1.1, Theorem 4). This is the third key point. In
the proof we make essential use of the method developed in our paper {11]
for the classification of infinite-dimensional Lie algebras. After this it only
remains to reconstruct the Lie superalgebra G with filtration from the Z-graded
Lie superalgebra Gr G.

The final classification of simple finite-dimensional Lie superalgebras is as
follows (Section 4.2.1, Theorem 5): (a) the classical Lie superalgebras (listed
above); (b) the Lie superalgebras of Cartan type W(n), S(r), H(rn), S(z), where
the first three series are analogous to the corresponding series of simple infinite-
dimensional Lie algebras of Cartan type and S(r) is a deformation of S(n).
The construction of the Lie superalgebras of Cartan type is carried out in
Sections 3.1 and 3.3.

The finite-dimensional irreducible representations of the simple Lie algebras
are described by the theorem on the highest weight. A similar result holds
for simple Lie superalgebras (Section 5.2.3, Theorem 8). Full reducibility
of finite-dimensional representations is lacking, in general.

It is not hard to reduce the classification of simple Lie superalgebras over
nonclosed fields for the classical Lie superalgebras to the same problem for
simple Lie algebras and for Lie superalgebras of the Cartan type a complete
list can be made. This is done in Section 5.3, where we also list all finite-
dimensional simple real Lie superalgebras (Theorem 9).
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Finally, in Section 5.4 we attempt to extend Cartan’s results on the clas-
sification of complete infinite-dimensional primitive Lie algebras to Lie super-
algebras. In this direction we have only obtained a partial result (Theorem 10).
This also makes clear the reason for the appearance of finite-dimensional
Lie superalgebras of Cartan type: Lie superalgebras of Cartan type are Lie
superalgebras of vector fields in commuting and anticommuting variables,
and also their subalgebras defined by the action on the volume, Hamiltonian,
and contact forms. If there are no commuting variables, then the superalgebra
is finite-dimensional, and so there is no finite-dimensional analog for the contact
Lie algebra.

Here is a brief account of the contents of the paper.

Chapter 1 is introductory. In it we give the basic definitions (Section 1.1),
establish the simplest properties of gradings and filtrations (Sections 1.2 and 1.3),
and quote the necessary information on finite-dimensional representations
of semisimple Lie algebras (Section 1.4).

Chapter 2 is devoted to a description (Section 2.1) and classification (Sections
2.2-2.4) of Lie superalgebras with a nondegenerate Killing form (Theorem 1)
and of the classical Lie superalgebras (Theorem 2). In Section 2.5 we describe
the root systems of the classical Lie superalgebras and find all up to equivalence
systems of simple roots. We classify the simple finite-dimensional contragredient
Lie superalgebras (Theorem 3); their properties are very close to those of
simple Lie algebras.

In Chapter 3 we introduce and study two algebras of differential forms
(Section 3.2) with anticommuting and commuting differentials; it is curious
that the second algebra has all the properties that one would naturally expect
of an algebra of differential forms. In Sections 3.1 and 3.3 we construct the
finite-dimensional Lie superalgebras of Cartan type and study their properties.

In Chapter 4 we classify Z-graded Lie superalgebras that arise in the con-
struction of filtrations in simple Lie superalgebras for which the representation
of Gy on Gj is reducible (Section 4.1, Theorem 4), and then, on the basis of
this classification, we complete the classification of simple Lie superalgebras
(Section 4.2, Theorem 5).

Theorems 1, 2, 4, and §, and also partially Theorems 6 and 7, were announced
by the author in the note [16] (Theorem 4 even earlier in [13]).

In Chapter 5 we discuss the following problems. In Section 5.1 we give a
description of the finite-dimensional semisimple Lie superalgebras in terms
of the simple ones (Theorem 6) and we find the Lie superalgebras of derivations
of all simple Lie superalgebras. As in [21], Theorem 6 is a consequence of a
general result on differentially simple superalgebras (Proposition 5.1.1).
Section 5.2 is concerned with the theory of finite-dimensional irreducible
representations of solvable and simple Lie superalgebras (Theorem 7 and 8).
In Section 5.3 we treat the classification of simple finite-dimensional Lie super-
algebras over nonclosed fields (Propositions 5.3.1-5.3.3). We also give a



12 V. G. KAC

classification of the simple real Lie superalgebras (Theorem 9). In Section 5.4
we introduce infinite-dimensional Lie superalgebras of Cartan type and
formulate the theorem on Z-graded Lie superalgebras that arise in the clas-
sification of infinite-dimensional complete primitive Lie superalgebras
{Theorem 10). Finally, in Section 5.5 we discuss some unsolved problems.

All spaces and algebras are regarded over a ground field &, which is assumed
to be algebraically closed and of characteristic 0 unless the contrary is stated.
The symbol (> denotes the linear span over k of a subset M of a linear space,
the symbol @ the direct sum of k-spaces, and &) the tensor product of k-spaces.

Here, I would also like to express my deep indebtedness to F. A. Berezin,
E. B. Vinberg, and D. A. Leites for numerous conversations and constructive
help. I also thank Professor I. Kaplansky for his interest in my work; having
become acquainted with his preprint on root systems of simple Lie super-
algebras with a nondegenerate invariant form I could remove some errors that
had slipped into the original version of the article.

Remark. The history of this article began in 1969 when, impressed by
Stavraky’s example of a simple Lie superalgebra A(l, 0) [19], the author was
led to employ the technique of [11] to prove the present Theorem 4. Two
years later, having read [4], I decided to publish this result [13]. The classification
of classical Lie superalgebras (Theorem 2) was obtained in 1974 under the
stimulation of the physicists’ interest in the subject. At the beginning of 1975
the key to the complete solution of the classification problem of simple Lie
superalgebras was found (filtration!) and Theorem 5 was proved. The results
were announced in [16]. Then the results of the Chapter 5 were obtained
and by September 1975 the work was completed. In October 1975 the manu-
script was submitted to the Soviet journal Uspehi Matematideskih Nauk, but
later was withdrawn and resubmitted to the present journal. In the beginning
of 1976 the paper was translated into English. I am grateful to Professor
Sternberg for his genuine interest in my work and for making the translation
of it possible. I am obliged to Professor Hirsch who translated the text.

In the English version some remarks on further results in the field have been
added.

1. Basic DEFINITIONS AND PRELIMINARY REMARKS

1.1. Superalgebras and Lie Superalgebras— Supertrace

1.1.1. Superalgebras. We recall that if 4 is an algebra and M an Abelian
group, then an M-grading of A is a decomposition of A4 into a direct sum of
subspaces A = @qeprr A, for which 4, 4,C A,.,. An algebra 4 equipped
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with an M-grading is called M-graded. If ae 4,, then we say that @ is
homogeneous of degree « and we write deg @ = «. A subspace B of an M-graded
algebra A is called M-graded if B = @yep (B N 4,). A subalgebra (or ideal)
of an M-graded algebra is an M-graded subalgebra (or ideal). A homomorphism
®: A — A" of M-graded algebras preserves the grading in the sense that
&(4,) C 4, , where @ is an automorphism of M.

Now let Z, = Z/2Z be the residue class ring mod 2, with the elements 0 and 1.

A superalgebra is a Zy-graded algebra 4 = Ay @ A;. The elements of 4;
are called even, those of A4; odd. Throughout what follows, if dega occurs
in an expression, then it is assumed that a is homogeneous, and that the expres-
sion extends to the other elements by linearity.

The direct and semidirect sum of superalgebras are defined in the usual
way. With the definition of the tensor product things are different. Let 4 and B
be superalgebras. Their tensor product A Q) B is the superalgebra whose space
is the tensor product of the spaces of 4 and B, with the induced Z,~grading
and the operation defined by

(@ @ by)(a, @ by) = (—1)4BD @8 50, b,  a,e4, beB.

There is a natural way of defining a bracket [ , ] in a superalgebra 4, i.e.,
by the equality,

[@, b] = ab — (—1)egaxdegdipg, (1.1.1)

A superalgebra is called commutative if [a,b] = 0 for all a, be A. Quite
generally, permutability in a superalgebra is understood in the sense of the
bracket (1.1.1). Associativity of superalgebras is defined as for algebras.

For an associative superalgebra 4 we have the following important identity:

[a, bc] = [a, b]c + (—1)degardegplg c]. (1.1.2)

ExampLE 1. Let M be an Abelian group and V = @,eps V, an M-graded
space. Then the associative algebra End V' is equipped with the induced M-
grading End V = @,ca End, V, where

End, ¥V = {acEnd V| a(V,)C V).

In particular, for M =Z, we obtain the associative superalgebra End V' =
El’ld(, [ 4 @ Endi V.

ExampLE 2. Let A(n) be the Grassmann algebra in #n variables ¢, ,..., £, .
Then A(n) becomes Zy-graded if we set deg §; = 1, i = 1,..., n. The result is
called a Grassmann superalgebra. It is commutative and associative. Evidently

A(m) ® A(n) = A(m + n).
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A generalization of this example is the commutative superalgebra A(m, n) =
k[xy 5e.., %) @ A(n), where the polynomial algebra k[x, ,..., x,,] is regarded as a
superalgebra with trivial Z,-grading.

1.1.2. Definition of a Lie superalgebra. A Lie superalgebra is a superalgebra
G = Gy @ Gj with an operation [ , ] satisfying the following axiom:

[a, b] = —(—1)tdesandegd)[p g] (anticommutativity),
[a, [B, c]] = [[a, b], ] + (—1)\degaiideet)[p [q4, c]] (Jacobi identity).

Observe that Gy is an ordinary Lie algebra, that multiplication on the left by
elements of Gy determines a structure of a Gy-module on Gy, and that multi-
plication of elements of Gj determines a homomorphism of Gy-modules
@: S?G; — Gy . Thus, every Lie superalgebra can be specified by three objects:
the Lie algebra Gy, the Gg-module Gj , and the homomorphism of Gg-modules
¢: 82G; — Gy, with the sole condition

p(a, b)c + (b, c)a + ¢(c, a)b =0 for a,b,ceGj. (1.1.3)

ExampiE 1. If 4 is an associative superalgebra, then the bracket (1.1.1)
turns 4 into a Lie superalgebra. (The Jacobi identity follows from (1.1.2).)
We denote the resulting Lie superalgebra by 4; .

ExampLE 2. Let G be a Lie superalgebra and A(z) a Grassmann super-
algebra. Then G ® A(n) is also a Lie superalgebra.

The definitions of a solvable and a nilpotent Lie superalgebra are the same
as for Lie algebras. A Lie superalgebra is called simple (semisimple) if it contains
no nontrivial (no solvable) ideals.

1.1.3. The universal enveloping superalgebra. Let G = Gy @ G5 be a Lie
superalgebra. As usual, a pair (U(G),?), where U(G) is an associative super-
algebra and &: G — U(G), is a homomorphism of Lie superalgebras, is called
the universal enveloping superalgebra of G if for any other pair (U’,:’) there
is a unique homomorphism 6: U — U’ for which i" = 8o1.

The universal enveloping superalgebra of G = G; @ G; is constructed as
follows [24]. Let T(G) be the tensor superalgebra over the space G with the
induced Z,-grading, and R the ideal of T(G) generated by the elements of the
form:

[a,b] — a ® b + (—1)degardeen ) g,

We set U(G) = T(G)/R. The natural map G — U(G) evidently induces a
homomorphism ¢: G — U(G),, , and the pair (U(G), 1) is the required enveloping
superalgebra.

In [24] the following theorem is verified.
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THE POINCARE-BIRKHOFF-WITT THEOREM. Let G = Gy @ Gy be a Lie
superalgebra, a, ,..., @, be a basis of Gy, and by ,..., b, be a basis of Gy . Then
the elements of the form

a:l e a:‘"'bil e b,", where k{ = 0 and 1 < il < << l:. <n,

Jorm a basis of U(G).

Finally, we define the diagonal homomorphism. As it is easy to see, the map
ar>i(@) ®1 + (—1)2e8%] ®i(a), ac G, is a homomorphism of Lie super-
algebras G — (U(G) ® U(G)), and therefore determines a homomorphism
of associative superalgebras:

4: U(G) — U(G) ® U(G),
which is called the diagonal homomorphism.

1.1.4. Derivations and automorphisms of a superalgebra. A derivation of
degree s, s €Z, , of a superalgebra A4 is an endomorphism D € End, 4 with the
property

D(ab) = D(a)b + (—1)*3¢83aD(b).

We denote by der, 4 CEnd, 4 the space of all derivations of degree s, and
we set der A = dery A @ der; A. The space der A CEnd 4 is easily seen
to be closed under the bracket (1.1.1), in other words, it is a subalgebra of
(End 4) ; it is called the superalgebra of derivations of A. Every element of
der 4 is called a derivation of A.

ExamrLE 1. Let G be a Lie superalgebra. It follows from the Jacobi identity
that ad a: b [4, b] is a derivation of G. These derivations are called inner;
they form an ideal inder G of der G, because [D, ad a] = ad Da for D € der G.

ExampLE 2. Let A(n) = Ay(n) @ Az;(n) be a Grassmann superalgebra.
Let us find der A(n). For this purpose it is convenient to represent A(x) in
the form A(n)/I, where A(n) is the free associative superalgebra with the
generators ¢, ,..., £, whose Z,-grading is given by deg¢;, =1, i = 1,..,,
and I is the ideal generated by all the elements £,£; -+ £,¢; . Note that if Pand Q
are homogeneous elements of A(n), then PQ — (—1)\de8P(2e80OOPc .

Let D be a derivation of degree s of A(n). Then

D(¢:&; + &€) = D(€)é; + (—1)* £D(Ey) + D(€)E: + (—1)* §:D(¢)
= (D(¢)é; + (—1)* £,D(E,)) + (D(€)é: + (1) &D(€)) €],

from which it follows that I is invariant under D. Since, obviously, there is
one and only one derivation of A(n) with prescribed values D(¢;) € A(n), we

607/26/1-2
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see that for any P, ,..., P, € A(n) there is one and only one derivation D € der A(n)
for which D(¢;) = P; € A(n).

In particular, the relations 0/0§,(€;) = 8;; define the derivation 8/2¢;,
i = 1,...,n. The derivation D € der A(n) for which D(£;) = P; can now be
written as a linear differential operator:

p0

D = i )
¢

P, e A(n).

M=

i=1

It is equally easy to find the automorphism group of A(n) [3]. Observe that
there is a unique homomorphism ¢: A(r) — k; we agree to write f(0) instead
of ¢(f), f& A(n). If now @ is an automorphism of A(n), then deg P(¢;) = 1
and det(9/0€,(P(£;))(0)) % 0; any map &; > D(&,) e A(n), ¢ = 1,..., n, having
these two properties extends uniquely to an automorphism of A(#).

Any automorphism @ of A(n) induces an automorphism of der A(n) according
to the formula

(PD)f = (D(PS)),  fed(n).

Note that if D is an even derivation of a superalgebra 4 = A; @ A;, then
exp tD, t €k, is a one-parameter group of automorphisms. In particular, if A
is a Lie superalgebra, then exp(ad a) for a € 45 is an automorphism of 4;
the group generated by these automorphisms is called the group of inner
automorphisms. The preceding remark leads to the following result.

ProposiTION 1.1.1. Let G and %, be the connected components of the identity
in the automorphism groups of superalgebras A and Ay, and let S be the subgroup
of & consisting of the automorphisms that act identically on Ay . Then the restriction
induces an epimorphism G — G, with kernel 5. In particular, if A is a Lie super-
algebra, then every inner automorphism of Ay extends to an inner automorphism of A.

1.1.5. The superalgebra (V) and the supertrace. Let V = V5@ Vi be a
Z,-graded space. Then (Section 1.1.1) the algebra End V' is endowed with a
Z,-grading and so becomes an associate superalgebra. Now (End V), is a Lie
superalgebra (Section 1.1.2) which we denote by I(V) or I(m, n), where m ==
dim V5, n == dim V5 . In the theory of Lie superalgebras I[(V) = I(V); @ I(V);
plays the same role as the general linear Lie algebra in the theory of Lie algebras.
If we regard the same decomposition V = V, @ V, as a Z-grading of V,
then it corresponds to a Z-grading of /(¥'), which is compatible with the Z,-
grading: (V) =1, ®UV); @, .

Lete; ,..., € 5 €myq roes €myn be a basis of V, formed from bases of Vjand V5.
It is natural to call such a basis homogeneous. In this basis the matrix of an
operator a from (V') can be written in the form [2 §], where  is an (m X m)-,
dan (n X n)-, B an (m X n)-, and y an (n X m)-matrix. 'The matrices of even
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elements have the form [§ §], and those of odd ones [0 5]. Here /; consists
of the matrices of the form [§ 4] and L, of the form [J J]. Hence it is clear that
the /7-modules }; and /_; are contragredient and the JFmodule /; isomorphic
togl, ®gl,.

Now we come to the definition of the supertrace. For the matrix a =[2 5] € I, n)
this is the number

str(@) = tra — tré.

Observe that the supertrace of the matrix of an operator a€l(V) does not
depend on the choice of a homogeneous basis. Therefore, we have the right
to speak of the supertrace of @, meaning the supertrace of this operator in any
homogeneous basis.

To state properties of the supertrace (and for other purposes) it is useful
to introduce the following definitions. Let G = G5 @ Gy be a Z,-graded space
and f be a bilinear form on G. Then f is called consistent if f(a, b) = 0 for
ae Gy, be Gy, and supersymmetric if f(a, b) = (—1)\desardesdf(p q). If G
is a Lie superalgebra, f is called fnvariant if f([a, b], c) = f(a, [b, ¢])-

ProposiTiON 1.1.2. (a) The bilinear form (a,b) = str(ab) on (V) is con-
sistent, supersymmetric, and invariant.

(b) str([a, b]) = O for any a, be (V).

Proof. The consistency follows from the fact that ab e (V); for acl(V);,
bel(V).

Supersymmetry for a, b € I(V); follows from the corresponding property of
the trace, and for ael(V);, b € (V); from consistency. It remains to consider
the case @, b l(V);. Leta = (§ ) and b = (3 3) be the matrices of aand bin a
homogeneous basis. Then (a, b)) = tr ad — tr By, (b, @) = tr yB — tr 8x, from
which it follows that (2, ) = —(b, a), as required.

(b) is simply another way of writing down supersymmetry.

We still have to verify invariance. By (1.1.2) we have [b, ac] = [b, a]c +
(—1)tdegandegbiglp (1. Therefore, by (b):

0 = str([b, ac]) = ([b, a], ¢} + (—1)\1E» (18 (g, [b, c]),
as required.

1.1.6. Lincar representations of Lie superalgebras. Let V = Vi@ Vi be a
Z.-graded linear space. A linear representation p of a Lie superalgebra G =
G; @ Gy in V is a homomorphism p: G — I(V).
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For brevity we often say in this case that 7 is a G-module, and instead of
p(g)(v) we write g(v), g€ G, ve V. Note that, by definition, G(V;)C V,,;,
i,j €Z,, and [g,, 2:)(v) = £:(g(v)) — (— 1)\de8TMeE02g,(g,(v)). Note also that
the map ad: G — I(G) for which (ad g)(a) = [g, a] is a linear representation
of G. It is called the adjoint representation.

A submodule of a G-module V is assumed to be Z,-graded; a G-module V'
is said to be irreducible if it has no nontrivial submodules. By a homomorphism
of G-modules @: IV — V' we mean one that preserves the Z,-grading in the
sense that &(V;) = V_,;,, where ¢ is a bijection Z, — Z, .

Scaur’s Lemma. Let V = Vi@ Vi, M an irreducible family of operators
Sroml(V),and C(M) = {ae (V)| [a, m] = O, m € M}. Then either C(A) = (1)
or dim V = dim Vi and C(M) = {1, A, where A is a nondegenerate operator
tn V permuting Vi and Vi, and A? = 1.

ExampLE. We consider the Lie superalgebra N = Nj @ Ny, where Ny =
(e), N =<ay yeees @y, by 5..., b, and [a;, b;] = e, 7 = 1,..., n, the remaining
brackets being zero. We construct a family of representations p, , « € k¥, of N
in A(n) by setting: pa)u == oufo;, pfbu = afm, pe)u = au. Clearly,
po 18 a 27-dimensional irreducible representation of N.

We now consider the Lie superalgebra N' = N @ {c¢>, where [N, c] =0,
[c,c] =e, and the superalgebra A'(n) = A(n) ® k[e], where dege =T,
2 = af2, ack. We define a representation p,’ of N’ in A'(n) by setting
P () ® ) = pufu ® 7, p/(OMu ®2) = (1 ® Y ®0), u®veA(n)
Clearly, p,’ is a 2"*'-dimensional irreducible representation of N'.

Both NV and N’ are nilpotent. They are called Heisenberg superalgebras.
Note that p, and p,’ fall under the two cases of Schur’s lemma.

This example shows that Lie’s theorem need not be true for Lie super-
algebras. However, Engel’s theorem remains valid, and the proof is the same
as for Lie algebras [10].

ENGEL’s THEOREM. Let G be a subalgebra of (V') and suppose that all the
operators of G are nilpotent. Then there is a vector v € V, v # 0, that is annihilated
by all the operators of G.

Let V = V5@ Vi be a Zy-graded space. By the symmetric (respectively,
exterior) algebra over V' we mean the Z-graded superalgebra S(V) = S(V5) ®
A(Vy) = @ SKV) (respectively, A(V) = A(V3) ® S(V;) = @ A¥V)).

If V is a module of the Lie superalgebra G, then we have homomorphisms
G — der S(V) and G — der AV), so S(V) and A(V) become G-modules.
The submodules S¥(V') (respectively, A*(V)) are called the symmetric (respec-
tively, exterior) powers of the G-module V.
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1.2. Z-Graded Lie Superalgebras

1.2.1. Z-gradings. A Z-grading of a superalgebra G is a decomposition of it
into a direct sum of finite-dimensional Z,-graded subspaces G = @,z G;
for which G;G;C G;,;. A Z-grading is said to be consistent if G; = @ G,;,
Gi=0 Goia -

By definition, if G is a Z-graded Lie superalgebra, then G, is a subalgebra
and [G,, G;]C G;; therefore, the restriction of the adjoint representation
to G, induces linear representations of it on the subspaces G; .

A Z-graded Lie superalgebra G = @,z G; is called irreducible if the repre-
sentation of G, on G_, is irreducible.

A Z-graded Lie superalgebra G = Gz G; is called transitive if for ac G;,
1 = 0, it follows from [a, G_,] = 0 that @ = 0, and bitransitive if in addition
for ae G;, i <0, it follows from [, G;] = O that a = 0.

These properties are closely connected with G being simple, as is shown
by the following proposition.

ProposiTioN 1.2.1. If in a simple Z-graded Lie superalgebra G = @4 G
the subspace G_; ® Gy, @ G, generates G, then it is bitransitive.

The proof is the same as that of [11, Proposition 1].

1.2.2. Local Lie superalgebras. Let G be a Z,-graded space, decomposed
into a direct sum of Z,-graded subspaces, G = G_; @ G, @ G, . Suppose that
whenever | i + 7| < 1 a bilinear operation is defined G; X G; — G, (%, y) —
[, ¥]), satisfying the axiom of anticommutativity and the Jacobi identity for
Lie superalgebras, provided that all the commutators in this identity are defined.
Then G is called a local Lie superalgebra.

To a Z-graded Lie superalgebra G = @ G; there corresponds a local Lie
superalgebra G_; ® G, @ G, , which we call the local part of G.

Homomorphisms, transitivity, bitransitivity, etc., for local Lie superalgebras
are defined as for Z-graded Lie superalgebras.

In this subsection we consider only Z-graded Lie superalgebras G = @ G}
for which the subspace G_; @ G, @ G, generates G.

A Z-graded Lie superalgebra G = @ G; with local part G is said to be
maximal (respectively, minimal) if for any other Z-graded superalgebra G’ an
isomorphism of the local parts G and G’ extends to an epimorphism of G onto G*
(respectively, G’ onto G).

ProPOSITION 1.2.2. Let G = G_y ® Gy, ® G, be a local Lie superalgebra.
Then there is a maximal and a minimal Z-graded Lie superalgebra whose local
parts are isomorphic to G.
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ProrosiTioN 1.2.3. (a) A bitransitive Z-graded Lie superalgebra is minimal.
(b) A minimal Z-graded Lie superalgebra with bitransitive local part is
bitransitive.
(¢} Two bitransitive Z-graded Lie superalgebras are isomorphic if and only if
their local parts are isomorphic.

These two propositions are proved just as the corresponding assertions for
Lie algebras (see [11, Propositions 4 and 5]).

1.2.3. Invariant bilinear forms. 'The following proposition is proved in the
same manner as [11, Proposition 7].

ProrosiTioN 1.2.4. Suppose that on the local part of a Z-graded Lie super-
algebra G = @ G; a consistent supersymmetric invariant bilinear form ( , ) is
given (see Section 1.1.5) for which (G;,G;) =0 when i +j #0. If G_; @
G, ® G, generates G, then the form can be extended umiquely to a consistent
supersymmetric invariant bilinear form with the same property on the whole G.

The following assertion is proved in the same manner as [7, Corollary 2 to
Theorem 4].

ProposiTION 1.2.5. Let G = @2:—-(1 G; be a simple finite-dimensional Z-
graded Lie superalgebra, with Gy =G5, k >0, G_; #0, G, #0. On G
there exists a nondegenerate consistent supersymmetric invariant bilinear form
(, ) if and only if the representations of G, on G_; and (G,)* are equivalent.
For this form (G;, G;) =0 when i +j % t — d.

Clearly, the kernel of an invariant form is an ideal. Therefore, we have the

following result.

ProrosiTION 1.2.6. If G is a simple Lie superalgebra, then an invariant form
on it is either nondegenerate or identically zero, and any two invariant forms on G
are proportional.

1.2.4. Conditions for simplicity. In this subsection we state some conditions
for the simplicity of Lie superalgebras. The proofs are standard.
ProposITION 1.2.7. The following conditions are necessary for a Lie super-
algebra G = Gy @ Gy to be simple:
(1) The representation of G on Gy is faithful and [G;, Gi] = Gy .
If, in addition,
(2) the representation of Gy on Gy ts irveducible,

then G is simple.
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ProrosiTION 1.2.8. The following conditions are mecessary for a Z-graded Lie
superalgebra G = @5, Gy to be simple:

(1) G is transitive and irreducible; [G_, , Gi] = G, .
If, in addition,

(2) the kernel of the Gy-module G, is 0 and G; = Gy for i > 0,
then G is simple.

1.2.5. Some properties of Z-graded Lie superalgebras of the form @, G;.
The following assertion facilitates the work with Z-graded Lie superalgebras.

ProrositioN 1.2.9 (cf. [23]). Let G = @5y G; be a transitive irreducible
Lie superalgebra with a consistent Z-grading, and G, # 0. Then [G,, G,] C
[G—l ’ Gl]

Proof. Observe, first of all, that [G_,, [G_;, G4]] = G_,, because [G_,,
[G_,, Gy]] is a nontrivial Gy-submodule of G_; . Let C be the centralizer in
G, of [G_,; , Gy]. Since the Lie algebra G, is reductive, it is sufficient to show
that the Lie algebra C of linear transformations of the space [G_,, [G_, , Gi]]
is Abelian. To do this we have to verify that for x,ye€ G ,, a,b€C the
expression d = [[[[t, x], ¥, 4], 8] is symmetric in @ and b. Now d = [[[[[¢, ],
[y, all, %], a], 8] =-{[[, 3], [x, all, 8] = [[2, [x, all, [y, 811 =-{It, [, b]], [=, all,

which proves the assertion.

ProposITION 1.2.10. Let G = @®;5_; G; be a Z-graded Lie superalgebra
satisfying the conditions of Proposition 1.2.9 and suppose that, in addition, the
representation of G, on Gy is drreducible. Let H be a Cartan subalgebra of G,,
F, the‘,highest weight vector of the representation of Gy on G_, , and E,, the lowest
weight vector of the representation of Gy on G, .

(2) If the representations of G, on G_, and G, are contragredient, then
1) M=-—-4,
(2) [Fa,Ey] =h +#0, where he H,
@3) [6G1,6G] =0,
(4) the Lie superalgebra G_; @ [G_;, Gy] @ G is simple.
(b) If the representations of Gy on G_, and G, are not contragredient,
then
Q1) [Fa, Ey] = e, # 0, where o. = A 4 M is a nonzero root of the Lie
algebra [G, , G,),

)] (G, Gy = Gy, Gol,
B) [Gy, Gyl is simple.
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Proof. Since G_y = {[""[F, e—-vl]w-, e—vk]> and Gy = {[""[Ey, evl]a-", evk]>:
where v ,..., ¥ > 0, we evidently have

[G_1, G =L [Fa;s Em), &), 505 8,0 (1.2.1)

Since, by transitivity, [G_, , G;] # 0, we obtain from (1.2.1) that [F , E);] = 0.
But [¢,[F,, Ey]]l = (A + M)(t)[F,, Ey] for any ¢ € H. Since contragredience
of the representations of G, on G_; and G, means that A + M = 0, we have
now established (1) and (2) in (a) and (1) in (b).

Let us prove (3) in (a). We consider the graded subalgebra G of G generated
by the subspace G_; @ G, @ G, . Clearly G is bitransitive. There is an obvious
automorphism ¢ of its local part carrying the positive roots of G, into the
negative ones and interchanging G_; with G; . Since, according to Proposition
1.2.3, G is minimal, ¢ extends to an automorphism of G. Therefore, it follows
from [G_,; , G_,] = Othat[G,, G,] = 0, as required.

(4) in (a) follows from Proposition 1.2.8.

Let us now prove (2) and (3) in (b). From (1.2.1) we see that [G_,, G|] =
[lea>e ) e, C H, where H is the simple component of the semisimple
Lie algebra [G,, G,] the root of which is «. From Proposition 1.2.9 we see that
[G.., G_y] = H = [G,, G,], which proves (2) and (3).

ProrosiTION 1.2.11. Let G = G_; B Gy @ G be a transitive Z-graded Lie
superalgebra satisfying the conditions of Proposition 1.2.9. Then either the repre-
sentation of G, on G, is faithful and irreducible, or dim G, = 1.

Proof. Let G, = G @ G7 be some nontrivial decomposition of G, into
a direct sum of Gy-submodules. Applying Proposition 1.29to G_, ® G, ® G,
we see that [Gy, Go] € [G_; , G;]. On the other hand, clearly [[G_; , G,’], G_;] @
[G4, Gl DG, is an ideal in G. Hence it follows, in particular, that
[[Gy, G, G1] = 0. So we find that if the Gy-module G, is reducible, then
[Gy , Go] acts trivially on G, . But in that case it clearly follows from transitivity
that dim G; = 1.

It remains to show that the following situation is impossible: HC G,
H = [G,, Gy] is a simple subalgebra of G, whose representation on G, is
trivial. In that case [x, G_;] C H for every x € G,, which contradicts Proposi-
tion 1.2.9. This completes the proof of Proposition 1.2.11.

ProrositioN 1.2.12. Let G = @y, G; be a Z~graded irreducible transitive
Lie superalgebra. If the even part of the center C of G, is nontrivial, then Cy = {2,
and [z,8] = sg for g€ G,.
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Proof. By Schur's lemma, C; = (), where [z, g] = —g for g€ G_, . Now
let 2111 € Gry1, x€ G_; . Then we have by induction:

[z’ [% griall = —[% gl + EA [z, gk+1]] = K[%, ge1l;

from which we see that [x, [, gp11] — (% + 1)gi,1] = 0. By the transitivity
of G, what we need now follows.

ProrosITION 1.2.13. Let G = Pypy G; be a Z-graded trreducible transitive
Lie superalgebra for which the representation of Gy on G, is faithful. Then G is
bitransitive.

Proof. Clearly, V ={aeG_,|[a, G;] =0} is a submodule of the G-

module G_;. By the transitivity of G we have [G, G;] # 0; therefore,
V # G_; ; consequently, ¥V = 0.

1.3. Lie Superalgebras with Filtrations

1.3.1. Filtrations. A sequence of embedded Z,-graded subspaces in a
superalgebra L: L =L_;, DL DL, D -+ is called a filtration if

L‘L’ gL'H_j and n L" = 0, i,] € Z.

A Lie algebra L with a filtration is called transitive if for any ae L\L;,, , 1 > 0,
there is an element b € L for which [a, b] ¢ L, . This condition can also be written
as follows:

L;={a€L,,|[a,L]CL; 4}, i>0. (1.3.1)

Let L be a Lie superalgebra and L, be a subalgebra of L that contains no
nonzero ideals of the whole algebra L. Then (1.3.1) defines a filtration in L.

The first property of a filtration is easily verified by induction, using the
Jacobi identity, and the second follows from the fact that (\L,, clearly, is an
ideal of L and so, by hypothesis, N L; = 0.

The filtration constructed in this way is called the tramsitive filtration of
the pair (L, Ly).

With a Lie superalgebra L we can associate, in the usual way, the Z-graded
Lie superalgebra

GrL =@ Gr,L, where Gr;L =L,JL,,.

i3-1

Owing to the grading of the subspace L, , the algebra GrL is equipped with a
natural Z,-grading; however, the Z-grading of Gr L is not, in general, consistent.

A Z-graded superalgebra G = @;>_; G; is canonically equipped with a
filtration: L; = @ G, -
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A superalgebra L with filtration is transitive if and only if GrL is transitive.
If GrL is simple, then so is L.

1.3.2. Connection between L and Gr L. If in a Lie superalgebra with filtration
L =L_,DL,DL;D - subspaces G; are given such that L; = G, ®L,,; and
[G;, G;] C G,,; , then we say that L is equipped with a grading that is consistent
with its filtration. In that case, clearly, L ~ GrL, provided that L is finite-
dimensional.

PropositioN 1.3.1. Let L =L DL,DL, D be a transitive finite-
dimensional Lie superalgebra with a filtration for which the representation of

GryL on Gr_ L is irreducible and even part of the center of GryL is nontrivial.
ThenL ~ GrL.

Proof. According to Proposition 1.2.12 there is an element z € Gr, L such
that [z, g] = sg for g € Gr,L. Let & be some inverse image of 2 under the map
Ly — GryL = LiJL, . As is easy to see, Z is diagonalizable in L, so that L, =
G, D L,,,, where G, is the eigenspace of # for the eigenvalue s. This gives
us the required grading, consistent with the filtration of L.

1.3.3. Properties of filtrations. Let L = Lg @ Ly be a Lie superalgebra and
L, be a maximal proper subalgebra containing Ly . Suppose that Ly does not
contain nonzero ideals of L. Let us construct the transitive filtration of the pair

(L, Ly) (see 1.1.1):
s ={ael;,,|[a,L[]CL; 4} 1> 0.

Let GrL = @;>_; Gr; L be the associated Z-graded Lie superalgebra.

ProposITION 1.3.2. Gr L has the following properties:

(2) GrL is transitive;

(b) the Z-grading of Gr L is consistent with the Z,-grading;

(c) GrL is irreducible;

(d) if the representation of Ly on Ly is reducible, then Gri L +# 0.

Proof. (a) follows from the transitivity of L. The fact that L, contains Ly
implies that Gr_; L C(GrL);. By the transitivity of GrL, we obtain (b) by
induction.

Let us now prove (c). Suppose the contrary; then there exists a Z,-graded
subspace L of L containing L, but different from L and L, for which [L,,L] CL.
Then L = L, @ V, where V CL; and [V, V] C L, because L, 2 Ly . Therefore,
(LI =[Ly@®V,Ly ® V] =Ly, Lo} + [Lo, V1+ [V, V1CL. But this con-
tradicts the maximality of L, .

Now we prove (d). If Gr; L = 0; then clearly GryL = L. Consequently,
by (c), the representation of Lz on L; is then irreducible.
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ProrosiTION 1.3.3. Lie superalgebra G = Gy @ Gy is solvable iff Lie algebra
Gj s solvable.

Proof. Let Gy be solvable, Ly be a maximal proper subalgebra containing Gy,
and J be a maximal ideal among ideals of G, containing in L, . We have a filtered
Lie superalgebra G/J = LDL,DL, D -, which satisfies all the conditions of
Proposition 1.3.2. In particular, GrL is irreducible. But Gr,L is solvable
since Gy is solvable and so dim GryL = 0 or 1. Therefore dim G{J =1 or 2
and G/J is a solvable Lie superalgebra. By induction, J is a solvable super-
algebra too. So G is a solvable Lie superalgebra.

1.4. Information from the Theory of Representations of Semisimple Lie Algebras

1.4.1. The theorem on the highest weight. Let G be a semisimple Lie algebra
and H be a Cartan subalgebra of it. We consider a representation p of G in a
finite-dimensional space I (or, as we usually say, 2 G-module V). For A e H*
we set V, ={veV|hv) = MA)y}. If V), =0, then A is called a weight of p
and a nonzero vector v, in V, is called a weight vector. Let %, be the set of all
weights; then V' = @)¢ 2, V.

A weight « of the adjoint representation of G is called a root of G. Then
G = @, G,, where G, = H and dim G, = 1 for « 5 0. A nonzero vector e,
in G, is called a root vector. G,V, #* 0 is contained in V,,, if A + x € %, and
GV,=0if A+ a¢%.

Let (a, b) = tr(ad a)(ad b) be the Killing form on G. Both the Killing form
and its restriction to H are nondegenerate; therefore, it induces on H* a non-
degenerate form. If « 5 0, then [e, , e_,] = (e, , e_,)h, 7 0, where the vector
h, € H is determined by the relation o(h) = (4, , A).

Let 4’ be the set of all nonzero roots, 4+ be the set of positive roots (in some
fixed lexicographical ordering), and 2 = {a, ,..., a,} be the set of simple roots
of G. Then 4’ = A+ U —A4*, the system X forms a basis of the space H*,
and every root a € 4+ is of the form o = Y ko , where the k; are nonnegative
integers.

Let Hy* be the linear span of 4’ over Q. The Killing form is positive definite
on Hy*, and %, C Hy*. Let a€ 4', A€ %, ; then the set of weights of the form
A + so forms a progression: A — pa, A — (p — Doy A — 0, A, A 4 0, A+ o,
where p and ¢ are nonnegative integers and p — ¢ = 2(3, o)/(=, ).

The numbers 2(}, o;)/(; , o;) are called the numerical marks of the linear
function A e H*,

If Ae %, then its numerical marks are integers. A function A € Hy* is said
to be dominant if its numerical marks are nonnegative integers.

Now let p be an irreducible finite-dimensional representation of a Lie algebra
G. A highest (respectively, lowest) weight of p is a weight 4 € %, (respectively,
Me &) for which A+ a¢ % (respectively, M — a¢ %) for aed+. The
highest and lowest weights are unique, and dim V, = dim V), = 1. Every
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nonzero vector in V4 (respectively, 1/,,) is called a highest (respectively, lowest)
vector of p. The theorem on the highest weight asserts that the function A
is dominant and that for any dominant linear function A there is a unique
irreducible finite-dimensional representation with the highest weight .

A representation p of a Lie algebra G in a space ¥ induces a representation
p* of it in the dual space V*; p and p* are said to be contragredient. A € %, if
and only if —A € Z,.. In particular, if 4 is the highest weight of p, then (—A)
is the lowest weight of p*.

If a Lie algebra G has a faithful irreducible finite-dimensional representation p,
then G = G' @ C, where G’ is a semisimple Lie algebra, C is the center of G,
and p(C) are scalar operators. The restriction of p to G’ is also irreducible and
its highest weight (vector) is defined as the highest weight (vector) of p.

1.4.2. Diagrams of highest and dominant roots. A semisimple Lie algebra can
be represented by a Dynkin diagram. Let X = {a, ,..., o} by the system of
simple roots; then a; = —2(x;, o;)/(x;, o) are nonnegative integers. The
Dynkin diagram of G consists of r circles correspondnig to the simple roots,
and the sth circle is joined to the jth by an a;;a;; segment with arrows pointing
to the sth circle when a;; < a;; . An irreducible representation of G is represented
by a Dynkin diagram equipped with the nonzero numerical marks 2(4, o;)/(x; , ;)
of the highest weight A standing against the corresponding circles.

If G is simple, then its adjoint representation is irreducible; its highest weight
6 is the highest root of G. The diagrams of the highest roots of all simple Lie
algebras are given in Table I. Apart from the highest roots, the simple Lie
algebras also have the dominant roots given in Table II.

1.4.3. The index. Let p be a finite-dimensional faithful linear representation
of a semisimple Lie algebra G in a space V. Then the bilinear form (a, b), =
tr p(a) p(b) on G is nondegenerate. If G is simple, then

(a, b)y = ly(a, b), a,beG,

TABLE 1
1 1 1 ’
An >2) O0—0—+—0—0 G, 0=0
1
Bz >3) 0—0——0=0 F; cla—o:o—o
lOl
2
C(n>1) 0—0——0=<0O Es 0—0—0—0—0
i 7
1
D(n >4 O0—O0——0—0 E, 0—0—0—0—0—0C1
o
1 |
Es 0—0—0—0—0—0—
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TABLE I1
1 1
B.n > 3) 0—O0——0=0 G, 00
C,n>2) <1)—o----—o<=o F, o——o=>o—(1)
TABLE III
Type r Diagram dim V7 Iy
1 1
A i, n—1 0—0——0—0 n —
2n
—1 -2
A%, n—1 o—<13-—~--—o—o ”(”2 ) n2n
1 2
S2%i, n—1 (z)—O—'-'—O—-—O n(n + 1) il
2 2n
A%, 567 0—0—O—-—0 20,3556 },%,1%
n=26738
n—1 1 1
B so, ) O—=Q=—+++—0 =0 n po—
spin. , 3,4,56 0—0—-—0=0  81632,64 },%,%,&
n=17911,13
n 1 1
N = O—0— 0«0
C P 2 - " n - 2
n 1 n(n — 1) n—2
Agsp. - O—O—t+—Q 0 -1
0P 2 © = 2 g
1
Ag3spg 3 0—0 =<0 14 $
o)
D z <13 e} IO o) 1
so, = — O+ —O— n
2 n—2
? .
spin,, 56,7 O—0—=-—0—0 16, 32, 64 $.2,%
n = 10, 12, 14
o]
1 f
E E, 6 0—0—0—0—0 27 1
o)
1 |
E, 7 0—0—0—0—0—0 56 3
1
F F, 4 0—0<«0—0 26 1

G G, 2 c<€o 7 i
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where I, is a positive rational number, independent of a and b. It is called the
index of p. The index of a direct sum of representations is the sum of the indices
of the representations.

The index of a one-dimensional representation of a simple Lie algebra G
is 0, and that for irreducible representation is 1 only of the adjoint representation.
A list of the irreducible representations of the simple Lie algebras for which
0 < Iy <1 is given, to within transition to a contragredient representation, in
"Table III, which is taken from [1].

Here s, , sp,, , and so, stand for standard representations of these Lie algebras;
S* and A* denote kth symmetrical and exterior degrees, respectively, Sy* and
Ag* their highest component, spin,, stands for irreducible spinor representation
of so,, Gy, F,, Eg, E, denote also the simplest representations of the cor-
responding Lie algebras.

1.4.4. A technical lemma. We now prove a lemma on representations that
is used in an essential way in the classification of the classical Lie superalgebras.

Lemma 1.4.1. Let p be a faithful irreducible finite-dimensional representation
of a semistmple Lie algebra G in a space V. Let 4 be the system of all roots of G,
& the system of weights of p, and /1 the highest weight.

(@) If 24 €4, then the G-module V is isomorphic to sp,, ;
(b) if A — ped for any pc F, then G-module V is isomorphic to sl, or sp,, ;

() if A—ped forany pe &, u = —A, then G-module V is isomorphic
to sl,, sp,, 50, ,spin,, or Gy .

Proof. Let M be the lowest weight of p. Observe that 24 and 4 — M can
lie in 4 only when G is simple. This is, therefore, the case in (a) and (b).

(2) By hypothesis, 24 € 4. However, from Tables I and II it is clear
that only C, has a dominant root with mark 2. Half this root is the highest
weight of the C,-module sp,, . This proves (a).

(b) By hypothesis, 4 — M € 4; this root is dominant, and the sum of
its marks is not less than 2. From Tables I and IT it is clear that A — M = 6
is the highest root of one of the Lie algebras A, or C, ; therefore, the G-module V'
is isomorphic to sl ; or sp,, , respectively.

(c) If A £ —M, then by hypothesis 4 — M e 4, and from the proof
of (b) it is clear that V' is isomorphic to s/, . Now let

A=—-M (1.4.1)
If 6 is the highest root of one of the simple components of G, then clearly

A—0eZ. If A — 8 = M, then from (1.4.1) and the proof of (b) it follows
that I/ is isomorphic to sp,, . But if 4 — 6 = M, then there is a simple root «
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for which 4 — 0 — a € #. Therefore, A — 8 — o = M, because otherwise,
by hypothesis and (1.4.1), 4 — (A — 6 — &) = 0 4 « € 4, which is impossible.
Hence,

24 — 6 = a is a simple root. (1.4.2)

From (1.4.2) it follows that if G is not simple, then the number of simple com-
ponents is 2 and the highest root of each simple component is a simple root.
Therefore, G = A, @ A, , and V is isomorphic to so, = sl &) si; .

Now suppose that G is simple. Now (1.4.2) means that 4 = }(0 4 &) is a
dominant linear function. If the circle corresponding to « is not at an end
of the diagram, then it has at least two negative marks, so that # has at least
two positive marks. From Table I we see that in this case G is of type A, ,
moreover, that r = 3, « = o, , and V is isomorphic to A%l, = so; . But if
the circle is at an end of the diagram and r > 2, then the mark of « is negative,
therefore, the positive mark of @ is not at an end. From Table I we see that
in this case G is of type B, or D, , & = o, , and V is isomorphic to so, with
n > 6, or G is of type By, « = a3, and V is isomorphic*to spin,. Finally,
the case r < 2, as is easy to see, gives the G-modules so,, withn = 3, 5and G, .

The proof of the lemma is now complete.

2. CrassicalL LIE SUPERALGEBRAS

A finite-dimensional Lie superalgebra G = G5 @ Gj is called classical if
it is simple and the representation of Gy on Gj is completely reducible.

The aim of this chapter is the description and classification of the classical
Lie superalgebras.

2.1. Examples of Classical Lie Superalgebras

2.1.1. The Lie superalgebras A(m, n). We recall some facts from Section 1.1.
Let V="V;®V; be a Z,-graded space, dim V =m, dim 'y = n. The
associative algebra End V' becomes an associative superalgebra if we let

End; V ={a€End V|aV,CV,,} i,s€Z,.

The bracket [a, b] = ab — (—1)tde8a)degdhg makes End I into a Lie super-
algebra, denoted by I(V) or I(m,n). If we regard the same decomposition
V =V, @V, as a Z-grading of V, then the same construction gives a con-
sistent Z-grading: (V) = G_; ®I(V); ® G;. On [(V) we define the super-
trace, a linear function str: (V) — k. Its basic property is str([a, b]) = 0,
a,bel(V).

From this it follows that the subspace

slim,n) = {acl(m, n) | stra = 0}
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is an ideal in I(m, n) of codimension 1. The resulting Z-grading sl(m, n) =
G_, @sl(m, n); ® G, locks in some homogeneous basis of V as follows:
sl(m, n)g is the set of matrices of the form (§ 3), where tr « = tr §, G, is the set
of matrices of the form (§ 5) and G_; of the form ({ §) (where ais an (m X m)-,
dan(n X n)-, B an (m X n)-, and y an (r X m)-matrix).

Now sl(n,n) contains the one-dimensional ideal consisting of the scalar
matrices Aly, . The Lie superalgebra si(1, 1) is three-dimensional and nilpotent.

We set

A(m,n) =sl(m + 1,n + 1) for m # n, mn =0,
Amn,n) =sl(n + 1,n 4+ 1)/[<{lsnye), n>0.

The Z-grading of si(m -+ 1, n + 1) induces a Z-grading of A(m, n) of the form
Aim,n) =G, DG DG, .

2.1.2. The Lie superalgebras B(m, n), D(m,n) and C(n). Again, let V =
Vs @ Vi be a Z,-graded space, dim Vj = m, dim V'; = n. Let F be a non-
degenerate consistent supersymmetric bilinear form on ¥V, so that ¥V and V3
are orthogonal and the restriction of F to V3 is a symmetric and to Vj a skew-
symmetric form (in particular, n = 2r is even).

We define in I(m,n) the subalgebra osp(m, n) = osp(m, n); @ osp(m, n);
by setting

osp(m, n), = {a € l(m, n), | Fla(x), 5) = —(—1)"%2F(x, a(3)},  seZ,.

We call osp(m, n) an orthogonal-symplectic superalgebra (for n =0 or m =0
it turns into an orthogonal or symplectic Lie algebra, respectively).

Let us find the explicit matrix form of the elements of osp(m, 7). We treat
two cases separately.

m =21+ 1. In some basis the matrix of the form F can be written as

0 1, 0

L, OO

0 0 1
(017
~1, 0

a b u x X
¢ —ar ) Yy N
—oT —ul 0 z 2|
3
o oxT 2T | d e
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here a is any (I X I)-matrix; b and ¢ are skew-symmetric (! X I)-matrices;
d is any (r X r)-matrix; e and f are symmetric (r X r)-matrices; # and v are
(! X 1)~matrices; x and y are (! X r)-matrices, and 7 is an (r X 1)-matrix.

In particular, we see that osp(m, n); is a Lie algebra of type B, @C, , and
the osp(m, n);-module osp(m, n); is isomorphic to so,, @ sp,, .

m = 2]. In some basis the matrix of F can be written as

0 1
1, 0

0 1,
-1, 0

from which we see that a matrix in osp(m, 1) has the same form as in the first
case, with the middle row and column deleted.
In particular, we find that osp(m, n); for ] >> 2 is a Lie algebra of type
D; @ C,, and that the osp(m, n)g-module osp(m, n); is isomorphic to so,, & sp,, .
By analogy with Cartan’s notition we set:

B(m, n) = osp(2m + 1, 2n), m>0, n>0;
D(m, n) = osp(2m, 2n), m=2 n>0;
C(n) = osp(2, 2n — 2), n>=2.

We now examine the Lie superalgebra C(n). Subalgebra C(n); consists of
matrices of the form

¢ —at

where a, b, and ¢ are (n — 1 X n — 1)-matrices, b and ¢ being symmetric,
and «€k. Furthermore, C(n) has the consistent Z-grading: C(n) = G_, @
C(n)g @ G, , where G_; and G consist of the matrices of the form (respectively):

00 x x
|y3’1 00

" 0’ 0 T
Y 0 —aT

The representations of C(n); on G_; and G are contragradient, and the C(n);-
module G, is isomorphic to cspy,_ -

607/26/1-3
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Supplement. We consider another realization of osp(m, n). Let V5 be an
m-dimensional space with a nondegenerate symmetric bilinear form ( , ),
and V7 an n-dimensional space with a nondegenerate skew-symmetric bilinear
form ( , );, » = 2r. Then osp(m, n) can be realized as follows:

osp(m, n); = A2V ® Sy, osp(m,n); = Va® V3.
The definitions of the operations are

[a A b, c] = (a, c)eb — (b, €)a, anbeAV,, ceV,;
[aob,c] = (a, c)b + (b, cha, acbe SV, ceV;.

These brackets define brackets on /42V and S2V, in the usual way:
[ab, cd] = [ab, c]d + c[ab, d].
Finally, for e ® ¢, b @ de Vy ® V; we set
a@ec,b®d] = (a,b)cod+ (c,dnanb.

In this realization there is a natural way of defining an interesting Z-grading
of osp(m, n):

osp(m,n) = G, DG, DG, DG, DG,.

To obtain this, we represent Vi as a direct sum of isotropic subspaces V; =
Vi @ Vi. The following decomposition is then a Z-grading:

osp(m, n) = SV @ (VGQ V1) ® (VY @ Vi © A4°Vp) © (V; @ V) @ S5 .

Clearly, G, ~gl, ® so,,, the representations of G, on G, and G_; are con-
tragredient, the Gy-module G, is isomorphic to gl ) so, , and G, to S%l, .

2.1.3. TheLie superalgebraP(n),n > 2. This is a subalgebra of si(n+-1, n--1),
consisted of the matrices of the form:
b
—ar )

=

where tra = 0, b is a symmetric matrix, and ¢ is a skew-symmetric matrix.

2.1.4. The Lie superalgebra Q(n), n > 2. First we denote Q(n) a subalgebra
of sl(n 4+ 1,n 4 1), consisting of the matrices of the form

)
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where tr b = 0. Lie superalgebra Q(n) has one-dimensional center C = (1,,,5)-
We put Q(n) = Q(n)/C.

2.1.5. The Lie superalgebras F(4), G(3), and D(2, 1; «).

ProposITION 2.1.1. (a) There is one and only one 40-dimensional classical
Lie superalgebra F(4) for which ¥(4); s a Lie algebra of type B; @ A, and its
representation on F(4); is spin, ® sly .

(b) There is one and only one 31-dimensional classical Lie superalgebra
G(3) for which G(3); is a Lie algebra of type G, @ A, and its representation
on G(3);.i5 Gy ® sy .

(c) There is a one-parameter family of 17-dimenstonal Lie superalgebras
D(2, 1; o), a € k\{0, —1}, consisting of all simple Lie superalgebras for which
D(2, 1; )5 is a Lie algebra of type A, @ A, @ A, and its representation on
D2, 1; )1 s sly @ sly Q sy .

The proof can be obtained by a direct construction of epimorphisms of
G,-modules S$%G; — Gy satisfying (1.1.3). However, in Section 2.5 (Proposi-
tion 2.5.4) we give an alternative proof, by means of contragredient Lie super-
algebras (cf. [8, 11]).

2.1.6. Properties and uniqueness. From the description of the classical Lie
superalgebras in Sections 2.1.1-2.1.5 above and Propositions 1.2.7 and 1.2.8,
we derive the following result.

PROPOSITION 2.1.2. (a) All the Lie superalgebras A(m, n), B(m, n), C(n),
D(m, n), D(2, 1; o), F(4), G(3), P(n), Q(n) are classical.
(b) For the Lie superalgebras B(m,n), D(m, n), D(2, 1; «), F(4), G(3),
and Q(n) the Gymodule Gy is irreducible and isomorphic to the modules in the
Jollowing list:

G G; Gy | Gy G Gy G; | Gy

B(m, 1) B, ®C,  $04m1 ®Ps F@) By DA, ping ®@shy
D(m, n) D, ®C, Opm D spea ~ G(3) G, DA, G ®@sh
D2, ;) A @A DA Qs ®sh, Q(n) A, adsl,

(c) The Lie superalgebras A(m,n), C(n), and P(n) admit a unique con-
sistent Z~grading of the form G_; @ G, @ G, . Here the Gy-modules G, and G_,
are irreducible and for A(m, n) and C(n) contragredient; they are isomorphic to
the modules in the following list:



34 V. G. KAC

G G, Gyl G G Gy  Gy|G, G| Gy

A(m» n) Am @ An @ k SIm+1 ® SIn+1 ® k C(n) Cn—l @ k CSPan—2 csp;kn—2
A(n,n) A, DA, sl @ sy P(n) A, A%l Sl

ProrosiTiON 2.1.3. Let G =Gz ® Gy be one of the Lie superalgebras
A(m, n), B(m, n), C(n), D(m, n), D(2, 1; o), F(4), G(3), P(n), or Q(n). Then
the Gy-module S2Gy contains Gy with multiplicity 1.

This is not hard to prove, by using the table in [9]. Here we can also exploit
the fact that in the tensor product of two irreducible Gzgmodules, of which
one has a simple spectrum, the multiplicity of any simple submodule is at
most 1.

ProposiTION 2.1.4. Let G = G; P Gy be a simple Lie superalgebra for
which the representation of Gy on Gy is the same as for one of the Lie superalgebras
A(m, n), B(m, n), C(n), D(m, n) where (m,n) # (2,1), F(4), G(3), P(n), or
Q(n). Then G is isomorphic to this algebra.

Proof. Let @: S%G; — Gy be the homomorphism of Gygmodules defined
by the bracket on Gy, and let @’ be the same map for the corresponding super-
algebra, as listed in the proposition. On account of simplicity, & and @’ are
epimorphisms. By Proposition 2.1.3, @ and @’ are projections of S2Gj onto
the same subspace. Since the homomorphism @, to within a constant factor,
determines the superalgebra uniquely, we have to show that ¢ and @ are
proportional projections onto G5 C S§2Gj . If Gy is simple, this is clear; therefore,
we assume that Gj is not simple. The projections ¢ and ¢’ can be decomposed:
D=Q)+ D, + -, D =D + D, + -+, where D, and P’ are projections
onto the center, and ®; and D,/, 7 > 0, are projections onto the simple com-
ponents; @, , D, % 0; by Schur’s lemma, ®; = ¢;D;, ¢; € k*.

Now we observe that the kernel of each bilinear map @; (similarly, @,):
S$2G; — Gy is trivial. For ker @;C G; is a Gy-submodule; therefore, if Gy
is irreducible on Gj, then ker ®; = 0; but if Gy is reducible on Gj, then
Gi = G_; @ G, is a direct sum of irreducible Gz-modules, and if G_; C ker &; ;
then we see again that ker @; = 0 because @G, , G,) = 0.

Now suppose that ¢ and @’ are not proportional. Taking @" = @ + @’
for a suitable ¢ € k, we may assume that ®"(Gi, G;) = Hj is a nonzero ideal
in Gy that does not contain simple component G{* of G of maximal dimension.
From what we have said above it follows that H = Hz ® Gj is a simple Lie
superalgebra. Evidently, in all cases listed in the proposition the Hzgmodule Gj
contains more than two irreducible components. This contradicts Proposition
2.2.2 below, and Proposition 2.1.4 is proved.
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2.2. Splitting of the Classification of Classical Lie Superalgebras into Two Cases

 Let G = G; @ Gj be a classical Lie superalgebra. Then G5 = Gy @ C,
where Gy’ is a semisimple Lie algebra and C is the center of G. We treat two
cases separately:

Case 1. The representation of Gy on Gj is irreducible. Then Gy is a semi-
simple Lie algebra. If this is not so, then there exists a center element z € Gy
for which [z, g] = 2g for a g € Gy, a contradiction.

Case II. The representaﬁon of Gy on Gj is reducible. Then we consider
in G a proper maximal subalgebra L, containing Gj. We construct the appro-
priate transitive filtration (see Section 1.3.1) G =L_; DL DL, D -+, where

L, ={aeL_,|[¢,L]CL_;}, i>0.

Let GrL = @, Gr; L, where Gr,L =L,/L, ; is an associated Z-graded
Lie superalgebra. This filtration induces one on Gy G5 = (LyN G5)D
(Ly 0 Gg) D ---. Since Gy is a reductive Lie algebra, we see that L, N G; = 0.
Since the Z-grading of Gr L is consistent with the Z,-grading (Proposition 1.3.2),
we have Gr Gy = @;34 Gry; L, from which it follows that Gr,L = 0, because
LinG;=0.

Thus, GrL = Gr_,L @ Gr,L ® Gr,L. From Proposition 1.3.2 and
Proposition 1.2.11, we now obtain:

Lemma 2.2.1. Let G = Gy @ Gy be a classical Lie superalgebra for which
the representation of G5 on Gj is reducible. Then G has a filtration G = L_; D
Ly DO L, with the following properties:

(a) transitivity;

(®) L= Gy®Ly;

(c) the representations of Gz on L_y/L, and on L, are irreducible;
(d) either the representation of Gy om L, is faithful or dimL, = 1.

We now derive from Lemma 2.2.1 the following result:

ProrosiTioN 2.2.2. Let G = G5 @ G; be a classical Lie superalgebra for
which the representation of Gy on Gy is reducible. Then G has a filtration G =
L_,DLyDL, for which GrL = Gr_,L @ GroL @ Gr,L is a simple Z-graded
Lie superalgebra; the representations of GryL on Gr,L and Gr_y L are faithful
and irreducible, (GrL); = GryL ~ Gy, and the representation of G5 on Gy is
equivalent to that of GryL on Gr_yL @ Gr, L.

Proof. 1If the center of GryL is nontrivial, then L ~ GrL, according to
Proposition 1.3.1, and there is nothing to prove. But if it is trivial, then
[Gr_, L, Gr, L} = Gr,L, by Proposition 1.2.9. If, in addition, the representation
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of GryL on Gr, L 1s faithful, then all the conditions of Proposition 1.2.8 are
satisfied, and therefore, GrL is simple.

According to Lemma 2.2.1 it only remains to show that the case dimZL, = 1
is impossible. Now G =V @ G; @ L, is a decomposition into the direct
sum of Gg-invariant subspaces, [V,L,] = Gy and [V, V]C G, from parity
arguments, and [Gy,L,] = 0. Hence, it follows that V' @ Gy is an ideal in G,
which contradicts simplicity.

Thus, Case II leads us to a classification of the simple Z-graded Lie super-
algebras G = G_; @ G, @ G , with G, = Gj, where the representations of G,
on G, and G_, are faithful and irreducible.

2.3. Classification of Lie Superalgebras with Nondegenerate Killing Form

2.3.1. Definition and properties of the Killing form. 'The Killing form on a
Lie superalgebra G is the bilinear form

(a, b) = str((ad a)(ad b)).

From the properties of the supertrace (see Proposition 1.1.2) we obtain cor-
responding properties of the Killing form.

ProposiTION 2.3.1. The Killing form on a Lie superalgebra Gz @ Gy has the
following properties:

(a,0) =0  for aeG;, beG;  (consistency),
(a, b) = (—1)degaraen(p, g) (supersymmetry),
([a, b], ¢} = (a, [b, €]) (invariance).

From Proposition 2.3.1 we derive, in particular, the next result.

ProrosiTiON 2.3.2. If the Killing form on G = G5 @ Gy is nondegenerate,
then its restriction to Gy is nondegenerate, and its restriction to Gy gives a non-
degenerate bilinear skew-symmetric form that is invariant under the representation

of Gy on Gy .

Just as for Lie algebras (see [10], for example), we can prove the following
two propositions.

Prorosition 2.3.3. A Lie superalgebra with a nondegenerate Killing form

splits into an orthogonal direct sum of Lie superalgebras (with nondegenerate
Killing forms).

ProposITION 2.3.4. Every derivation of a Lie superalgebra with nondegenerate
Killing form is inner.
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- ProrosITION 2.3.5. Let G = @ G; be a Z-graded Lie superalgebra with
nondegenerate Killing form. Then

(@ (G:, G!) =0 for i #+ =

(b) (a,G)) #0 foracG_;, a #0,

(c) the representations of G, on G, and G_; are contragredient,
(d) there is an element = € G, for which [z, g] = sg for ge G, .

Proof. IfacG;,beG;,then (ad a)(ad b) for i + j # Qs clearly a nilpotent
operator on Gj therefore, (a, b)) =0, which gives (a). Now (b) follows from
(a) and the fact that the Killing form is nondegenerate; (c) follows from (b).

Let us prove (d). The endomorphism D for which D(g) = sg for g€ G,
evidently gives rise to a derivation of degree 0. According to Proposition 2.3.4,
this derivation is inner.

Now let G = G @ Gj be a Lie superalgebra. On G we can define two
bilinear forms: '

(@, b)y = tr(ad a)(ad b)|g; and (4, b), = tr(ad @)(ad b)|;. (2.3.1)
By the definition of the Killing form:

(ab) = (@ b)— (a,b)y for a,beGy. (23.2)

From (2.3.1) and (2.3.2) it follows that if G5 = Gy @ Gj is a direct sum of
Lie algebras and Gy’ is simple, then

(a,b) = (1 — 1), b)y for a,beGy, 2.3.3)

where [ is the index of the representation of Gy’ on Gj (see Section 1.4.3).

PRrOPOSITION 2.3.6. A -simple Lie superalgebra G = G; @ G; with non-
degenerate Killing form is classical.

Proof. The unipotent radical N of Gy is known (see [9], for example) to
lie in a kernel of the form ( , ), of the representation of Gy in V. Therefore,
if ae N, be Gy, then by (2.3.2): (a, b)y = (4, b), = 0. It follows that a lies
in the kernel of the Killing form of G. Hence N = 0 and G is a classical Lie
superalgebra, because of Proposition 1.3.2.

By means of the Killing form we can write the Jacobi identity for three
odd elements in a very convenient way. Let G = G; @ G be a Lie super-
algebra with nondegenerate Killing form. We choose in Gj any basis #; and
the dual basis v; relative to the restriction of the Killing form to Ggj. Let
a,b,ce Gy. Then: [a,b] =3, a0, . Multiplying both sides scalarly by «;,
we obtain o; = ([a, 8], ;). Making use of the invariance of the Killing form,
we have: «; = (g, [b, 4;]) = —(a, [4;, b]). Thus, [a,b] = —3; (a, [4;, b])v; .
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Therefore, the Jacobi identity [[a, b], c] + [[b, c], a] + [[c, 4], b] = O gives us:

2 (@ [u:, BD)[vs s €] + (b, [w: 5 Dlos > @] + (e, [u;, al)[ws, ) = 0. (*)

2.3.2. Classification of the simple Lie superalgebras with nondegenerate Killing
Jorm in Case1. In this section we prove the following proposition:

ProrosiTION 2.3.7. Let G = G5 @ Gy be a simple Lie superalgebra with
nondegenerate Killing form for which the representation of Gy on Gy is irreducible
and G; # 0. Then G is isomorphic to B(m, n), D(m, n) with m — n = 1, F(4),
or G(3).

Before the proof we give a lemma.

As we have shown in Section 2.2, Gy is semisimple. Let H be a Cartan sub-
algebra of G, 4 be the system of all roots, and 4’ be that of nonzero roots.
Let & be the system of weights of the representation of Gj on Gj, and
G; = @ V, the weight decomposition. From Proposition 2.3.2 it follows that

(Va, V) =0 for X+ —p; (2.3.4)
if \e &, then —Ae % and (v, , V_,) # 0. (2.3.5)

Let Gz =@ G:;s) be the decomposition of Gy into a direct sum of simple

components. Evidently, this decomposition is orthogonal relative to the bilinear
forms (, ) and (, ),. We denote by (, )((,s) the restriction of ( , ), to G:;s).
Let I, be the index of the representation of G((—,S) in G;. Let &;,...,h,. be a

basis of H formed from bases of the Cartan subalgebras H N Gy~ of G§.
Let }11 oo, B, be the dual basis with respect to ( , ) and ];1 yeony B, With respect to
(, )o- From (2.3.3) it clearly follows that

hy =1 —1)h; for h;eGy. (2.3.6)

In particular,

Killing form is nondegenerate iff [, = 1 for some s. (2.3.7)

Levma 238. (2) IfAe 2, 20 ¢ A, then

/\,)\(,)
oy =3 &2 —o.

(b) If\pe L and X + ¢ 4, then

(s)
@m:z%g%:a
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Proof. We consider the following basis of Gy:
{u} ={e,, a€d’s h;,i = 1,..,71}.
The dual basis with respect to ( , ) is
{o} ={eo,xed;h;,i = 1,...; r}.

Letusprove (a). LetAe . Weseta =c = v, ,b = v_, , where (v, ,v_)) =1
(by (2.3.5) such a vector exists). Now we write the identity (*) for the chosen
bases {«,} and {v;} and the vectors g, b, c. Taking (2.3.4) into account, we have

(@15 [e-2a» vA)lega» va] = 20, Z A(k;) "(”i)-

Therefore, if 2A ¢ 4, then
Y. A(hy) M) = 0. (2.3.8)

Since (), p) = 3 A(B) p(hy) and (A, p)y = X A(h) u(h) for any A pe H¥,
when (2.3.6) is taken into account, it can be rewritten in the form

A A7
o =g &N _o,

8
as required.
(b) is proved similarly, but in (x) we must puta =v,, b =v_,,c =1v,.
This proves Lemma 2.3.8.

Proof of Proposition 2.3.7. If Gy is simple, and A is the highest weight, then

(4, 48 (4,4,
Dy el e M

and by Lemma 2.3.8(a) it follows that 2/ € 4. From Lemma 1.4.1(a) it therefore
follows that Gz-module Gj is isomorphic to sp,, . By Proposition 2.1.4, we now
see that G is isomorphic to B(0, n/2). Since ; = 1/(n - 2) (see Table III),
by virtue of (2.3.7) the Killing form on B(0, #/2) is nondegenerate.

Suppose now that Gj is semisimple, but not simple. We represent Gj in
the form G = G @ Glal, where Gl and G:-,I consist of all simple components
of Gy for which 1 — /; is positive and negative, respectively. As is clear from
Lemma 2.3.8(a), both these subalgebras are nontrivial. Let 4 = A! 4 A" be
the highest weight of the representation of G on Gj (where I and II indicate
that the weight is restricted to the relevant direct summand). We consider a
weight of the form p == p! + AU, where u! 54 44 Observe that, clearly,

A+ péd (2.3.9)
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Next, (4, p) = (A, t) + (A", AY) = (A, p!) + (4, A) — (A4, A7), Since 24 ¢ 4,
by Lemma 2.3.8(a),

(A, B) = (A% ) — (4, A1) (2.3.10)

This relation can be rewritten (see the proof of Lemma 2.3.8} in the form

o 0
(4, p) =3 Lot )°1 — f\A Do (2.3.11)

where the summand is over the simple components occurring in Ggl. Since
A is the highest weight, (4, A){? > (g, p)s? for all s. Therefore, all the terms
in (2.3.11) are negative, by the Cauchy-Bunjakowskii inequality. Consequently,

(4, p) #0. (2.3.12)

Now we can use Lemma 2.3.8(b), according to which it follows from (2.3.9)
and (2.3.12) that A — pe Al Thus, if p! %= —A, then A — ple 4l Of
course, the same is true for Gg. Therefore, we find from Lemma 1.4.1(c)
that the linear representation of Gy on Gy can only be equivalent to the tensor
product of two of the following linear Lie algebras: sp,,, n = 2; sl,, n = 3;
50, ,n == 3; sping ; G, .

We recall now (Proposition 2.3.2) that the representation of G on Gj admits
a nondegenerate skew-symmetric invariant bilinear form. This can only be
the case when one of the factors of the tensor product has a skew-symmetric
invariant and bilinear form and the other an invariant symmetric form.
Therefore, only the following possibilities remain:

(1) som & spn
() spa @ sping,
() @G-

In case (1) we obtain from Proposition 2.1.4 that G is isomorphic to
B(m — 1/2,n/2) for odd m > 1, or D(mf2,n/2) for even m > 2. Since
I, =n/m —2 and I, = m/n 4 2, (Table III), by (2.3.7) the Killing form is
nondegenerate on B(m, n) and also on D(m, n) when m — n 1.

In cases (2) and (3) we use Lemma 2.3.8(a) again:

@Ay @49
T— 1 +9= L= 0. (2.3.13)
In cases (2) and (3), (2.3.13) yields that n = 2 and therefore we see from
Proposition 2.1.4 that G is isomorphic to F(4) and G(3), respectively.
This completes the proof of Proposition 2.3.7.
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2.3.3. Classtfication of the simple Lie superalgebras with nondegenerate Killing
Jorm in Case II. In this section we prove the following proposition.

ProPosITION 2.3.9. Let G = G_, @ G, D G, be a simple Lie superalgebra
with a consistent Z~grading for which the representations of G, on G, and G_;
are faithful and trreducible and the Killing form is nondegenerate. Then G is
isomorphic (even as a Z-graded superalgebra) to one of A(m, n), m 5~ n, or C(n).

The proof of this proposition is based on the same arguments as that of
Proposition 2.3.7. ’

It follows from Proposition 2.3.5 that G, is the direct sum of the one-dimen-
sional center C and the semisimple Lie algebra G,. Here C = (2D, where
[#,£] = +g for g€ Gy, and the representations of G, on G_; and G, are
contragredient. Let H be a Cartan subalgebra of G, 4 its root system, %,
the systems of weights of the representations of G,” on G.,. From Proposi-
tion 2.3.5 it follows that

Z,=—-4, (2:3.14)
(Gl yGy) =(G4,Gy) =0, (2.3.15)
(@, V) #0 for Ae%, —rel,. (2.3.16)

Let Gy = @ G be the decomposition of G, into the direct sum of simple
components. We denote by (, )§ the restriction of (, ), to G{ and by I,
the index of the representation of G in G,. Note that it is also the index
of the representation of G{” in G_, . Just as in Section 2.2, we choose a basis
hy ,..., b, of H, its dual basis A, ,..., &, with respect to ( , ) and 4, ,..., &, with
respect to (, )y. -

From (2.3.3) it follows that

=0 —21)h; for h;eGY. (2.3.17)

In particular,

Killing form is nondegenerate, iff I, 7 } for some s. (2.3.18)
Lemma 23.10. (a)IfAe %, , then

) S
0‘”‘)_28:1—21. TdmG,

(b) If\pe %, and X — p¢ A, then

v’ 1
‘*’”)—21_21, TdmG, ~ O
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Proof. We consider the following basis of G:
{u;} = {e,,acd’s h;,i = 1,...,r; 2}
The dual basis with respect to ( , ) is
{o;} ={e,,aed; b ,i = 1,.,r; —1/2 dim G))z}.

Let us prove (a). Let Ae ¥,. Weset a=c=v_,eG,, b =v,€G,,
where (v, v_,) = 1. (According to (2.3.16) such vectors exist.) We now write
down the identity (*) in the chosen bases {#,} and {v;} and the vectors a, b, c.
Taking (2.3.15) and (2.3.4) into account, we have

02 = TN Mh) — g = O,

from which, using (2.3.17), we obtain (a).
(b) is proved similarly, only in (x) we must pute = v_,€G_,,b = v, € G,
c=v,eG,.

Proof of Proposition 2.3.9. We represent G’ in the form G, = G @ GV,
where G' and Gy consist of those simple components for which 1 — 2I;
is positive and negative, respectively. For definiteness, let Gg' 7= 0. Let
A = A 4 A" be the highest weight of the representation of G, in G, . We
consider a weight of the form p = p! 4 A Just as in the proof of Proposi-
tion 2.3.7 we find that

(A! ,u.) # 0.

From Lemma 2.3.10(b) it now follows that A! — uledl. So we see that if
p € £, then A' — p e 4'. Therefore, we obtain from Lemma 1.4.1(b) that the
G,-module G, can only be isomorphic to a linear Lie algebra si,, or sp, or to any
tensor product of them. So we have the following possibilities for the representa-
tion of G, on Gi:

1) g ®sl,,
(2) espas
Q3) ¢, Rsp,,m>=2,n>=4
4) csp, Rsp,,m=2,n>4.
In case (1), ; = n/(2m), I, = m|(2n) (Table 1II); hence, by (2.3.18), m =~ .
But then we see from Proposition 2.1.4 that G is isomorphic to A(m — 1, n — 1).
In case (2), we derive from the same Proposition 2.1.4 that G is isomorphic

to C((n/2) -+ 1). From (2.3.18) it is clear that the Killing form for these Lie
superalgebras is nondegenerate.



LIE SUPERALGEBRAS 43

That cases (3) and (4) are impossible we deduce from Lemma 2.3.10(a):

4,08  @H® 1
T—2, T T2, ~2d&mG," (23.19)

In case (3), (2.3.19) yields

m—1_ 1 1
m(2m —2n) ' An+2—2m)  2mn’

so that either m = 1 or n = 2,
In case (4), (2.3.19) yields

1 N 1 1
2m+2—2m) 2(m—+2—2n) 2mm’

which is impossible,

Thus, cases (3) and (4) cannot occur. This completes the proof of Proposi~
tion 2.3.9.

2.3.4. Conclusion of the classification of simple Lie superalgebras with non-
degenerate Killing form.

THEOREM 1. A4 simple finite-dimensional Lie superalgebra G = Gz @ Gy with
nondegenerate Killing form is isomorphic to one of the simple Lie algebras or to
one of the following classical Lie superalgebras:

A(m, n) with m + n, B(m, n), C(n), D(m, n) with m — n 3 1, F(4), or G(3).

Proof. From Proposition 2.3.6 it follows that G is classical. In accordance
with Section 2.2 we have to discuss two cases.

Case 1. The representation of Gy on Gj is irreducible. Then Theorem 1
follows from Proposition 2.3.7.

Case 11. 'The representation of Gy on Gj is reducible. In that case, according
to Lemma 2.2.1, G has a filtration G =L_; DL DL, for which GrG is a
Z-graded Lie superalgebra satisfying all the conditions of Proposition 2.3.9,
(Gr G)5 =~ Gj, and the (Gr G)y-module (Gr G); is isomorphic to the Gj-
module Gj. By Proposition 2.3.9, Gr G is one of A(m, n), m % n, or C(n).
From Proposition 2.1.4 it now follows that G ~ Gr G, and the theorem is
proved.

2.4. Completion of the Classification of the Classical Lie Superalgebras

The classification of the classical Lie superalgebras is given by the following
theorem.
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TueoREM 2. A classical Lie superalgebra is isomorphic either to one of the
simple Lie algebras A, , B, ,...,Eg, or to one of A(m, n), B(m, n), C(n), D(m, n),
D(2, 1; «), F4), G(3), P(n), or Q(n).

By virtue of Theorem 1 and of Proposition 1.2.6, what remains to be proved
is the following proposition.

ProrosiTION 2.4.1. A classical Lie superalgebra G = Gz D Gy with zero
Killing form is isomorphic to one of A(n, n), D(n + 1, n), P(n), Q(n), or D2, 1; «).

2.4.1. Beginning of the proof of Proposition 4.1.

LemMa 24.2. Let G = G; @ Gy be a Lie superalgebra with zero Killing
form for which the representation of Gy on Gy is faithful and completely reducible.
Then the index I; of the representation of any simple component G0 of G on Gy
is 1. In particular, the index of the representation of G on any irreducible com-
ponent of Gy does not exceed 1.

Proof. By (2.3.3), (a,b) = (1 — 1)(a, b), for a, beG— Since (a,b) =0
and (a, b), is nondegenerate on G , we see that [; = 1.

2.4.2. Classtfication of the classical Lie superalgebras with zero Killing form
in Case 1.

ProposttioN 2.4.3. Let G = G; @ Gy be a simple Lie superalgebra with
zero Killing form for which the representation of Gz on Gj is irreducible. Then G is
isomorphic to one of Q(n), D(n + 1, n), or D(2, 1; ).

Proof. As we remarked in Section 2.2, Gy is semisimple. Therefore, the
representation of Gj on Gj is equivalent to the tensor product of some simple
irreducible linear Lie algebras:

G4(Gy) = GOV ® - ® GE(Vy). 2.4.1)

Let ll ,eey I be their indices. Then, clearly, the index /; of the representation
() .
of G on Gj is equal to

L, =1L dimV, =1, (2.4.2)

s#6

according to Lemma 2.4.2.

If Gy is simple, then [, = /; = 1, and so (see Section 1.4.3) the representation
of G; on Gj is the adjoint one, and an epimorphism of Ggmodules, S2G; — G
exists only when Gj is of type A,, (see [9], for example). From Proposition 2.1.4,
it follows that this case leads to Q(n).

Now suppose that Gy is not simple. Then it follows from (2.4.2) that [; = #;?,
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where #; > 2 is an integer. If ¢; < 4, then [],,, dim ¥V, < 4 by (2.4.2); hence,
dim V, < 4 for s # i. From Table III (see Section 1.4.3) it is clear that. if
dim V, < 4, then ¢, < 8, and by (2.4.2), then dim V; < 8. Thus, from ¢ < 4
it follows that dim V; < 8. From Table III we can now see that only s/, ,
$py50, , 8pin, , and G, can occur in (2.4.1). We claim that the last two cases
are impossible. If G§'(V;) = spin; in (2.4.1), then s = 2 and dim ¥V, = 5.
But then G'?)(Vg) = sl; or so;. In the first case [, = &;, and in the second
L=2%.If GP(V) =G,, then GGy = G, ®sl, or G,®sl, Qsl, or
G; ® sp, . In the first case I, = §, in the second [, = Z, and in the third
l, = % . Hence, only sl,, sp,, and so, can occur in (2.4.1):

" Gy(Gp) = 51, @+ @ 5l ® 5Pr, ® * @ 5y @ 50, @+ ® 50,

where 2 <m < <A, d< < <, 5<m << <m

Relations (2.4.2) can be rewritten in the form "

(11 =) = 2 @43
(I:I n Il 7 Al m) =742 (2.4.49)

([N K] =2 @49

From these relations it is evident that « << 3, 8 <2, y < 1. If « = 3, then
it is clear from (2.4.3) that %(Gl) = sl, ® sl, ® sl, , and we have D(2, 1; §).
If « =2, the only possibility is Gg(Gy) = sl, ® sl, ; but then n, = 2n,,
n2 = 2n, , which is impossible. If 8 = 2, then by @. 44) the only possibility
is G§(Gy) = sp, ® spr4s , which clearly cannot be realized. If « =8 =y =1,
then we have by multiplying (2.4.3), (24.4), and (2.4.5), mr’m? =
2(r, + 2)(m, — 2), which is impossible. The cases « =8 =1, y =0 and
a =y =1, B =0, are also impossible. There remains the case Gy{Gj) =
sp, ® so, . Then n = r - 2 (see Table III).

Thus, the only remaining possibility for the representation of Gz on Gj is
$0p.9 ® spn, n > 2. This is, in fact, realized for D(n/2 + 1, n/2). By Proposi-
tion 2.1.4, there can only be one superalgebra with this representation of Gj
on Gj . This proves the proposition.

2.4.3. Classtfication of the classical Lie superalgebras with zero Killing form
in Case II.

PrOPOSITION 2.44. Let G = G_, @ G, P G, be a simple Lie superalgebra
with a consistent Z~grading for which the representations of G, on G, and G_,
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are faithful and irreducible, and the Killing form is zero. Then G is isomorphic
(even as a Z-graded superalgebra) to one of A(n, n) or P(n).

Before the proof we give two lemmas.

Lemma 2.4.5. Under the conditions of Proposition 2.4.4, G, is semisimple.

Proof. If the center C of Gy is nontrivial, then by Proposition 1.2.12, there
exists a 2 € C such that [z, g] = 4-¢ for g € Gy, . But then, clearly, (2, 3) =
—dim G_; — dim G, , which is impossible, because the Killing form is zero.

LemmMa 2.4.6.  If under the conditions of Proposition 2.4.4 the representations
of Gy on G, and G_, are contragradient, then the highest weight of the representation
of G, on Gy must have more than one nonzero numerical mark.

Proof. Let H be a Cartan subalgebra of Gy, o ,..., «, its system of simple
roots, Ay ,..., h, a basis of H, where h; = lea, > €0} ah) =2. If E% is the
lowest weight vector of the representation of Gy on G_y, and F_,, the highest
weight vector of that of G, on Gy, [E, ,F_, ] = hy€ H, hy # 0 (see Proposi-
tion 1.2.10(a)), then

ay(hy) =0, (2.4.6)
wlhy) =0  for ayh;) =0, (2.4.7)
det(c;(h;))}s0 = O. (2.4.8)

(2.4.6) follows from 0 = [E, , [E, ,F_%]] = —2ay(ho)F,,, (2.4.7) is obtained
by multiplying both sides of [E, ,F_,] = hy by ¢,,, and (2.4.8) follows from
the linear dependence of the vectors kg, Ay ,..., £, .

Suppose now that «y(h,) 5= O for one s only. Then o,(h,) % O; otherwise,
ky = 0 by (2.4.6) and (2.4.7), and the remaining elements of the first column
are zeros. By hypothesis, ag(k,) % 0, but the remaining elements of the first
row are zeros. It then follows that det(a;(%;)) = ay(h,) a,(h) det A, where 4 is
the Cartan matrix of the Dynkin diagram of G,, with the sth circle omitted.
Since det A4 =~ 0, we have reached a contradiction to (2.4.8).

We divide the proof of Proposition 2.4.4 into two cases corresponding to the
following two lemmas.

Levmma 2.47. If under the conditions of Proposition 2.4.4 the representations
of G, on G_; are contragradient, then G is isomorphic to A(n, n).

Proof. By Lemma 2.4.5, the representation of G, on G| is equivalent to the
tensor product of some simple irreducible linear Lie algebras:

Gy(Gy) = GP (V) ® - @ GP(V,).
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Let 1 ,..., I, be their indices. Since contragredient representations have equal
indices, the index of the representation of G{? on G, is } (by Lemma 2.4.2).
Therefore,

L] dimV, =1 (2.4.9)
L

If G, is simple, then we see from (2.4.9) that /; = . From Table III it is
clear that there are only the two possibilities for Gy(G)): A%ly and A%sp, .
Both cannot occur according to Lemma 2.4.6.

Suppose now that G, is not simple. From Table III it is clear that
2(dim V;)/; > 1 and that equality holds for s/, only. Therefore, we see from
(2.4.9) at once that the only possibility for Gi(G;) is s, ® sl, . By Proposi-
tion 2.1.4, G is then isomorphic to A(n — 1, n — 1), and the lemma is proved.

LeMMA 2.4.8. Under the conditions of Proposition 2.4.4, if the representations
of G, on G_, and G, are not contragredient, then G is isomorphic to P(n).

Proof. It follows from Lemma 2.4.5 that G, is semisimple, and from
Proposition 1.2.10 (and Propesition 1.2.1) that G, is simple. Thus, the relevant
pair of representations of G, on G_, and G, can only be one from Table III,
for which the sum of the indices is 1. This leads to the following cases:

(1) sly and A3l ;

(2) sk* and A3l ;

(3) A%l, and S%l,, n > 4;
(4) A%l,* and S%I, .

Proposition 1.2.10(b) imposes yet another restriction: If A is the highest
weight of the representation of G, on G_; and M is the lowest weight of that
on G, , then A + M is a root of G . This rules out cases (1)(3) at once. The
fourth case corresponds (on the basis of Proposition 2.1.4) only to P(n), and
the lemma is proved.

The conclusion of the proof of Proposition 2.4.1 proceeds verbatim on the
same lines as that of Theorem 1 (see Section 2.3.4), on the basis of Propositions
2.4.3 and 24 4.

This completes the proof of Theorem 2.

Additional Remark. The following authors independently obtained clas-
sification results on classical Lie superalgebras under the following restrictions:

A. Pais and V. Rittenberg, J. Math. Phys. 16 (1975), 2062-2073, Gy is
simple and the Killing form is nondegenerate.
D. Z. Djokovic, J. Pure Appl. Algebra T (1976), 217-230, Gj is simple.

P. G. O. Freund and I. Kaplansky, J. Math. Phys. 17 (1976), 228-231,
G; is reductive and G admits bilinear invariant form.

607/26]1-4
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W. Nahm, V. Rittenberg, and M. Scheunert, Phys. Lett. B 61 (1976),
383-385, Killing form is nondegenerate (and later all classical ones in Journal
of Math. Phys. 17 (1976), 1626-1640).

2.5. Contragredient Lie Superalgebras

2.5.1. Definition of the superalgebras G(A, 7). Let A4 = (a;;) be an (r X r)-
matrix with elements from a field & and = be a subset of I = {1, 2,...,7}. Let
G_,, G,, and G, be vector spaces over k with bases {f.}, {#;}, and {e;}, i €1,
respectively. As is easy to see, the following relations determine the structure
of a local Lie superalgebra G(4, 7) on the space G_; @ G, @ G;:

leis fi] = sy, (#; 5 h;] =0,
[, &5] = aue; [2:, fil = —aifis
degh;, =0, dege;, =degf,=0 for i¢nr,
dege; =degf, =1 for ier.

According to Proposition 1.2.2, there exists a minimal Z-graded Lie super-
algebra G(4, 7) with local part G(4, 7). We call G(4, r) contragredient Lie
superalgebra, A its Cartan matrix, and r its rank. Note that when 7 = ¢, we have
contragredient Lie algebras whose theory is developed in [11].

When #; is replaced by ck; and f; by cf;, c € k*, then the ith row of 4 is
multiplied by ¢. Therefore, we may (and will) assume that if a; 5= 0, then
a; = 2. If we can obtain the pair (4, ¥) from (4, r) by multiplying several
rows by nonzero constants and renumbering the indices, then we regard (4, 7)
and (4, ¥) as equivalent; the corresponding contragredient Lie superalgebras
are isomorphic.

Observe that if I, CI, 4, is the corresponding principal minor of 4, and
7, = I, N 7, then the subalgebra of G(4, r) generated by the elements e, ,
Jfis and k;, €1, is isomorphic to G(4,, 7). Note also that if 4 is decom-

posable,
1= (3 4)

then G(4, 7) splits into the direct sum of the algebras with the Cartan matrices
A, and 4,.

Let H = <{hy ..., h,), let o ,..., o, be the linear functions on H defined
by the relations «;(h;) = a;;, ] = 1,..., 7, and let M be the free Abelian group
with the generators (xl ” ozr. We set G, =<[[e;, €], 60, Gy =
ooy s Fidoos 0 .

Asin [1 1] it is easy to show that G(4,7) = H® (@ G)).

Many assertions about contragredient Lie algebras in [8, 11] remain valid
for Lie superalgebras (with the same proofs). Here we state only those that
are needed in what follows.
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ProposITION 2.5.1. The center C of G(A, 7) consists of the elements of the
JormY yh;, where Y ayy; = 0.

ProrosiTiON 2.5.2. Let G(A, 1) be finite-dimensional and C be its center.
Then G(A, 7)/C is simple if and only if

Jor any i, j € I there exists a sequence i, ,..., i, €1

m
fof which a,~,-1a,-l¢’ yoeny ai‘, #: 0. ( )

ProrosiTiON 2.5.3. Suppose that G(A, ) is finite-dimensional and satisfies
(m). Then on G(A,7)/C there is a nondegenerate consistent supersymmetric
tnvariant bilinear form. This induces a form ( , ) on G(4, ) having the following
properties:

(1) The kernel of the form ( , )is C;

2) (G,, Gg) =0 when o = —B;

(3) the form ( , ) determines a nondegenerate pairing of G_, with G, ;

4) [es,e ] = (€, _o)hs, where h, is a nonzero vector in H for which
(A, , k) = a(h), ke H.

Proof. The mapping 6: ¢; > —f; , h; > —h; , f; > —(—1)3®8¢; evidently
induces an automorphism of G(4, 7)/C. Hence, all the conditions for Proposi-
tion 1.2.5 are satisfied and the required form exists. The remaining properties
are proved as in [11].

2.5.2. Existence of the exceptional Lie superalgebras D(2, 1; «), F(4), and G(3).

ProrosiTiON 2.5.4. We consider the following matrices (o« € /{0, —1}):
0 1 0 O

01 0 1

D,=|-1 20, F=|"L 2720 g _1_1 2-3]

. l-1 02 0-1 2-1 0—1 2
0 0—1 2 )

(@) For GD,,{1}), G(F,,{1}), end G(Gy,{1}) the Gymodule Gi 1s
isomorphic to sly ® sly @ sly, spin, ® sly , and Gy & sly, respectively.

(b) The G(D,,{1}) exhaust all simple Lie superalgebras G = Gy @ Gi
for which the Gymodule Gy is isomorphic to sly ® s, @ sly,. Two members
D(2, 1; «) and D(2, 1; B) of this family are isomorphic if and only if o and B
lie in the same orbit of the group V of order 6 generated by a > —1 — o, o +—> 1/a.

Proof. (a) and the condition for isomorphy of members of the family
D(2, 1; a) are established exactly as for [8, Proposition 3.6].
Now let G = G5 @ G be a simple Lie superaigebra for which the G-
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module Gj is isomorphic to sl, ® sly @ sl . Then Gy — A ® AP @ A®,
where Al — {es, s ho, s fo) Let € and f; be the lowest and highest weight
vectors. Since G is simple, [¢; , fi] = h, 7% 0. We define aZ-grading G = @ G;
on G by setting G_; = <A vfa2 )fa3>) G, = <hys hm2 s ha2>) and G, = ey, ay s ea3>'
Then G is equipped with the structure of a contragredient Lie superalgebra

G(A, 7), where
0 (k) "‘3(}’1)]
A=1-—1 2 0 |, T = {l1}.
—1 0 2

Since G is simple, ay(hy), ag(h,) 5= 0. So we have G ~D(2, 1; ag(hy) a(hy)1).

Remark. The family D(2, 1; o) becomes a family of Lie algebras if the
characteristic of the field is 2. This family of Lie algebras is studied in [8].
Note that group V has three exceptional orbits: {0, —1, o0}, {1, —2, —1},
and {—% 4 ¢312/2}. D(2, 1) corresponds to the second orbit. Superalgebra,
corresponded to the third orbit, admits an outer automorphism of order 3.

2.5.3. The root decomposition of the classical Lie superalgebras. Let G =
G5 @ Gj be a Lie superalgebra and H be a Cartan subalgebra of Gj. We call
H a Cartan subalgebra of G. Since every inner automorphism of Gj extends
to one of G (see Proposition 1.1.1) and Cartan subalgebras of a Lie algebra
are conjugate, so are Cartan subalgebras of a Lie superalgebra.

A Cartan subalgebra of a classical Lie superalgebra is diagonalizable. There-
fore, we have the root decomposition:

G=®G,, where G, ={aeG|[h,a]l = ao(h)afor he H}. (2.5.1)
acH*

The set 4 ={ae H*| G, 5= 0} is called the root system. Clearly, 4 =
dy U 4, , where 4 is the root system of Gy and 4, is the system of weights
of the representation of G on Gj ; 4, is called the system of even and 4, that of
odd roots.

A straightforward inspection of examples of classical Lie superalgebras
together with standard arguments from the theory of Lie algebras yields the
following information on their root decompositions.

ProposiTION 2.5.5. Let G be a classical Lie superalgebra and let G = @ G,
be its root decomposition relative to a Cartan subalgebra H.
(a) G, = H in all cases except Q(n);
(b) dim G, =1 for « 5 0, except for A(1, 1), P(2), P(3), and Q(n);
(c) On G there is one and, up to a constant factor, only one nondegenerate
invariant supersymmetric bilinear form ( , ), except for P(n) and Q(n).
(d) 4, and 4, are invariant under the Weil group W of Gy.
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(e) If G is A(m, n), (m,n) # (1, 1), B(m, n), C(n), D(m, n), D(2, 1; o),

F(4), or G(3), then the following properties hold:

(1) [Ga,Gs] + 0 if and only if o, , o + B e 4

@) (61 Gy) =0 for o = —;

(3) the form ( , ) determines a nondegenerate pairing of G, with G__ ;

4) lesse_s] = (ex, )b, where h, is the nonzero vector determimed
by (ha ’ h) = &(h), heH;

(5) ifaisind (or 4y, or &), then so is —a;

(6) kaed for « # 0, k % 1, if and only if ac€d; and (o, &) # 0;
here R = 2.

2.5.4. Explicit description of the system of roots and of simple roots. A system
of roots IT = {&; ..., %} C 4 is said to be simple if there are vectors ¢;€ G, ,
fie G_,,, for which [e;,f;] = 8h, € H, the vectors ¢; and f;, i = 1,..,7,
generate G, and I7 is minimal with these properties. Below we describe for
A(m, n), B(m, n), C(n), D(m, n), D(2, 1; ), F(4), and G(3) the systems of
even nonzero roots 4, and of odd roots 4, , and all systems of simple roots,
up to W-equivalence.

In all the examples the Cartan subalgebra H is a subspace of the space D
of diagonal matrices; the roots are expressed in terms of the standard basis
¢; of D* (more accurately, the restrictions of the ¢; to H).

A(m, n). The roots are expressed in terms of linear functions ¢, ..., €541 ,
8) = €mig s Sy = €minya-

Ay ={es— ;38— 8}, i#f 4y ={x(— )

Up to W-equivalence, all the systems of simple roots are determined by two
increasing sequences S ={s; < 5, < ~}and T = {f; < 1, < -} and a sign:

IIgr = t{e; — €3, € — €550y €4 — 81, 8y — 83500y 8y — €44y 400}
The simplest such system is
{1 — €3y €3 — €3 4eeny €pyq — 81, 0p — 85 4000y 8y, — 8y}

B(m, n). The roots are expressed in terms of linear functions ¢ ,..., €p,

8] = €3mi1 9009 On = €amin -
Ay ={te; + ¢ ; £28;; te ;5 +8; 18}, RN H 4y ={+8;; +e; 4+ 8}

Up to W-equivalence, all the systems of simple roots are determined by two
increasing sequences S and T

HS,T = {El — €g guiey E,l —_ 81 1y 81 -_ 8’ gooey 8tl - €,l+1 yossy :}:8,, (Or j:fm)}.
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The simplest such system is

{81 - 82 yerey 811 T €15 € T €250 €y T €y €m}
if m > 0, and
{81 - 82 yeeey Sn—l - 87» s Sn}
if m =0.

C(n). The roots are expressed in terms of linear functions ¢, §; = ¢ ,...,

Ong = €41 -
AO, = {izaz 3 :l:ai =+ 87‘}; Al = {:!:51 + 81‘}~
Up to W-equivalence there are the following systems of simple roots:
F{eg — 81,8, — 85,00y Bpp — 8py 5 28, 4);

:|:{81 - 82 yoary O3 — €1,€ — 8i+1 yeey Sn—z - 871—1 ) 287»—1};
{8 — 8y 1oy Oy — 81, Oy — €, 8ny T &l

D(m, n). The roots are expressed in terms of linear functions ¢ .., €y,

81 = €am41 e 8n = €am+n -
4y ={Fke Lt e; 1285 £8; £8), 1#j 4y ={de £}

Up to W-equivalence, all the systems of simple roots are determined by two
increasing sequences S and T, and a number:

1
I r = {eg — €50 €5, — 83,8 — 8540 8y — €4 1140y €g — € s €y + €y
(01‘ On — €m > Sn + Em)};

2
Hsr = {eg — €y ,ey €0, — 87,8, — 85 .0, 8

 Cutt reens Sy — By, 28,3,

1
The simplest such systems are

{81 - 82 3oy 6% €5 €] " €400y €1 T €y €y T Em};

{51 T € yeeny €y T 81 1y 81 - 82 yaesy 8"_1 - 811 5 28”}'

D(2, 1; o). The roots are expressed in terms of linear functions ¢, ¢,
and ;.

4y = {£2¢}; 4, ={t+ea + & + &}
Up to W-equivalence there are four systems of simple roots:

{4+ €2 + €3, —2¢;, —2¢;, S ,7=1,273;

{€1+€2+€3,€1—€2—€3,—61‘624-63}-
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F(4). The roots are expressed in terms of linear functions ¢, ¢;, €5,
corresponding to By, and 8, corresponding to A, .

4y ={te +¢; te; 10} i1 #£J; 4, = {¥(te £ & + ¢ - 0)}.

Up to W-equivalence there are four systems of simple roots:

Hateateatd —aqg—a,a—e)

{8, ¥es+ e+ €+ 8), —€, 6, — €3};

Hataeateatd —ateetea—2y)H—qg—a—etd)eag—ea)
Hateateatdia—a—eag—290)a—e¢,6—c)

G(3). The roots are expressed in terms of linear functions ¢, €, €,
corresponding to G, , ¢ + € + €; = 0, and §, corresponding to A, .

4y ={e; — €;; +e€;; +26}; 4y = {+e; I 8; +8).

Up to W-equivalence there is a unique system of simple roots:
P+ea, e, a—e)

2.5.5. Examples of finite-dimensional contragredient Lie superalgebras. Exam-
ples can be obtained in the following manner. Let G be one of the Lie super-
algebras si(m + 1, n + 1), B(m, n), C(n), D(m, n), D(2, 1; ), F(4), or G(3).
Let H be a Cartan subalgebra, IT be one of its systems of simple roots (listed
in Section 2.5.4 above), and ¢; and f; be the corresponding nonzero vectors
in G, and G_, , respectively, o, € II. Then the vectors [e, , f;] = h; form a
basis of H. Settmg dege; = —degf; = 1, deg h; = 0, we define a Z-grading
on G. Since G is simple modulo its center, G is the minimal Z-graded Lie
superalgebra with the local part G_; @ Gy @ Gy . In this way the structure
of a contragredient Lie superalgebra is introduced in G. Its Cartan matrix is

— (oy(hy)), and 7 = {ie] | e 4.

In the next section we show that these examples exhaust all simple modulo
center finite-dimensional contragredient Lie superalgebras.

"We now list all the resulting pairs (4, 7), up to equivalence. For this it is
convenient, as usual, to introduce Dynkin diagrams. To begin with we extract
from our examples in Tables IV and V all the contragredient Lie superalgebras
of rank 1 and 2 with indecomposable Cartan matrices, the corresponding
pairs (4, 7), and Dynkin diagrams, The circles O, ®), and @ are called, respec-
tively, white, gray, and black. Contragredient Lie superalgebras of rank r are
depicted by a diagram consisting of r white, gray, or black circles; the ¢th circle
is white if 7¢ 7 and gray or black if e+ and a;; = 0 or 2, respectively. The
ith and the jth circles are not joined if a;; = a;; = 0; otherwise, they are
joined as shown in Table V (note, that isomorphic Lie superalgebras may
correspond to different Dynkin diagrams).
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TABLE IV
G4, 7) 4 . Diagram dim G(4, 7)
A, @ ¢ 0 3
sl(1, 1) 0) {1} ® 3
B(O, 1) @ B . 5
TABLE V
G4, 7) 4 . Diagram  dim G(, 7)
N
B, ( _; - ;) ¢ 0=0 10
G, (_§ ";) ¢ 030 14
AQ, 0) (] ) W o—o g
wo  (TY wa e
B(L, 1) (5 ) M =0 12
B(1, 1) (s ) w02 oo 12
B(0, 2) (_27) o o=e 14

Matrix A also satisfies the following restrictions. If a;; = 0, then in every
submatrix of order 3 with a;; in the center, the diagram of which is not a cycle
and does not contain two arrows, the sum of the elements of the second row
is 0. For the diagram ® « ® — O, it is always a,; = —2a,, and for the
cycle,

®

I\
O_®y
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it is always @y = —24a,, . We introduce matrices
2—-1 0 0 1 —1—«
D,={1 0 «), D/= 1 0 o .
0—1 2 —1l—a « 0

®

I\
O«®->0 and @—®

always correspond to matrices D, and D/, respectively, and « = 1 unless the
contrary is stated.
The following proposition is 2 consequence of the results in Section 2.4.

PROPOSITION 2.5.6. Let G be one of A(m, n), B(m, n), C(n), D(m, 5), D(2, 1; o),
F(4), or G(3) and let G ~ G(A, 7)/C, where C is the center. Then C + O only
for A(m, n) and in this case dim C = 1. The diagrams of the pairs (4, 7) can be
described as follows (each point can be a white or a gray circle):

A e
B ........... 30, ........... =>@
O
1
C’D ........... _>O,
— o __O¢o’ — __..._;.1__®_>O,
®
AN
........... _®
D(Z’l;a) O<—®—>O) A=DB’ B=av_(l+a),'—a(l+(!)_1
® .
VRN
® ®a A=Dal
F8) ®—0<«=0—0, O0—0+B®-—>Q

®
I\
0=0«®—>0, 0O+,

where for the last two diagrams, subdiagrams without the first circle correspond
to matrices D_y and D, , respectively.

GB3 ®—0<«O.
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Below (Table VI) we list the “simplest” diagrams, the coefficients of the
decomposition of the highest root into simple roots, the index s of the only
nonwhite circle, and the number r of the circles.

2.5.6. The classtfication of finite-dimensional contragredient Lie superalgebras.

Turorem 3. Let G(A, 1) be a finite-dimensional contragredient Lie super-
algebra whose Cartan matrix satisfies condition (m) of Proposition 2.5.2, and let
C be its center. Then G' = G(4, )/C is classical, and (A4, 1) is equivalent either
to one of the pairs listed in Proposition 2.5.6 or to (4, ), where A is the Cartan
matrix of a simple Lie algebra.

Proof. According to Propositions 2.5.1 and 2.5.2, CC H and G’ is simple.
Therefore, by Theorem 2 and Proposition 2.5.6, it is sufficient to show that
the linear Lie algebra Gy acting on Gj’ is reductive.

According to Proposition 2.5.3, on G’ there exists a nondegenerate invariant
bilinear form ( , ). We consider a new form on G": f(x,y) = (x, 8y),
where 0 is the automorphism from the proof of Proposition 2.5.3 (6(G,) =
G_,). Clearly, the restriction of f to G, is nondegenerate, and the operators
ad e, and —ad fe, are dual with respect to this form. Hence, it follows that
[e., Oe,] =k is a nonzero element of H. For otherwise we would have two
dual nonzero commuting nilpotent operators, which is impossible.

Now let R be the radical of Gy'. Evidently, R is graded relative to the root

TABLE VI
G Diagram s ’
1 1 1 1 1
A(m, n) O—Q=—rt = — Q= *—0O m - 1 m+n41
2 2 2 2 2 2
B(m, n), m >0 O— Q- —O—RQ—"—0 =0 n m+n
2 2 2 2 2
B(0, ») Ot Ot iee O () = @ n i
1 2 2 2 1
C(n),n > 2 @ (1t e e OO <= O 1 "
2 2 . . . /01
D(m, n) O Yt e Y @ — O n mdn
Ng
o1
2 3 oz 1
F(4) 888 | .
2 4 2
G(3) ®—0<«0 1 3
O1
v
D(2, 1; 2
( @) ®\ 1 3
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decomposition. We claim ‘that R C H, which will prove the theorem. If this
were not so, then e, € R for some o 5~ 0, and [e,, f¢,] = & = 0, he R. Since
R is solvable, [, e,] = 0; hence «(h) == 0. Now we look at the adjoint repre-
sentation of the subalgebra (fe,, b, ¢,>. By the Lie theorem, in some basis
the matrices of ad fe, and ad ¢, are triangular. But then the matrix of ad & =
[ad e, , ad fe,] is also triangular with zeros along the main diagonal. Since
ad h is diagonalizable, we see that # = 0. This is a contradiction and proves
the theorem.

2.5.7. Z-gradings. 1t is not hard to show, just as in [12], that the relations
dege; = —degf;, =k;, degh; =0, k;€Z, i = 1,..., 7, determine all possible
Z-gradings of finite-dimensional contragredient Lie superalgebras. In particular,
if (4, 7) is a pair from Table VI, then for k., =0, ¢ 5% s, k, = 1 we obtain
the Z-gradings of A(m, n), B(m, n), C(n), and D(m, 1), as described in Section 2.1,
and for D(2, 1; «), F(4), and G(3) we obtain consistent Z-gradings of the form
G,PG DG, DG, DG,, where dim Giy, = 1 and the Gy-modules G,
are isomorphic, respectively, to so, ® %, spin, ® &, and G, ® k. In the same
way, the Z-gradings are defined for Q(x) (as Q(n); = A, and we can naturally
identify spaces Q(#); and Q(n);: &, <> ¢, , ;> k).

3. CarRTAN LIE SUPERALGEBRAS

3.1. The Lie Superalgebras W(n)

3.1.1. Definition of W(n). Let A(n) be the Grassmann superalgebra with
the generators £, ,..., £, . We denote der A(n) by W(n). We recall (see Section
1.1.4) that every derivation D € W(r) can be written in the form

0
D“-—“ZP‘a—f—., P(EA(”),
] i

where 9/0¢, is the derivation defined by
0[0¢(&;) = 85 .

bLetting degé; =1, i = 1,..,n, we obtain a consistent Z-grading of A(n),
which induces one of W(n) = @y;; W(n), , where

W(n), = {D e W(n) | D(A(n).) C A(n).,1}

_ 22P;%ldegP;=k+l,i= 1., 1.
i
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In particular, W(n)_, = {0/0¢,..., 0/0¢,>. Hence it follows that
[0]0¢; , 8]o&;] = O, that is,

o 0 0 0

T TR (3.1.1)

Formula (3.1.1) is one of the standard facts of analysis on a Grassmann algebra,
as developed in [2].
We now list some properties of W(n).

Prorosition 3.1.1.

n-1

(a) W(n) = @,__, W(n); is transitive.

(b) The W(n)y-module W(n)_, is isomorphic to gl,, .

(©) Wik = Wik, k> 1.

(d) Wi(n) is simple for n > 2.

() If G = @y, G; is a transitive Z-graded Lie superalgebra for which
the Gy-modules G, are isomorphic to the W(n)y-modules W(n)., , then G ~ W(n).

Proof. Properties (a)-(c) are easily verified directly. (d) follows from
Proposition 1.2.8 and (e) follows from (c) and Proposition 3.1.2 below.

3.1.2. The universality of W(n) as a Z-graded Lie superalgebra. Let G =
@i>_1 G; be a transitive Lie superalgebra with a consistent Z-grading, and
dim G_; = n. Then the map ,: G, > Hom(A**(G_,), G_;), defined by

(g s arer) = [[lg, @), ao)seers A,

determines a monomorphism of Gy-modules ;: G, — A*(G*,) ® G_; . The
;’s yield a canonical monomorphism of Gy-modules

$: G~ @D (A*(GL) ® Gy).

ky-1

From this we see by dimension arguments that if G = W(z), then ¢ is an
isomorphism of W(z),-modules.

If we are now given a monomorphism of the Gymodule G_; into W(n),-
module W(#n)_, , we obtain a chain of maps:

G— @ (A*HGYy) ® G_y) — W(n).

It is easy to verify that the composite map is a monomorphism of Z-graded
Lie superalgebras. So we have the following result.
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ProprosITION 3.1.2. Let G = @, G; be a transitive superalgebra with a
consistent Z-grading, and dim G_;, = n. Then there is an embedding of G in
W(n) preserving the Z-~grading.

3.1.3. The universality of W(n) as a Lie superaigebra with a filtration. W(n)
is canonically equipped with a filtration. Now it turns out that there is also
an embedding theorem for Lie superalgebras with filtration.

ProposiTiON 3.1.3. Let L =L _DL,DL;D -+ be a transitive Lie super-
algebra with a filtration, dim L{L, = n, and suppose that L, contains Ly. Then
there is an embedding o:L — W(n) preserving the filtration. If B is any other
such embedding, then there is one and only ome automorphism D of W(n) that
is induced by an automorphism of A(n) for which o = @ o p.

The proof carries over almost verbatim from [20], with the definitions
replaced by the relevant definitions in Section 1.1.3. True, the proof in [20]
only gives the existence of @ under the assumption that (« — B)}(L)CL,.
However, this assumption is easily dispensed with, by modifying 8 to an
automorphism of W(»n) induced by a linear automorphism of A(n).

As a corollary to Proposition 3.1.3 we have the next result.

ProrosiTioN 3.14. Let L =L_,DL,DL,D - be a subalgebra of W(n)
with the induced filtration, and dimL|Ly, = n. Then every automorphism of L
preserving the filtration is induced by an automorphism of A(n).

Clearly, in W(n) with 7 > 3 there is 2 unique subalgebra containing W(n); ,
namely, @y, W(n), . Hence for n > 3 this subalgebra, and therefore, the
filtration in W(n), are invariant under all automorphisms. So we obtain the
next result from Proposition 3.1.4.

ProrosiTiON 3.1.5. Every automorphism of W(n) with n > 3 is induced by
an automorphism of A(n).

3.2. Two Algebras of Differential Forms

3.2.1. The superalgebra S2(n). Let A(n) be the Grassmann superalgebra on
£ oy €n . We denote by £X(n) the associative superalgebra over A(n) with the
generators df, ,..,d{, and the defining relations d¢;od¢; = dE; o dE;,
degd¢; =0, 4,7 = 1,...,n. Note that Q(n) is commutative (in the sense of
the bracket); in particular, £,d¢; = (d§))E; .

Every element i € £(n) can be written uniquely as a sum of elements of
the form

by = 2 Qi .. 4 dfil oo dfs,‘ ’ where a;,..... i,EA(”)-
LTSI
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We define on £(n) the differential d as the derivation of degree 1 for which
d(¢,) =d¢;, d(d¢) =0, i=1,.,n

It is easy to verify, as in Section 1.1.4, that this derivation exists and is
unique.

82(n) is called the superalgebra of differential forms with commuting differentials.

PropositioN 3.2.1. The differential d has the following properties:

@) dpoy) = dpoyg + (—1)1%8%p o dy, ¢, s € 2(n).

b) df =3, 0f|6¢, dé;, f € A(n).

() d2=0.

(d) Every derivation D of A(n) extends uniquely to a derivation D of Q(n)
for which [D, d] = 0.

(e) Every automorphism of A(n) extends uniquely to an automorphism
of 8(n) commuting with d.

Proof. (a) is true, by definition.

(b) is proved by induction on the Z-grading of A(r) = @ A, . Suppose
that fe A, ; it is enough to prove (b) for f = f,£;, where f, € A;_; . By the
inductive hypothesis we have

& = @) &+ (1P fdey = Y (F) de+ (171 £

— ¥ (hé) dée,

as required.
(c) We now define a height % on £(r) by putting h(d¢;) = 1, k(&) = O,
i = 1,..., n. We conduct the proof of (c) by induction on A.

If A(f) = O, then fe A(n) and

7 o2
d(df) = d(Z—aéda) =2 6&_’;& dé; o dt; = 0,

by (3.1.1). Suppose, next, that A(p) = &; it is enough to prove (c) for ¢ =
@, o d¢; . By induction we have d*(p, o d¢;,) = d(dp, o d¢;) = 0.

(d) Let D =3 Py0/0f,) be a derivation of A(n) of degree k. It is easy
to verify, as in Section 1.1.4, that there is one (and only one) extension of D
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to a derivation D of Q(n) for which D}(d¢,) = (—1)*d(D¢,), i = 1,...,n. We
claim that Dd = (—1)* dD. Let f€ A, ; then we have

D) = D(E 2L dte) = 3 Prgfgy dbu+ -1 8 5 aP,
X L
— (T g (o)t = (1 o

Now clearly we have

Dd(f d¢; o -+ o df;) = (—1)* dD(f df;, o -+ o dEy)
as required.
(e) is proved rather like (d) (besides, as is easy to see, it follows from (d)).

The proposition is now proved.
Note that (d) gives us an action of W(rn) on £(n), commuting with 4 in the
sense of the bracket. There is also an analog to Poincaré’s lemma.

ProrosiTiON 3.2.2. If a differential form i € £(n) is closed, that is, dfp = 0,
then y = di, for some i, € Q(n).
Proof. We consider the linear map (homotopy operator) K: Q(n) — £(n)
and the homomorphism e: (n) — £(n), defined by the formulas,
K(fd€; o odt;, odE,) = Enfdés o rodEy,
K(fdé; o r0dé;) =0 when 7, % n, t=1,.,s [fedn),
e(¢) =¢; and e(dE) = d¢; if i#%n, e(£,) = e(d¢,) = 0.

It is easy to check that Kd + dK = 1 4 e. Therefore, if dif = 0, then ¢ =
d(K(y)) — (i), where () is closed and does not depend on £,. Now we
can use the induction by =.

3.2.2. The superalgebra O(n). We denote by 6(n) the associative super-
algebra over A(n) with the generators 0¢, ..., 6¢, and defining relations

0¢, A 0¢; — —0L; A 6L,  degbf =T, ij=l.,m.

Note that 6(n) is commutative (in the sense of the bracket); in particular,

£.06; = —(66))¢: -
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Every element w € B(n) can be written uniquely as a sum of elements of the
form

We define a differential 6 on ©(n) as the derivation of degree 0 for which
0(¢;) = 0¢;, 6¢,) = 0, i=1,.,n

It is easy to verify that this derivation exists and is unique.

PropostTioN 3,2.3.  The differential 8 has the following properties:
(@) O(w; A wp) = B(wy) A wy + w3 A Hwy).
(b) 0(f) =%, (B€:)(@f]&:), f e A(m).
(c) Every derivation D of A(n) extends uniquely to a derivation D of &(n)
for which DOf = 0Df, fe A(n); if 63(D(£))) =0, i = 1,..., n, then Do = 6D.
(d) Every automorphism ® of A(n) extends uniquely to an automorphism &
of O(n) for which f — 08, f e A(n).

The proof is similar to that of Proposition 3.2.1. Observe that ¢* 7 0. For
example, 6%(£,€,) = 20¢, A 05, . Also, it is not true that [D,6] =0 for
D e W(n). Nevertheless, (c) provides us with some action of W(r) on O(n).
3.3. Special and Hamiltonian Lie Superalgebras

3.3.1. Volume forms and the Lie superalgebras S(n) and S(n). A volume form
is a differential form in @(n) like

w =f0b - nbE,, fedln), [f(O0)+0.
To a volume form w there corresponds in W(z) the subalgebra
S(w) = {DeW(n) | Dw = 0}.

Among these subalgebras we single out two: S(n) = S(6¢; A -~ A 0,) and
S(n) = S((1 + & - £,) 66, A =+ A 0€,) for n = 2k.

'The condition for an operator 3. P;(8/8€;) to belong to S(w) can be written
as follows:

% (fP) = 0.

@
Hence it is easy to see that S(w) is the linear span of the elements like

., 0a © . 0a 0O
16—5;8—57+f l—a—ga—g-i‘, ae/l(n).

On S(w) 2 filtration is induced from W(n), and on S(n) clearly even a Z-grading.

f
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ProrosrrioN 3.3.1.

(2) GrS(w)=~S(n) = ®r*, St .

(b) The semisimple part of S(w)g ts isomorphic to si, .

(c) The S(n),-module S(n)_, is isomorphic to sl, .

(d) The S(n)y-modules S(n), are irreducible and isomorphic to the highest
component of the module sl, ® A™*1sl, .

(e) S(m) =Sm);, k> 1.

(f) The Z-graded Lie superalgebra S(n) is transitive. The S(w) are simple
Jorn = 3.

(8) Every automorphism of S(w), n > 3, is induced by an automorphism
of A(n) under which the differention form w is multiplied by an element of k.

h) IfG= (—D,;>_1 G, is a transitive Z-graded Lie superalgebra for which
the Gymodule G_, is isomorphic to si, , then G ~ S(n).

Proof. Properties (a)-(e) are easily derived from the description of the
elements of S{w). The fact that S(w) is simple now follows from Proposition
1.2.8; therefore, (f) is true by (a). :

To prove (g), we note (as was done in [15}) that if w, and w, are not propor-
tional, then S(w,) = S{w,) and that the filtration in S(w) for # > 3 is invariant
under automorphisms. (For n > 3 this is proved as in Section 3.1.3, and for
n = 3 it is obvious.)

Finally, (h) is obtained by embedding G in W(n); clearly, then G; = S(n);
for i = —1,0, and we can then use Proposition 3.3.2 below.

Weset Dy =Y £(0/0¢,), Tu(n) = {fDy,fc A(n);} CW(n), ,k =0,..,n — 1.

The next proposition is easy to obtain, for example, by dimension arguments.

ProposITION 3.3.2. W(n), = Sn), @ Tx(n), 2 >0, s a direct sum of
irreductble W(n)-modules, and the W(n)y-module T\(n) is isomorphic to A"*gl, .

We now obtain a classification of volume forms.
ProposITION 3.3.3. Every volume form w = f0f; A +++ A O£, can be reduced
by an automorphisms of A(n) to the shape
(x+BE - )06 A" ABE,, a#0; B=0 whennisodd.

Proof. We may assume that n > 3. The semisimple part of the Lie algebra
S(w)s (which exists by Levi’s theorem) can be carried, by Maltsev’s theorem,
into S(n), C W(n), by an inner automorphism & of W(n);. According to
Proposition 1.1.1, P extends to an automorphism of W(#) and is, therefore,
induced by an automorphism ¢ of A(n) (see Proposition 3.1.5). Replacing w

607/26/1-5
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by @(w), we may assume Dw = 0 for D € S(n), . But S(n), D {£:(9/0§;), 1 # j};
therefore, £,(8f/2¢;) = O for ¢ # j, and hence, f = « + B¢, - §,, and B =0
for odd n.

Taking Proposition 3.1.3 into account, we can derive the following result
from Proposition 3.3.3.

PROPOSITION 3.3.4. Every superalgebra S(w) is isomorphic to one of S(n)
or S(n). These two Lie superalgebras are not isomorphic.

ProposiTiON 3.3.5. Let L =L_DLyDL,D -+ be a Lie superalgebra with
a filtration, and Gr L ~ S(n). Then L ~ Gr L ~ S(n) for odd n, and L ~ S(n)
or S(n) for even n.

Proof. Using Proposition 3.1.3, we embed L in W(n). Then Lz C W(n);,
and by applying Maltsev’s theorem to this pair, we may assume that the semi-
simple part of Lg (which is isomorphic to s,) lies in W(n),, and hence, that
L2 S(n), .

We now observe that W(n) and L are S(n),-modules, that the S(n))-modules
L and S(r) are isomorphic and, by Proposition 3.3.2, that W(n) = S(n) @ T'(n)
is a direct sum of S(n),-modules, where T(n) = @ Ti(n).

From Propositions 3.3.1(d) and 3.3.2 it is clear that the S(n),-modules 7'(n)
and L can only contain a unique common simple component:

Gr L~ T, (n).

Therefore, L = V @ (Do S(n)s), where VCSn)_, @ Toy(n). If V =
S(n)_, , then L = S(n). For odd # there is no other possibility because V' CLj .
But if V 5 S(n)_, for even n, then L ~ §(n), as is easy to see.

3.3.2. Hamiltonian forms and the Lie superalgebras H(n) and F(n). A
Hamiltonian form is a closed differential form in £(z) of the kind

n
w= 3 w;dfdé, w; € A(n): Wyj = Wiy s det(w;(0)) 7 O.
1.5=1
To a Hamiltonian form « there corresponds a subalgebra of W(z):

H(w) = {D e W(n) | Dw = 0}.

We set H(w) = [H(w), A(w)], H() = A(@&)* + - + (d¢,)), and H(n) =

[Fi(n), H(n)].
It is not difficult to see that the condition for ¥ P,(8/8¢;) to belong to H(w)
can be written as follows:

7 Y
Slper) fpem)-o
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By the analog to Poincaré’s lemma, this condition shows that there is an
element fe A(n) (depending on D) for which Y; w, P, = of/0¢;. Therefore,
if (,y) is the inverse matrix to (w,;), we see that Fi(w) consists of all the elements
of the form

— %) __.af __a =
D, = é(w‘, o€, ) % fed@), f(0)=0,
and that [D,, D,] = Dy, , where
9
{f.8} = (—l)degfga-’ﬁaiff;'a%'

In particular, F(n) consists of the elements of the form

_v o 0 _
Df - ; agl af‘ ’ fEA(ﬂ), f(O) - 0’
and the bracket looks as follows:

g =1y L2

A filtration is induced on H(w) from W(n), and on H(n) and H(r) even Z-
gradings.

ProposiTION 3.3.6.

(a) GrH(w) ~H(n) = @}, An), .

(b) The semisimple part of F(w); is isomorphic to so,, .

(© H(m) = 5%, F(n), , that is Bi(n) = H(n) ® <Dy ...; -
(d) H(m)y =H@)i, k> 1.

\ (e) [F(n), H(n)_,] = Hin)y for k < n — 2; [H(n), , H(z)_;] = H(n); , ,
<n

(f) The Fi(n),-modules F(n), are isomorphic to A*+3s0, , —1 < kb < n — 2.

(8) The Z-graded Lie superalgebras H(n) and H(n) are transitive.

(k) H(n) is simple for n = 4. ,

(i) Every automorphism of H(w) for n > 4 and of B(w) for n >3 is
induced by an automorphism of A(n) under which w ts multiplied by an element of k.

0) If G = @iz_y G; is a transitive Z~graded Lie superalgebra for which
the Gy-module G_, is isomorphic to so, , then G ~ H(n) or H(n) or P(3).

Proof. Properties (a)-(i) are established just like the corresponding assertions
in Proposition 3.3.1.
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(j) is now a consequence of the following assertion: If G = @;>_; G; is a
transitive Lie superalgebra with a consistent Z-grading and if the Gj-module
G_; has an invariant symmetric bilinear form ( , ), then there is an embedding
of G in H(n) preserving the Z-grading. To prove this we construct embeddings
Pr: Gy — A¥(G)) by the formula ghi(g) @y, xre) = ([ [8) @ilsers @ria], Grsa)-
The subsequent arguments are the same as in Section 3.1.2.

Remark (cf. [22]). Let €, be a Clifford superalgebra with the natural
Z,-grading. The bracket turns this into a Lie superalgebra (€,). . The factor
algebra (%,)./<1> is isomorphic to H(z).

ProrosiTION 3.3.7. Let L =L_;DLyJL, D - be a Lie superalgebra with
a filtration, and Gr L ~ H(n) or H(n). Then L ~ GrL.

Proof. By Levi’s theorem, Lj contains a subalgebra G, isomorphic to so,
(see Proposition 3.3.6(b)). Now L splits into a Z,-graded direct sum of irreducible
G,-submodules, and the G,-module L is isomorphic to the Gr, L-module Gr L.
Hence we see that L = G_; @ L, is a direct sum of Gymodules, and that
the Gy-module G_; is isomorphic to so, . In particular, [G_; , G_;]C S%o, ;
hence, and from Proposition 3.3.6(f), it is clear that [G_,, G_JCL,_,. It
follows that [G_; , G_4] can differ from zero only when # is even and GrL ~
Fi(n). However, in that case [G_,, G ] =L, , = {Dq,...e ), and for ae G,
we have [[a, a], a] = (a,a) " [D¢,...; ,a] =0 (by the Jacobi identity); this
contradicts the transitivity of H(n).

Thus, [G_;, G_4] = 0. We now embed L in W(#n) with preservation of the
filtration «:L — W(n), using Proposition 3.1.3. Since [G_,, G_,] = 0, there
is an embedding 8: G_; — W(n) for which S(G_,) = W(n)_,. Therefore,
o can be modified (by Proposition 3.1.3) to an automorphism of W(#) for which
AG_y) — O[Ok vy 8]0En>.

Now let GrL = H(n). Then W(n) DL =L_,DLyD--DL, ;00, where
G_; = W(r)_, and the Gymodule L, 3 is isomorphic to so,, and L, ,C
W(n),_3 D W(n),_, ; hence, it follows evidently that L,_, C W(n),_, . Therefore,
(ad (;—1)8_3 Ln—3 C w(")n—s .

In this way, in accordance with Proposition 3.3.6(¢), a Z-grading is introduced
on L that is consistent with the filtration; therefore, L ~ GrL.

The arguments for the case Gr L ~ Fi(n) are similar.

It is now easy to prove the analog to Darboux’ lemma.

ProrosiTioN 3.3.8. Every Hamiltonian form w =Y w;d¢,od§; can be
brought by an automorphism of A(n) to the shape

>, (46
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Proof. We consider H(w). According to Proposition 3.3.6(a), Gr H(w) ~
H(n). Therefore, by Propesition 3.3.7, Fi(w) ~ H(s), and from Proposition 3.1.3
it follows that there is an autometphism ® of A(n) carrying F(w) into Fi(n).
Therefore 9/0£(®(w)) = O (because 3/9¢, € H(n)) and P(w) = ¥ ¢;; d¢, o d¢;,
¢5; € k. It remains to apply a linear automorphism.

3.3.3. DeriNiTION.  The Lie superalgebras W(n) for n > 3, S(n) for n > 4,
S(n) for even n > 4, and H(n) for n > 5 are called Cartan Lie superalgebras.
(For other values of n they are either not simple or isomorphic to classical Lie
superalgebras: W(2) ~ A(1, 0) ~ C(2), S(3) ~P(2), H4) ~ A(1, 1))

4. THE CLASSIFICATION THEOREM

" In this chapter we complete the classification of the simple Lie superalgebras
over an algebraically closed field of characteristic 0.

4.1. Classification of Certain Z-Graded Lie Superalgebras

4.1.1. The noncontragredient case. Here we prove the following important
proposition, which is the most complicated technically.

ProPosITION 4.1.1. Let G = @;__4G; be a bitransitive Lie superalgebra
with a consistent Z-grading, for which d or t = 1, and suppose that
(a) Gy i1s semisimple;
(b) the representations of G, on G_, and G, are irreducible;
(c) the representations of G, on G_; and G, are not contragredient;
(d) G, P G, D G, generates G.
Then G is isomorphic as a Z-graded superalgebra to one of S(n), H(n) with n > 4,
or P(n). ’
The proof of the proposition is based on an analysis of the relations between
the highest vector F, of the representation of G, on G_; and the lowest vector

E,; of the representation of G, on G, . We know (see the proof of Proposition
1.2.10) that

[Fa, Ep] = ey, 4.1.1)

where « = —(4 + M) is a nonzero root of G,. Interchanging if necessary
G, with G_,, we may assume that « > 0, and hence, in particular, that

[Fa,e] =[Ey,e] =0. (4.12)

In the proof of the proposition we need a number of lemmas.



68 V. G. KAC

Lemma 4.1.2. Let G be a finite-dimensional Z-graded Lie superalgebra. Let
E,,F;eG, 1 =1, 2, be Z-homogeneous of nonzero degree and Z,-homogeneous
elements and H € G a nonzero element such that

[H, E;] = a,E;, [E;,F;] = 8;H, [HF)]=—aF;. 41.3)
Then ay = ay = 0.

Proof. The subalgebra P of G generated by the E; and F; is clearly endowed
with a Z-grading when we set deg E; = 1, deg F; = —1, deg H = 0. Suppose
that one of the a; is not zero. We consider the matrix

a, a,
4= [al a2]
and set 7 = {{{l, 2} | E; is odd}. Then the contragredient Lie superalgebra
G(4, 7) is infinite-dimensional. For if both a; # 0, this follows, for example,
from Theorem 3 (all the matrices of Table V are nondegenerate). But if a, = 0,
a, = 0, then we replace E, by E,” = [E,, Ey] and F, by F,’ = [F,,F,] and
arrive at the preceding case. The factor algebra P, = G(4, r)/C, where C
is the (one-dimensional) center, is also infinite-dimensional.
Now, evidently, the map E;-—>e¢;, F; — f; induces an epimorphism of

Z-graded Lie superalgebras P — P, . Therefore, dim P = o0, which contradicts
the fact that G is finite-dimensional.

LemMma 4.1.3. Let G = @ G; be a finite-dimensional Z-graded Lie super-
algebra, with G, semisimple. Suppose that there exist odd elements x, and x, ,
Z-homogeneous of nonzero degree, that are weight vectors of the adjoint repre-
sentation of G, on G, and a root vector e_s of G , linked by the relations

[, %] = e_s, 4.1.4)
[, €] = [x,,e5] = 0. (4.1.5)
Then (A, 8) — 0.

Proof. Suppose that (A, 8) 7= 0. The same argument as in the proof of

Lemma 3.1 in [12] gives that 2(}, 8) = (8, 8). We choose a root vector e_; such
that [e_s, es] = h; . We consider the elements

E, = X2, F, = _(4(A’ 8))—1[xu ) 36]27 H =k,
E2 = [x/\za e—B]v e—&]) F2 = (S(A) 8)(8 - ’\) 8)(4’\ - 8» 8))_1[[[&'“ H 88]2) 85], ea]~
A direct calculation shows that these elements satisfy (4.1.3). Therefore, we

find from Lemma 4.1.2 that (,8) = 0, and we have a contradiction.
Henceforth we assume that all the conditions of Proposition 4.1.1 are satisfied
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and, using Lemma 4.1.3, we look for restrictions on the weight /A and the root .
From (4.1.1), (4.1.2), and the lemma we deduce at once the next result.

LemMma 414, (4,0) =0.

LeEmMA 4.1.5. Let B and y be positive roots of G, .

() If a- B is a root, then (A — B, o+ B) = O.
(b) If « + B is a root and o — B is not, then

[+% = Z(A’ ﬁ) — — Z(a,ﬁ) —
A+ap=0 amd 5 @p L

(c) Ifa+Bisarootand « —B,a — vy, B — v are not, then (4,y) = 0.

Proof. (a) We set x, = [e_g,F,], #, = Epy, 8 = a + B. Then it follows
from (4.1.1) and (4.1.2) that relations (4.1.4) and (4.1.5) hold. By Lemma 4.1.3
we now see that (41 — 8, « + 8) = 0.

(b) Suppose that (4 + «, B) % 0. We set &, = [e_g,F ], x, = [eg, Enpl,
8 = a. Then it follows from (4.1.1) and (4.1.2) that relations (4.1.4) and (4.1.5)
hold. By Lemmas 4.1.3 and 4.14, (4 — B, a) = —(x, B) = 0. However,
by hypothesis, («, 8) < 0, which is a contradiction.

We have yet to show that 2(4, B)/(8,B) = 1. We know that (4,8) —
(«8) — (B,B) =0 and (4, B) + («, B) = 0. Adding, we see that 2(4, §) =
(B, B), as required.

(c) Suppose that (4, y) # 0. Then it is easy to see that [[[[E,,, ¢.], €3],
e,)s [Em,e.]l #0 and [[[F,,e_g], e_,], Fs] 7 0, which proves the lemma.

Lemma 4.1.6. (a) Only one numerical mark of A is different from 0, and
that is equal to 1; in particular, G, is simple.
(b) o is the highest root of ome of the parts of the Dynkin diagram of G,
into which it is divided by the numerical mark of A.

Proof. (a) Since (A4, «) = 0, clearly there is a simple root § for which « + 8
is a root, but « — B is not. If there is a simple root y 5= B for which (4, y) 5 0,
then o — y is not a root and by applying Lemma 4.1.5(c) we arrive at a con-
tradiction.

Thus, the only nonzero numerical mark of /1 corresponds to the simple
root B. It is equal to 1 by Lemma 4.1.5(b).
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{b) Suppose the contrary. Then there is a simple root 8 for which o + 8
is a root and (4, f) = 0. Multiplying both sides of (4.1.1) by e_; we have
[[F4,e_g], Ep] = e, from which it follows that [F,, e_g] 5= 0; therefore
(4, B) #~ 0, which is a contradiction.

We denote by s the number of the circle in the Dynkin diagram of G, against
which the only nonzero numerical mark of A is placed.

Lemma 4.1.7.  Either the sth circle of the Dynkin diagram of G, is at an end,
or 1t is joined to an end circle with the number t, and then o == o, is a simple root.

Proof. Suppose that the sth circle is joined both to the (s — I)th and
(s + 1)th. Applying Lemma 4.1.5(c) to 8 = a, and y = o,y + a; + oy
(where «; is a simple root corresponding to the ith circle), we see that « is a
simple root. Lemma 4.1.7 now follows from Lemma 4.1.6(b).

Conclusion of the proof of Proposition 4.1.1. Unfortunately, I have not
succeeded in avoiding case distinctions.

Let 8 = «, be the unique simple root for which (4, «,) 5 0.

By Lemma 4.1.5(b):

In accordance with Lemma 4.1.7, we consider two cases separately.

Case 1. 'The sth circle of the Dynkin diagram is at an end. If the G-module
G_, is isomorphic to one of the linear Lie algebras s/, with # > 2 or so,, with
n > 4, n # 6, then we see evidently, by Lemma 4.1.6(b), that the local Lie
superalgebra G_; @ G, ® G, is isomorphic to the local part of S(z) and H(n),
respectively.

We claim that all other cases are impossible. Let ¢ be the number of the
circle in the Dynkin diagram that is determined by the following properties:
t # s, tis an end circle and belongs to the longest of the possible ‘“tails” of
the diagram. We denote by y the largest root for which in the decomposition
into simple roots the coefficient of a, is zero. It is not hard to check (using
Table I) that in all cases satisfying (4.1.6), except the adjoint representation
of G,, neither &« — y nor 8 — y is a root and that (4, y) # 0. Therefore, by
Lemma 4.1.5(c), this case cannot occur. For G, we set f’ = « - 8. Then
o -+ B’ is a root; however, (1 — B, o + ') # 0, as is easy to see, and this
contradicts Lemma 4.1.5(a).

Case II. The sth circle of the Dynkin diagram is not at an end, but is
joined by an edge to an end circle with the number ¢, and o« = «, . If the G-
module G_, is isomorphic to A%l,, n > 3, then we see clearly that the local
Lie superalgebra G_; @ G, @ G, is isomorphic to P(n — 1).

We claim that all other cases are impossible. Let 6 be the highest root of G, .
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If (8, a,) = (0, «) =0, then by setting y = 6 we arrive at a contradiction
to Lemma 4.1.5(c). In the remaining cases satisfying (4.1.6), except the repre-
sentation of C, with highest weight § — «;, we denote by y the largest root
for which in the decomposition into simple roots the coefficient of o, is zero,
and we again use Lemma 4.1.5(c). In the case of C,, we set 8’ = 6 — 2«, and
arrive at a contradiction to Lemma 4.1.5(a).

Thus, the local part of G is isomorphic to the local part of one of S(n), H(n),
or P(n). The isomorphism of the Z-graded Lie superalgebras themselves now
follows from Propositions 1.2.3(c), 3.3.1(e), and 3.3.6(d).

This completes the proof of Proposition 4.1.1.

4.1.2. Classification of Z-graded Lie superaigebras of depth 1.

We now describe two constructions of transitive Z~graded Lie superalgebras.
Every Z-graded Lie superalgebra G = @ G; can be extended by means of
an even derivation z defined by

[3,x] =kx for x€G,.

So we obtain a Z-graded Lie superalgebra, which we denote by G* = @ G,
where G# = G, for i # 0 and G* = G, P {&). If G, is transitive and . the
center of G, is trivial, then clearly G# is also transitive.

The other construction goes as follows. Let H be a Lie algebra without
center. On it we construct a Lie superalgebra H* = G_; @ G, @ G, with a
consistent Z-grading, by setting G_, = ¢H, G, = H, Gy = {d/d§), where the
commutators are defined as follows: [d/dE, £h] = h, [Eh,, By) = &[hy, Ry),
[d/dé, B] = 0. Evidently, H? is transitive.

Now we are in a position to state the main theorem of this section.

THEOREM 4. A transitive irreducible Lie superalgebra G = @y G; with a
consistent Z-grading and G, 5= 0 is isomorphic as Z-graded superalgebra to one
of the following Iist:

I. A(m, n), C(n), P(n);
IL. W(n), S(n), H(n), B(n);
III. HE¥, where H is a simple Lie algebra;
IV. G*, where G is of type 1, I, or III and the center of G, is trivial.

Proof. Since the representation of Gy on G, is faithful and irreducible,
G, = G, @ C, where G, is semisimple, C is the center of G,, dim C < 1,
and if dim C = 1, then C = (), with [z, g] = kg for g € G; (see Proposi-
tion 1.2.12). Therefore, the representation of G, on G, is completely reducible;
let

G =®G? 4.1.7)
i



72 V. G. KAC

be the decomposition of G, into Gy-irreducible components. We denote by
G the Z-graded subalgebra of G:

GP =G, @G, GMOG ®GI)D .

If we consider in G the Z-graded subalgebra G_; @ G, ® G{¥ ® (G @ -+,

we can infer from Proposition 1.2.9 that [G_,, G{¥]C G,'. Therefore, G*)

is a Z-graded Lie superalgebra satisfying all the conditions of Theorem 4.
There are two possibilities.

(1) The representations of [G_; , G{] on G_; and G} are contragredient.
According to Proposition 1.2.10(a), G = G_; @ [G,, Gl DG is
classical. Propositions 2.3.9 and 2.4.4 now show that G'* is isomorphic as
Z-graded algebra to one of A(m, n) or C(n).

(2) The representations of [G;,G:"] on G_; and G{® are not con-
tragredient. According to Proposition 1.2.10(b), [G_;, G{"] = G,’ is then
simple. If the representation of [G_;, G{"] on G{® is not faithful, that is,
dim G\ = 1, then, as is easy to see, G¥ = G, @[G,,G{" @ G¥ is
isomorphic as Z-graded algebra to (G,')¢. If the representation of Gy’ on G
is faithful, then according to Proposition 4.1.1 (G'® is bitransitive, by Proposi-
tion 1.2.13), G'® is isomorphic as Z-graded Lie superalgebra to one of S(x),
H(n), or P(n).

Thus, when G; = G{* is an irreducible Gy-module, then Lemma 4.1.8
below and Propositions 3.3.1 and 3.3.6 show that G is one of A(m, n), C(n),
S(n), H(n), H(n), P(n), H?, or of type IV. (In Lemma 4.1.8 the case A(l, 1)
is excluded; however, A(l, 1) ~ H(4).)

We claim that in (4.1.7) all the Gy-modules are pairwise inequivalent. Let
F, be the highest weight vector of the Gy-module G_,, and E), the lowest
weight vector of G{*. Suppose that in (4.1.7) there are two isomorphic Gy~
modules, say G and G{?. If they are contragredient to G_; , then by Proposi-
tion 2.1.6, GV and G® are isomorphic. Therefore, the vectors [F A,EMI]
and [F,, E,; ] are proportional; consequently, [F,, Ey —cEy) =0 for some
c € k. But then, clearly, [G_,, EM1 — cEMz] = (0, which contradicts the fact
that G is transitive. If G and G{ are not contragredient to G_ , then [F 4, Ep ]
are root vectors of G, corresponding to one and the same root and are, therefore,
proportional. Again, this contradicts the transitivity of G.

When we now compare the possibilities for G obtained above, we see that
the G,-module G, can be reducible only if the Gy-module G_, is isomorphic
to gl, or the Gy-module G_; to A%l ~ soq . In the first case, Propositions
3.3.2 and 3.1.1(e) show that G is isomorphic to W(z). In the second case it
follows from Proposition 3.3.6(j) that G is isomorphic to one of H(6), H(6),
H(6)?, or F(6)-.

The proof of Theorem 4 is now complete.
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.- 4.1.3. On extensions of some Lie superalgebras.

LemMA 4.1.8. Let G = @®;5_y G; be a transitive Z-graded Lie superalgebra
and G' = G_; @ G, @ G, isomorphic to one of

(a) H
(b) A(m, n) for (m,n) = (1, 1) or C(n);
(c) P(n).

Then G = G'.

Proof. In all three cases we have to show that G, = 0.

(a) We recall that Hf = {H @ H @ {d/d€). Suppose that there is a
teG,, t 0. Then [¢, £éa] = o(a)(d[d€), where « is a nonzero linear function
on H (because of transitivity). Therefore, 0 = [[¢, £a], {éa] = o(a) for every
a € H, which is impossible.

(b) Suppose the contrary. Then there is a nonzero weight vector #,
of the representation of G, on G,. By the transitivity of G, there is a root
vector e_g € G_,; for which

[ty,es] = e,s€G,. (4.1.8)

By Proposition 2.5.5(e) there is a root vector e_,, s € G_; for which [e_,,5, €,_g] =
h,_g . Multiplying both sides of (4.1.8) by e_,,;, we have

[[e—h+ﬁ ) tA]: e—B] = hA—B . (419)

Hence it follows that [e_, 5, t,] = &3, so that (4.1.9) shows.that 4,_g is propor-
tional to A ; and then A = ¢f (also by Proposition 2.5.5(e)). Moreover, as we
have seen, A — 8 = (¢ — 1)8 is a nonzero root of G’. However, as is clear
from Section 2.5.4, multiples of 8 can only be the roots 0 and —8, that is,
¢ = 0 or 2. In the first case we see that dim G; > 2, which contradicts Proposi-
tion 2.5.5(b). Thus, any weight of the representation of G, on G, is equal
to twice a root of G, . But clearly this is impossible.

(c) We recall that the Gy-module G_, is isomorphic to A%l, or S3%l, ,
and the Gymodule G, to S%l,* or A%l *. Let A., be the highest and M.,
the lowest weights of G, . By transitivity, G, is a Gj-submodule of G, ® G¥; .
(A mapping ¢¥: G, - G; ® G*, = Hom(G_, , G;) can be constructed in the
obvious fashion: ¥(g)(a) = [g, a], g€ G,, ae G_;.) Thus, G, is a Gy-sub-
module of A%l¥,, ® S%IY . This module splits into two irreducible com-
ponents with the lowest weights MW = —A_, 4+ M, and M® = —4_, 4
M; + oy + oy, where o, and oy are the first two simple roots of the Lie algebra
A,.
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We now assume that one of the weight vectors Ej.w is contained in G, .
By transitivity we then have, respectively,

[Fa,» Eyow] = Epg (4.1.10)
[Fa,, Ey@] = [Eum, s ara,)- (4.1.11)
Now (4.1.10) also gives
[[Fa,,e o) Eyyo] = [En,  €4,) (4.1.12)
Next, [F,_ , Ey] = e, (or & ). Therefore, from (4.1.10):
0=[Fi,,E 0wl =2[Fa,,En) = €, -

This is a contradiction of Eju) € G, . Similarly, we find from (4.1.11) (or
(4.1.12)) that

0=[F,, ,E,w] =e, (respectively, 0 = [[F,_ ,e,J? E,®]

= 2[[FA_1 s e—oq]v [EM1 ’ evle] = eaz);

hence E,;2 ¢ G, . This proves the lemma.

4.2. The Classification of the Simple Lie Superalgebras

4.2.1. The main theorem. The following theorem is the central result of
the paper.

THEOREM 5. A%imple finite-dimensional Lie superalgebra over an algebraically
closed field k of characteristic O is isomorphic either to one of the simple Lie algebras
or to one of the Lie superalgebras A(m, n), B(m, n), C(n), D(m, n), D(2, 1; «),
F(4), G(3), P(n), Q(n), W(n), S(n), S(n), or H(n).

Proof. Let L =Lz @ L; be a simple finite-dimensional Lie superalgebra
over k. If the representation of Ly on Lj is irreducible, then L is classical.
Therefore, by Theorem 2, L is isomorphic to one of B(m, n), D(m, n), F(4),
G(3), Q(n), or D(2, 1; ).

Suppose now that the representation of Ly on Lj is reducible. Then, by
Proposition 1.3.2, L has a filtration: L =L_;J3Ly,DL,D --- for which the
associated Z-graded Lie superalgebra GrL = @ Gr, L satisfies all the condi-
tions of Theorem 4. Therefore, Gr L can only be isomorphic to one of the Lie
superalgebras of type I-1IV listed there.

From the proof of Proposition 2.2.2, it is clear that if GrL ~ H¥, then L
is not simple; hence type III does not occur.
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Proposition 1.3.1 shows that if the center of Gr, L is nontrivial, thenL ~ GrL.
Hence, type IV does not occur either, because clearly nio superalgebra of this
type is simple; also L ~ W(n) if Gr L ~ W(n).

If GrL ~ A(m, r), C(n), or P(n), then evidently, the representation of L;
on L is for L the same as for GrL. Therefore, Proposition 2.1.4 shows that
L ~ GrL, so that L is one of A(m, n), C(n), or P(n).

If GrL ~H(n) or H(n), then L ~ GrL, by Proposition 3.3.7. But H(n)
is not simple, so that this case is impossible, and L is one of the H(z).

Finally, if GrL ~ S(n), then by Proposition 3.3.5, L is isomorphic to an
S(n) or §(n). '

This completes the proof of the theorem.

4.2.2. Isomorphisms. It is not hard to list all the isomorphisms between
simple Lie superalgebras. They are: A(m, n) ~ A(n, m); A(1, 0) ~C(2) ~ W(2);
A(1, 1) ~ H(4); P(2) ~ S(3).

In the remaining cases, except for D(2, 1; «), S(n), and S(n), simple Lie
superalgebras are pairwise nonisomorphic, because for them the Lg-modules L;
are nonisomorphic. §{n) and S(n) are also nonisomorphic, according to Proposi-
tion 3.3.4. Conditions for isomorphisms of superalgebras in the family D(2, 1; «)
were derived in Proposition 2.5.4(b).

The following is a list of the dimensions of all the simple Lie superalgebras.

A(m, n) m+nt22—1—8,, P 2mn+12—1

B(m, n) 2(m + n)2 4+ m+ 3n Q(n) 2(mn 4+ 12 —2
C(n) 24 n—2 W) n-2¢

D(m, n) 2m-+-n —m+n S(n) (n—12r+1
D2, 1;0) 17 Sn)y (@m—12"+1
F(4), G(3) 40,31 Hn) 2n—2

4.2.3. Classtfication of finite-dimensional primitive Lie superalgebras. Let L
be a Lie superalgebra and L, be a distinguished subalgebra. The pair (L, L)
is called even primitive if L, is a maximal proper subalgebra, it contains no
ideals of L, and L, D Ly .

The same arguments as in the proof of Theorem 5 give a classification of
the primitive even pairs (clearly, they are all finite-dimensionsl automatically,
because GrL is embedded in W(n), where n = dim L/L;). To state and prove
the result, we need only make the following remarks.

As it is easy to see, if L is a Lie superalgebra with a filtration for which
Gr L ~ H¢, then either L ~ H¢ or L ~ der Q(n) = Q(n) @ D is a semidirect
sum of Lie superalgebras, D being, up to a constant factor, the only odd outer
derivation of Q(n) (see Proposition 5.1.2(c)).

To an irreducible faithful representation of a Lie algebra H in a space V'
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there corresponds the primitive Lie superalgebra HY = V @ H, where
[V,V]1=0, [k 9] = k(v) for he H veV, and Hy¥ = H, H;" = V.

Trrorem 5. Let (L, Ly) be a primitive even pair. Then L is isomorphic to a
Lie superalgebra in the following list:
I. A(m, n), C(n), P(n);
II. B(m, n), D(m, n), F(4), G(3), Q(n), der Q(n), D(2, 1; o);
III.  W(n), S(n), S(n), H(n), H(n);
IV. H¢, where H is a simple Lie algebra;

V. G? where G is one of the Z-graded Lie superalgebras A(n, n), P(n),
S(n), H(n), H(n), or H:.

VI. HY, where H is a Lie algebra and V a faithful irreducible H-module.

Each of these Lie superalgebras, except P(n) and P*(n), admits a unique structure
of a primitive even pair. There are two such structures for P(n) and P¥(n).

Note that Theorem 5’ also gives a classification of the primitive transitive
supergroups of transformations of a supermanifold whose stabilizer contains
a maximal reduced subgroup.

5. CONTINUATION OF THE THEORY

5.1. Description of Semisimple Lie Superalgebras in Terms of Simple Ones

5.1.1. DeFINiTION. Let A = A; @ A; be a superalgebra, der A the Lie
superalgebra of its derivations, and L a subset of der 4. Then 4 is said to be
L-simple if A contains no nontrivial ideals that are invariant under all the deriva-
tions in L. If 4 is der A-simple and A2 =£ 0, then A4 is called differentiably
simple.

We define operators [, and 7,, s€ 4, on A by the formulas

Ifa) =sa, rfa) = (—1)degaldegsl,s g 4,
It is easy to verify that if D e der 4, then
[D, ls] = lD(s) and [D, 73] =Tp(s) +

We denote by T'(4) the associative subalgebra of I(4) (all the endomorphisms
of A) generated by all the /, and 7, , s 4.
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Finally, the centroid of A is the associative superaigebra I'(4) = {g e L(4) |
[g, #] = 0, he T(A)}. A is called central if I'(4) = k.

5.1.2. Differentiably simple superalgebras. A verbatim repetition of the
arguments in [21], with the relevant definition replaced by those above, leads
to the following result.

ProrosITION 3.1.1. Let G be a finite-dimensional differentiably simple (not
necessarily Lie) superalgebra. Then G ~ S & A(n), where S is a simple and
A(n) is the Grassmann superalgebra.

5.1.3. Description of semisimple Lie superalgebras. We recall that a super-
algebra A4 is said to be semisimple if 4% 5« 0 and 4 contains no nontrivial
solvable ideals. In [21] the description of differentiably simple algebras is
used to derive a description of semisimple Lie algebras over any field. The
same arguments are suitable for Lie superalgebras.

THEOREM 6. Let S, ,..., S, be finite-dimensional Lie superalgebras, m, ..., n,
be nonnegative integers, and S = @;_, S; ® A(n;). Then

S = inder S = @ (inder S;) ® A(n,) Cder S

i=1

— @ (e S) @ A(m) + 1 ® der Alny).

i=1

Let L be a subalgebra of der S containing S; we denote by L; the set of com-
ponents of elements of L in 1 ) der A(n,). Then:
(a) L is semisimple if and only if A(n;) is L,-simple for all i.

(b) Al finite-dimensional semisimple Lie superalgebras arise in the manner
indicated.

(c) derL is the normalizer of L in der S, provided that L is semisimple.
5.1.4. Description of der G for the simple Lie superalgebras G.

ProPOSITION 5.1.2. Let G be a simple Lie superalgebra, der G be the Lie
superalgebra of its derivations, and inder G (=~G) be the ideal of der G consisting
of the inner dertvations.

(@) If G is ome of the classical Lie superalgebras A(m,n) with m + n,
B(m, »), C(n), D(m, n), F(4), G(3), or one of the Lie superalgebras of Cartan
type W(n) or S(n), then der G = inder G.

(b) If G = @ G, is one of the Z-graded Lie superalgebras A(n, n) with
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n > 1, S(n), or P(n), then der G = inder G @ {2)> is a semidirect sum, where
2 is an even derivation of G such that [z, g} = kg for g€ G,.

() If G~Q(n) = Q(n); ® Q(n);, then der G = inder G D (D) is a
semidirect sum, where D is the (within proportionality unique) endomorphism of
Q(n) for which D(Q(n)g) = 0, D(Q);) = Q(n);, and D: Q(w); — Qn)g is an
1somorphism of Q(n)y-modules.

(d) If G~H(n), n = 35, then der G = inder G @ T, where

0 d 0
T = (3 g L5 (6 &) 5 C W)

is a two-dimensional solvable Lie superalgebra.

(e IfG=A(L)=G,PG, DGy, then der G = inder GD P is a
semidirect sum, where P = {D_, , 3, Dy) is a three-dimensional simple Lie algebra
[2, 8] = kg for ke G, Dy, are the (up to a constant factor unique) endomorphisms
of G for which Dy(G,) = 0, D1,(G+,) = 0, Dy(Gx) = Gy, and Dyt Gy, —
G, are isomorphisms of Gg-modules.

Proof. G ~inder GC der G is an ideal of der G. Let G, be the reductive
part of Gy . Since the Gg-module der G is completely reducible, we have that
der G = inder G @ T is a direct sum of Gymodules and T is a Z,-graded
subspace; in particular, [Gy, T]C T. On the other hand, [G,, T] C inder G,
because inder G is an ideal of der G. Therefore, [G,, T] =0 and if De T,
then ad D is an endomorphism of the Gy-module der G. Using this fact it is
now easy to compute 7 in all cases.

5.2. Irreducible Finite-Dimensional Representations of Solvable and Simple Lie
Superalgebras

5.2.1. Induced modules. Let G be a Lie superalgebra, U(G) its universal
enveloping superalgebra (see Section 1.1.3), H a subalgebra of G, and V' an
H-module. ¥ can be extended to a U(H)-module. We consider the Z,-graded
space U(G) @yuy V (this is the factor space of U(G) @ V by the linear span
of the elements of the form gh ® v — g ® k(v), g€ U(G), he U(H)). This
space can be endowed with the structure of a G-module as follows: gz ® v) =
gu®v, gelG, ue UG), veV. The so constructed G-module is said to be
induced from the H-module V and is denoted by Ind,% V.

We list some of the simplest properties of induced modules, which follow
from the Poincaré-Birkhoff-Witt theorem (see Section 1.1.3).

ProrosiTiON 5.2.1. (a) Let G be a Lie superalgebra, H be a subalgebra,
V be a simple G-module, and W be an H-submodule of V considered as an H-module.
Then V is a factor module of the G-module Ind,® W.
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(b) If H,CH,CG are subalgebras of G and W an Hy-module, then
Ind§ (Indjt W) ~Ind§ W. '

(c) Let HC G be a subalgebra of G containing G , and g, ,..., g, odd elements
of G whose projections onto G/H form a basis. Let W be an H-module. Then
Indy® W = @icsjcco 2 &i, " &, W is a direct sum of subspaces; in particular,
dim Ind,¢ W = 2t dim W.

The next result follows from Proposition 5.2.1(c) and Ado’s theorem for
Lie algebras.

Apo’s THEOREM. Every finite-dimensional Lie superalgebra has a finste-
dimensional faithful representation.

 5.2.2. Representations of solvable Lie superalgebras. Let G = G @ Gy be a
Lie superalgebra. A linear form l € G* is said to be distinguished if I({Gy, Gg]) =
{(Gy) = 0. We denote by £ the space of distinguished linear forms, by .%,
the subspace consisting of those / for which I([G, G]) = I(G,) = 0, and by
%, the subgroup of %, generated by the linear forms given by the one-
dimensional factors of the adjoint representation of G.

Let p be a representation of G in a space V, # a subgroup of .%,, and A e .
We define a representation § of G in V by the formula g{g)v = p(g)v + Mg)v
(i.e., p is a tensor product of p and a one-dimensional representation). The
G-modules p and 5 are said to be .#-equivalent.

LemMa 5.2.2. Let G be a Lie superalgebra, H be a subalgebra of codimension 1
containing Gy, and g be an odd element for which G — H @ {g)> is a direct sum
of subspaces.

(@) If W is an irreducible H-module, then all the irreducible factors of the
H-module Indy,S W = W @ gW are Zy-equivalent to W (£, C H*).

(b) If V is an irreducible G-module and W an irreducible H-submodule
with W + V, then V ~1Ind,® W.

Proof. (a) For he H we have [h,g] = Nh)g + ¥, where W € H, A€ %,.
Therefore, h(gv) = g(hv + A(h)v) + h'v; hence, the H-modules W and
Ind,¢ W/W are Z-equivalent.

(b) follows from (a) and Proposition 5.2.1.

Let /e & be a distinguished linear form, considered modulo %, ; we set
G, = {geG|[g £]) = 0 for g, € G}. Clearly, G, is a subalgebra of G con-
taining Gy, and [([G,, G;]) = 0. A subalgebra PC G is said to be subordinate
to 1 if ([P, P]) = 0 and G, C P. Clearly, this concept is well defined.

We single out an important class of solvable Lie superalgebras—the com-
pletely solvable ones— for which all irreducible factors of the adjoint representa-

607/26/1-6
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tion are one-dimensional. By Engel’s theorem, a nilpotent Lie superalgebra
is completely solvable, and & = 0.

Finally, we denote by {H, !} the one-dimensional H-module given by a
linear form I e %, according to formula A(v) = I(h)v.

Now we are in a position to state a theorem that describes the finite-
dimensional irreducible representations of solvable Lie superalgebras.

THEOREM 7. Let G = G @ Gj be a solvable Lie superalgebra.

(@) If V is an irreducible finite-dimensional G-module, then all the irreducible
Jactors of V considered as a Gy-module are one-dimensional, and their corresponding
linear forms, extended by zero to Gy , lie in a single coset I, ¢ | %, .

(b) Let le #|%,, P be a maximal subalgebra subordinate to I, and {P,1}
be the one-dimensional P-submodule given by the lincar form lel. Then the G-
module V = IndpS{P, 1} is finite-dimensional and irreducible, and | = I,,. Two
such G-modules V, and V, are Zy-equivalent if and only if | = I, .

(c) Every finite-dimensional irreducible G-module V is isomorphic to one
of the modules Indp%{G, I}, where I c I, and P is a maximal subalgebra subordinate
to l.

(d) If G is completely solvable, then £, can be replaced everywhere by %, .
In particular, if G is nilpotent, we obtain a bijective correspondence Vi1,
between the set of classes of isomorphic finite-dimensional irreducible G-modules
and L.

Proof. (a) is proved by induction on dim G. Let ¥ be an irreducible
G-module, H be a subalgebra of codimension 1 containing [G,G], G =
H D (g, where ge G, scZ,, and W be an irreducible submodule of an
H-module V. Clearly, then V = ®§=0 &'W and since H is an ideal of G, the
proof of Lemma 5.2.2(a) shows that all the irreducible factors of I are
isomorphic to W. Therefore, if g€ G, then V and W, as Gzgmodules, have
the same stock of irreducible factors, and (a) is true by induction. But if g € Gy,
then G5 = Hy @ {g), and only as Hzmodules do ¥ and W have the same
stock of irreducible factors. But then it follows that if [, , [, € G* are linear
forms that are zero on Gj and give irreducible factors of the Gymodule V;
then by the inductive hypothesis, 5, — L |pg; w57 = O, in particular,
L — L g6 = 0. Since, of course, ), — L, |(g;.6;1 = O wesee thatl; — L, € %,
as required.

(c) is proved by induction on dim G;. Let ¥V be a finite-dimensional
irreducible G-module and P be a maximal subalgebra subordinate to I, .
If dim G5 = 0, then (c) is true by Lie’s theorem. We may, therefore, assume
that dim Gj > 0. We analyze first the case G = P, that is, [, = 0. By induction
on dim G; we show that dim V' = [. Let G’ be a subalgebra of G, of codimension
1, containing G5, and G = G’ @ {g>. By the inductive hypothesis, the
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G’-module V' contains a one-dimensional submodule (v). Suppose that
dim V' > 1; then, evidently, V = (o) @ (gv). Now g(gv) = }g,glv =
3([g, g])v = 0. Since V is irreducible, there is an element 4 € G; for which
h(gv) = v. Replacing h by h + ¢g for a suitable c € k, we may assume that
h(v) = 0. But then (A glv =v and [hg]) =1, whlch contradicts our
assumption.

Suppose now that G % P. Then G has a subalgebra H of codimension 1
containing P, and G = H @ {g), g€ G; . Let W be an irreducible submodule
of the H-module V. By the inductive hypothesis, W = Ind #{P, [}. If H = P,
then, as we have shown, W = (v) is a one-dimensional H-module. In that
case V # W because G # P, and so V = Ind,%(P,1}, by Lemma 5.2.2(b)
and Proposition 5.2.1(b).

Suppose now that H 5= P. Then I([h, k]) # O for some heHi, and the
quadratic equation in «,

lg + oh, g + oh]) = U([5: £]) + 2od([g, B]) + o*K([h, B]) = O,

has a root «, . Replacing g by g + agh, we may assume that I([g, g]) = 0.

What we have to show (according to Proposition 5.2.1(b)) is that the G-
module Ind,¢® W = W + gW is irreducible. Suppose the contrary, i.c., that
it contains a nonzero irreducible G-submodule W’. By Lemma 5.2.2(a), the
G-modules W and W’ are %,-equivalent. Hence, in particular, there is a one-
dimensional P-submodule {P, }}} = <{v; + gv,> € W, where I — ], € &, . Now
h(v, + gv,) = L(B) (v, + gv;) = h(vy) + [A, glv, + ghv, for he Gy. Since
{h, g] = c(h)g + W', i’ € H, we see that h(vy) = (L(h) — c(h))v, . In particular,
{vy) is a one-dimensional submodule of the Gy-module W; hence by (a),
h(v;) = lL(h)v, for he Gy, where I, — €%, . Therefore, in particular,
l[g, 8]) = 0. If v, 5 O, then g(v, + gvs) = gv; + $([g, glv, = gvy # O; but
if v, =0, then guv, % 0. Thus, W N gW s 0. It therefore follows from
Lemma 5.2.2(a) that W’ = gW. But then h(gv) = I([%, g])v + ghv for he H; .
Since gW is a G-module, we infer that I([k, g]) = O for A€ H;, and since,
furthermore, /([g, g]) = O, it follows that /([G;, g]) = O, that is, g G,C P.
This contradicts the choice of g.

(b) evidently follows from (a) and (c), and (d) follows from the fact that if G
is a completely solvable Lie superalgebra, then all the irreducible factors of
the G-module U(G) are one-dimensional and are given by linear forms in %, .

This completes the proof of the theorem.
The following propositions are consequences of Theorem 7.

ProposITION 5.2.3. For an irreducible finite-dimensional representation of a
solvable Lie superalgebra G = Gz @ G; in a space V = Vi @ Vi we have:
Either dim Vi = dim V; and dim V = 2%, where s < dim Gy, or dim V = 1.
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ProposiTiON 5.2.4.  All the irreducible finite-dimensional representations of a
solvable Lie superalgebra G = Gy @ Gy are one-dimensional if and only if
[G1, Gil €[G5, G-

ExampLE 1. It follows from Theorem 7 that the families of representations
ps and p,” of the Heisenberg superalgebras N and N’, which were constructed
in Section 1.1.6, contain all their finite-dimensional non-one-dimensional
irreducible representations, and each precisely once.

ExampLE 2. Let G = [(1, 1) be the completely solvable Lie superalgebra
withthebasis 2 = (5 D, A =G 3 e = 0, f = (¢ 9). The set of representa-
tions of dimension >1 is parameterized by the numbers o = I(h), B = I(z) # 0:

il 3 S PR R Vo A 1

For B = 0 we obtain all the one-dimensional representations s «a, 2, e, f+— 0.
The proof of Theorem 7 also works for infinite-dimensional representations
of completely solvable Lie superalgebras. Two representations are called
weakly equivalent if they have the same kernel in U(G). We set & = {{e G* |
I(Gy) = 0}. Let %, be the Zariski closure of Aut G in GL(G).
It is known (Dixmier) that there is a bijection between the set of %g-orbits
in G5* and the set of classes of weakly equivalent representations of Gj .

Tueorem 7'. (a) If G is a completely solvable Lie superalgebra and V is an
trreducible G-module, then there is an uncondensed Jordan—Holder series relative
to Gy and all its irreducible factors correspond to a single Yy-orbit 2, in L)%, .

(b) Let l1e /%, P be a maximal subalgebra subordinate to I, and
dim Py = {(dim Gy + dim(G,)5). Then the G-module V, = 1IndS{P,1} is
irreducible. The correspondence |+ V, induces a bijective correspondence between

the set of classes of F-weakly equivalent irreducible representations of G and
the set of G-orbits in L[|, . Here Qy =%, 1

5.2.3. Representations of simple Lie superalgebras.

ProrosttrionN 5.2.5. Let G = @;»_yG; be a Z-graded Lie superalgebra of
depth d, N* = @, Gy, , Bf = N D By, where B, is a Borel subalgebra of
(Gy)s - Suppose that

[Bi*, By*] C By, By, [By, (Gu)s) = (G11)s » and G, generates N*,

(a) Let V be a finite-dimensional irreducible G-module; we set V, =
{weV|Ntw) = 0}. Then V, is an irreducible submodule of the Gymodule V.
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(b) Two finite-dimensional G-modules V and V' are isomorphic if and only
tf the corresponding Gy-modules V, and V) are isomorphic.

(c) If the depth d = 1, then for any finite-dimensional irreducible G-
module V' there is a finite-dimensional irreducible G-module V for which the
Gy-module V,, is isomorphic to V.

Proof. Since Bt is a solvable Lie superalgebra, it follows by Proposition
5.2.4 that any irreducible factor of the B*-module V is one-dimensional.
Using the properties of N+, we hence find that the N+-module V is nilpotent.
In particular, ¥ 5 0.  The same is true for N—.

Now it only remains to go through the arguments in [7] almost verbatim.
First, we show that W = V,\ G_,V is equal to 0. Let U'(G_;) be the sub-
algebra of the enveloping superalgebra U(G) generated by G_, and U(G_,) =
U(G_,) ®<1). Since U'(G.) is nilpotent, U(G_YWC UGV = V.
U(G_,)W is a G-submodule of ¥, and since V is a simple G-module,
U(G_,)W = 0; in particular, W = 0.

We set V; = G_,V;_, for i > 0. Clearly, V is the sum of the subspaces V.
We show by induction that this sum is direct. Suppose the contrary, i.e., that
veVpy N (1@;';,, V), v #0. Then Gyv # 0 because W =0. But GvC
Vi N (@iog Vi), which is impossible. Thus, ¥V = @5, V;. From this it
follows, obviously, that ¥ is an irreducible Gy-module.

(b) Let V be a finite-dimensional irreducible G-module; then V ~
Indg0 V,/I, where V, is an irreducible Gy-submodule and I is a maximal
submodule of the G-module Indg0 V,. Since V = @5y V; , this I is uniquely
determined as the sum of all graded submodules of the G-module Indgo Vo,
and this proves (b).

() We define an action of Gy @ N* on Vy/, setting N+¥," = 0. Since
d = 1, the induced G-module Indgo V, is finite-dimensional (see Proposition
5.2.1(c)). The required G-module is a factor module of this G-module.

We apply Proposition 5.2.5 to the following Z-graded Lie superalgebras
G = @ G;: (a) P(n), W(n), S(n), H(n) with the “standard” Z-grading; (b) Q(n)
with the Z-grading in Section 2.5.7 with % = - =&, = 1; (c) the con-
tragredient Lie superalgebras with ‘“standard” Z-grading (from Section 2.5.7
with b, = =+ =k, = 1). ‘

In cases (b) and (c) we set H = (Go)g = Iy ey By, Nt = @459 Gis
B = H@® N+ Let Ac H* a; = A(h;) ek, {v,> be a one-dimensional B-
module for which N+(v,) = 0, h(v,) = a;v,. We set V, = IndyS{v,>/1,,
where I, is the (unique) maximal submodule of the G-module ¥V, . A4 is called
the highest weight of the G-module V4. It follows from Proposition 5.2.5(b)
that the G-modules V, and V, are isomorphic if and only if 4; = 4,.
Numbers a; = A(h,) are called the numerical marks of A.

We let Z, denote the set of nonnegative integers.
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THEOREM 8. (a) Let G = @ G; be one of the following Z-graded Lie super-
algebras of depth 1: P(n), W(n), S(n), H(n). Then the correspondence in Proposi-
tion 5.2.5 between finite-dimensional irreducible G-modules and finite-dimensional
trreductble Gy-modules is bijective.

(b) For Q(n) the set of numerical marks of the highest weight of the finite-
dimensional module V , is characterized by the following conditions: a;€Z, and if
a; =0, then a; + 2a, + -+ (1 — )ayy =a, +2a, , + - 4+ (n — t)a,,, .

(c) For the contragredient Lie superalgebras in Table V1 (the sth row of
the Cartan matrix is normalized so that a, , = 1 for a,, = 0), the set {a;} of
numerical marks of the highest weight of the finite-dimensional module V , is
characterized by the following properties:

(1) a,€Z, fori+#s;
(2) keZ,, where k is given by the following table:

G k b
B(0, n) 1/2a, 0
B(m, n), m >0 Ap — Apq — = Auyny — 12854, m
D(m, n) Ay — pyy — " — Amins — 12(@min_a T Gmin) m
D(2,1; «) (1 + o) '(2ay — a; — aay) 2
F(4) 1/3(2a, — 3a, — 4a; — 2a,) 4
G(3) 1/2(a, — 2a, — 3a,) 3
(3) for k < b (in the table) there are the supplementary conditions:
B(m, n): Qpikt1 = 7 = Amyn = 0.
D(m, n): Qg = " =y =0, <m — 25 @ping = pyn s
k=m— 1.
D(2, 1; a): alla; =0ifk =0; (a3 + N = 4(a, + 1) if & = 1.
F(4): alla, =0ifk =0k~ 1;a, =a,=0ifk = 2;
a, = 2a,+ 1 if k = 3.
G(3): alla, =0ifk =0,k %~ 1;a, =0if b = 2.

Proof. (a) follows from Proposition 5.2.5.

To prove (b) and (c), we let [, denote the system of simple roots of the
(reductive) Lie algebra Gy determined by the induced Z-grading. In order
for the G-module V4 to be finite-dimensional it is necessary and sufficient that

etlvy, =0  for aelly,, where ¢ = 2(4,a)/(a, x) (5.2.1)
(it is well known that these relations generate the annihilator of v,).

(b) If G = Q(m), then IIy = {oy ,..., o}, where e, = e, ; hence a,€Z, .
It is easy to see that the supplementary conditions only arise when ¢; = 0:



LIE SUPERALGEBRAS 85

This condition gives the equality Z,f,v, = 0, which is equivalent to the second
equality in (b).

{c) If G=A(mn) or C(n), then H = {a;,7 # s}, and condition
(5:2.1) is equivalent to condition (1). For the remaining contragredient Lie
superalgebras, IT, = {o;,? 5 5, 8}, where B is the maximal root among the
roots of the form Y, k;; . By the same token, condition (5.2.1) shows that
conditions (1) and (2) are necessary. It is also clear that (1) is sufficient for
(5.2.1) when « = «, . However, condition (2) turns out not to be sufficient
for (5.2.1) when o = 8. When « == 8, using direct computations from (5.2.1),
we can show that condition (3) is necessary. It is also not hard to verify that
(1) and (2) are sufficient for (5.2.1) when G = B(0, n).

It remains to show that conditions (2) and (3) are sufficient for (5.2.1) when
a = 8. To do this, it suffices to find a set of highest weights A of finite-
dimensional modules ¥, with the property 2(4, 8)/(8, B) < * which generates
the plane defined by the equations in (3). It is clear that for B(m, #) and D(m, n)
without loss of generality we may assume that # = 1; then for B(m, 1) and
D(m, 1) the desired set is the exterior powers of the standard representation.
For D(2, 1; «), F(4), and G(3), we must take the exterior powers of the adjoint
representation; then we need only verify that (3) is sufficient for (5.2.1) when
a=PBc=2

The theorem is proved.

Let G be a simple finite-dimensional contragradient Lie superalgebra, and
let ( , ) be an invariant nondegenerate bilinear form on G. We let p denote
the difference between the half-sums of the positive even roots and the positive
odd roots. It is not hard to show that p(h, ) = (a,, %;)/2. We define the Casimir
operator in the center of the enveloping superalgebra by the formula: I' =
¥ (—1)deguy qf, where {u;} and {4’} are dual bases of G relative to the form ( , ).

Let V be a finite-dimensional irreducible G-module with highest weight 4.
The action of I' on V can be written in the form: I'(v;) = (4, A + 2p)v, +
):Doe ¢,v; - In particular, I'(v,) = (4, 4 + 2p)v,, and, by Schur's lemma,
I' is a scalar operator; hence, I'(v) = (4,4 + 2p)v, ve V. We define the
supertrace form in the usual way: (a,.b), = str(ab). Since invariant forms on G
are proportional, we have (a, b)y = ly(a, b), where Iy €k is the index of the
representation V. We have: str(I") = 3 (—1)3%8% str(uu?) = l{dim Gy —
dim G;). On the other hand, st(I") = (dim Vyj — dim V)4, 4 + 2p).
Thus, I,(dim G5 — dim Gy) = (dim ¥ — dim Vi)(4, 4 + 2p), from which we
obtain '

PROPOSITION 5.2.6. The supertrace form of a finite-dimensional trreducible
representation of a simple contragredient Lie superalgebra with dim G; # dim G;
in a space V with highest weight A is nondegenerate if and only 1f (dim V; —
dim Vi}A, 4 4 2p) = 0.
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ExampLE (compare [22]). We consider the standard representation osp(l, 2)
of the dispin superalgebra B(0, 1). Then V* = A*osp(l,2), £ =0, 1,... are
all the irreducible finite-dimensional representations of B(0, 1). The highest
weight of V% is 2k, dim V* = 2k 4- 1, V§* and Vi* are B(0, 1)g-irreducible,
dim Vi* = &, dim Vi* = k + 1. The supertrace form is always nondegenerate
(Proposition 5.2.6).

5.3. Simple Lie Superalgebras Over Nonclosed Fields

In this section the ground field % is arbitrary, of characteristic 0.

5.3.1. Reduction of the classification of simple Lie superalgebras over k to finding
of the forms. Let k be the algebraic closure of 2. We recall that a k-algebra G
is said to be a form of a k-algebra G if G @ k ~G. If G is a form of G and
V a G-module, where V is a vector space over %, then 1V is called a form of the
G-module V @ k. We recall that if G is a semisimple Lie algebra over % and
V is an irreducible G-module over %, then the G ) k-module ¥V ® k& splits
into the direct sum of irreducible submodules, which are equivalent up to a
“twist” under an outer automorphism of G ¥ k. We also remark that there
is at most one irreducible form of a G-module ¥ for a given form G of a Lie
algebra G.

The next result is proved just as for Lie algebras [10].

ProrosiTiON 5.3.1. A simple finite-dimensional Lie superalgebra over k is
isomorphic either to G Q) k', where k' is a finite extension of k and G is one of the
k-algebras A(m, n), B(m, n), C(n),..., S(n), S(n), H(n), or it is a form of one
of these k-algebras.

If G =Gz ® Gy 1s a Lie superalgebra over %, then for an element a e
k* mod £*% we can construct another form G’ for G ® %, by setting [a, b]’ =
afa, b] for a, b € Gi' and [a, b]" = [a, b] otherwise. This form we call equivalent
to the original one.

5.3.2. Forms of the classical Lie superalgebras.

ProrositioN 5.3.2. (a) If a Lie superalgebra G = Gy @ G over k is a form
of G = G5 @ Gi, then Gy is a form of Gy, and the Gg~module G; is a form of the
Gy-module G .

(b) Suppose that G = G5 D Gy is a classical Lie superalgebra over F;
suppose also that Gy is a form of Gy and a Gg-module V is a form of the Gz-module
Gy . Then there is one and only one up to equivalence Lie superalgebra G =
G; @ Gy over k that is a form of G, with the Gymodule Gy isomorphic to V.

(c) The Lie superalgebras B(m, n), D(m, n), D(2, 1; o), F(4), G(3), P(n),
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and Q(n), defined over k, have at most one up to equivalence form G = G; ® Gy
with a given subalgebra Gy .

(d) The Lie superaigebras A(m, n) and C(n) over k have at most one form
G = Gy @ Gy with a given subalgebra Gy for which the Gymodule G is
srreducible (or reducible, respectively), up to equivalence.

Proof. (a) is obvious. (b) follows from the fact mentioned eatlier (see
Section 2.1.6) that the Gy-module S2G; contains ad Gy as a direct summand
with multiplicity 1. The condition for the map S%Gj — ad Gj to define a Lie
superalgebra (see Section 1.1.2, (1.1.3)) is preserved under a change of field.

(c) and (d) follow from remarks made above in Section 5.3.1.

5.3.3. Forms of Lie superalgebras of Cartan type. In Sections 3.1 and 3.3
it was shown that for all Lie superalgebras of Cartan type, that is, W(n) with
n >3, S(n) and S(n) with n > 4, and H(n) with n > 5, the filtration is
invariant under automorphisms, and the reductive part of the automorphism
group is isomorphic to GL, in the first two cases, SL, , and SO,, , respectively.
Hence by using the same arguments as in [18], we obtain the following result.

ProrosiTION 5.3.3. Let G be a Lie superalgebra over k and a form of one
of the Lie superalgebras of Cartan type W(n), S(n), S(n), or H(n), over k. Then
G is isomorphic to one of the following Lie superalgebras over k, respectively W(n),
S(n), S(n), or H(Y. a,(d€,)?), where o, € k*.

5.3.4. Classtfication of simple finite-dimensional real Lie superalgebras. Let us
begin by constructing some series of examples of Lie superalgebras over R.
We fix the standard embeddings of the fields of real and of complex numbers
in the quaternion field: R CC C H. Throughout what foliows, the bar denotes
the standard conjugation in C and H.

(a) The special linear Lie superalgebras si(im,n; k), k =R or C or H.
We consider the space I(m, n; k) of all square matrices of order m + n over k.
In it we single out the subspaces

o

o= (5 )

- 242))

where ais an (m X m)-, 8 an (n X n)-, 8 an (m X n)-, and y an (7 X m)-matrix.
We define the bracket in the usual way: [, ] = ab — (—1)* baif a € I(m, n; ), ,
b€ l(m, n; k), . This makes I(m, n; k) into a real Lie superalgebra. The special
linear superalgebra si(m, n; k) is the real subalgebra of I(m, n; k) distinguished
by the conditions:

slim,n; k) = {aclim,n; k) |str(a) =0} for Rk =RorC;
sl(m, n; H) = {a € l(m, n; H) | Re str(a) = 0}.

607[26/1-7
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For m = n these superalgebras contain a one-dimensional center, which has
to be factored out.

(b) Unitary and orthogonal-symplectic Lie superalgebras. Again let
k=R or C or H. We consider the Z,-graded space k™" = k™ @ k*; let
f =f(»¥), be a function on k™" with values in k, which is linear relative
to the first variable, superhermitian, i.e., f(x,y) = (—1)degadegy) f(y x)
nondegenerate and consistent, ie., f(x,y) = 0 if x€ k™, yek". We put

su(m, n; f); = {a € sl(m, n; C), | f(a(x), y) = —(—1)"9%8f (=, a(y)},
osp(m, n; f)s = {a € sl(m, m; R),|f(a(x),y) = —(—1)*3€f(x, a(»)},
hosp(m, n; f), = {a € sl(m, n; H), | f(a(x), y) = —(—1)*9%€%f (%, a(y)}, s€Z,

The Lie superalgebras su(m, n; f), osp(m, n; f) and hosp(m, n; f) are called
unitary, orthogonal-symplectic, and quaternion orthogonal-symplectic, respectively.

(c) The Lie superalgebras UQ(n, p) and HQ(n). Let

UNQ(n; P) = (—%— _?1—)’ acu(p,n—p),besu(p,n —p)g Csl(n, n; C)

HQM) = (-5 —g—) a,bel(n) Re tr b = 0] C (m, n; H).

We put UQ(n, p) = UQ(x, p)/{lz>, HQ(r) = HQ(n)/{Al2, , A€ R}.

(d) The Lie superalgebras D(2, 1; «; p). For each of the representations
of s0(4,4 — p; R) ®sl(2; R), p =0, 1, 2, there is a family of real Lie super-
algebras D(2, 1; «; p), « € R\{0, —1}, that are forms of D(2, 1; a).

() The Lie superalgebras F(4; p). Each of the Lie algebras so( p, 7 — p),
p» =0,1,2,3, has a spinor representation spin, ,_,, which is a real form of
the B;-module spin, . For each of the four linear Lie algebras spin, ,_, there is,
by Proposition 5.3.2(b) one and only one real Lie superalgebra F(4; p),
p =0,1, 2,3, which is a form of the complex Lie superalgebra F(4).

(f)  The Lie superalgebras G(3; p). Each of the real forms G, ,, p =0, 1,
of the complex Lie algebra G, has a 7-dimensional representation G, ,. For
each of the two linear Lie algebras G, , & s/, there is, by Proposition 5.3.2(b),
one and only one real Lie superalgebra G(3; p), p = 0, 1, which is a form
of the complex Lie superalgebra G(3).

(2) The Lie superalgebras H(n; p; R):

H(n; p; R) =

DeWe R) | D(Y, @t~ 3 (@t) = "%'
i=1 i=p+1
(h) The Lie superalgebras P(n; R), Q(n; R), W(n; R), S(n; R), and
S(n; R). These are P(n), Q(n),..., defined for & = R.
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Real Lie superalgebras obtained from one another by the construction in
Section 5.3.1 (for « = —1) are called dual. From the classification of simple
real Lie algebras and from Propositions 5.3.1-5.3.3 we derive the following
theorem.

TueoReM 9. A simple finste-dimensional real Lie superalgebra that is not a
Lie algebra is isomorphic either to ome of the complex Lie superalgebras A(m, n),
B(m, n), C(n), D(m, n), D(2, 1; o), F(4), G(3), P(n), Q(n), W(), S(n), S(n),
or H(n), regarded as real superalgebras, or, up to transition to its dual, to one of
the forms of these Lie superalgebras listed below:

A sl(m,n; R), su(m,n;p,q9), myn =1, m+ n > 2; sl(m, n, H),
m,n > 1; H(4; p; R).

osp(m,n; p; R), modd,m > 1,n > 2.

osp(2, n; p; R), hosp(1, n; p), n > 2.

osp(m, n; p; R), m even, m = 4, n > 2; hosp(m, n; p), m > 2,
D(zy 1; oy p)'

F@4,p),2=0,1,23.

G(3,2),»=0,1.

P(n, R), n > 3.

Q(n, R); UQ(n; p), n = 3; HQ(n), = > 2.
W(n, R), n > 3.

S(n,R), n > 4.

S, R), n = 4.

H(n; p; R), n > 5.

ocaw

mTTngo W QT

5.4. On the Classification of Infinite-Dimensional Primitive Lie Superalgebras

In Section 4.2.3, we have given a classification of the primitive Lie super-
algebras (L, L,) for which Ly D Ly ; they are all finite-dimensional.

In this section we state without proof some partial results on the classification
of infinite-dimensional primitive Lie superalgebras. We recall that Lie super-
algebra L with a distinguished subalgebra L, is called primitive if L, is a maximal
subalgebra and it does not contain nontrivial ideals of L.

5.4.1. Two algebras of differential forms. Let £2,(m) be the superalgebra of
differential forms with coefficients from the polynomial algebra k[x, ,..., x,);
in other words, 2,(m) is the associative superalgebra over A[x, ,..., x,,] (with
trivial Z,-grading) with the generators dx, ,..., dx,, with the defining relations

dx; A dx; = —dxe; ndx;, degdx; =1, 4,j=1,.,m.
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On 2,(m) the differential d is defined in the usual way, as a derivation of degree T
for which d(x;) = dx; and d%x,) = 0, { = 1,..., m, with the standard properties.
We now define the following superalgebras:

Q(m, n) = Qy(m) @ L(n) and O(m, n) = Ly(m) & O(n).

The differentials d and 6 are extended from £(r) and O(n) to £2(m, n) and
O(m, n) in the natural manner, namely, d =d Q14+ 1®d, 0 =d @1 +
1 & 0. It is not hard to establish their properties, which are similar to those
in Chapter 3. .
We set A(m, n) = k[x, ,..., %,,] & A(n). The relations deg §; = degx; = 1
determine on A(m, n) a Z-grading (which is not consistent with the Z,-grading).
Every derivation D of degree s of A(m, n) extends uniquely to a derivation of
6(m, n) and (m, n), subject to the conditions [D, 0] f = [D, d] f = 0, f € A(m, n).

5.4.2. Six series of infinite-dimensional Lie superalgebras. We introduce the
following differential forms:

v == dx; A Adxg, AOBE A 0 A BE, € O(m, n),

k n
h=2Y dx;ndxy; + Y, (A€ e Qm,n), m =2k,

i=1 =1

k k
k= dxyg.y + ) (% dxy — %y dx;) + Y, £idé e Q(m, n), m =2k + L.

i=1 =1
We now define six series of infinite-dimensional Lie superalgebras (m > 0):
I. W(m, n) = der A(m, n).

The other five series consist of Lie algebras inside W(m, n), which are
characterized by the following action on the differential forms

II. S(m,n) = {DeW(m,n)| Dv =0},
II'. CS(m,n) ={DeW(m,n)| Dv = Av, Ac k},
1II. H(m, n) = {D e W(m, n) | Dh = 0},
IIT'. CH(m,n) ={DeW(m,n)| Dh = M, A€k},
IV. K(m,n) = {DeW(m,n)| Dk = uk, uc A(m, n)}.

Note that for n = 0 we obtain the six standard series of infinite-dimensional
Lie algebras of Cartan type.

The Z-grading of A(m, n) induces an (inconsistent) Z-grading in W(m, n).
We write it down in more detail. Every element D € W(m, n) can be expressed
as a linear differential operator

1630 g % P;, 0, A(m, n). (5.4.1)

Ms

D=

1

-
i
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The relations deg x; = deg £, = 1, deg 8/ox; = deg 8/9¢; = —1 also deter-
mine on W(m, n) a Z-grading W(m, n) = @;5_; W(m, »), , which corresponds
in the canonical way to a filtration; the appropriate distinguished subalgebra
i8 @y>o W(m, n); . The filtration and the distinguished subalgebra induce on
every subalgebra L a filtration and a distinguished subalgebra Ly =L N
@Do W(m’ n)i .

The Lie superalgebra S(m, n) consists of the operators of the form (5.4.1)
satisfying the condition

divD = Z 6 4 (—1)des D+ 2 EQ, =0.
i=1 j=1

Hence we see that S(m, n) is the linear span of the elements of the form

da 0 da © da 0 da 0

B 9%, T 9, 08,  Om, Ox,  om, Om’

oa 0 s 0a 0
8§ 8x,+( ) '-a—x—;—a-g‘-, ae/l(m,n).

The Lie superalgebra H(m, n) consists of the operators of the form

oa 6)

"
z=: 0, af{ izl(ax 3xk+¢ Oxy,; Ox; ) ae A(m, n).

Here [D, , D} = Dy, ) , where

{a, b} = (— 1)dezazﬁ'__3fi Z(aa 8%  oa ab)

i D\ O% 0%y Oxpyy Oxg
Next,

CS(m,n) = S(m, n) ©® <i-1 i + E t ox; >

{=1

CH(m,n) = Hom ) @ (3, b7 +2 5 5 5).

=1

Finally, the Lie superalgebra K(m, n) consists of elements of the form

D=2 (_6% b ) % T Z~1 (= T af,i, ) 'aa?‘
+ (aia ¥ g:; )%H

(2(—1)«“ 1 Z "'z:;: % x‘) %) .a € A(m, n).

i=l
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The Z-grading of W(m, n) also induces a Z-grading of the form G = @,>_, G;
on the Lie superalgebras of series II, II’, III, and III'. This is not so in the
case of the last series K(m,n). However, if we set degx; = deg & = 1,
deg 0/ox; — deg 0/0é; = —1for1 <i<Km— 1,1 <j < nanddegx, =2,
deg 0/0x,, = —2, then the resulting Z-grading of W(m, n) also induces a
Z-grading of the form G = @;,_, G; on K(m, n).

Note that the Gy-modules G_, for these six series are isomorphic to the
following Lie superalgebras:

{(m, n) for W(m, n) and CS(m, n), sl(m, n) for S(m, n), osp(n, m) for H(m, n),
cosp(n, m) for CH(n, m) and cosp(n, m — 1) for K(m, n).

The superalgebras of all six series are transitive and irreducible, and those of
series I, II, ITI, and IV are even simple.

5.4.3. On the classification of primitive Lie superalgebras. Let L be an
infinite-dimensional primitive Lie superalgebra and L, be the distinguished
subalgebra. Let L_; be some minimal (Z,-graded) subspace of L that contains
L, and is different from L and ad Ly-invariant. We construct a filtration in L
of the form

L=L ;DL 4,2 2L_;2L,DL,D ", by setting (see [6]):
L (g =[L,,L]+L_,, Ly ={aeL,,|[a,L,]CL, ,}, s> 0.

The corresponding associate Z-graded superalgebra GrL = @;5_4G; has
the following properties:

1°.  GrL is transitive and irreducible,
2°. G_y =G, fors >0.
3°. G, #0.

We may also assume that

4°. @0 G; does not contain nonzero ideals of GrL (because we can
factor out such an ideal if it exists).

If the Z-grading is consistent, then
5%  [Gy, G,] is a contragredient Lie superalgebra.
Apparently, 5° holds in general, but I have not been able to prove this,

Now we can state (without proof) the main result of this section.

THEOREM 10. Let G = @;5_4 G; be an infinite-dimensional Z-graded Lie
superalgebra having properties 1°-5°. Then G is isomorphic as Z-graded super-
algebra to one of W(m, n), S(m,n), CS(m, n), H(m, n), CH(m, n), or K(m, n)
with m > 0.
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The proof uses the same methods as in Chapter 4 and relies on Theorem 3.

A primitive Lie superalgebra L with distinguished subalgebra L, is called
complete if it is complete in the topology defined by the subspaces of the tran-
sitive filtration of the pair (L,L;) (see Section 1.3.1). The superalgebra
A(m, n) = K[[%, ,..., ¥n]] ® A(n) is complete in the topology defined by its
natural filtration.

We denote by W(m, n) the Lie superalgebra of all continuous derivations
of A(m, n). Then W(m, n) is a complete primitive Lie superalgebra with the
natural distinguished subalgebra. Complete and primitive are also S(m, 7),...,
R(m, n), which are characterized by the same action on the differential forms
v, h, k, as for S(m, n),..., K(m, n).

A well-known result of Cartan asserts that W(m, 0),..., R(m, 0) are the only
infinite-dimensional complete primitive Lie algebras.

Conjecrure 1. An infinite-dimensional complete primitive Lie superalgebra
is isomorphic to one of W(m, n), S(m, n), CS(m,n), B(m, n), CH(m, n), or
R(m, n) for m > 0.

5.4.4. Remarks. (a) In Chapter 4 we have, in fact, proved that if G =
@i5—q Gy is an infinite-dimensional Lie superalgebra with a consistent Z-grading
having properties 1°—4°, then G is isomorphic to K(1, 7). ’

(b) There are general embedding theorems, which generalize standard
theorems for Lie algebras and Propositions 3.1.2 and 3.1.3.

If G= @i, G, is a transitive Z-graded Lie superalgebra, and m =
dim(G_,);, n = dim(G,);, then there is an embedding G — W(m, n)
preserving the Z-grading.

LetL =L_;DLyDL,D - be a transitive Lie superalgebra with a filtration,
m = dim(L/Ly)s , n = dim(L/L,); . Then there is an embedding a: L — W(m,n)
preserving the filtration. If 8 is another such embedding and (x — )L CL,,
then there exists one and only one (continuous) automorphism ¢ of W(m, n)
for which « = @ o 8; @ can be induced by an automorphism of A(m, n).

(c) By the same method as Proposition 3.3.8, it can be proved that every
nondegenerate closed differential form from §X(m, n) of degree 2 is reduced
to the form % by an appropriate automorphism of A(m, n).

5.5. Some Unsolved Problems

5.5.1. Classification of infinite-dimensional primitive Lie superalgebras. Apropos
this topic, see Conjecture 1 and Theorem 10.

5.5.2. Formulas for the characters and dimensions of irreductble representations.
The most urgent task is to prove a formula for the characters in the case of
contragredient Lie superalgebras. For contragredient Lie algebras (including
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these of infinite dimension) this is done in [14]. However, the proof in [14]
only works for B(0, n).

5.5.3. Cohomology. For the definition of the cohomology group H¥G, V)
of a Lie superalgebra I with coefficients in a G-module V, see [17]. As usual,
it is shown that if V' is a finite-dimensional irreducible G-module and I' is the
Casimir operator (the existence of an invariant bilinear form is assumed),
then H¥G, V) =0 for I'(V) + 0. In the case of contragredient Lie super-
algebras, the latter condition is equivalent to (A4, 4 4 2p) # 0, where 4 is
the highest weight (see Section 5.2.3), and it is not violated in any nontrivial
representation only for B(0, ).

Now some questions arise at once: the cohomology of the simple finite-
dimensional Lie superalgebras with trivial coefficients, and the cohomology
of the infinite-dimensional complete primitive Lie superalgebras.

Closely connected with the problem of the triviality of HYG, V) is the full
reducibility of representations and the theorems of Levi and Mal’tsev. A counter-
example to Levi’s theorem is s/(n, n), and one to full reducibility is the adjoint
representation of A(rn, 7). As we have already mentioned, full reducibility
always holds for B(0, ). It is not hard to show that if G is a classical Lie super-
algebra, then HY(G, V') = O for all irreducible representations, with the excep-
tion of a finite set S. It would be interesting to find this .S and also to classify
all indecomposable representations of the classical Lie superalgebras.

5.5.4. Infinite-dimensional representations. Undoubtedly, Kirillov’s orbits
method extends to Lie superalgebras. (In particular, Theorem 7' on infinite-
dimensional representations of solvable Lie algebras points to this.) We mention
that Kirillov’s differential form w(x, ¥) = I([x, ¥]) on an orbit of the co-adjoint
representation of a Lie superalgebra is a form in dx and d¢ (see Section 5.4).
On infinite-dimensional representations of the simple Lie superalgebras almost
nothing is known. First in line is, of course, the dispin algebra B(0, 1).

5.5.5. Generalized Lie superalgebras. We consider the ringM =Z, ® - ©Z,
(s times). An M-graded algebra is called a generalized superalgebra. If o =
(o yeery 25) € M, we set (—1)* = (—1)* - (—1)*. Now all the definitions and
assertions of Section 1.1 carry over to generalized superalgebras, in particular,
the definitions of a Lie superalgebra, of the supertrace, and the Killing form.
Just as in Section 2.1, we can define series of generalized Lie superalgebras
si(ny ..., Ngs), 0sp(ny ..., M), Q(n), and as in Chapter 3, the series W, S, S, H.
The same problems arise here as for Lie superalgebras, first and foremost,
the problem of classifying the simple generalized Lie superalgebras.

Additional remarks. To Section 5.2. In my recent article, ‘“Characters
of Typical Representations of Classical Lie Superalgebras” (Commun. Algebra 5,
No. 8, 889-897(1977)), the formulas for the character and supercharacter of finite-
dimensional irreducible representations in “‘general position” (so-called typical
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representations) are obtained. For example, all the representations of B(0, )
are typical and all the representations of A(1, 0) are typical except for S*s/(2, 1)
and its dual.

To Section 5.3. D. Z. Djokovic and G. Hochshild proved, in their article
“‘Semi-simplicity of Z-graded Lie algebras, II" (Illinois J. Math. 20 (1976),
134-143), that every finite-dimensional representation of a Lie superalgebra
G is fully reducible if and only if G is a direct sum of a semisimple Lie algebra
and several copies of B(0, n;).

From my article, mentioned in Section 5.2, it follows that HY(G, V) =0
for a typical representation V. By the way, HY(A(l, 0), ¥) = 0 only for one
irreducible representation-standard representation.

To Section 54. B. Kostant in his recent paper, “Graded manifolds, graded
Lie theory and prequantization,” gave a more correct definition of a super-
manifold than the one in [5]. This definition allowed him to develop the theory
of homogeneous supermanifolds, and “orbits method” for supergroups.
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