Part V

Complex Analysis
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SECTION 1
ANALYTIC AND HARMONIC FUNCTIONS

5101

True-False. If the assertion is true, quote a relevant theorem or reason; if
false, give a counterexample or other justification.

(a) if f(z) = u+ iv is continuous at z = 0, and the partials uz, uy, vz, vy
exist at z = 0 with v, = v, and uy = —v; at z = 0, then f'(0) exists.

(b) if f(2) is analytic in  and has infinitely many zeros in 2, then f = 0.

(c) if f and g are analytic in Q and f(2) - g(2) = 0 in Q, then either f =0
org=0.

(d) if f(z) is analytic in @ = {z; Rez > 0}, continuous on Q with |f(iy)} < 1
(=00 < y < +00), then [f(2)| <1 (z € Q).

(e) if 3 anz™ has radius of convergence exactly R, then Y n3a,2z" has
radius of convergence exactly R.

(f) sin/z is an entire function.

(Indiana-Purdue)
Solution.

(a) False. A counterexample is f(z,y) = \/I—:v_yT f satisfies Cauchy-
Riemann equations at z = 0, but f'(0) doesn’t exist.

(b) False. A counterexample is f(z) = sin ;—. f is analytic in @ = {z :
|z] < 1}, and has zeros 2 = 1— L, n=1,2,---. But f is not identically zero
in Q.

(c) True. If neither of f and g is identically zero in 2, then both f and g
have at most countably many zeros in 2, and the zeros have no limit point in
Q. Then f(2) - g(z) is not identically zero in Q.

(d) False. A counterexample is f(z) = e*, which is analytic in Q, and
continuous on Q with |f(¢y)] = 1. But f(z) is not bounded in Q.

(¢) True. Because lim /n3 = 1, it follows from

n—oo

— 1
am Y lan} = 7

that

— 1
lim {/n3lan| = T

n—00
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(f) False. sin+/z is not analytic at z = 0. Actually, z = 0 is a branch point

of sin\/z.

5102

(a) Let f(z) be a complex-valued function of a complex variable. If both
f(z) and zf(z) are harmonic in a domain 2, prove that f is analytic there.

(b) Suppose that f is analytic with |f(z)| < 1in |z| < 1 and that f(+a) = 0
where a is a complex number with 0 < |a| < 1. Show that |f(0)] < a®. What
can you conclude if this holds with equality.

(c) Determine all entire function f that {f'(2)| < |f(2)i-

(Stanford)

Solution.

(a) It is well known that the Laplacian can be written as

0? o? 9?

A=5t o7 = Y5m0m

Because 92 9 o
s=(e1(2)) = 5=f(2) + 2505 f(2),

it follows from
0* 0
G257 ) =

and
62
020%

(2f(z)) =0
that 9
which implies that f(z) is analytic in Q.

(b) Define
l1—-az 1+az
Fz) = f2)- z—a z+a

then F(z) is analytic in {|z| < 1}. When |2| = 1,

b

l1—az 1+az

zZ—a z+a

b

hence
lim |F(z)] < 1,

|z]—>1
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which implies that |F(z)| <1 for |z| < 1. Take z = 0, we obtain
1£(0)] < laf®.
When it holds with equality, we have F(z) = €'®, which is equivalent to

g2—a z+a
1—az l+az
(c) From |f'(2)| < |f(2)|, we know that f has no zero in €, which implies
that %zi)l is also an entire function. It follows from l%zi)l < 1 that %zi)l =g,
le| < 1. Integrating on both sides, we obtain log f(z) = cz + d. Hence f(z) =
c'e®*, where ¢ and ¢ are constants and |e| < 1.

f(z)=e

5103

Let G be a region in € and suppose u : G — IR is a harmonic function.
(a) Show that 2% — ia—; is an analytic function on G.

ox a
(b) Show that u has a harmonic conjugate on G if and only if 2% — ig—z has
a primitive (anti-derivative) on G.
(Indiana)
Solution.
(a) Let 5
Pay)= 5o Qo) =5

Because u is a harmonic function, we have

oP 0Q 9*u  0%u

Gz Oy oo o

We also have
6P+6_Q_ 0%u 3 %u — 0
oy = 0z ~ dzdy Ozly
So P(z,y) and Q(z,y) satisfy the Cauchy-Riemann equations, hence

P+iQ:g—Z—ig—Z

is analytic on G.
(b) If %;—‘ - ig—; has a primtive, then for any closed curve ¢ C G, the integral

ou ou ou ou . ou ou
Ou _ouN, _ [(0%;, 9 9 %) —o.
/c<az Zay>dz /c<amd“amdy>“( By “amdy> 0
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It follows that

holds for any closed curve ¢ C G. Hence we can define a single-valued function
v(z,y) on G:
? Ou du
v(z,y) = ——d —d
where zg, z € G, and the integral is taken along any curve connecting zp and
z in G. Because

Ov  Ou 0Ov _ Ou
oz~ Oy’ Oy Oz’
we know that v(z,y) is a harmonic conjugate of u(z,y) on G.
On the contrary, if v has a harmonic conjugate v on G, then
v Jv ou ou

dv = —d —dy = ——— —dy.
> et 6ydy Bydz+ (%dy

For any closed curve ¢ C G, we have

n\.
TN
QJIQJ
8
.
QJ‘QJ
@ |
——
&
[l
m\.
N
QJ]QJ
8
8
8
+
b
&
N——
+
o«
N
E
8
8
+
QJIQJ
I
IS8
<
——

Il

ou ou ov Ov
Pge+ Lay) +i( 2+ L4
/c(az ** oy y)“(aﬁay y)

= /d(u+iv):0.

[

Su ; Ou G Z [ du - Qu
Hence 3+ — Yoy has a primitive flo (b? - zgy—) dz on G.

5104

Suppose that u and v are real valued harmonic functions on a domain 2
such that u and v satisfy the Cauchy-Riemann equations on a subset S of {2
which has a limit point in Q. Prove that u + iv must be analytic on €.

(Indiana—Purdue)
Solution.

Because u and v are harmonic functions, f; = g—z — ig—; and fo = g% — i%”y—
are analytic functions on 2. The reason lies on the fact that the real and ima-
ginary parts of f; and f; satisfy the Cauchy-Riemann equations respectively

(see 5103 (a)).
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By the assumption of the problem,
Ou Ov  Ou ov

oz 9y’ 9y oz
when z € § C 2. Hence

fot gu_ (00
15 %z " ey T2 T 6 T oy

when z € 5. Because the subset S has a limit point in §2, by the uniqueness
theorem of analytic functions, we know that fi = ifs holds for all z € Q. It
follows from f; = if; for z € Q that

ou Ov Ou ov

9z~ 8y’ 9y oz
for z € 2, which implies that u + iv is analytic on 2.

5105

Let @ = [0,1] x [0,1] C € be the unit square, and let f be holomorphic in
a neighborhood of ). Suppose that

f(z+1)— f(z) isreal and >0 for z € [0,1]
f(z+14)— f(z) isreal and > 0 for z € [0,1].

Show that f is constant.
(Indiana)
Solution.
Because f is holomorphic on the closed unit square ), by Cauchy integral
theorem, we have

[ s /0 ' fa)ds + /0 CF( 4 yiYidy - /0 e+ i)

- /0 ' fluiyidy

/ (F(e) - Fa+ )dn +i [ i) - sy
0.

f(z) - flz+4) <0
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for 0 <z <1and

f(l+y1) = fy) 20
for 0 < y < 1, by comparing the real and imaginary parts in the above identity,
we obtain that f(z+4) = f(z)for0 < z < land f(1+yi) = f(yi)for 0 <y < 1.
Hence f(z) can be analytically extended to a double-periodic function by

f2)=f(z+1) = f(z +49),

which is holomorphic in € and satisfies
If(2)] < I}leaéf{lf(Z)l} < +oo.

This shows that f(z) must be a constant.

5106

Let f be continuous on the closure S of the unit square
S={z=z+iye:0<z<,0<y<1},

and let f be analyticon S. fRf =0on SN({y=0}U{y = 1}), and if If =0
on SN ({z =0} U {z = 1}), prove that f = 0 everywhere on S.

(Indiana)
Solution.

Define F(z) = [ f(z)dz, where the integral is taken along any curve in §
which has endpoints 0 and z. Then F(z) is analytic in S and continuous on
S. For z € 85, we choose the integral path on S and consider the differential
form f(z)dz in the integral. Let f = u + iv, then

f(2)dz = (udz — vdy) + i(vdz + udy).

On SN({y =0}U{y =1}) we have u = 0 and dy = 0, and on SN ({z =
0} U {z = 1}) we have v = 0 and dz = 0. Hence we obtain Re(f(z)dz) = 0 on
85 which implies ReF(z) = 0 when z € 88S.

Let G(z) = eF'*). Then G(z) is analytic in S and |G(z)| = 1 when z € 8S.
Because G(z) has no zeros in S, so 1/G(z) is also analyticin S and |1/G(z)| =1
when z € 8S. Apply the maximum modulus principle to both G(z) and
1/G(z), we obtain |G(z)| = 1 for z € S, which implies that G(z) is a constant
of modulus 1. It follows from G(z) = eF?) that F(z) is also a constant. Hence

f(z)=F'(z)=0.
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5107

(a) Find the constant ¢ such that the function

1 c

f(z):z4+z3+z2+z—4_z—l

is holomorphic in a neighborhood of z = 1.
(b) Show that the function f is holomorphic on an open set containing the
closed disk {z: |z| < 1}.

(Towa)
Solution.
(a) As
. 1
zh—-n}(z_l)'z4+z3+z2+z—4
- 1
- (22 + 23+ 22+ 2z —4)
= lim !
1-1423 432242241
1
= 15
we know that z = 1 is a simple pole of m with residue equal to %.

Hence when ¢ = %, f(z) is holomorphic in a neighborhood of z = 1.
(b) When |z| < 1, we have

A 4222t a4 > 4= | P22 2] > A [l = [P — [ — 2] > 0,

and the equalities hold if and ounly if 2 = 1, which shows that z = 1 is the only
zero of 24 + 23 + 22 4+ 2 — 4 in {z: |z] < 1}. By (a), we obtain that f(z) has
no singular point in {z : |z| < 1}, hence f(z) is holomorphic on an open set
containing {z : |z| < 1}.

5108

Let P(z) be a polynomial of degree d with simple roots 23,22, --,24. A
“partial fractions” expression of —}; has the form:

1 d Cn
P(z):Zz—zn‘ (*)

n=1
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(a) Give a direct formula for ¢, in terms of P.
(b) Show that P—(lz—) really has a representation of the form (x).
(c) Give a formula similar to () that works when z; = z; but all other
roots are simple.
(Courant Inst.)
Solution.

(a)

. Z— Zn 1
¢, = lim =

25 PE) T Pl

which is the residue of ﬁ(l—ﬁ at z = z,.
(b) Let

£6) = 55— 2 T

n=1
Then f(2) is analytic on ¢ and lim f(z) = 0. By Liouville’s theorem, f(z) is
Z—0Q

identically equal to zero, hence

d

1 Cn
P(z) _Zz—zn'

n=1

(c) Denote the Taylor expansion of P(z) at z = 2z1(= 22) by

Then the Laurent expansion of F(12_) at z = z1 is

1 c ch b
= 1 + 2 +an(z—z1)",

Piz) (z—=z)? z—2n

n=0
where "
C,_1_ 2 c;:—E:—ZP (zl)
1 as P”(Zl) a% 3P”(21)2

1 .
Hence 6] has the form:

1 c} ch Cn
P(z) (z—z1)2+z—zl+nz=:3z——zn'



343

5109

Suppose f is meromorphic in a neighborhood of D (D = {|z| < 1}) whose
only pole is a simple one at z = a € D. If f(0D) C IR, show that there is a
complex constant A and a real constant B such that

_ Az2+ Bz+ A
&) = im0

(Indiana)
Solution.
Assume that the residue of f at z = a i1s A;. Define

A1 le

z—a l1—az’

9(2) = f(2) -

It is obvious that g(z) is analytic on D and g(8D) C IR. By the reflection
principle, g(z) can be extended to an analytic function on the Riemann sphere
€, hence g(z) must be a constant. Suppose g(z) = By, then B is real and

A1 A1Z
z—a l1-a
Az? +Bz+A
(z —a)(1 —az)’

f(2) + B,

where A = A, — @By, B = —(ad1 + aZl) +Bi(l+1a?) e R

5110

Let K1, K3, -, K, be pairwise disjoint disks in @, and let f be an analytic
function in €'\ U K;. Show that there exist functions fi, f2,---, fn such that

j=1
(a) f] is analytlc in ¢\K;, and
(b) f Zf] z)forze@'\UK

(Indiana)
Solution.
Assume K, = {z; |z — z1] < r;}. Choose £ > 0 sufficiently small, such that

Ty ={zm<|le—zi| <7 +e} CO\ U K;.
j=1
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In 2, f(z) has the Laurent expansion

flz) = Z a z——zl

k=-—oc0

Set
0

fi(z) = Z agl)(z —z)k.

k=—oc
fi1(2) is analytic in ¢\ K;. Because f(z) — fi(z) has an analytic continuation
to K1, f(z) — fi(2) is analytic in @\ CJ K;.
Assume K; = {z;]|z — 25| < rg}._éhoose €2 > 0 sufficiently small, such
that B2 = {z;72 < |z — 22| < ra + €2} CC\ CJ K;. In B3, f(z) — fi(2) has the
Laurent expansion =

+o0

f@-fAE@ =Y a?@-n)k

k=—o00

0
Set f2(2) = . agz)(z — z2)¥. f2(z) is analytic in @\ K. Because f(z) —

k=—o00
f1(2) — f2(2) has an analytic continuation to K, f(2)— fi(2)— f2(2) is analytic
in G'\ U Kj.
7=3
Repeat the above procedure n — 1 times, we get a function f(z) — fi(z) —
fa(2z) = -+ — fa—1(z), which is analytic in €\ K,,. Set

fa(z) = f(2) = f1(2) ~ fa(2) = -+ = fr_1(2).
Then we have

n
2) = fi(2),
=1
n
where f;(z) is analytic in@'\ K;, and the above identity holds for z € ¢\ |J Kj.
7j=1

5111

Recall that a divisor Dy of a rational function f(z) on € is a set {p €
€@ U {oo}}, consisting of zeros and poles p of f(z) (including the point o),
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counted with their multiplicities n, € Z. Let f and g be two rational functions
with disjoint divisors. Prove that

II s = I f(a).

PED, g€,

(SUNY, Stony Brook)

Solution.
Let p; (¢ = 1,2,--+,7n) be all the zeros and poles of f(z) with multiplicities
ny,; respectively. It should be noted that p; is a zero of f when n,, > 0 and
a pole of f when n,, < 0. By the property of rational functions, we have

oF

np; = 0. Similarly, let ¢; (j = 1,2,---,m) be all the zeros and poles of g(z)

i=1

m
with multiplicities mg; respectively, then we have > mg, = 0.

ij=1
First we assume that the point co is not a zero or a pole of f or g, then f
and g can be represented by

i=1
and
9(z) = B [J(z —g;)™
Jj=1
Then
n n n m
II e = TJewom= =18 -I] I — @)™
pEDy i=1 i=1 i=1j=1
n m
= H H(Pi —g;)"rim,
i=1j5=1
and

—
=
[}
Z
I
3
=~
&8
3
I
l'm
b
3
S
=
&8
|
3
E

~
I
-
~
|
-
o
1
-
-
1
-

q€D,

I
::]:
s
S
|
IS
hard
=
i

ii

A
.
i

A
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In case the point oo is a zero or a pele of f or g, we may assume p, = o
without loss of generality. Then

and

g(2) =B H(z —q;)"y.

m
Since }_ mg; = 0, we may assume that g(pn) = g(c0) = B. Hence

=1
n—1
IT s = J[e)": - B
pEDJ =1
n—-1 n—-1m
— (H B"#i) . B . H H(:Dz — gj)"n™
i=1 i=1j=1
n—-1 m
= [T I — g
i=1j=1

and

—
=
P

5

I
s
=
2
i

I
—
i

E
s
)

[

B
3

3

which completes the proof of the problem.

5112

Let f(z) be the “branch” of log 2 defined off the negative real axis so that
f1)=0.

(2) Find the Taylor polynomial of f of degree 2 at —4 + 3¢, simplifying the
coeflicients.

(b) Find the radius of convergence R of the Taylor series T(z) of f(z) at
-4+ 31
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(c) Identify on a picture any points z where T(z) converges but T(z) #
f(2z), and describe the relationship between f and T at such points. If there
are no such points, is this something special to this example, or a general
impossibility? Explain and/or give examples.

(Minnesota)
Solution.
(a) When z is in the neighborhood of zg = —4 + 37, we have
f(z)=logz = log[(—4+ 3%) + (z+4 — 37)]

) z+4—-3
= 1 —4 -z - -

og( +3z)+log[l+ —4+3i]

. 3. z4+4-3i

= 1 — i I
og b + i(m — arcsin 5)+ EyenEY

1/24+4-3i 2+
2\ —4+43 ’

Hence the Taylor polynomial of f of degree 2 at —4 + 31 is

co+ci(z+4—3i)+calz + 4 — 34)?,

where
¢ = logh+ i(m — arcsin g),
A+ 3
€1 = o5
and
L 254240
2771250

(b) Denote the Taylor series of f(z) at —4 + 3: by T'(z). Because log z has
only z = 0 and z = oo as its branch points, and has no other singular point, the
radius of convergence R of T(2) is equal to the distance between z = —4 + 34
and z = 0. Hence R = 5.

(c) Denote the shaded domain shown in Fig.5.1 by . When 2z € Q =
{z : |z +4 - 3i| < 5,Imz < 0}, T(z) # f(z). It is because T(z) in Q is the
continuation of logz at —4 + 37 in the disk {z : |z + 4 — 37| < 5}, while f(2)
in € is the continuation of log z at —4 + 31 in the slit plane €'\(—o0, 0]. Hence
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the difference is 273, i.e., T(z) = f(2) + 2mi.

z,

2

Fig.5.1

5113

Let f be the analytic function defined in the disk A = {2 : [z — 4] < 4} s0
that f(z) = z3(z 4+ 1)7 in A and f(z) is positive for 0 < © < 8. An analytic
function g in A is obtained from f by analytic continuation along the path
starting and ending at z = 4 (see Fig.5.2). Express ¢ in terms of f.

Fig.5.2

(Indiana)

Solution.
Denote the closed path in Fig.5.2 by I', and denote the change of ¢(z) when
z goes along I' from the start point to the end point by Ar¢(z). Then

9(2) = [9(2)[e"¥BIC) = |f(2) | BT+ ArATEI ),

We have
1 1 1 1
Arargf(z) = gApargz + EAparg(z +1)= —5(27r) + -2—(—271')
o
= -3
Hence

g(z) = "3 f(2).
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5114

Define
e\/; — e_\/;

&) =—f 7z
(a) Where is f single-valued and analytic?
(b) Classify the singularities of f.
(c) Evaluate jili=25 f(z)dz.
(Indiana)

Solution.
(a) It is known that z = 0 and 2 = oo are the branch points of function /2.

Let T = {z : |z| = v}, and when z goes along T once in the counterclockwise
sense, /z is changed to —/z, while f(2) is changed to

e™VZ eV _ eV? —eVF
sin(—/z)  siny/z
which is still f(z). Hence z — 0 and z = oo are no longer the branch points of

f(2)-
When z is in the small neighborhood of 2 = 0, f(z) can be represented by

n=0 n=0
z = - =
f(z) sin /z = (m1)* _a4i
> nyiNi?  ?
n=0
(o )
25 z"
— n=0 (2n+1)‘
—- = ,
-1
Z_: Gari2"

which implies that z = 0 is a removable singular point of f(z). It is obvious
that z = n?n% (n = 1,2,---) are poles of f(z). Hence f(z) is single-valued and
analytic in C\{z = n?7r?:n=1,2,.--}.

(b) We have
vz -z ar _ ,—nw
. e — € [ € n/ _nw —nw
B o e S AU !
nw

which shows that z = n?7? are simple poles of f(z) with residues

onm(—1)"(e"™ — e~").
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As to z = oo, it is the limit point of the poles of f(z), and hence is a
non-isolated singular point of f(z).
(¢) f(2) has only one pole z = n? in the disk {2 : |z| < 25}. Hence

/ f(z)dz = 2miRes(f,7?)
12{<25

= —471’27:(6" —e ).

5115

Let © be the plane with the segment {—1 < z < 1,y = 0} deleted. For
which of the multi-valued functions

() £(2) = 7=,

(b) (=) = i,
can we choose single-valued branches which are holomorphic in Q. Which of
these branches are (is) the derivative of a single-valued holomorphic function
in Q. Why?

(Indiana—Purdue)

Solution.

Let T' be an arbitrary simple closed curve in €2, and denote by Ar¢(z) the
change of ¢(z) when z goes continuously along T’ counterclockwise once. It is
known that f and ¢ can be represented by

z 1 1
f(Z) —_ — e{1ogz—glog(1-+—z)—-2—log(1-—z)}
V1—22
— ‘ ol oilaTg: - Jarg(1+:)- targ(1-»)]
V1—2z2
and
1 1 1
- — o{—3log(1+2)— 3 log(1-2)}
g(Z) = \/: =€ 2 2
1— 22
— l 1 eil—3arg(1+:2)- sarg(1-z)]
V1— 22
Because 1 1
Arlargz — Earg(l +z)— Earg(l —2)]=0
and
1 1 _Jo {-1<z<1,y=0} not inside T
Ar[—iarg(l—l—z)— Earg(l—z)] - { -2 {-1<z<1,y=0}inside T
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we have Apf(z) = 0 and Arg(z) = 0. Hence both f(z) and ¢(z) have single-
valued branches which are holomorphic in 2, and each of f and g has two
single-valued branches.

In order to know which of f and g has a single-valued primitive in €, we
consider the integrals [ f(z)dz and [f.g(z)dz. If the segment {-1 < z <
1,y = 0} is not inside T, it is obvious that [, f(z)dz = 0 and f.g(z)dz = 0.
If the segment {—1 < ¢ < 1,y = 0} is inside T, we consider the Laurent
expansion of f and g about z = oo

. 1 —1 . az Qq
flz) = ﬂ:l(l—z—z) 2::|:z(l+z—2+z—4+...),

; 1. _. 1 by b
:tg(l——)_fzzl:i(——k 3+—5+--->.

Zz z Z3 Z5

<

—_
N

~—
]

It follows that [ f(z)dz = 0 and [.g(z)dz = +£2m. Hence we obtain that
both of the single-valued branches of f are the derivatives of single-valued
holomorphic functions in €2, and the primitives are f;o f(2)dz + ¢, where the
integral is taken along any curve connecting zg and z in 2. But neither of the
branches of g is the derivative of a single-valued holomorphic function in €.

5116

(a) Let D C @ be the complement of the simply connected closed set
{e®+® | 6 € R} U {0}. Let log be a branch of the logarithm on D such that
loge = 1. Find loge®. Justify your answer.

(b) Let v denote the unit circle, oriented counterclockwise. By lifting the
integration to an appropriate covering space, give a precise meaning to the
integral [ (log z)2dz and find all possible values which can be assigned to it.

(Harvard)
Solution.

(a) The set {1 | § € IR} U {0} is a spiral which intersects the positive
real axis at {eZ®™ : n = 0,21,42,---}. The single-valued branch of log z is
defined by loge = 1. Hence loge'® = loge + Arlog z, where T is a continuous
curve connecting z = e and z = €!® in D and Arlogz is the change of log z
when z goes continuously along T from z = e to z = €'®. It follows that
Arlogz = Arlog|z| + iArargz, and Arlog|z| = 15 — 1 = 14. Because
e € (e%,e%),e® € (e*", "), we know that when I' connects e and e'® in D,
Arargz must be 4. Hence loge® = 1 + (14 + 4mi) = 15 + 4mi.

(b) Define the lift mapping by w = log z which lifts the unit circle v one-to-
one onto a segment with length 27 on the imaginary axis of w-plane. Because
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both the starting point of 4 and the single-valued branch of log z on ¥ can be
arbitrarily chosen, the segment on w-plane can be denoted by [it,i(¢ + 27)),
where ¢ can be any real number. Hence we have

i(t+27) v i(t+2m)
/(logz)zdz = / we¥dw = (w’e )I'( +2r) 2/ we” dw
¥ it it
) i(t427)
e't(—4nt — 47%) — (2we" )I'(H'Z’r) + 2/ e" dw
it

= —dr(t+ 7w+ i)e” =d4r(t+ 7+ i)ei(t+7r)’

which implies that the set of values being assigned to the integral f7 (log z)%dz
is a spiral {47(s +i)e** : s € R}.

5117

Find the most general harmonic function of the form f(|z]), z € €\0. Which
of these f(|z{) have a single valued harmonic conjugate?

(Indiana)
Solution.

Because f(|z|) is harmonic, we have reason to assume that the function f
(with real variable t) has continuous derivatives f'(¢) and f”(¢). Note that the
Laplacian

ik 9? ik
A= S+ = =47—F,
0z? = dy? 020z

and
210el) = ai v = L2,
3 " 1
5D = 38D+ g,
we obtian ,
s+ 52 <o,

where ¢t = |z|. This differential equation is easy to solve, and the solution is
f(t) = alogt+ (3, where o, 3 are two real constants. Hence the most general
harmonic function of the form f(|z|) in @€\0 is «log |z| + 8.

Since log |z| has no single-valued harmonic conjugate in @\0, we know that
when f(|z|) has a single-valued harmonic conjugate in @\0, it must be a con-
stant.
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5118

Consider the regular pentagram centered at the origin in the complex plane.
Let u be the harmonic function in the interior of the pentagram which has
boundary values 1 on the two segments shown and 0 on the rest of the bound-
ary. What is the value of u at the origin? Justify your claim.

(Stanford)

Solution.
Denote the interior domain of the pentagram shown in Fig.5.3 by D, and the
ten segments of the boundary by I3, 12, - -, l10, put in order of counterclockwise.

Fig.5.3

Then denote the harmonic function on D with boundary values 1 on lx and
0 on the rest of the boundary by ux(z), k = 1,2,---,10. By the symmetry of
domain D, we have

u10(z) = ua(e” a~':r’z)
It follows from
10
u(z) = Euk(z) =1
k=1
and u;(0) = u2(0) = -+ - = uy0(0) that ux(0) = 11—0 for k=1,2,---,10. Hence

’U.(O) = u1(0) -+ 11.5(0) = —;—
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5119

Suppose G is a region in €, [0,1] C G, and h : G — IR is continuous.
h|@\[0,1] is harmonic, does this implies that A is harmonic on G?
(Towa)
Solution.
The answer is No.
A counterexample is h(z) = Rey/2z(z — 1), where the single-valued branch
of /2(z — 1) is chosen by \/z(z — 1)|,=5 = v/2. Since 1/2(z — 1) is analytic

in @€\[0, 1], h(z) is harmonic there. When 0 < z < 1,

lim 2(z—1) = /z(l-=z)i,

i=z+tyi—z

y>0

lim vz(z—1) = —vz(l—2).
1=zr+yYi—z

y<0

Hence h(z) = 0 when z = z, 0 < z < 1, and h(2) is continuous on €. But h(z)
is not harmonic on €', because z = 0 and z = 1 are branch points of 1/2z(z — 1).

Remark. If the problem is changed to h : G — @ is continuous and
h|\[o,1) is holomorphic, then A must be holomorphic on G.

5120

Let v be an arc of the unit circle. Suppose that u and v are harmonic in
D = {z : |z|] < 1} and continuously differentiable on D U~. If the boundary
values satisfy v = v on -y and the radial derivatives satisfy g—’r‘ = g—’r’ on 7, prove
that v = v in D.
(Indiana)
Solution.
Let u* be a conjugate harmonic function of u in D and v* be a conjugate
harmonic function of v in D. We know that a variation of Cauchy-Riemann

equations for f = u+u” and g = v+ w" are

ou _ Ou* ou ou*

o 06’ 06 or

7
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and

Qo_ov 00 ov
or ~ 08’ 06 or’

It follows from the continuous differentiability of v and v on D Uy that u*

and v* can be continuously extended to D Uy and then are also continuously

differentiable on D U+. Let zg be a fixed point on v, and for z € v denote

the subarc of 7 from zp to z by v,. Without loss of generality, we may assume

that u*(z0) = v*(20) = 0. Then for z € v,

. u* _ ou* ou
u*(z) / . d0 56 dG_/; Brdo
= 5 —gﬁdﬁ = v*(2).

Hence we obtain two functions f = u+iu* and g = v + ¢v* which are analytic
in D and continuous on D U+, such that f = g on . Let ¥ = f —g. Then by
the reflection principle, F can be analytically extended to an analytic function
on DU~y U D*, where D* = {z: |z| > 1}. Since F = 0 on v, we obtain F =0
on D U~y U D*, which implies © = » in D.

5121

Use conformal mapping to find a harmonic function U(z) defined on the
unit disc {|z| < 1} such that

lim U(re’e) =

r—l-

+1 for0<él<
-1 forw <6< 2.

Give the correct determination of any multiple-valued functions appearing in
your answer.

(Courant Inst.)
Solution.

It is easy to know that w = —ij—f—i 1s a conformal mapping of the unit
disc D = {2z : |z| < 1} onto the upper half plane H = {w : Imw > 0}. The
boundary correspondence is that the negative real axis {w : —oco < w < 0}
corresponds to the arc I'y = {z = €' : 0 < § < 7} and the positive real axis
{w:0 < w < 400} corresponds to the arc I'y = {z = €' : 7 < § < 27}.

It is well known that u(w) = 2argw — 1 is a harmonic function in H and
assume +1 on the negative real axis and —1 on the positive real axis. Hence

z+1 2 z+1
T = Zarg(TE) -2,

7l' z =

U(z) = u(—z
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where the single-valued branch of arg(£tl) is defined by arg(£t)];z0 = 7, is
a harmonic function in D = {z : |z| < 1} with the boundary values +1 on T’y
and —1 on T's.

Remark. This problem can be solved directly from the Poisson formula
as follows:

_ L ¢+z,d¢
U(z) = 5 m:lU(C)Re(C_z)iC

- [ () w Le(E)%
= 2R (E) %

- %Re{/n;cc(c——i—_%dc}—l

= [ (Z-1)«)-

- %Im{/rl d(2log(C — 2) —logC)} _1

= %AFI{Zarg(C - Z) - argC} -1

2 z+1
= —arg -
s z—1

2.

5122

Determine all continuous functions on {z € € : 0 < |z| < 1} which are
harmonic on {z : 0 < |z| < 1} and which are identically 0 on {z €T : |z| = 1}.
(Minnesota)

Solution.

Suppose u(z) is a continuous function on {0 < |z| < 1} which is harmonic
on {0 < |z| < 1} and identically zero on {|z| = 1}. Let *du = —uydz + u,dy
and A = flz
v(z) = [* *du, then v(z) is the conjugate harmonic function of u(z), but may
be not single-valued. Define

l_r*du, where A is a real number not necessarily zero. Denote

F(2) = (ulz) +in(2)) ~ o= log
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then f(2) is a single-valued analytic function on {0 < |z| < 1} and Ref(z) is
identically zero on {|z| = 1}.

Let f(z) = Y, anz™ be the Laurent expansion of f(z) on {0 < |z| <
n=-—0o0
1}, then Iim 3{/la_,| = 0 and lim 3{/|a,| < 1. Define g(z) = 5 byz",
n— o0 n—00 n=—oo

satisfying b_, = —b, for n=10,1,2,---, and b_, = a_, for n =1,2,---. Then
g(z) is an analytic function on {0 < |z| < 400}. When |z| = 1, it follows from
Rebg = 0 and

o0

—1 o oo
Re Z bp2™ = Rez b_pz™™ = Rez —b,z™™ = —Re Z b, 2"
n=-—oc n=1 n=1 n=1
that Reg(z) = 0. Then f(z) — g(z) = Y c,2" is an analytic function in
n=0

{]z] < 1} and Re(f(z) — g(z)) is identically zero on {|z| = 1}. Consider
F(z) = e/(*)=9(2) which is analytic and does not assume zero in {|z| < 1}, and
|F(2)| = 1 on {|z| = 1}, by the maximum and minimum modulus principles,
we have F(z) = e'®, hence f(z) = g(2) + ia.

From the above discussion, we finally obtain

+00 A
u(z) = Re Z b,2" + é;loglz],

n=—oo

where b_, = —b, and lim Vv |bn| = 0.

5123

(a) Let f(z) be a holomorphic function in the disc |z| < 7 whose zeros in
this disc are given by a1, as,---,a, counted with multiplicity. Suppose further
that |aj| < r for all j = 1,2,---,n, and |f(0)] = 1. Jensen’s formula states

that )
) oty = (75
— log | f(re*®)|d8 = log{ — 1} .
77 ), lglf(re)] ]Z::l At

Prove this.
(b) With the hypotheses and notations of (a), let n(t) be the number of a;
(j =1,2,---,n) such that [aj| <t. Using Jensen’s formula, show that

T dt 1 27 0
— = — ) |d6.
| 0% =50 [ reelsre)
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(c) For 7 < R deduce an estimate on n(r) in terms of JJax log | f(Re)].

(d) What can be said about the zeros of bounded holomorphic functions in
the unit disc?
(Harvard)
Solution.

(a) Let

then F(z) is holomorphic and has no zero in the disc {|z| < r}, which im-
plies that log|F(z)| is harmonic in {|z] < r}. By the mean value theorem of
harmonic functions,

1 2r .
log |F(0)] = 5/0 log | F(re'?)|d6.

Noting that
r o
|F(0)] = |£(0 NHT_HT
and .
|F(re®)| = |£(re”),
we obtain that

Zlog( L /0 " log | f(re®)|ds.

(b) It is obvious that log {1 = f‘a | 4t By the definition of the function

Zlog a1 Z/a1| 7 —/T )it»

which shows that the identity holds.
(c) Apply the identity in (b), we have

'aJ |

n(t) we have

1 [ , Rodt_ (R d R
5 | loelrreias = [Ta0F > [T u0F 2 nirio T

i :
Denote Ogg?éwlog |f(Re'®)| by M(R), we obtain

n(r) < M(R)/log -
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(d) Let f(z) be a bounded holomorphic function in {2 : |z| < 1}. We know
that f(z) can have countably many zeros. Suppose z = 0 is a zero of f(z) of

multiplicity m > 0 with ——L—l = a, and let the other zeros be ordered by

0 < |ay] < laz| < - Obv1ously lan| — 1. Apply Jensen’s formula in (a) to
F(z) = g—g‘—,,.l with 0 < 7 < 1 such that there is no zero of f on {|z| = 7}, we
have

2x
35 |, loglftre)ido = 3 tog(( 1) +loa(lals™).

lajl<r

Since f(z) is bounded, we assume

1 27 "
— : < M.
o /O log | f(re™)|d8 < M

For any n, we can choose r such that » > |a,|, and hence
Zlog( )< > log(—) < M —log(lalr™).
o) S 22 o8l

Let r — 1, we obtain

n
II a1 > e >0,

0
which implies that the series ) (1 — |a;|) is convergent.
i=1



SECTION 2
GEOMETRY OF ANALYTIC FUNCTIONS

5201

Find a one-to-one holomorphic map from the unit disk {]z] < 1} ont
slit disk {Jw| < 1} — {[0,1)}.
(SUNY, Stony B
Solution.
We construct the map by the following steps:

z1 = ¢1(z):ziji {z 1 ]z] <1} = {21 : Imz; < 0};
:\/57:):

Za = ¢2(Zl)=\/212—1+z1 (/28 —1 .

{z1 : Imz; < 0} — {22 : |22| < 1 and Imz, > 0};

w = ¢a(z2) =22 : {291 |22] < 1 and Imz, > 0} —
{w:|w| < 1\{w : Imw = 0,0 < Rew < 1}.

Then w = ¢3 o ¢2 o $1(z) = f(z) is a one-to-one holomorphic map from the
unit disk {|z| < 1} onto the slit disk {Jw| < 1}\{[0,1)}.

5202

(a) Find a function f that conformally maps the region {z : |argz| < 1}
one-to-one onto the region {w : |w| < 1}. Show that the function you have
found satisfies the required conditions.

(b) Is it possible to require that f(1) = 0 and f(2) = 3?7 If yes, give an
explicit map; if No, explain why not.

(Iknois)
Solution.

(a) ( = fi(z) = 2% = e%1°8% (logl = 0) is a conformal map of {z :
largz| < 1} onto {¢ : Re( > 0}, and w = f2(¢) = %i—i is a conformal map of
{¢ : Re¢ > 0} onto {w: jw| < 1}. Hence

[XIE)

—_

z

w= f(z) = fao fi(z) =

z

[OE)
+
—
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is a conformal map of {z : jargz]| < 1} onto {w : |w| < 1} with f(1) = 0 and

251
f2) = For
(b) Suppose @ = f(z) is an arbitrary conformal map of {z : |argz| < 1} onto

{@ : |@] < 1} with f(1) = 0. Then w = F(@) = fof (@) i is a conformal map
of {@ : || < 1} onto {w : jw| < 1} with F(0) = 0, and & = F(w ) = FofY(w)
is a conformal map of {w : jw| < 1} onto {@ : |&| < 1} with F(0) = 0. By
Schwarz’s lemma, we have both |F(w)| < |w| and [ﬁ(w)[ < |w], which implies
that |f(z)| = ]f(z)| for every z € {z : |argz| < 1}. Since

ula

-1

@)= S

ul:l

we cannot require that f(2) = i

5203

(1) Find one 1-1 onto conformal map f that sends the open quadrant
{(z,y) : = > 0 and y > 0} onto the open lower half disc {(z,y) : 22 + y* <
1 and y < 0}.

(2) Find all such f.

( Toronto)
Solution.

(1) Let ¢ = ¢1(2z) = 2%. It is a conformal map of {z = z +iy : z >
0 and y > 0} onto {¢ =&+ in: 71> 0}.

Let w = ¢2(¢) = /¢% — 1+, where /(2 — 1*( = —+/2i. It is a conformal
ma.pof{C:£+i7]'7]>0} onto {w:u+iv:u2+vz< 1 and v < 0}.

Then w = ¢3 0 $1(2) = V2% — 1 + 22, where /2% -1 1',:—\/ii is a
required conformal map. et

(2) If f is an arbitrary conformal map satisfying the condition of (1), then
¢>2_1 ofo ¢>;1(C) is a conformal map of the upper half plane onto itself, which
can be represented by () = «+b  where a,b,¢,d € IR, ad — bc > 0. Hence f

c{+d?
can be written as ¢z o ¥ o ¢1(2).

5204

Map the disk {|]z| < 1} with slits along the segments [a,1], [-1,—b] (0 <
a < 1,0 < b< 1) conformally on the full disk {|w| < 1} by means of a function
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w = f(z) with f(0) =0, f'(0) > 0. Compute f'(0) and the lengths of the arcs
corresponding to the slits.
(Harvard)

Solution.

We construct the conformal mapping by the following steps.

() 21 = ¢1(2) = 2+ 7+ {lz] < 1}\{[e, U[-1, -]} > C\{[~b~ §,a+ L]}
It has the point correspondences ¢1(0) = oo, ¢1(a) = a + X, ¢1(b) = —b— £,
¢1(1) = 2 and ¢1(—1) = —2.

(i) 22 = $a(21) = ZHOHL @\{[-b — },a + 1]} > @\[0, +00). Tt has
the point correspondences :

$2(00) = =1, ¢2(—2) = (%)2

and

and it is easy to know that
, 1 1
(b0 41Y(0) = ~(a+ - +5+3) <0,

(ili) 23 = ¢3(22) = /22 : €\[0,+00) — {23 : Imz3 > 0}. It has the point
correspondences

1 1
$3(—1) =4, ¢3((ﬂ)2) = i(?—bﬂ)
vat Ve vat Ve
and ) .
SER) -3
LV SN
For the convenience of computation, let
1 1
A= Ve - Vb B = W—F\/E.
=+ Va - Va

We also know that ¢5(—1) = —%.

(iv) w = Pq(z3) = f:% :{z3 : Imzg > 0} — {w : |w| < 1}. It is obvious

that ¢4(i) = 0 and ¢4(i) = — 1.
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Now we define w = f(2) = ¢4 0 @30 ¢2 0 ¢1(z). From the above discussion,
we know that f maps the unit disk with slits [—1, —b] and [a, 1] conformally
onto the unit disk with f(0) = 0 and

£1(0) = $4(0) - #5(—1) - (62 0 $1)(0) = m+1+b+)>o

What correspond to the slits are the arc with endpoints 4=% and 4+t

] AT A=
containing point z = —1 and the arc with endpoints g;; and % containing
point z = 1. The lengths of the two arcs are

1
A—i A+ Ve
L= arg— i arg— = = 4arctgd = 4arctg—;a—m,
and )
B B—i Ve
I = arg g i argB i 4arctg§ = 4arctg -\\—/}*——;—W

5205

Let 0 < € < m, let 4. denote the arc {e'* : ¢ <t < 27 — ¢} and let Q, be
the complement of 4, in the Riemann sphere. If f is the conformal map of the
unit disk onto ., f(0) =0, f'(0) > 0, describe the part of the unit disc that
f maps onto {|z| > 1}.

(Stanford)
Solution.
We are going to find the map f by the following steps:

—ie

z1 = ¢1(2) = €** :{z:|z| < 1} = {z1 : Iinz; < 0},

z —e**
with 41(0) = e, arggf (0) = ~F —c.

2o = $a2(z1) = V71 : {z1 : Imz1 < 0} — {22 : Rezz > 0,Imz; < 0},
with @a(e™%) = e~ 5%, arggh(e™*) = —£.

¢ = ¢a(z2) = e 27 1 {z2 : Rezz > 0,Imz; < 0} — D

=
29 — €3t
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(shown in Fig.5.4), with ¢3(e™5') = 0, argg(e™2') = ¥ + §, where D; is a

domain bounded by {¢ = €9, 5 <6 < 27— %} and an circular arc [, which is

#in {|C] <1}

orthogonal to {|¢| = 1} and connects points e3' and e~ 3

Fig.5.4

Let ®(2) = ¢3 0 ¢ 0 ¢1(2), then & maps {2 : |z| < 1} conformally onto D,
with ®(0) = 0, (0) > 0. After considering the boundary correspondence, we
know that I, corresponds to the arc {z = e : |t| < €} under the map ®. Since
the symmetric domain of {|z] < 1} with respect to arc {z = €' : [t| < ¢} is
{|z| > 1}, and the symmetric domain of D; with respect to I is D, = {|¢| <
1}\D;, by the reflection principle, ®(z) can be extended to a conformal map
of Q, onto {¢: [¢| < 1}. Hence the conformal map f in the problem is nothing
but the inverse of @, and the domain f maps onto {|z| > 1} is D,, which is
bounded by circular arcs I, and {¢ =€* : |f] < £}.

5206

Suppose that w = f(z) maps a simply conncted region G one-to-one and
conformally onto a circular disk D, with center w = 0, radius 7, such that
f(a) = 0 and |f'(a)} = 1 for some point a € G.

(1) Prove that the radius » = r(G,a) of D, is uniquely determined by G
and a.

(2) Determine r(G,a) if G is the region between the hyperbola zy = 1
(z > 0, y > 0) and the positive axes, and ifa =1 + ’5

(Indiana)
Solution.

(1)Suppose ¢ = g(z) is another conformal map of G onto a circular disk
D,, with center { = 0 and radius ry, such that g(a) = 0 and |¢'(a)| = 1, then
w=F(¢) = fog™(¢) is a conformal map of {¢: |¢| < r1} onto {w : |w| < r}
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with F(0) = 0 and |F'(0)] = | (¢) and

we have |F/(0)] < -, hence 7 5 r. For the same reason, apply Schwarz’s

lemma to F~!(w) and we have r < r;, which implies 71 = 7. In other words,

r is uniquely determined by G and a.
(2) We construct a conformal map of G onto a circular disk D, in the
following steps:

z1=¢1(z)2z2:G—>{zl:0<Imz1<2},

with ¢1(1 + £) = 2 +4, [$1(1+ §)| = V5.

x5

zg = (}52(21) ez? {21 0 <Imz; < 2} — {22 Imz, > 0},
3

with ¢5(2 + i) = ie¥, |¢5(3 +1)| = Ze¥.

) = 4 z—zes
2,) =
2 \/_7r z2+ze

with ¢s(ied™) = 0, |$4(ied™)| =
Define f(z) = ¢3 - ¢2 o $1(z), then w=f(z):G—{w:|w < 7%;}, with
fla) =0, |f'(a)] = 1. Hence r(G,a) = T‘;—

w = ¢ 1 {z2 : Imzy > 0} — {w: |w| <

4
E}a

5207

Let T(2) = % be a Mobius transformation.
(a) Assume that z1, 23 € €' are two distinct fixed points for T, i.e., T(z;) =

zi, 1 = 1,2. Show that there exists a constant ¢ such that

T(z)—z1  z—2

T(2)—2zy z—22
(b) Use (a) to find an expression for T"(z), n = 1,2,3,---, if

1-3z
z—3"

T(z) =

(ITowa)
Solution.
(a) Let a € € be a point different from 23, z;. Because the cross ratio is
invariant under Mobius transformations, we have

(T(Z), 21, T(CI,), 22) = (Z, 21, Q, 22),
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which is
T(z)—2z T(a)—z1 z—2z1 a—-2z
T(z)—2z2 T(a)—22 z2—22 a—z2
Denoting
T(a) — z a—z1
T(a)—2zs a—z
we obtain

T(z) — z1 _ Ao A
T(z) —zo  z—2y

(b) Since T"(z) = T(T" (2)), it is easy to have

T™(z) — 2 CT”‘I(z) — 21 T %(z) — 2, W — 21
= =c == .
T (z) — zy T 1(z) — 2, Tr—2(z) — 2z, - Za
When T(z) = 12—_332, by solving the equation 1;_332 = z, we obtain that z = +1
are two fixed points of T. Choose ¢ = 2, then T(a) = 5, hence c = g—ﬁ : %;—} =
2.

It follows from

TV (z)—1 _2nz—-1
T (z)+1 = z+1

that
(2" + 1)z — (2" - 1)

@) = ey @ —De

5208

(a) Justify the statement that “the curves

162 y2

pean R IS Sl

form a family of confocal conics”.

(b) Prove that such confocal conics intersect orthogonally, if at all.

(c) Show that the transformation w = 1(2+1) carries straight lines through
the origin and circles centered at the origin into a family of confocal conics.

(Harvard)

Solution.
(a) Without loss of generality, we assume a > b > 0. When —a? < A < =2,
the curves form a family of hyperbolas, while when A > —b?, the curves form
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a family of ellipses. Suppose the focuses of the conics are (£c(A),0). When
—a? < XA < —b?,

e\ = V(a2 + A) + [-(82 + X)] = Va2 — b2,
When A > —b2,

c(N) = @@+ X) — (2 + A) = Va2 — b2

Hence the curves
B
a®+ A b2+
form a family of confocal conics.
(b) Suppose (zo, yo) is the intersection point of

1

22 y?
Ll:a2+/\1+b2+/\1:1
and ) )
z Yy
: =1
SR WL ORI W
where A1 # Az. It follows-from
z B
a? + AL b2 + A1 -
and 5 )
Zo Yo _ 1
a? 4+ Xy B4 A
that

2 2
Zo + Yo
(az + /\1)((12 + /\2) (bZ + /\1)(b2 + /\2)
Noting that the tangent vector of L1 at (zo,%0) is 71 = (2557 b—zﬂle)’ and
the tangent vector of Ly at (zo,yo) is T2 = (ﬁ’,\—z, b—2ﬂfT2)’ we have

=0.

2 2
z Y
N o 9 0,

2= @@+ h) | BB )

1

which implies that the confocal conics intersect orthogonally, if at all.
(c) Let z = re?, and
1 1

1 1 i1,
w=1u+1iv= §(z+;)— E('r’+ ;)coso9+ E(r—;)smﬂ.
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The image of straight lines through the origin is

u? v?

cos?0  sinZf
which are hyperbolas in w-plane. Because

cos?f +sin?6 =1,

the focuses of the hyperbolas are (+1,0).
The image of circles centered at the origin is

u? v?
+ =1
TR
which are ellipses in w-plane. Because ;(r + )2 — 1(r — £)2 = 1, the focuses

of the ellipses are (£1,0). Hence the transformation
1 1
w= g(z + ;)

carries straight lines through the origin and circles centered at the origin into
a family of confocal conics.

5209

If f:D(0,1) = {2z : |z] < 1} — @ is an analytic function which satisfies
£(0) = 0, and if
|Ref(z)| < 1for all z€ D(0,1),

prove that
4
"(0)] < —.
rOl< >
(Indiana)
Solution.
It is easy to know that
eF¢ 1
w = = —
9(0) = =1 1

is a conformal mapping of the domain {¢ : |Re(| < 1} onto the unit disk
{w: |w| < 1} with ¢g(0) = 0. Hence w = F(z) = g o f(z) is analytic in
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D(0,1) and satisfies F(0) = 0 and |F(z)| < 1. By Schwarz’s lemma, we have
|F'(0)] < 1. Because

rieS ) . fr(y
F'(z) = ¢'(f(2))- f'(2) = (—:Wﬁ;)

it follows from f(0) = 0 that

IF(0)] <

SRS

5210

Let @ = {z € @;—1 < Imz < 1}, and let F be the family of all analytic
functions f : @ — @ such that |f| < 1 on © and f(0) = 0. Find

sup [f(1)].
teF
(Indiana)
Solution.
It is obvious that .
ez? —1
¢=folz) = e7? +1

is a conformal mapping of Q onto the unit disk with the origin fixed. For
any analytic function w = f(z) : @ — € such that |f| < 1 and f(0) = 0, we
consider the composite function w = F(¢) = fo f5'(¢). F(¢) is analytic in
the unit disk such that |F({)| < 1 and F(0) = 0. By Schwarz’s lemma,

IF(O] < [l
Choose (o = :—gﬁ, we have
es —1
[F(Co)| = 1f(1)] < ol = PR

The equality holds if and only if F(¢) = €*¢, which implies

wja

—1
+1’

e

sup |f(1)| =

feF €

[UE]

and the supremum is attained by f(z) = eiefo(z), where 6 is a real number.
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5211

Let f be an analytic function on D = {2; |z| < 1} such that f(0) = —1, and
suppose that |1 + f(z)| < 1+ |f(2)| whenever |z| < 1. Prove that |f/(0)] < 4.
(Indiana)
Solution.
Let @ =@\{w = u+iv : u > 0and v = 0}. It follows from |1 + f(2)| <
1+ |f(2)| that f(D) C Q.
Set g(w) = 3\/%, (\/L_u, = i). Then g o f(z) is an analytic function

w=-1

on D with g o f(0) = 0 and |g o f(z)| < 1. By Schwarz’s lemma,

[(go fY(0) < 1.

Since .
)
g (W) = =53

Voot )

we have ¢'(—1) = —1. From

(g0 £)'(0) =¢'(-1)f(0),

we obtain

If(0)] < 4.

5212

Let P be the set of holomorphic function f on the open unit disc so that
(i) Both the real and imaginary parts of f(z) are positive for |z| < 1, (ii)
f(0) = 1+44i. Let E = {f(3): f € P}. Describe E explicitly.
(Minnesota)
Solution.
Let f € P and define
_ _ fz)— 2
R PR
Then F is a holomorphic function on the unit disc with F(0) = 0 and |F(2)| <
1. By Schwarz’s lemma, we have |F(z)| < |z|, which implies |F(3)| < 1. It
should be noted that when f changes in P, F(%) can take any value in the

disc {¢ : |¢] < ). Because w = ﬂll_{.il (that is the inverse of { = z;g:) is a




3N

conformal mapping of {¢ : |[(| < 1} onto {w : |[w — 22i| < £}, we obtain that
the set {f2(3): f € P} is equal to
10

8 : 4 20
{w:|lw— ?z| < §} ={w=pe'®:|¢— g| < a.rcsing,pz— ?psin¢+4 <0}.

Hence

1 : 1 4 2
E={f(z):feP}={re" : 16 - 1] < Zarcsin -, r* — —Orzsin20+ 4 <0}.
2 4 2 5 3
If we denote the two roots of p> — Lpsing +4 = 0 by p1(4), p2(¢) where
p1(¢) < p2(¢) and |¢p — Z| < arcsin %, the set F can also be represented by

. 1 4
{re'o 28— %I < -Z—arcsin g,\/p1(20) <r< \/p2(20)} ;

5213

Let
2 2

Q:{w:u+i‘u::—2+§§>1}.
If F is the family of all analytic function on  such that [f] < 1 in © and

lim f(w) = 0, find sup |f(8)|. Your answer should be an explicit number,
eF

w—00
and you should prove your assertion.
(Indiana)

Solution.

Define w = ¢(z) = 2(%+2), it is easy to know that w = ¢(z) is a conformal
map of D = {z: |z| < 1} onto  with ¢(0) = oo and ¢(4 — /12) = 8.

Then F(z) = fo¢(z) = f(2(% + 2)) is analytic in D and satisfies F(0) = 0
and |F(2)| < 1. By Schwarz’s lemma,

|F(2)| < |2]-

Hence
I7(8) = |F(4 —V12)| < 4— V12,

This upper bound can be reached if we let f = ¢~ which belongs to family F
and satisfies ¢~1(8) = 4 — +/12. So we obtain

sup |£(8)| = 4 — V12.

feF
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5214

Let D be the upper-half and let f # id be a conformal map of D onto itself
such that f o f = ¢d. Prove that f has a unique fixed point inside D.
(SUNY, Stony Brook)
Solution.
Since f is a conformal map of D onto itself, it can be written as f(z) = %,
where a,b,¢,d € IR and ad — bec > (0. Then

(@® + bc)z + ba + d)
cla+d)z+d?+bc’

1t follows from f o f = id that b(a +d) = ¢(a +d) = 0 and a® + bc =
d? + be # 0.

Ifa+d #0, then b = ¢ = 0. Hence ad —bc > 0 and a? + bc = d? + bc impies
f = id, which contradicts the condition f # id. Thus we have a +d = 0 and
the inequality ad — bc > 0 can be written as bc + a? < 0.

Now we consider the equation f(z) = % = 2z, which is equivalent to
cz?+(d—a)z — b= 0. Since A = (d — a)? + 4bc is equal to 4bc + 4a® < 0, we
know that f(z) = z has two conjugate roots, one in the upper-half plane and
the other in the lower-half plane. So f has a unique fixed point inside D.

fof(z)=

5215

Let Q be a convex, open subset of @ and let f : @ — @ be an analytic
function satisfying Ref'(z) > 0, z € €. Prove that f is one-to-one in § (i.e., f
is injective).

(Indiana)
Solution.

Let z1 # 22 be two arbitrary points in Q. L : z(t) = 21 +t(22 —21), t € [0, 1]

is the line segment connecting z; and zz. Since §2 is convex, L C 2, we have

F(z2) — flar) = /L F(z)de = / F(=(0)) 22 — 1)t

e fla) = (z1) _ f?
22)—J(z21) ’
T —/0 fi(2(t))dt.
Since Ref'(z) > 0 for z € 2, we know that fol F(z(t))dt # 0, which implies
f(21) # f(2z2) whenever 2z, # 2.
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5216

Show that if the polynomial P(z) = anz™ + an_12" "' + -+ + a1z + ao,

n > 1, is one-to-one in the unit disk |z| < 1 and a; = 1, then |na,| < 1.
(SUNY, Stony Brook)
Solution.

It follows from the univalence of P(z) in {|z| < 1} that P’(2) = na,z" "'+
(n—1)an_12" "2+ +2a2z+ay # 0 for all z € {|z| < 1}. In other words, the
roots of P’(z) are all situated outside the open unit disk. Let 21,22, ++,2n_1
be the roots of P’(z), then |z;] > 1 for j = 1,2,---,n — 1. Because P’(z) can
also be written as nan(z—21)(z —22) -+ (2 — zn_1), by comparing the constant
terms, we have

n—-1
(—1)"‘1nan H zj = ay.
j=1

Since a; = 1, we obtain

5217

Let P(z) be a polynomial on the complex plane, not identically zero; let
H = {z : Rez > 0}.

(a) If all roots of P(z) lie in H, show that the same is true for the roots of
dP/dz.

(b) For any non-vanishing polynomial P(z), use the result in (a) to show
that the convex hull of the roots of P(z) contains the roots of dP/dz.

(Courant Inst.)

Solution.

(a) Let 29,22, -+, 2z be the zeros of P(z). By assumption,

Rez; >0 (j=1,2,---,n),

and P(z) = a(z — z1)(z — 22) -+ (2 — 25 ). It follows that

(log P(z)) = 2 _ _1 Lot

= = + + :
P(z) z2—21 zZ—2p Z— 2n
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When z € {z : Rez < 0}, then § < arg(z—2z;) < 37, or equivalently, Re- 2~ <
J
n

0. Hence Re 5 2~ < 0, which shows %I(%)l can not be zero on {z : Rez < 0}.

2—=Zj

=1

(b) Let zjl,zg, -++,Zy be the zeros of P(z), and [ is a directed straight line
passing through two zeros z; and z such that the other zeros are on the right
side of | (including on !). Denote the intersectional angle from the positive
direction of the imaginary axis to I by §. When z is on the left side of I, we

have Re{e=*%(z — z;)} < 0. Hence
0 P'(2) ", e
R i0 —
{5} =m s, <o

which shows that the zeros of P/(z) do not lie on the left side of I. After
considering all the directed straight lines passing through two of the zeros of
P(z) such that the other zeros are on the right side of the line, we obtain that
the zeros of P’(z) lie on the convex hull of the zeros of P(z).

5218

Let f(z) be a Laurent series centered at 0, convergent in @'\ {0}, with residue
bat z=0.
(a) Show that there exists { on {z € €' : |z| = 1} with

IFO)-¢ > b-1],
(b) Characterize those functions with

max |f(¢) = ¢ = b - 1.

I<l=1
(Minnesota)
Solution. .
(a) Let f(z) = D, baz", then

b= [ FOd=b

R Z S T o
Hence )

b-1=_— (F(Q) = ¢7HdC.

27t Jygl=1
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If |f(¢) — ¢~} < |b ~ 1] holds for all ¢ with |¢| =1, then

< b _ Y. _
b€ gl ¢ [ <

which is a contradiction. Hence there exists ¢ with |{| = 1 such that

IF()=¢H > [b-1].

(b) If max F(¢) = ¢ = |b - 1], it follows from

1
b—11< — — ¢ H|d
e M (CR
that
Q== -1

holds for all ¢ with |(| = 1.
Let f(¢) — ¢~ = (b — 1)e'*®)] where ¢ = €'’ and ¢(8) is a continuous
real-valued function. It follows from

1
b—1= — - ¢ Hd
9 |c|=1(f(C) ¢7H)d¢

that

1 2r
1 / @040 g9 _ 1
27 Jo ’

which implies that ¢(8) = —6, and hence

_ b—1
fO-¢t=——
¢
holds on {¢ : || = 1}. Apply the discreteness of zeros for analytic functions

to f(z) — £, we obtain f(z) = %, z e €\{0}.

5219

Assume f is analytic in a neighborhood of D, f maps D into D, and f
maps dD into 8D, where D = {z: |z] < 1}.

(a) Show that Vz € D, f'(z) # 0.

(b) Show that [argf(e’?)] > 0 for 6 in IR.
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(¢) Assume that f(0) = f'(0) = 0 and flap is a two-to-one map from 8D
onto #D. Show that f(z) # 0 whenever 0 < |2| < 1.
(Indiana—Purdue)
Solution.

(a) Assume f'(z9) = 0, where zo € dD. Let f(z9) = wo € 8D. Then
f(z) — wo = (z — 20)" 9(2),

where n > 2,
g(z) =bo+ bl(z —Zo) + bz(z - zo)z 4o,

with by # 0. Let I' be an arc in D defined by I' = {z € D : |z — 20| = 7},
and denote by Ar¢(z) the change of ¢(z) when 2z goes along the arc T in
the counterclockwise sense. It is demanded that r is sufficiently small such
that Ararg(z — zo) > 3F and [g(2) — bo| < Lbzﬂ when z € T'. 1t follows from
f(z) —wo = (z — zo)"g(z) (n > 2), that
7w
Ararg(f(z) — wo) = nArarg(z — zo) + Arargg(z) > 5 T3>
which implies that f(z) assumes values outside the disk D when z € . Tt is
a contradiction to the fact that f maps D into D. Hence f'(z) # 0 for all
2z €0D.
(b) Let z = re'?, and w = f(z) = Re'¥. A variation of the Cauchy-Riemann
equations for analytic function w = f(2) is
OR 0y OR 9y
"o =T a8~ o
Since f maps 8D into D, we know that 28 (e®) = 0. If %g(eie) =0, then
at point ¢*, 4&& = 28 = g'ré = 5'3 = 0 which implies that —L(e“’) f’(e"e) =
0. But from (a) it is impossible. If £ (e’e) < 0, it follows from rZ& Ri
that 4&(e*) < 0. Since R =1 when r =1, Z(e") < 0 implies tha.t rR>1
when r < 1. This is also impossible. Hence we obtain

9

W) = )] > 0

(c) Because f|ap is a two-to-one map from D onto D, ;;A‘zl:largf(z) =
2, which implies that f(2z) has two zeros (counted by multiplicity} in D. Since
f(0) = f/(0) = 0, z = 0 is a zero of f of multiplicity m = 2. Hence f(z) has
no zero in {0 < |z| < 1}.
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SECTION 3
COMPLEX INTEGRATION

5301

Evaluate the integral

(Indiana)

Solution. R
Function e®* is analytic in {z : 0 < |z| < +00}, and its Laurent expansion
around z = 0 is:
1

1 1 »
et = l+ef+—e%+---+—67+---
2! n!

D PRV I SR S PREANE N EA Y
o z 2! 22 2! z 21 \z o

1 n 1 /n\?2
4o+ = 1+_+_(_) T
n! z 201 \z

The coefficient of the term % in the above development is

1
CENRE

=e.

1
L4144+

By the residue theorem, we obtain

L 1
/ e°*dz = 2wiRes (e“ ,0) = 27mes.
|z]=2

5302

/ dz
. 3
4 sin® z

where 7 is the positively oriented circle {|z| = 1}.

Evaluate

(Indiana)
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Solution.
It is obvious that ,z is analytlc in{z:0< |2|<1},and withz=0as a
pole. The Laurent expansion of 5~ around z = 0 can be obtained as follows:
1 1
T 3 -
sin” z (z — 223 4 125 — ,)3
_ 1
= 3
A G- ))
! 1, 1., 1, 1., 2
= ;—5{1+3(3—!z—az +---)+6(§z ~ 5t +- +- g
Hence the coefficient of the term I in the above development is 1. By the

residue theorem, we have
dz . 1
/ —— = 2mRes | —5—,0 | = 7i.
4 §in” 2 sin” z

5303

For what value of a is the function

single-valued?
(Indiana)
Solution.
Function F(z) = (1 + %)cosz is analytic in {z : 0 < |z| < +oc}, and its
Laurent expansion around z = 0 is:

1+a cos s — 1+a 1 1z2+14
z 23 T \z 28 2! ar”
a + (1 a) 1 + a 1 .t
23 2/ 2 24 2 ’
The necessary and sufficient condition for f(z) to be single-valued is that

the residue of F(z) at z = 0 is zero, i.e., the coefficient of the term L in the
above development is zero. Hence we obtain a = 2.

it
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5304

Define -
h(z) = / (1 + zte™t)"te~" cos(t?)dt.
0

What is the largest possible P so that A(z) is analytic for |2| < P?
(Indiana—Purdue)
Solution.
When z = —e,

® cos(t?
h(—e) :/(; (t )dt.

et —et
It is easy to see that when t — 1,
cos(t?) A

~

et —et (t—1)%’

where A = %cos 1, which implies that the integral is divergent. Hence P can
not be larger than e.

For any r < e, let |2| < r. Consider the integral

h(z) = /0 eos(t)

et + 2t

It follows from |e? + zt| > e* — 7t and the convergence of the integral

/°° |cos(t2)| &t
0

et —rt

o 12
/‘ cos( )dt
o et +zt

is uniformly convergent in any compact subset of {2 : |2| < e}. By Weierstrass

theorem, we know that h(z) is analytic in {z : |z] < e}. Hence the largest
possible P is equal to e.

that

5305

Let f(2) be analytic in S = {z €@} |z| < 2}. Show that
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9 2 .
;-/0 f(e*) cos® %dt = 2£(0) + f'(0).

(Towa)
Solution.
It is easy to see that

f(0) = %/le f—(z—)dz: %/02” f(e')dt,
F(0) = 51_/” 1 S)d _2_/02, (

1 2r

— 1 ity it
=5 " f(2)dz = o7 ), f(e*)etdt.

f(et)e " dt.

Note that

It follows from the above three equalities that

1 27 ) ' '
2O)+70) = g [ et e
2 2w

; t
= = ) f(e")coszidt.

5308

Suppose that the real-valued function u is harmonic in the disk {|z| < 2},
v is its harmonic conjugate and u(0) = v(0) = 0. Show that

[ eF = [ate) 40T,

where y(t) = 2™, t € [0, 1].
(SUNY, Stony Brook)

Solution.
Let f(z) = u(z) + iv(z). Then f(2) is analytic in {z : |z] < 2}, and we have

/f“ z)— = 2mifi(0) =0,
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I
TN
S~

N

-

w»
=
X

W

N
N | =
S’
Na—_—

It follows from

FRICERE
and
that
[weraT = 5 [ (F@+Te-user)
= Y iiers

which implies that

[’ u%(z) 2(z /(u

5307

Let f be an analytic fynction on an open set containing D(0, 1) = {z; |z] <
1}
(a) Prove that

d oo ‘
dzf 0=" /0 =™ [Ref(e"9)]d0

(b) If £(0) = 1, and if Ref(z) > 0 for all points z € D(0, 1), prove that

)| <2,

(Indiana)
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Solution.
(a) Assume that

oo
z) = E akz™,
k=0
we have

n!

2m ) 1 27 o
_— f(ele) _"’Gdg — ( ake—kle) —nledg
2 =

.
0 2w —

o 27
= Z r / e—(n+k)i9d0) —o.
0

By Cauchy Integral Formula,

dnf —_ n! f( - o 10\ —nif
ﬁ(o)‘ 27ri/| 1C"+1 / f(e%)e 6.
Hence
o = 2 2"f< “)eritap 1 % [ Fme-rinag
dz" T or ¢ 27 Jo ere
n!

= — e—"ie[Ref(eig)]dH.

T Jo
(b) Because Ref(z) is harmonic on D(0,1), by the mean-value formula of
harmonic functions,
l 27

o |, Ref(e*?)d8 = Ref(0) =

Noting that Ref(e®) > 0, we have

d*f nl [ —nif if
Ton (0)‘ ;r—/(; e ""[Ref(e'”)]do
27
< 27 e Res(e))a8

T Jo
nl (%" i0
= - A Ref(e'”)d6
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5308

If f is analytic in the unit disk and its derivative satisfies
If'(2)] <1~z

show that the coeflicients in the expansion

f(z) = Z anz"
n=0

satisfy |a,| < e for n > 1, where e is the base of natural logarithms.
(Stanford)
Solution.
It follows from

f(z)= Zaﬂz"
n=0
that -
P = Y nanst,
n=1

where ) ,
na, = — L:)d

) 1).
27 |2|=r z “ (0<T< )

It is obvious that
las| = 1f'(0)] <1 <.

For n > 1, we choose r = 1 — %,
!
/ —f (z)dz
lz|l=1-% 27
1 (@
2tn (1— 1)
1

n—1
(1+——n_1) <e.

1
27n

|@n]

<27(1 — %)

5309

Let f = u + tv be an entire function.
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(a) Show that if u?(z) > v%(z) for all z € €, then f must be a constant.

(b) Show that if |f(z)| < A+ B|z|* for all z € € with some positive numbers
A, B, h, then f(2) is a polynomial of degree bounded by h.

(Stanford)

Solution.

(a) Let

F(z) = e=176) = (@ @)=v()-2in()o (),
Then F(z) is an entire function with
|F(z)| = e~ (W)= 1

By Liouville’s theorem, F(2) must be a constant, which implies that f(z) is a
constant.

(b) Let
f(z)= Zanz"
n=0
Then ) £2)
z
an = %[zl:R z"‘H'd
For any integer n > h,
1 f(2) 1 o i0
< — . -
aal S o »/|z|=R DO e = 5 /0 |F(Re?®) (a8
A+ BR?
—_ Rn *

Letting R — 400, we obtain that a, = 0, which implies that f(z) is a polyno-
mial of degree bounded by h.

5310

Let f be an entire function that satisfies |Re{f(2)}| < |z|* for all z, where
n is a positive integer. Show that f is a polynomial of degree at most n.
(Indiana)
Solution.
Let R be an arbitrary positive number. Then it follows from Schwarz’s
theorem that when |z] < R,
1 (+z d¢

1= g7 [ ReUO) 55+ il OO
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Especially when |z| = %,

1
If(2) < 5~ - 3R" - 2m + [Im{f(0)}| = 3R™ + [Im{f(0)},
which implies that there exist constants A, B such that
|f(2)| < Al2|” + B

holds for all z €.
Let

f(2) =) st
k=0

1 f(2)
e = —— dz.
= o /M:, F
Hence when & > n,

1 [F(2) Ar™ + B
/I jdz] <

<
e M "

where

—0 (r— +00),

which shows that f(2) is a polynomial of degree at most rn.

5311

Compute the double integral

// cos zdzdy
D

where D is the disk given by {z =z +iy €€ : 2% + y% < 1}.
(lowa)

Solution.
First we have the following complex forms of Green’s formula:

// w,dedy = // l(wx—iwy)dzdy
D p 2
1

= - w(dz — idy) = —l, wdz,
D 2

21 1 Jop
// wydzdy = // -l-(wx+iwy)d:z:dy
D D2
1

1
- = dy) = — .
% Jop w(dz + idy) 5 / wdz
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The problem can be solved directly by either one of the above two forms:

// cos zdzdy = / Zcoszdz = —1— S8 4 = ;5
2i lz]=1 2 Jis)=1 2

or

Ly . 1 . 1
//coszdzdy = —= sin zdZ = — — sin zd(—)
D 2t |z|=1 2 |z|=1 z

1 .

= — szzdz:ﬂ'.
lz]=1 %
5312

Let,
o
=Y
n=0

be analytic in D = {|z| < 1} and assume that the integral

A:// |f'(2))*dzdy
D
is finite.

(a) Express A in terms of the coeflicients an.
(b) Prove that

A 1

_ < ) Zlog ——

2) = SO0 < 4 % log =7
for z € D.

(Indiana)
Solution.
(a) By
= Z napz" "1,
n=1
we have

i

A

2w
// | (= izdzdy_/ / (re'®))(F' (re'®))do
2n 00
/ rdr/ (Z nanrn-—lei(n—l)e) (Z nanrn—le—i(n—l)e) de.
0 0 n=1 n=1
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Noting that

zreike_e—nedg_ 0 k#I
o Tl 2 k=1,

we obtain that

o0

1 2
// ]f'(z)]zd:cdy:/ rdr/ anlanlzrz"_zdﬂ
b 0 0 n=1
1 oo o)
271'/ Zn2|an|2r2""1dr:w2n|an|2.
0 n=1 n=1

(b) By Cauchy’s inequality, we have

A

il

o0 o0
1
|f(z) — f(0)| = a, 2" = (\/ﬁan . ————z")
> =1 A 1
< 2, Zizl2n — -
< ';nlanl ;nlzl 7r10g1_|z|2.

5313

Let f be analyticin {0 < |z| < 1} and in L? with respect to planar Lebesque
measure. Is 0 a removable singularity? Proof or counterexample.
(Stanford)
Solution.
The answer to the problem is Yes.
Let the Laurent expansion of f in {z: 0 < |z| < 1} be

f)= 3 anz,

nNn=—00

where

a,n:i/ f(z)dz (n:O,:I:l,:i:Q,"')-
B

211 Jigj=rcr 2*F

From ) .
™ 2
lan] < i/ 1£reT)l g,
0

- 27 re
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we have

1

27 ) 2 1 27 )
< (oo [Tleennie) < o [T e

Let € < 1 be a small positive number, and then

1 1 2% 1 . 1
ay [2r?tidr < —/ / f(re'®)*rdrdd < ——// z)|*dzdy.
[ el <5 [ [ e SOl

Then a, must be zero when n < ~1. Otherwise, let ¢ — +0, the left side of
the above inequality will tend to infinity, while the right side of the inequality
is finite, which leads to a contradiction. Hence

fz) = anz",
n=0

which shows that z = 0 is a removable singularity of f.

5314

Evaluate the integral

[ AL el
|z|=p IZ - alZ’

(Indiana)
Solution.
Let z = pe

/ ldz| /2" pdé
pl=p l2— a2 T o p2 12— pr(ei6-¢) 4 ¢i(6-0))

/21r de
- 0 p2 +r2 — pr(ew + e—zﬂ)
_ / pdz/(iz)

\fl=p P2+ 12 —12 = pPr/2

_ / pidz
|z|= pT (p +T2)z+p T

9 a = re'®.




When r < p,
dz| tdz
| _ p
|2|=p |Z - a|2 |z]=p T(Z — ?)(Z — 7‘)
= 2mi-—Res 21 ,T
(z =)z =)
_ 27p
T pr_r?
When r > p,
/ ldz]  _ / pidz
12|=p |Z - a|2 |2]=p T(Z — %2)(2 — 'I‘)
; 2
= omi PRes(— L~
T (z-F)z—r) T
_ 27
o2 p?
5315
Evaluate

g

/ do laj > 1
—  a
o a+sin’z’ !

by the method of residues.
(Columbia)
Solution.
Denote

I(a) /% dz
a) = —_
o o-+sin’z

It is obvious that I(a) is an analytic function in {a: |a| > 1}. Then we have

x

/? dz _/% 2dz
o a4sin’z o 2a+1—cos2z

/” dz _l/” dz
o 2a+1—cosz 2 J__.2a+1—cosz’

I(a)

[l

I
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Let z = €*%, then

dz
de = s
12

z4 271

cosST = 2 s

and

idz
I(a) = .
(a) /M:l 22-2(2a+1)z +1

Denote the two roots of 22 —2(2a+1)z+1 = 0 by 2; and z;. Since 21 -2, = 1,
we may assume that |z1] > 1, |22| < 1. By the residue theorem we have

idz 2m
Ha) = /IZI=1 (z —z1)(z — 22) - Z] — 2a

2w T

V(z1+ 22)% — 42129 -~ 2y/a(a + 1)'
It should be noted that aeTD is also analytic in {a : |a] > 1}, and the
branch of y/a(a + 1) should be chosen by argy/a(a + 1) |;51= 0.

5316

Consider the function

1

9(2,8) = 1+ zsinf’

(a) Use the residue theorem to find an explicit formula for
27
f(z) = / g(z,8)do
0

when |z| < 1.
(b) Integrate the Taylor expansion

g(2,8) = Z g,(6)2"

term by term to find the coefficients in the Taylor expansion
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(c) Verify directly that (a) and (b) agree when |z| < 1.
(Courant Inst.)
Solution.

(a) Let ¢ = €'®. Then

10 -0 2
. e’ —e -1
sinf = = ¢ ,

2i 2iC

Y 3 24( ] 2d¢
f(z) - /0 g(z’g)dg = /|;|=1 ZCZ + 21’( — 2 ZC - lcl=1 Z(C _Cl)(c — CZ)’

where (; = ;;(\/1 —~22-1),(2 = %(—\/1 — 22-1), and the single-valued branch
of v/1— 22 in {|z]| < 1} is defined by V1 — 22 |;=0= 1. Because |(1 (2| = 1,
we know that {; € {|¢|] < 1} and {; € {|¢| > 1}. Hence
2 1 27
z) =27t — = .
f(z) z (1—C  V1-22

(b) It follows from |sinf| < 1 and |2| < 1 that

9(2,0) =Y (-1)Fsin* 0. 2%, (|2 <1).

Since the series converges uniformly for all 8 € [0, 2x], the integration with
respect to # can be taken term by term, and

z-—zwm—k'k-z’c 6’—maz’c
f()_/0 (;)( 1)* sin* 6 )d_’;k ,

where .
ak:/ (—-1)* sin* 6d8.
0

It is easy to obtain that as,-1 = 0 and

x

2 _ n
g = 4/ sin? 6 — 2~ D!
0

o 2"

(c) In order to verify that (a) and (b) agree when |z| < 1, we develop the
function f(z) in (a) into a power series:

27

oo}
— _ 2y-1% _ _1\npm 20
=2m(1 - 2°) 2_27r20( 1) C_%z .
n=
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Since
(=3)(=3) - (=25 _ @n-D)!
n! To(@2n)t

we know that the results in (a) and (b) agree when |z| < 1.

(~1)"Cny = (=1

5317
If @ is real, show that

R : 2
lim e~z 4y
R— oo —-R
exists and is independent of a.
(UG, Irvine)
Solution.
First we have

‘e—(z-}-ia)Z < ea2 .e—a:z.

It follows from the existence of

R 2
lim e T dz
R—oo J _p
that
R . N2
lim e~ (Eti9) qg
R—o oo —-R
exists.

Define f(z) = e~%" and choose the contour of integration I' = I'; UT; U
'3 UT4 as shown in Fig.5.5.

L, ai

n{ lr{

“R G
Fig.5.5

As f(z) is analytic inside T, by Cauchy integral theorem,

/F sz = [ fean /F Sz + /F ROCE /F St



R e R
= / e~ dz + ie‘R2/ e¥ ~yigy, -—/ e~ (z+ia) gg
-R 0 -R

a
-—ie"RZ/ ey2+2Ryidy
0
= 0.

Letting R — oo, it follows from the facts that e=®° — 0 (R — oo) and

393

(ITowa)

a a
/ ey:’:l:ZRyzdy < / €y2dy
o o
that
R ;2 R 2
lim e~ @9 gz = lim e " dx = /7.
R—oo J_p R—oo J_p
5318
Let n > 2 be an integer. Compute
* 1
/ dz.
o 1+z
Solution.
r
0 R

Fig.5.6

Let f(2) = 1—+12—,‘, and select the integral contour I' as shown in Fig.5.6.

f(z) has one simple pole z = e=*

/F f(2)dz

/I:f(z)dz = /(; 1+$n+/(; iRe" f(Re )d0+/}; e

R 27
2z dz Yo i6 i
¢ *)d8.
/(; 1+a:"+/(; iRe*” f(Re™)

2miRes(f,en?).

I
—~
—

|

[y]
[
-
~—

inside T'. By the residue theorem, we have
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It is obvious that

2r
lim iRe"® f(Re')df = 0,
R—o0 Jg
and
"y 1 1
Res(f,er') = ——— =
(f’ ) (1 + zn)l z:eﬁ'i nen:lﬂ_i

Letting R — oo, we obtain

/°° dz 27 271 T
0

n —1_ . 2m 4 —-Z; in &°
1+z ne 5w (1_67”1) n{er! —e~ %)  mnsinZ

5319

Evaluate
>}
/ cos(z?)dz
0

with full justification.

(Minnesota)
Solution.

P

Define

3
and choose the contour of integration ' = ) T'; as shown in Fig.5.7. Because
7=1

flz) = e is analytic on I' and inside I', by Cauchy integral theorem, we

have
/rf(z)dz = g/r f(z)dz = 0.
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For the integral of f(z) on I';, we make a change of variable by w = 2%, then

(s = [ v
T, Y2 2w5

where
72 = {w: |w| = R? 0 < argw <

}

]

By Jordan’s lemma, we have

lim f(z)dz = 0.
T

R—oo

For the integral of f(z) on I's, we have

R,
f(z)dz = —/ e " ted'dr

R R
2 2
= —/ %(cos z? 4 sin z?)dz — z/ %(cos z? —sinz?)de.
0 0

It is well known that

R
f(z)dz = / e~ dz — -\/j
r, 0 2

when R — oco. Hence we obtain by letting R — co that

oo o /
/ (cosz® + sinz®)dz + z/ (cosz? —sin z?)dz = ——521
0 0

9

which implies

oo oo /
/ coszldzr = / sinz2dz = ﬁ
0 0 4

5320

® sin? z
5 dz.
0 x

Evaluate

(Jowa)
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Solution.
r
Fig.5.8
Define
1— eziz
f(Z) = 22 ’

and select the integral contour T' as shown in Fig.5.8. Because f(2) is analytic
inside T', by Cauchy integral theorem,

/F f(2)dz = 0,

where

R1_ elis LA . —€ 1 _ o2z
/ f(z)dz = / —dz + / iRe f(Re'®)do + / dz
r € T 0

—-R z2

0
+/ ice” f(ee'®)do

R 2ix —2ix r
2 - g2z _ . .
- / _._f_z_e____dz-l- / iRe' f(Re'?)do
3 o

x
0 . .
+ / iee' f(ee'®)do

R 2 T ) 0 . .
/ 45“12 Zdz + / iRe'® f(Re*®)df + / ice' f(ce'®)de.
€ z 0

™

it

It is easy to see that
x . I3
lim / iRe*’ f(Re™)d6 = 0
R—o oo 0

and

0
lim / ice'® f(ee*®)df = —miRes(f,0).
E— T
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Since the Laurent expansion of f about z = 0 is

f(z) = Z a,z",

n=-1

where a_; = —21, we know that Res(f,0) = —21.
Letting ¢ — 0 and R — oo, we obtain

® gin? z T
5 de = —.
0 z 2

5321

Let f(z) be holomorphic in the unit disk |z| < 1. Prove that

! 1
/0 f(z)de = 3 |z|:1f(z) log zdz,
where respective integration goes along the straight line from 0 to 1 and along
the positively oriented unit circle starting from the point z = 1. The branch
of log is chosen to be real for positive z.

(SUNY, Stony Brook)
Solution.

Fig.5.9

Let the contour of integration ' be shown as in Fig.5.9, and the single-
valued branch of logz be chosen by argz|.—_; = 7. Since f(z)logz is holo-
morphic inside the contour I', by Cauchy integral theorem,

/ f(z)logzdz =0,
r
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where
1
/f(z)logzdz = / f(:c)log:cd:c—l—/ f(2)log zdz
r P lzl=1
€ 0 ) . )
+/ f(a:)(log:c+27ri)da:+/ f(ee'®) log(ee®®)ice'®do
1 2r

1
= —27ri/; f(:z:)d:t:—i—/i;lz1 f(2)log zdz

27
- f(ee®) log(ee'®)ice™ do.
0

It is easy to see that
2w . ) )
lin(1) f(ee®) log(ee*)ice’®dd = 0.
£— 0
Letting ¢ — 0, we obtain

1
/ f(z)dz = 1 f(2)log zdz,
0

B 2w lzl=1

where the integration contour |2| = 1 has starting point and end point z = 1,
and the value of log z at the starting point z = 1 is defined as 0.

5322

Find the value of on
/ log |a + be*?| d¢
0

where a and b are complex constants, not both equal to zero.
(Harvard)

Solution.
First we assume |a| > |b], and then the multi-valued analytic function
log(a + bz) has single-valued branch on {z : |z| < 1}. Take e'® = 2, then

dé = % and
27 )
Re { / log(a + be’¢)d¢}
0

Re / log(a+b2) ),
|zj=1 1z

Re{2rloga} = 27 log |a.

2r
/ log |a + be'®|dé
0

il
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When |a| < [b], we have
2 . 2r _ .
/ log a + be'?|dp = / log |b + @e'?|d¢
0 0

= 2wlog|b| = 27 log |b|.

In the case |a| = |b], let b = ae’®. Then

2% 2T
/ log |a + bei¢|d¢ / (log la} + log |1 + ei(¢+")|)d¢
0 0

= 2mloglal + log [1 + €'?|d¢.

-7

i{m—g)
e

oY

i(~m+e)
e

Fig.5.10
In order to evaluate the integral
/ log |1 + ¢'?|dg,
-

we define

where the single-valued branch is defined by log(l + 2) |,=o= 0. Choose a
contour of integration I' = I'; Uy, as shown in Fig.5.10. Since f(z) is analytic
on I' and inside T, by Cauchy integral theorem, fr f(2)dz = 0. Because

loet 4 T
/f(z)dz‘g%-z—-we—vo (e = 0),

we have

log |1+ €?|ldp = Re/ log(1 + €'?)d¢

-7
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. dz
= Ell_I'%Re {/1; log(l+z);}

. 1
= Eh_I'%Re{Z/I:f(z)dz}:O.

Hence we obtain

2
/ log |a + be'?|d¢ = 27 max{log |a|, log [b|}.
0

5323
Evaluate
00
!
/ _logz ..
o (1+=z)3
(Towa)
Solution.
r
0 R
Fig.5.11
Let
log® z
f(z) = REPER

and select the integral path I' as shown in Fig.5.11. The single-valued branch
of log z is chosen by argz|,=_; = 7. By the residue theorem, we have

/ f(z)dz = 2miRes(f, —1),
r
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where
R 2 2r € .
log”z o ; (log z + 2m%)?
dz = —= =4 Re'’ f(Re'®)d /—
[s@as = | u+m3z+A R
0
+/ ice? f(ee*)dd
2x
R . 2 2%
—4milogz + 47 B 0
= —_— e d. : *\db
/; EE :c+/(; tRe™ f(Re')
0
+/ iee' f(ee*®)dd.
2r
It is obvious that .
lim iRe' f(Re*)df = 0
R 0
and
0 . .
lim [ iee' f(ee™)dB = 0.
=0 Jor

In order to find Res(f,—1), we consider the Laurent expansion of f about
z=-1

log?[(z+1)— 1]  (mi+ log[l — (24 1)])?

f(z) = (Z+ 1)3 - (Z+ 1)3
_ (7ri——(z+1)—~%(z+1)2_....)2
N (z+1)°
= Y an(z+1)",

where a1 = 1 — wi. Hence
2miRes(f, —1) = 27i + 272,
As ¢ = 0 and R — oo, it turns out that

/°° —4milogz + 4w
0 (1+1:)3

Comparing the imaginary parts on the two sides of the above identity, we

obtain © )
/_;&L@:_ﬂ
o (tep 2

dz = 27i + 27°.
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5324

Evaluate the following integrals:

( ) :':: mﬁ (the integration is over the imaginary axis),

fo 5 +1d:c for @ in the range —1 < a < 2.
(Courant Inst.)
Solution.
(a)
iR
'LO-
r
Fig.5.12
Define

1
(22 — 4)log(z + 1)
The single-valued branch for log(z + 1) is chosen by log(z + 1)|;=0 = 0, and

the contour T' of integration is shown in Fig.5.12. As f(z) is analytic on and
inside T’ except a simple pole at z = 2, we have

f(z) =

‘/l:‘f(z)dz = 27iRes(f, 2),

where
/ f(2¥dz = | f(RE®YiRe®d8 - [ flec®)iee®dd
r -3 -3z
—1ie +iR
[ s [T pes

—iR i€
and ( 2) L

. z —

Res(f,2) = }l_l’n 2 (22 ~ 4)log(z + 1) 410g 3

Because

Jim / * f(Re®)iRe®df = 0
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and

3 ) : .
lim / Flee'®)ice'®dh = miRes(f,0) = _%
€= x
-3
by letting € — 0 and R — oo, we obtain

/+i°° dx _ 7r1,(1 2
—ico (22=4)log(z+1) 4 log 3)'

Define

6= 351

The single-valued branch for 2 is chosen by argz|,-;-o = 0, and the contour

I' of integration is shown in Fig.5.13. As f(z) is analytic on and inside I' except
a simple pole at z = e 3%, we have

/ f(2)dz = 2xiRes(f,e5"),
r

where
R 5 . . B eas an;
/f(z)dz = / f(z)dz+/ f(Re"’)iRe"’dG—/ e s f(z) e tde
r € (¢} €
- / T f(ee®Yieedd,
0
and
Res(f,es') = limﬂ‘(z—e%")f(z)
z—es’
T Ze¥
1

35 (2-0)"
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Because
T ) )
lim / f(Re®)iRe™df = 0
R—oo Jg

when a < 2 and .
lim / Y f(ee®)iec®ds = 0
e—0 0

when a > —1, by letting ¢ — 0 and R — oo, we obtain

/OO :cﬂ d T
T = .
0o z3+1 3Sin(2—;9-1r)

5325

Show that

/°° ¢ (1 —a)
dz = ,
o (14 z2)? 4cos(T3)
for —1 < a < 3, a # 1. What happens if « = 17
(Harvard)
Solution.
Let

ZO’

(14 2%)%’
where (argz®);=z>0 = 0, and select the integral path T' as shown in Fig.5.14.
By the residue theorem, we have

f(z) =

/ f(2)dz = 2wiRes(f(2),1),
r

where

_ R z T e i0 ~f (_z)aeim



0
+/ ice'® f(ee'?)df

R a T
— iTa d . 20 i0
(1+e )/E e z+/0 iRe' f(Re')do

0
+/ ice'® f(ee'?)d,

and

. , 2@ ! l—a ;zo
Res(f(z),z)_ll_*n} [(z+i)2] ="

It follows from a < 3 that

lim iRe' f(Re'®)df = 0,

_'OOO

and from o > —1 that
O . .
lim / ice'® f(ee'®)do = 0.
E— T

Letting ¢ — 0 and R — oo, we obtain

; <z m(l—a) ;
Ta d 1
(1+e )/0 it 22) T = 5 ©

when o = 1. i,
/ Y dz = lim W_(l___ﬂ - 1_
o (1+z2)? a—1l4cos(5r) 2

5326

o© .
/ e r %z
0

(a) Prove that

converges if 0 < a < 1.

405
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(b) Use complex integration to show that
/ z~ % cos zdz = sin _7"2£ I(—a+1).
0

(Harvard)
Solution.

(a)

oo 1 [+ o5}
/ efr %z = (/ z~% coszdzx +/ 7% cos zdz) + z/ z~%sin zdz.
0 0 1 0

It follows from a < 1 that
1
/ z~%coszdz
0

is convergent. It is also obvious that
A
/ sin zdz
0

A
/ cos zdzx
1

£~ % is monotonic decreasing and

<2, <2,

Im z7¢ =0 fora>0.
z—+oco

By Dirichlet’s criterion, we know that floo z~ % cos zdz and fooo z~“sin zdz are
also convergent. Hence fooo €'*z~%dz is convergent when 0 < a < 1.

(b)
iR
0 R
Fig.5.15

Let f(z) = z2=%e™ %, and the contour of integration T is chosen as shown in
Fig.5.15. The single-valued branch of f(z) on T is definde by 27 |.=z50 > 0.
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By Cauchy integral theorem,
R H ) ‘ € o
/f(z)dz = / z-ae-fdz+/ iRe"’f(Re"’)d0+/ ™% e idy
r € 0

R

0
+/ iee* f(ee'?)dd = 0.

2

It follows from a < 1 that
0 . .
lim / ice’ f(ee*)db = 0,
E£— pd
5
and from a > 0 and Jordan’s lemma that

lim [ iRef(Re®)ds = 0.
R— 00 0

Letting € — 0 and R — oo, we have

(o}

I‘(—a+1):/

o0
— _ PR L — —1
z %" Tdz = te 2'/ T “e **dz.
0 0

Multiplying both sides by ¢ %%, and comparing the imaginary parts, we obtain

o0
/ z”%coszdz = sin %I‘(—a +1).
0

5327
Use a change of contour to show that
/°° cos(a:,tc)d:c _ /°° te—aht i,
o T+p o t2+1

provided that @ and 8 are positive. Define the left side as a limit of proper
integral and show that the limit exists.

(Courant Inst.)
Solution.
Since

<

Rt

A
/ cos(az)dz
0
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ﬁ is monotonic with respect to z and

. 1
x—-{I—{I-]oozl:-i-ﬂ—

0,

the convergence of the integral

* cos(az)
/(; =15 dz

follows from Dirichlet’s criterion.
Define

e—az

f(z) ooyl

and choose the contour of integration I' = I'; UT'; UT'3 as shown in Fig.5.16.

Ri

T;
" 2

0 T R
Fig.5.16

By Cauchy integral theorem, we have

R e~ % R e—aTi
/1:f(z)dz /(; :c+,3idz+ sz(z)dz—-/(; w+f3dz

R - . R _—axi
e ar(z _ BZ) e—aTi B
/(; 1B dz + s f(2)dz /(; - de = 0.

It follows from Jordan’s lemma that

lim / f(z)dz = 0.
Ty

R-—o0

Letting R — oo and considering the real part in the above identity, we obtain

* cos(ax) ® gem® /°° te~ Pt
dz = de = ——dt.
/o 2B /o 2@ Jy Pl
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5328

(a) Let ¢ be the unit circle in the complex plane, and let f be a continuous
(-valued function on ¢. Show that

is a holomorphic function of z in the interior of the unit disk.
(b) Find a continuous f on ¢ which is not identically zero, but so that the
associated function F is identically zero.
(Minnesota)
Solution.
(a) Let 2o be an arbitrary point in the unit disk. Then 1 — |25| = p > 0.
Choosing & > 0 such that § < p, we prove that

R = [

has a power series expansion in {|z — zo| < 6}.

It is clear that
6
<-x<1
p

z2— 2z
(-2
when |z — 29| < 6 and { € ¢. We can also assume [f({)| < M because f is
continuous on ¢. Thus

0 0 o1
¢C—z  (C—20)~ (z—zo) (— 2z 1—2%;;'—

) = (z—z())

- —Zo ¢—z

_ zZ — 20 n

- ZC—ZO (C—Z0>

L (=) =5 6)
¢—20 \(— 20 ~p \p)’

n
and Z ( ) is convergent, the series Z j—(—)— (C zo) converges uni-

formly for all ¢ € c. Hence termwise 1ntegrat10n is permissible, and we obtain

= & —ooa z—2)"
)_lc_zdc—yg) "( 0)1

As
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where |z — 29[ < 6 and

F(©)
Qn :[Wdc

Since zo is arbitrarily chosen in the unit disk, Fy(z) is holomorphic in {|z| < 1}.
(b) Take £(¢) = & (I¢] = 1). Then

Fy(z) = /C / ( )d(-1(27rz—27rz) 0.

In fact, f(¢) can be taken as (C——{?EF for any positive integer n and fixed
z0 € {z : |z| < 1}. When ( € ¢,

[ == TRt =

5329

Let [a,b] be a finite interval in IR and define, for z in D =€ — [a, b},

f(z>=/abt‘ftz-

Show that f(2) is analytic in D. Given ¢, a < ¢ < b, calculate the limit of f(2)
as 2z tends to ¢ from the upper half plane and as z tends to ¢ from the lower
half plane.

(UC, Irvine)

Solution.
For any zo € D, choose § > 0 sufficiently small such that {z : |z — zo| <
S}n{z=z+iy:y=0,a <z <b} =0. When |z— 20| < ,a <t < b, wehave

t—z (t—z0)—(2—2) t—z 1-—32=2

1 1 1 1 :i(z—-zo)"

i
Nk
N
o~
o
ey
|
3
p—
3
+
=N
N——
~
N
S
p—a
3
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holds for z € {z : |z — 2| < 6}, which implies f(z) is analytic in {z : |z — 25| <
6}. Since 2o is an arbitrary point in D, we obtain that f(z) is analytic in D.
For z € D, f(z) can also be represented explicitly by

b b
f(z):/ tdt :/ dlog(t — 2) = log Z=2.

-z a z—a

where the single-valued branch is defined by arg (;:2) lr=zo>p = 0. Let Ty
and I'z be two continuous curves connecting 2 = zg > b and z = ¢ in the upper
half plane and the lower half plane respectively. Then the limit of f(z) as 2
tends to ¢ from the upper half plane is

log

z—b:log
z—a

’ + iAr*l arg

4
C—aQ

while the limit of f(z) as z tends to ¢ from the lower half plane is

- . - ~b .
log ¢ ‘ + zApzargz = log ¢ — .
c—a z— c—a
5330

For each z € U = {z : Imz > 0} define

1 .2
9(2) —1—/ s tdt.

~om 1 t—z2

Determine which points a € IR have the following property: there exist ¢ > 0
and an analytic function f on D(a,¢€) such that f(z) = g(2) for all z € U N
D(a,¢).

(Indiana)
Solution.
Let T be the half unit circle in the lower half plane whose direction is
defined from point z = —1 to point z = 1, and define a function
1 sin” ¢
= — dt.
1) 27 _/1: t—2z

It follows from the Cauchy integral theorem that when z € U, f(z) = g(2).
With a similar reason as in problem 5328, f(z) is analytic in the complement
of T. Hence we obtain that for any @ € IR, a # =1, there exists ¢ > 0
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(¢ < min{|a—1], |a+1|}) such that f(2) is analytic in D(a,¢) = {z : |z—a| < €}
and f(z) = ¢g(z) for all z € U N D(a,¢).
When a = £1, such a f(z) does not exist. The reason is as follows: As

sin?t  sin®t —sin?z sin’z

t—z t—z t—2z’
where sinft=sin®z 5o o0 analytic function of two variables for (t,2) €€ x €, we

t—-z2
know that
h(z) = L/l sinzt—sinzzdt
2m J_4 t—2

is analytic for z € €. But

2 2 2

1 1 sin?z gin?z 1! sin“ z z—1
— dt = dlog(t — = log ——
i) t—2 o7 /_1 og(t — 2) = o log —— .

which has branch points z = £1, hence g(z) can not be analytically continued
to D(&1,¢).
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SECTION 4
THE MAXIMUM MODULUS AND
ARGUMENT PRINCIPLES

5401
Let a €, |a} < 1, and consider the polynomial
_¢ a2y, G 2
P(z) = 5 + (1 — {a|*)z 5% -
Show that |P(z)| < 1 whenever {z] < 1.

(Indiana)
Solution.

X
x
1
|
+
=
|
=

[
w
l
|
NN

I
N
=
=
|
EX

(V)
p
+
1
—~—
|
|
8l
N
=

When |z| =1,
a a = a a
~—az) = — —(az)] = Re[- — -] =
Re(z az) Re[z (@z2)) e[z z] 0,
llm(‘i —Ez)‘ < 2Jal.
P
Hence when |z| = 1,

|P(z)[?

(1 - lal)? + (5 (2 - @2))?
(1~ 20af’ + [af*) +[af = 1~ [af? +[al* < 1.

IA

By the maximum modulus principle, |P(z)| < 1 whenever |z} < 1.

5402

Let f be holomorphic in the unit disk {|z| < 1}, continnous in {|z| < 1}
and |f(z)| = 1 whenever |z| = 1. Prove that f is a rational function.
(SUNY, Stony Brook)
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Solution.

If f(z) has infinite many zeros, by the isolatedness of the zeros of holomor-
phic functions, the zeros must have limit points on the boundary of the unit
disk. But it will violate the fact that f is continuous in {|z| < 1} and |f(2)] = 1

whenever |z| = 1. Hence f has only finite zeros in the unit disk. Denote all
these zeros by 21, 22, - -, za, multiple zeros being repeated, and define
- Z— Zy
F =
@ =11 (775%)

Then F(z) is holomorphic in {|z| < 1}. continuous in {|z| < 1} and |F(2)| =1
when |z| = 1. By the maximum modulus principle, |F(z)| < 1 in {|z| < 1}.
Since F(z) has no zero in {|z| < 1}, F"(l,?j is also holomorphic in {|z| < 1},
continuous in {jz| < 1} and ]F(Lz_il = 1 when |z| = 1. Application of the
maximum modulus principle to f,—(l;—)— yields |[F(z)] > 1 in {|z| < 1}. Hence
|F(2)| = 1 holds in {|z| < 1}, which implies F(z) = e'* with o a real number.

So we obtain "
o Z— 2
=11 (F=2).

5403

Let f be a continuous function on U = {z : |z| < 1} such that f is analytic
in U. If f =1 on the half-circle y = {€® : 0 < 6 < 7}, prove that f = 1
everywhere in U.

(Indiana)
Solution.

Define F(z) = (f(z) —1)(f(—2)—1), then F(2) is also continuous on U and
analytic in U. When 2z € 9U, we have either f(z) —1 =0 or f(—z)—-1=0.
Hence F(z) = 0 holds for all z € U, which implies either f(z) — 1 = 0 or
f(—=2z) —1=0. Since f(z) —1 =0 is equivalent to f(—2z) — 1 = 0, we obtain
f(z)=1lforallzeT.

Remark. The condition that “f = 1 on the half-circle 4” can be weakened
to that “f = 1 on an arc y = {e*? : 0 < § < X}, where n is a natural number”.
In this case, the proof is the same except that F(z) is defined by

2

F(2) = (£(2) = ))(f(ze%) = 1)(f(zeF7) = 1)+ (f(ze™" ™) = 1).
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5404

Let S denote the sector in the complex plane given by § = {z : - <
argz < T}. Let S denote the closure of S. Let f be a continuous complex
function on S which is holomorphic in S. Suppose further

(1) {f(2)| < 1 for all z in the boundary of S;

(2) |f(z + iy)| < eVZ for all & + iy € S.

Prove that |f(z)) < 1forall z€ S.
(SUNY, Stony Brook)
Solution.

Let F(z) = e %% f(z), where € > 0 is an arbitrary fixed number. Then
F(z) is also continuous on S and analytic in S. When z is on the boundary
of S, |F(2)| = e™**|f(z)] < 1. When |z| — +oo (—F] < argz < ), |F(2)| <
e~ .eV® — (. By the maximum modulus principle, we have |F(z)] < 1 for
all z € S, which implies |f(z)| < [e**]| = e°* for all z € S. Because € > 0 can
be arbitrarily chosen, letting ¢ — 0, we obtain |f(z)] < 1forall z € S.

5405

Let K be a compact, connected subset of € containing more than one point
and let f be a one-to-one conformal map of T\K onto A = {z : |z| < 1} with
f(<) = 0. If p is a polynomial of degree n for which |p(z)| < 1 for 2 € K,
prove that

Ip(2)] < 1f(2)]™" for z €@\K.

(Indiana)
Solution.
Because f is a one-to-one conformal map of €\ K onto A with f(co) = 0,
it has a simple zero at z = co. Since p is a polynomial of degree n, it has a
pole of order n at z = co. Hence the function F(z) = p(z)f"(z) is analytic in
€\ K which contains point z = co. As f(z) maps €\K onto A = {z: |z < 1},
we have ILHII{ |f(2)] = 1. Together with |p(z)| < 1 for z € K, we know that the
limit of |%'(z)| when z tends to K can not be larger than 1. Apply the maximum
modulus principle to F(z) on €\K, we obtain |F(z)| < 1 for z € €\K, which
implies |p(2)| < |f(2)|™" for all z eC\K.
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5406

Suppose f and g (non-constant functions) are analytic in a region G' and
continuous on the closure G of the region. Assume that G is compact. Prove
that |f| + |g| achieves its maximum value on the boundary of G.

(lowa)
Solution.

Assume that |f| + |g] achieves its maximum value ¢ (¢ > 0) at 29 € G, we
prove that if zg € G, then f and g must be constants.

Let

|f(20)] = f(20)e®*,  |g(20)| = g(20)e’?>.
Then for fixed ¢; and ¢,
F(z) = f(z)e'f‘b1 + g(2)e'??
is analytic in G and continuous on G. It follows from
|F(z)] < |f(2)[+19(2)] < e,
F(zo) F(20)€""" + g(20)e’®* = |f(20)| + lg(20)| = ¢

and zg € G that

f

F(z)= f(2)e® + g(z)e'?:
must be the constant c.

Without loss of generality, we assume that f is not a constant, and try to
lead to a contradiction. Since the image of an open set {z: |z — 20| < §} C G
under f is an open set which contains point f(2¢), f(2) assumes all the values
f(z) = f(z0) + €€'® for small e > 0 and 0 < ¢ < 27 in {z : |z — 20| < 6}. Then
when ¢ + ¢ # 0, m, we have

1F(2)] + l9(2)] ()] + le = f(=)e™®|
= |f(20) + €| + |c — Fz0)e'® — gei(®T91)]
|Eei(¢+¢1) + f(zo)eiqbll + ‘Eei(¢+¢1) _ g(zo)eiqbzl
> fz0)e + glzo)e® =,

which contradicts that 2o is a maximum value point of |f|+ |g|. Hence f must
be a constant, which also implies ¢ is a constant too.
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5407

Suppose f(z) is an entire function with

1

1z,
[Rez|’ at#

If(2)l <
Show that f(z) is identically 0.
(Towa)
Solution.
For any R > 0, consider function

g(z) = (z — Ri)(z + Ri) f(2).

When |2| = R, and Imz > 0, denote by 6 the angle between the line
perpendicular to the imaginary axis and the line passing through 2z and Ri.
Then 0 < 6 < 7, and
z— Ri

Rez
When |z| = R, and Imz < 0, denote by 8 the angle between the line perpen-

dicular to the imaginary axis and the line passing through z and —Ri. Then
0<6< %,and

=secl < V2.

z+ R:

Rez =sech < V2.

It follows from the above discussion that when |z| = R,

(z — Ri)(z + Ri)

9(2)| = (2 — Ri)(z + Ri)f(2)] < |20 2

< 2V2R.

By the maximum modulus principle, when |z| < R,

9(z) < V2R
(z — Ri)(z+ Ri)| — R?— |z|*°

1f(2)] =

Now fixing z, and letting R — 400, we obtain f(z) = 0. Since R can be
arbitrarily large, we have f(2) = 0 for all z €.
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5408

Suppose f is analytic on {#;0 < [z| < 1} and

1

z)| < log —.
£ < bog 7
Show that f = 0.

(Indiana)
Solution.

Denote the Laurent expansion of f on {2;0 < |z| < 1} by
flz) = Z anz",

where

1 HOW

a, = — ——

n - ; n+1l
2mi |z|:r<1z +

1
ol < o= [
27 |z|=r

When n < 0, letting » — 0, we have

It follows that
f(2)

zn+1

1.1
Jdz] < —log =.
IZI_T,,logr

an =0 (n=-1,-2,-.),

which implies z = 0 is a removable singularity of f. In other words, f can be
extended to an analytic function of the unit disk.

Since log I_i_l = 0 when |z| = 1. By the maximum modulus principle, we
obtain
fEo.
5409

Let f be an analytic functionon D = {2 : |z| < 1}, f(D) C D and f(0) = 0.
(a) Prove that |f(z) + f(—=2)| < 2|z|? for all z in D and if equality occurs
for some non-zero z in D, then f(z) = e'*2%.
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(b) Prove that

2
<=
-3

1
IRCLE
-1
(Indiana)
Solution.

(a) Let F(z) = f(z) + f(—z), then F(0) =0,
F'(0) = lim F—(Z—) = lim (&)— - M) =0.

z—0 2z 2—0 VA —Zz

Hence %(.f—l is analytic in D, and when 2 tends to 8D, the limit of l%(zil‘ can

not be larger than 2. By the maximum modulus principle, |f(z) + f(—z)| <
2|z[% holds for all z € D.
If equality occurs for some non-zero z in D, we have

f(2)+ f(—2) = 2ei°z2,

where « is a real constant.
Let

f@ =Y an",
n=1

it follows from
F(2) + f(~2) = 2622
that

Qs =€, (14:(16:*":0.

Because |f(2)] < 1 for z € D, we have
2n ) co
lim —/ |f(re®)|?do = Z laa|? < 1.
0 n=1

Since ap = €'®, the other coefficients must be zero, which implies f(z) = e**22

(b)
/ 11 f(0)d

I

/_ 01 f(z)dz + /0 1 f(z)dz

1
2
< 2¢%dz = =
_/0 r alr 3

/0 (F(2) + f(~))da
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5410

If f is analytic and |f(z)] < 1 on {z : |z| < 1}, prove that f(2) has a fixed
point.

(Rutgers)
Solution.
Let F(z) = f(z) — 2z and G(z) = —~=z.
When |z| =1,

|F(2) - G(2)] = |f(2)| <1=G(2)].

By Rouché’s theorem, F(2) and G(z) have the same number of zeros in
{z : |z| < 1}. Since G(z) has only one simple zero in {z : |z] < 1}, we conclude
that f(z) — z has one zero in {z : |z| < 1}, which implies that f(z) has a fixed
point in {z : |z| < 1}.

5411

Let f(z) = z+e~*, A > 1. Prove or disprove: f(z) takes the value A exactly
once in the right half-plane. If the answer is yes, is the point necessarily real?
Justify.

(Jowa)
Solution.

Let R be a sufficiently large real number such that R > 2. Take a closed

curve I' on the right half-plane, where

I‘:{z::c+iy::c:0,—-R§y§R}U{z:|z|:R,—%§argz§72—r}.

Define
Flz)=A—z—-¢€""
and
G(z)=A—z
When z € T,

1F(2) - G(2)| = le77| < 1 < |G(2)}.

Since G(z) has exactly one zero inside I', it follows from Rouché’s theorem that
F(z) has exactly one zero inside I'. Because R can be arbitrarily large, F(z)
has exactly one zero in the right half-plane. Hence f(z) takes value A exactly
once in the right half plane.
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Take z =z > 0. We have
Flz)=A—z—e7",

which is a real-valued function of real variable z. Since F(z) is continuous and
F(0) >0,

i, F@) =~

there must exist zg, 0 < o < +00, such that F(zo) = 0. In other words, the
point z in the right half-plane such that f(z) = A is necessarily real.

5412

Suppose f is analytic in a region which contains the closed unit disc {z :
|2] < 1}. Assume f is non-zero on the unit circle {z : |2} = 1}. Let C denote
the unit circle traversed in the counterclockwise sense. Suppose that

1 [ fi(2)
= —9
( 271 Je f(2) dz =12,
1 f'(z), _
(2) 27 /o z ) dz =0,
- L[ L), ]
o /(2
[ 2L g
® 7 /Cz )% 2
Find the location of the zeros of f in the open unit disc {z : |2| < 1}.
(Towa)
Solution.
Assume 21,23, -, 2, are the zeros of f(z) in {z : |z| < 1}, multiple zeros

being repeated. Then
f)=9(=) [[(z - 2),
i=1

where g(z) is analytic and has no zero in {z : |z| < 1}. We have

1 (f®, _ 1
o . Fo ke = 2m,/cdlogf(z)

omi Jo | 9(2) i

= n.
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It follows from (1) that n = 2, i.e., f(2) has two zeros in the unit disk. Then
for f(z) = (2 — z1)(2 — 22)9(2),

1 f'(2) _ 1 z z zg'(z)
271 sz(z)dz - 27ri_/;-<z—zl+z—zz+ g(z) )dz

= 21+22=0
and
' ’ i i
E%r—i sz‘-’;((;))dz - 5% c(ziz1+zi22+z;zz(;))dz
= z%+2§:%’

which show that 2,5 = :t%. Hence z = :t% are the only zeros of f(z) in the
unit disc.

5413

(2) How many roots does this equation
+z+5=0

have in the first quadrant?
(b) How many of them have argument between T and 77
(Indiana-Purdue)
Solution.
(a) Let R be sufficiently large such that when |z] = R,

lz* + 5] > |2|.
Set,
flz)=2*+z+5
and
g(z) = 2* + 5.
Choose a closed curve
I' = {z=z+iy;0<z<Ry=0}U{z:|2z| = R,0 <argz < g}

Uz=z+iy:2=0,0<y< R}
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1t is obvious that
[F(z) — g(z)] < lg(2)]

holds when z € I'. By Rouché’s theorem, the numbers of the zeros of f and
g inside T are equal. Since ¢ has only one zero inside T', f has also one zero
inside I'. Noting that R can be arbitrarily large, we know that

224+2z4+5=0

has one root in the first quadrant.
(b) Let R be sufficiently large such that when |z| = R, £%5 is approximately
zero. Set

flz)=2"+z45

and

'y = {z=z+iy:2=0,0<y< R}
I, = {z=re%:0<r <R}

and .
s
I; = {z:[zl:R,Zgargzg 5}

It is easy to see that Imf(z) > 0 when
z € (T1 UT2)\{z = 0},
f(0) =5, and
F(RiY e {w:0 <argw<e}, f(Re?)ec{w:m—¢c<argw<n)}

where € > 0 is very small. We also know that

z2+5
Ar,argf(z) = Ap,argz® + Ar,arg (1 + e ) ,

where Ar,argf(z) denotes the change of argf(z) when z goes continuously
from Re®’ to Ri along T's. It is obvious that

Apsa,rgz4 =,

while

z+5
Ar,arg (1 + pr )
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is very small. Let I' = I'1 UT2 U '3 is taken once counterclockwise, it follows
from the above discussion that

Arargf(z) = 2w,

By the argument principle, the number of the roots of f(2) = 0 inside T is
equal to

1 [ f(2)
271 T f(Z)

1 1
dz = EEAF log f(2) = E;Apargf(z) =1

Hence
flz)=2*+2+5=0

has exactly one root in the domain

{z:£<argz < —725}

5414

Prove that the equation sin z = z has infinitely many solutions in .
(Indiana)
Solution.
Let

f(z) =sinz—z
and z = z + iy, then f(2) can be written as

5z -1z

fle)=""F—-z=

2 (V77 — e™¥+) — (z +iy).

DN | e,

For any fixed natural number n, choose a positive number ¢ >> logn and a
closed contour I' = I’y UT3 UT3 UT4 in the counterclockwise sense, where

I'' = {z=z+iy:2nvr <z <2(n+1)my=0}
I'' = {z=z+wy:z2=2n+1)r,0<y <t}
I3 = {z=z+iy:2nr <z <2(n+ ),y =t}

and
sy = {z=z+wy:z=2nm,0<y<t}
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Then we consider the image of I' under w = f(2):
fT)={w=uv+iv: 2n+1)r <u<-2nmv=0}
with the direction from the right to the left;

f(I‘z):{w:u+i1):u=—2(’n+1)7l',05'0§ (et_e—t)—t}

DN | =

with the direction upwards; f(I's) lies in the annulus

1 1 1 1
{w : Eet - (Ee_t +t42(n+ 1)7f> <lwl< Eet + (564 +t+2(n+ 1)7’) }

starting from
1 1
w=-2(n+ 17+ (58t - Ee"' - t)

and ending at

Y C
w_-'mrzze——ze

in the counterclockwise sense;

fT)={w=ut+iv:u=-2nm,0<v <

(et =) 1)

N —

with the direction downwards.

Hence the winding number of f(T') around w = 0 is 1. By the argument
principle, f(z) = sinz — z has one zero inside the contour I'. Since n is
arbitrarily chosen, we conclude that sinz = z has infinitely many solutions in
q.

Remark. This problem can also be proved by Hadamard’s theorem.

Assume that

f(z) =sinz—2

has only finite zeros in €, and denote all the zeros by z1, 22, -, 2,, multiple
zeros being repeated. By Hadamard’s theorem, f(z) can be written as

f(z) = *Dp(2),

where

p(2) = [[(z— =)
k=1

and g(z) is a polynomial.
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It is obvious that f(z) is an entire function of order A = 1, where

log log {max If(z)l}
) = I—_ |z|=r
= lim

r—00 logr

’

which implies that g(z) must be a polynomial of degree 1. Hence we have

sinz — z = e**0p(2).

Let z = z4iy and z be fixed. By letting y — 400 and y — —oo respectively,
and comparing the increasing order on both sides, we obtain that Ima < 0 in
the former case and that Ima > 0 in the latter case. This contradiction implies

that sin z = z has infinite many solutions in €.

5415

(a) Let f be a non-constant analytic function in the annulus {1 < |z| < 2}
and suppose that |f| = 5 on the boundary. Show that f has at least two zeros.

(b) If f is meromorphic in the annulus, is the statement in part (a) still
true?

(Stanford)

Solution.
(a) Let D={z:1<|2| <2} and 8D =T UT,, where I'y = {z : |z| = 2}
is in the counterclockwise sense, and I'y = {z : |z| = 1} is in the clockwise

sense. Because f is non-constant analytic in D and |f| = 5 when z € 8D, we
know that both f(I';) and f(I';) must be {w : |w| = 5} in the counterclockwise
sense. Hence ;=Ar,argf(z) > 1 and 5=Ar,argf(z) > 1. In other words,

2—17;A6Dargf(Z) > 2,

which shows by the argument principle that f has at least two zeros in D.
(b) If f is meromorphic in D, the statement in (a) is not true. It might

occur that f(I';) and f(I';) are two subarcs of {w : |w} = 5}, or both f(I'y)

and f(I'2) are {w : |w| = 5} in the clockwise sense. In the latter case, f has no

zero in D. The following is a counterexample. Let g({) be a conformal map of

2 2

. 1 1 1 1
{C:f+")1;5+-27<1, whereazg(ﬂ+ﬁ),b:—2-(\/§_ﬁ>}
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onto {w: |w| > 5} with the normalization ¢(0) = co, g’(0) > 0. Then

(i 32)

is a non-constant meromorphic function in D with |f| = 5 when z € dD. But
f has no zero in D.

5416

Let n be a positive integer, and let P be a polynomial of exact degree 2n:
P(2) =ag+ a1z 4+ azz® + -+ agn 2™,

where each a; € €, and ay, # 0. Suppose that there is no real number z such
that P(z) = 0, and suppose that

. T Pl(w)
rll.I?o Plo) dz = 0.

Prove that P has exactly n roots (counted with multiplicity) in the open upper
half plane {z €@ : Imz > 0}.
(Indiana)
Solution.
Let r > 0 be sufficiently large such that when [2| = r,

2n—1
lag,,zz"[ > lao +a1z+ -+ agp_12°" |
Take a closed contour I' = I'; U I'; in the counterclockwise sense, where

Mi={z=re?:0<0<n)}

and
Io={z=z+iy:~r <z <ry=0}
Then the number of zeros of P(2) inside I is equal to

1 (PR, L [ P@E, 1 [P,
271 Jr P(z) 27”:/1"1 P(Z)d+27”: T, P(z)d.

It is already known that

! r ’
im [ 234, — lim / P'() 4z = 0.
r—oo Jp, P(z) r—o00 r P(z)
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We also have

1 [ P(2) 1 )
dz = o— P(z) = —
2mi Jr, P(z) = omi r, dlog P(z) ZWArlargP(z)
& v _ 2n—-1
= —Arlarg (aznz ) + “’Ar‘,arg (1 + ap + a1z + —l;nazn 12 > .
a2n 2
Note that .
_z;Arla'rg (a2nzzn) =n
and .
- n—
r—oo 21 T

we obtain that P has exactly n roots (counted with multiplicity) in the open
upper half plane.

5417
Consider the function
1 11 11
fR)=1+ -+ g+t o
(a) What does the integral
1 fi(2) .
27”’ |z|=7 f(Z)

count?
(b) What is the value of the integral for large n and fixed ?
(¢) What does this tell you about the zeros of f(z) for large n?
(Courant Inst.)

Solution.
(a) Let
F(O)= ()= 14¢+ 50+ g0+ o 20"
From
L/ fa), _ _1 f’(%)'ﬂ
278 Jiz)=r (z) 2mi Jigj=1 f( ) —¢?

_ 1 ©),
- 27 -=/C|—'~ F(C) C’
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we know that the negative of

1 fi(z)
2mi Jyy1=r f(2) &

represents the number of zeros of F(¢) in {|¢| < 1}, which is just the number
of zeros of f(z) in {|z} > r}.
(b) When n — oo, F({) converges to e¢ uniformly in any compact subset
of @. Let
min |e<| = m,
<=+
then m > 0.
When n is sufficiently large,

IF(¢) — e < m < e

for |¢| = 1, which implies the numbers of zeros for F(¢) and e¢ in {|¢] < 1}
are equal. Since €¢ has no zero in €, we obtain

1 f'(z)

2w {z|=r f(z)

for fixed r and large n.

(c) From the above discussion, we conclude that for any fixed r > 0, when
n is sufficiently large, there is no zero of f(z) in {|z| > r}. In other words, all
the n zeros of f(z) are in {|z| < r}.

5418

(a) Suppose that f(z) is analytic in the closed disk |z| < R, and that there
is a unique, simple solution z; of the equation f(z) = w in {|z| < R}. Show
that this solution is given by the formula

1 z2f'(2) 4

AT o 1z21=r f(2) ~w z'

(b) Show that, if the integer n is sufficiently large, the equation

=11 ()

has exactly one solution with |z[ < 2.
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(c) If z; is the solution in (b), show that
. 11
"lirrgo(zl -~ = 3"

(Courant Inst.)
Solution.

(a) Let
f(z) —w = (z — 21)Q(2),
where Q(z) is analytic and has no zero in {|z| < R}. Then

f’(Z) _ _ r _ ;L 1 Q'(Z)
o) —w = Mo(f(e) —wl' = [log(z — 21) +1og Q)] = ——— + 77
Hence
1 zf'(Z) _ L z _1_ ZQ'(Z)
577_;2/];]:R f(z)_wdz T 2m |z|:Rz_zld‘z 271 |z]=R (z) dz
= % |z|:Rz_z1 < = Z1.
(b) Let
falz) =2 -1~ (%) , g(z)=z-1,
and

T.={lz|=2—¢}.

For fixed large n, we choose ¢ > 0 sufficiently small such that when z € T,
z|™ Ein
fale) 0@ = 5] = (1= 5)" <1-¢ < lat2)].

Hence f,(z) and g(z) have the same number of zeros in {|z| < 2 — ¢}, and the
number is 1. Since € can be arbitrarily small, the equation z = 1 + (%)" has
exactly one solution (denoted by 21")) in {]z| < 2}.

(¢) fa(z) is a continuous real-valued function for 1 < z < 3. When n is

2
sufficiently large, we have f,(1) < 0 and f, (3) > 0.

3

Hence we have z\") € (1, 5

). It follows from

that
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which implies

lim (" - 1)% Al

n—o0

5419

Let 11
Q = D(0, 1)\{5, —-5}
Find all analytic functions f : £ — Q with the following property: if v is
any cycle in Q which is not homologous to zero (mod ), then f * v is not
homologous to zero (mod ).
(Indiana)

Solution.

Since f is analytic in © and bounded by |f(z)| < 1, the points z = +1
must be the removable singularities of f. Let

1 1
71:{|Z—§|:€}, 72={|Z+§I=5},

where ¢ > 0 is small, and the directions of v, and <, are both in the counter-

clockwise sense. Since 71, 2 are not homologous to zero (mod ), f *y; and

f *72 are also not homologous to zero (mod Q). As € tends to zero, f(y1) and
1

F(72) will tend to either w = 3 or w = —%, because otherwise, f 1 or f %72

will be homologous to zero (mod 2). Hence we obtain
1 1
)=+~

Now we claim that the case that f(1) = f(=%) will not happen. If, for
example,

1 1 1
Q) =F=3) =3
we assume that z = 1 is a zero of f(2) — 1 of order n and z = —% is a zero of

f(z) = } of order m, then
f*(my1 — ny2)

is homologous to zero (mod ), while mry; — n7y, is not homologous to zero
(mod ), which is a contradiction. Thus we obtain either
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o 1 1 1. 1
f(§)=—§, f(*i)zg-
In the case of ] ] ] 1
f3) =3 f(*g):—g»

we consider the function
F(2) = f2)—5 Ndnd

_’1—%]‘(2:)'1—%2:

which is analytic in D(0, 1) and satisfies [F(z)| < 1. It follows from F(—3) = 1
that F(z) = 1, which implies that f(z) = =.

In the case of
1 1

1 1
f(E)’_—ES f(_E)“_z'a
we consider the function

_f@)+3 23

Glz) = 1+-;—f(z) ’ 1—%7,

which is also analytic in D(0,1) and satisfies |G(z)| < 1. It follows from
G(-%) = —1 that G(z) = -1, which implies that f(z) = —z. Thus we
conclude that the functions which satisfy the requirements of the problem are

f(z) = z and f(z) = —=.
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SECTION 5
SERIES AND NORMAL FAMILIES

5501

Let
00
> o
n=0

have a radius of convergence 7 and let the function f(z) to which it converges

have exactly one singular point zg, on |z| = r, which is a simple pole. Prove
that

lim an/an+1 = 2o-
n— o0

(Indiana)
Solution.

Assume that the residue of f(z) at zg is A, and define
A

zZ— 2

F(2) = f(2) -

Then F(z) is analytic on {z : |z] < r}. In other words, the Taylor expansion
of F(z) at z = 0 has a radius of convergence larger than r. Hence the power
series

A

z— 20
oo [eS)
n A z"
- Za"z + Z Lnti
n=0 n=0 0

()
= Gn T 2771 | #
0 z0+1

n

F(z) = Zanz"—
n=0

]

is convergent at z = zg, which implies

A
li an + — ) 25 = 0.
nlongo< t zg+1) 0
It follows that

. n_ A
lim anzy = —— #0
n— oo ZO
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and "
lim an+1z3+1 == 40,
n—oo 20
and we obtain
. Ay
lim = 29

n—00 Oy g

5502

(1) Show that the series
- Z a”/n
n>1
is convergent for 1 # a € € with |a| = 1.
(2) Show that this series converges to log(1 — «) for such a.
(Minnesota)

Solution.
(1) Let a = €', t € (0,27), then

a” cosnt + isinnt
B

n>1 n>1
For t € (0,27) we have
s sin £ — sin 221y 1
2 2
E coskt| = 5 sin £ < -,
— sin % sin £
and
2L cos £ — cos 2231¢ 1
E sin kt| = 7 < —
— sin sin §

Because % tends to zero monotonically, by Dirichlet’s criterion we know that
both Y 988 apd 3 sint converge, which shows that — Y 2~ is convergent

n>1 n>1 n>1
for 1 # a €€ with |a] = 1.
(2) Let

n

f@==3% (<.

n>1

Differentiating term by term, we have

fla)==3 a""=

n>1

-1
1—2"
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Integrating both sides on the above identity, we obtain f(z) = log(1 — z), for
|| < 1.

Let a = €'t, z = re'* where 0 < r < 1, 0 < t < 2. It follows from Abel’s
limit theorem that

a” eint . (,reit)n
—_ . = - =1 —
e D
n>1 n>1 n>1
= lim log(1—ret) = log(1 — €*) = log(1 — a).
r—1-
5503

Consider a power series

2™,

3|~

o0
n=1

Show that the series converges to a holomorphic function on the open unit
disk centered at origin. Prove that the boundary of the disk is the natural
boundary of the function.

(Columbia)
Solution.

First of all, we prove the following proposition: If the radius of convergence
of

f(z) = Z ap2"
n=0

is equal to 1 and a, > 0 for all n, then 2 = 1 is a singular point of f(z).
Assume the proposition is false, i.e., z = 1 is a regular point of f, then for
fixed z € (0,1) there exists a small real number 6§ > 0 such that the power
series expansion of f at point © is convergent at z = 14 §. Suppose the series

1S
o0
Z bk (Z - z)k,
k=0

where

*) (g 1 & _
b= T2 = LS am 1) (= kot Dana
n:k




436

Thus

Zbk(z——z Zzn(n—l n_k+1)aﬂ(z—w)k""

k=0n=k

is convergent at z = 1 4+ §. Noting that when z = 1 4 § the right side in the
above identity is a convergent double series with positive terms, and hence the
order of summation can be changed, we assert that when z = 146,

Zbk(z"w)k = Zzn(n-—l _k+1)an(z—z)ka:“_k
k=0

k=0n=k

— Zaﬂzn(n_l) k'(n—k-i"l)( :l:)k:l:n_k

n=0 k=0
o]

= a,z",
0

n=

which contradicts the statement that the radius of convergence of

oo
E a,z"
n=0

is equal to 1.
Now we return to the power series

F(z) = Z %z"!.

S
Tim "\/j: 1
n—00 n

that the radius of convergence of

It follows from

§|'—‘

is equal to 1. By the above proposition, z = 1 is a singular point of F(z). For
any natural numbers p and g,

F(ze’im Z (ze_“ i% n
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Since z = 1 is a singular point of

o0
n=p

n!
z b

Sl

it is also a singular point of F'(ze %’a"i). In other words, z = e P isa singular
point of F(z). Since the set {e_z_:"i 1p,g=1,2,---} is dense on {]z| = 1}, we
conclude that the unit circle {|z| = 1} is the natural boundary of F(z).
Remark. By the above discussion, the boundary of the unit disk is also the
o0

natural boundary of the function } n%z"! although the series is absolutely

n=1
and uniformly convergent on the closure of the unit disk.

5504

Suppose f is analytic in U = {|z| < 1} with f(0) = 0 and |f(z)| < 1 for all
z € U. If the sequence {f,} is defined by composition

and
fa(2) = g(2)

for all z € U, prove that either g(z) =0 or g(z) = z.
(Indiana—Purdue)

Solution.

By Schwarz’s lemma, it follows from f(0) = 0 and |f(z)| < 1 that |f(z)| <
2| for all z € U, and if (f(z)| = {z| for some z # 0, then f(z) = €'“z where a
is a real number.

In the case when f(z) = €'®z. fa(z) = €™*z. Since fa(z) is convergent,
we obtain a = 0, which implies that f(z) = z and g(z) = z.

In other cases, we have
f(2)

z

<1

forall zeU. Let 0 <7 < 1. Then

max (2) =A<l
[2]<r | 2
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For all z € {|z| < r}, we have

1£(2)] Alzl,
1f2(2)] = 1F(f(2))] < Alf(2)] < A%z,

IA

£ (2)| |f(fa-1(2))] < AMfa-1(2)] < X%[2,

Hence f,(z) converges to zero uniformly in-{|z] < r}. Since 0 < r < 1 is
arbitrarily chosen, we obtain g(z) = 0 for all z € U.

5505

Let {fa}nl, be a sequence of analytic functions in a domain D which
converges uniformaly on compact subsets of D to a function f on D.

(a) Prove that if f,(z) # 0 for all n > 1 and z € D, then either f is
identically zero in D or f(z) # 0 for all z € D.

(b) If each f, is one-to-one on D, show that f is either constant or one-to-
one on D.

(UC, Irvine)

Solution.

(a) First of all, we know from Weierstrass’ theorem that f is analytic on
D. Suppose f is not identically zero, but has a zero point z9 € D. Since the
zeros of a non-zero analytic function are isolated, there exists r > 0, such that
f(z) # 0 when

z€{z:0<|z—2z| <7} CD.

Let m be the minimum value of |f(z)| on
{z:lz~ 20| =7}

Then m > 0. As {fn} converges to f(2) uniformly on compact subsets of D,
we know that for sufficiently large n,

fa(2) — f(2)| < m < |£(2)]

holds on {z : |z — z9| = r}. It follows from Rouché’s theorem that f, and
f have the same number of zeros in {2z : |z — 20| < 7}. Since zg is a zero of
f, fn must have a zero in {z : |z — 20| < r}. which is a contradiction to the
assumption that f,(2z) # 0 for all z € D.
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(b) Suppose f is not a constant, and is not one-to-one on D. Then there
exist 21,22 € D (21 # z2), such that f(z1) = f(z2) (denote it by a). Choose
r > 0 sufficiently small, such that

{zile—ml<r)n{z:|z—2z| <1} =0,
{z:lz—ml<1}U{z: |z -zl <1} C D,

and f(z) —a#0in {z: 0 < |z— 21| < r}U{2:0 < |z — 23| < r}. Let m be
the minimum value of |f(z) —a] on {z : |2 — 2z1] = r or |z — 23] = r}. Then
m > 0. With the same reason as in (a), when n is sufficiently large,

I(fa(2) — @) = (f(2) = a)] = |fa(2) = f(2)| <m < |f(2) —al

holds on {2z : |z — 21| = 7 or |z — 23| = r}. It follows from Rouché’s theorem
that f,(2)—a and f(z) —a have the same number of zeros in {z : |z — z;| < r}
and {z : |z — 22| < 7} respectively. In other words, there exists

z1€{z:|z—z| <7}

and
2y €{z:|z— 22| <7},

such that f,(z]) —a = 0 and fa(23) — @ = 0, which implies f,(2]) = fu(23)
(2} # z3). This is a contradiction to the assumption that f,, is one-to-one on

D.

55086

Let D C € be a bounded domain, and let {f,} be a sequence of analytic
automorphisms of D such that

lim f,(a)=b€ 8D
n—o0
for some point a € D. Prove that
lim fa(2)=1b
n— oo

for every z € D.
(Indiana)
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Solution.

Take ag € D, ap # a. If {fn(ao)} does not converge to b, there exists a
subsequence of {f,(ag)} converging to by # b. Without loss of generality, we
assume

lim f,(a)=be€ oD,
lim fa(ao) = by # b.

Since {fn(z)} is a normal family, there is a subsequence {f,,(z)} converging
uniformly on compact subsets of D to f(z). Because f(a) # f(ao), f(z) is a
non-constant analytic function of D.

Let 7 be sufficiently small such that f(2)—b hasno zeroin {2: 0 < |z—a| <
r} C D, then m = min{|f(2) — b| : |2 — a| = r} > 0. Since {f,,} converges
uniformly to f on {z: |z — a| = r}, when k is sufficiently large,

fan (2) = f(2)] = [(far(2) = ) = (f(2) = B)| <m < |f(2) — b]

on {z : |2 —a| = r}. By Rouche’s theorem, f,,(2) — b has zero(s) in {z :
}2 —a| < 7}, which is a contradiction to the fact that f,, does not assume the
value b € 3D in D because f,, is an automorphism of D.

5507

Which of the following families are normal, and which is compact? Justify
your answers.

(a) F = {f : f is analytic in D, f(0) = 0, diam f(D) < 2}

(b) G = {g : g is analytic in D,g(0) = 1,Re{g} > 0, diam g(D) > 1}.
Here the diameter of a set S is diam S = sup{|z — (| : 2,{ € S}.

(Indiana)
Solution.

(a) For any f € F, it follows from f(0) = 0 and diam f(D) < 2 that
17(2)| < 2, which shows that F is normal.

Let {f.} be a sequence of functions in F. Then there exists a subsequence
{fa, } converging uniformly in compact subsets of D to f(z), which obviously
satisfies the conditions that f(z) is analytic in D and f(0) = 0. For any two
fixed points z,{ € D, we have

lfm. (z) - fm.(()l < 2
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because diam f,, (D) < 2. We choose a compact subset K C D such that
2, € K. It follows from the uniform convergence of {f,,} on K that

|f(2) = (O < 2.

Since z,{ € D can be arbitrarily chosen, we obtain diam f(D) < 2, hence
f(z) € F, which shows that F is also compact.

(b) Let {gn} be any sequence of functions in G. Then for G,(z) = e~ 9~(),
we have |Gn(2)| < 1. Hence there exists a subsequence {Gy,} converging
uniformly in compact subsets of D to a function G(z) which is either a constant
or a non-constant analytic function in D. If G(z) is a constant, then the
constant is e~! because

G(0) = lim e 9(0) = ¢~ 1;
n—o0
if G(z) is non-constant analytic, since Gn(2) # 0 for all z € D, by Hurwitz’s
theorem, we have G(z) # 0 for all z € D. Hence we can define an analytic
function g(z) = —log G(z), where the single-valued branch is chosen by g(0) =
—log G(0) = 1, and we conclude that

In, (z) = —log G, (z)

converges uniformly in compact subsets of D to g(z), which shows that family
G is normal. But family G is not compact. First we can choose a sequence of
functions g,(2) in G as follows: g,(z) is a conformal mapping of D onto

1 1
Qn:{w:|w—1|<Z}U{w:{w—3{<1}u{w:[1mw|<;L—,1<R/ew<3}

satisfying ¢,(0) = 1, g,,(0) > 0. By the Riemann mapping theorem, such a
mapping g, exists and is unique, and it is obvious that g,, satisfies all the con-
ditions required by the family G. Because the domain sequence {2, } converges
to @ = {w : lw — 1| < 1} which is called the kernel of {Q,} with respect to
w = 1, by Caratheodory’s theorem, {gn(z)} converges uniformly in compact
subsets of D to g(z) which is a conformal mapping of D onto Q. Since diam
g(D) = 3, g(2) does not belong to the family G, which shows that G is not
compact.

5508

Suppose that 1 < p < co and ¢ > 0 is a real number. Let F be the set of
all analytic functions f on {|z] < 1} such that
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2r
sup / |f(re*®)[Pd < c.
0<r<1 Jo

Show that F is a normal family.
(Nllinois)
Solution.
It suffices to prove that the functions in F are uniformly bounded on every
compact set of {z| < 1}. We prove the assertion by contradiction. If it is
not the case, then there exist z, € D, f, € F such that 2z, — 29 € D and

f,,(z,,) — OQ0.
Let 1 — |29| = 3r. Then when n is sufficiently large, |z, — zo| < 7. By

Cauchy integral formula,

e =g [ 24 er<p<an.
[

271 —zo]= p(:
Hence
3 [ "
[fa(zn)l < o A | fn (20 + pe'®)|do
3 2 i % 27 :‘;
< 5;(/0 Ifn(zo+pe")|"d0> </0 da)
3 2 o )%
= n NP de
o ([ e e
where
1 1
S4-=1
P q
Then
3r 2%
gl [ oo < [ [ nleo s oot
2r 2r
27
< / [ 150 gt < 5.

As n — o0, the left side of the above inequality tends to infinity, while the
right side of the inequality is a constant. The contradiction implies that F is
a normal family.
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(a) Let f be holomorphic for |z| < R and satisfy f(0) = 0, f'(0) # 0,
f(2) # 0 for 0 < |z] <7 < R. Let C be the circle |z| = p where p < r. Show
that
B tf' (t)dt
9(w) = 27r1, c f)—w

define a holomorphic function of w for
fu] < m = min |f(ee),
and that z = g(w) is the unique solution of

f(z)=w

that tends to zero with w.

(b) Find the Taylor’s expansion of g(w), and apply this to find the explicit
geries expansion of the root of the equation

224 32—w=0

that tends to zero with w.

(Harvard)
Solution.

(a) It follows from

ful <m = min|f(pe™)]
that when t € C,

1
f(t) —w f(t)( -7%5) Z f(t)"+1

Hence

_ tf’ (t)dt S tf'(2)
9(w) = 27rz c f@) —w Z (27rz c f®) "‘Hdt)

which implies that g(w) is holomorphic in {w : |w| < m}.
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Let T be the image of C' under f where C is the circle {z : |z] = p} taken
once counterclockwise. Because

w| < m = min|f(pe’®),

the winding number
n(T,0) = n(T, w),

which shows that f(z) and f(z) — w have the same number of zeros in {z :
|z| < p}. Since z = 0 is the only simple zero of f in {z : |2| < p}, we know that
f(z) = w has a unique solution in {z : |z| < p}. Denote the unique solution
by z1, then

) - w = (t - 2)Q()

where Q(t) is analytic and has no zero in {¢: |t| < p}, and

f(@t) _ —w) = [log(t — z o r 1 Q—'(Q
) = = loglf(t) ~ w)l' = llog(t — 21) +10g Q1)) = 7—+ Ty
Hence
.__1__ tf'(t)dt _ _1—_ t __1_ tQ'(t)
9(w) 21 Jo f(t) —w  2mi Jot— 2z d 2t Jo Q1) dt

= 21,

which shows that g(w) is just the unique solution of f(2) = w. As the constant
term in the Taylor expansion of g(w) is

1[0

dt

which is obviously zero, we assert that the unique solution g(w) tends to zero
together with w.

(b) Let
f(z) = 2° + 3z,
then ) -~
o(w) = 5 [ 19T = > e
where
' 2 2y —n—1
tn = 2—17; /C ft(’;)fledt = 5% [ t3:trn1 (1 + %) dt.
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After some computation, we obtain az; = 0 and

1 1 2k—2 t? e k-1 t? .
42%k-1 = E[:W 0o <§> +C% <-3—) dt

1 ~ _
= 3 (3CE52 + szkl) .

5510

Find an explicit formula for a meromorphic function f whose only singu-
larities are simple poles at —1,—2, —3,- - - with residue n at 2 = —n. Prove in
detail that your function has all the required properties.

(fllinois)
Solution.
By Mittag-Lefller’s theorem, we construct

f(z)=g<z:n“1+§) :2%%

For any natural number N, when |z| < N, n > 2N,

22 2N
n(n + 2) n?
Hence
> =
n=2N n(n + Z)

converges uniformly in {|z] < N} to a function which is analytic in {|z] < N}.
In addition,

e
— n(n + z)

is a meromorphic function whose only singularities in {|z| < N} are simple

poles at z = —1,-2,--., —N + 1 with residue n at z = —n. So f(2) is analytic
in{|z] < N})\{-1,-2,:--,—N+1},and z = —1,—2,---,—~N +1 are its simple
poles with residue n at z = —n.

Because N can be chosen arbitrarily large, it is obvious that f(z) has all
the required properties of the problem.
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5511

(a) Does there exist a sequence of polynomials {P,} such that P,(z) — %
uniformly on the annulus 1 < |z| < 2? If Yes, give an explicit formula for the
P,; if No, explain why not.

(b) Does there exist an entire function g whose zero-set is {v/n(l+1) : n =
0,1,2,3,---}? If Yes, give an explicit formula for g; if No, explain why not.

(Illinots)
Solution.

(a) No. If there exists a sequence of polynomials {P,} such that P,(z) —
uniformly on {1 < |z} < 2}, then for any ¢ € (0, }), there exists N > 0 such
that when n > N, |P,,(z) - z%| < £ holds for all z € {1 < |z| < 2}. Multiply
both sides by |z|2, we have

|22Pa(z) — 1| < €lz? <de <1 forz € {1 < |z| < 2}.

Because z”P,(z) — 1 is an analytic function in {|z| < 2}, it follows from the
maximum modulus principle that

|22P.(2) - 1] < 1
holds for all z € {|z| < 2}. The contradiction follows by taking z = 0 in the

inequality.
(b) Yes. The function g can be chosen as

o) == ] (1= 2 ) ertitaen,
n=1

where ap = 1/n(1 + 7).
For any R > 0, let |2| < R aud choose N > R?. Then when n > N,

L ZeEHHEY) - Ay 2 Lz

logl(1 — Z)e ) = logl- D)+ 2+ 5(0)

1, 2z 5 1,z .

i (O AT CO LR
It is easy to see that

3
Zred i)’ || « £
log [(1_21:)6 n (n ] n3/2'
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o0
3
Because Y, 5%7 converges, we know that
n=N

oo
3 tog [(1 - Zyeti 37|
n=N

is analytic in {z : |z| < R}, which implies

[e 2]

H (1 _ —)8“—;+ &2

n=N

is analytic in {z : |2| < R}. Hence g(z) is a.nalytlc in {z : 2| < R}, and its
zeros in {z : |z| < R} are 0,a1,az, - 0z (T -1<k< 22). Since R can
be arbitrarily large, we see that g(z) is an entire function with the required
zero-set.

5512

State whether the following statement is True or False, and prove your
assertion.
For each positive integer n there exists an entire function f, such that

1
n "'1 -
pax, [Refn(2) —log 2| < —

(Indiana)
Solution.
False.
We prove the assertion by contradiction.
If for each positive number n there exists an entire function f, such that

1
1?]181322 |[Refn(2) — loglzl| < o

then for 1 < |z| < 2, we have
—1< Refa(2z) <1+log2.

Define F,(z) = ¢/~(*). Then Fy,(z) are entire functions with no zeros, and

o=

< |Fu(2)| = eRefa(2) < 2e
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for 1 < |z| < 2. By the maximum modulus principle, |F,(z)| < 2e for |z]| < 2.
Hence {F,(2)} is a normal family in {z : |2| < 2}, and there exists a subse-
quence {Fyn, (2)} converging locally uniformly to an analytic function F(z) in
{z : |2| < 2}. Since |Fn(z)| > 1 for 1 < |z| < 2, F(2) cannot be identically
zero, and by Hurwitz’s theorem F(z) has no zero in {z : |z| < 2}. But we have
for 1 < [2| < 2,

[P(2)] = Jim |Fa, (2)] = Jim eRe/m () = cloell = o],

which implies that F(z) = az with |o] = 1 in {z : |2] < 2}. This is a
contradiction to the fact that F(z) has no zero in {z : |z| < 2}.

5513

Let G = D\(-1,0], where D = {z : |2| < 1}.

(a) Give a single-valued definition for 2* in G.

(b) Why should there exist a sequence of polynomials P, such that

nli.ngo P(2)=7
for all z in G?

(c) Can the polynomials be chosen so that there exists a constant M with
|Pa(2z)| < M for all z € G and all n? Justify your answer.

(Indiana)
Solution.

(a) 2 is defined by ¢'1°67  In domain G, single-valued branch of log z can
be chosen. For example, a single-valued branch of z* in G can be defined by
argzloc.<c1 = 0.

(b) Choose
1

1 1
<lel<1->, —74-<agz<m—-)
n n n

K,=1{z:

S

where n > 2. Then K,, C Kn41, and

lim K, =G.

n—oo

Because the complement of K, is connected and contains z = oo, we know by
Runge’s theorem that there exists a sequence of polynomials which converges
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uniformly on K, to z'. In other words, we can find a polynomial P,(z) such
that

[Pa(z) - 2] <

for all z € K,. Hence {Pn(z);jn = 1,2,---} converges to z' uniformly on
compact subsets of G.

(c) No. I there exists M with |P,(z)| < M for all z € G and all n,
then because P,(z) are continuous on D, |Py(z)| < M for all 2 € D and
all n. It follows that {P,(2)} is a normal family in D, and there exists a
subsequence P,, (z) which converges uniformly on compact subsets of D to an
analytic function f(z) in D. Since P,(z) converges to z* in G, hence 2 = f(z)
for z € G, which implies that z* can be extended to a single-valued analytic
function in D. It is obvious impossible, so the contradiction is obtained.

5514

(a) Prove that

sin? 7z Z (z — n)2

n=—0o0

(b) Use this to show that

1 kad 2z
wecotmz = — —_—
z _’_nz_:lz2 —n?

Justify your steps.
(c) Develop wcot 7z in a Laurent series about the origin directly and by

use of (b), with enough terms to find the values of E -7 and E
n=1

(Har'uar(l)
Solution.
(a) Let
2

f(z) =

SlIl 7I'Z

The singular part of f at z =n (n = 0,x1,42,--) is ﬁ Now we consider

Z (z_n)z

n=—00

the series
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For any natural number N and [z| < N,

1
(z —n)?

4

o0
holds for n > 2N and n < —2N. It follows from the convergence of Y %

n=2N
n=—2N

o0
and Y, X that Y (72111? is analytic in
-0 oo

{lz] < N}\{z = 0,£1,--+, £(N — 1)}.

Because N can be arbitrarily large, we obtain the result that

S o
—n)?

is a meromorphic function which has the same singularities as f(z).
Let

10 = )= 3 o

Then g(z) is an entire function.
As f(2) and

are both periodic functions with period equal to 1, we restrict z in the strip
{z:0 <Rez < 1}.

It is obvious that

lim  f(z) = 0.

Im:—+x
As the convergence of
o0
> =
— 2
nit (1)
is uniform for

[mz| > 1,

the limit of the series for Imy — Zoo can be obtained by taking the limit in
each term and the limit is also zero. Hence g(z) is a bounded entire function,
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which implies that g(z) is a constant. It is obvious that the constant must be
zero. Thus we obtain the identity

Z (z—n (1)

n=-0o0

sin® 7z
(b) Let
F(z) = mctgrz.
The singular part of F at z=n (n=0,%£1,42,-.-) is ;—_%; Now we consider

the series o "
1 1 1 1 2z
;+Z(z—n+z+n) _;+nzlz2-—n2.

n=1

With similar discussion to that in (a), we know that
1 o 22
2 + Z 22 _n2
n=1

is a meromorphic function which has the same singularities as F(z).
Let

Then G(z) is an entire function. D1fferent1at1ng both sides of the above identity,
we obtain
2 o0

i z_li +2 [(z _ln)2 TG +ln)2] - G'(2)

n=1

Comparing this identity with (1), we have G'(z) = 0 which implies that G = ¢
(c is a constant). For

F(z)= = + Z z2
it follows from the fact that F(z) and
l o 22
z + "ZI 22 — n?

are both odd functions that ¢ = 0. Hence we obtain

1 &KX 2z
== E —_— 2
wcot wz z+"_1 g S (2)
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(c) The Laurent expansion of 7 cot 7z about the origin is

2 4
™ ™ 3

Wcoth:;—?z—z\%—z -, (3)

It follows from (2) and (3) that around the origin,

o0

1 LB L
D LA @
n=1

Take z = 0, we obtain
o0
1 w2
LE=TF

After differentiating (4) on both sides, we can also obtain

5515

Let 21,++, 2, be distinct complex numbers. Let f and g be polynomials,
f of degree <n — 2 and

9(z) = (2= 21) (2 — za).
(a) Show that

Z f(z)

19 (ZJ

(b) Show that there exists a polynomial of degree < n — 2 with f(z;) = a;
if and only if

n
P
o1 9'(2)
(c) Given a sequence of complex numbers zj, 22, -+ such that |z,| — oo,

does there exist an entire function f with f(z;) = a;? Can you write this
function down?

(Harvard)
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Solution.
(a) Take R sufficiently large such that

21,22,y Zn S ‘“Z( < R}

Because
9(z) =(z ~z1)(z — 22) -+ (2 — zn)
is of degree n, while f(z) is of degree < n — 2,

/ F®) 42 = tim 1&g 0.
|

:|1=r 9(2) R—o0 J|, =g 9(2)
e £(2) " (£ (
z . f_i f z]
/|| =r 9(2) de = 2m§Res <g(z) ) Z ‘' (2;)
we obtain

Z f(z)
9'(z)

(b) If f(2) is a polynomla.l of degree < n ~ 2 with f(z;) = a; (4
1,2,---,n), then by (a), we have

flz) _ - a4
Z z:l 7C)

19 "(25)

If a1,a0, - ,a, are n complex numbers such that

n

aj
=0
JZ::I 9(z) 7
we construct the function f(z) by

1@ =3 s A

S9(z) (2-z)

For each j,
=(z2—21) (2= 2-1)(z = Zj41) -~ (2 — 2a)

is a polynomial of degree n — 1, and the coefficient of z"~! is 1. Since

=0,
jz:; g'(z;)
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the coefficient of 2"~ of f(z) is zero. In other words, f(z) is a polynomial of
degree < n — 2.
Because )
aj glz
im T T
im0z g'(z5) (2—z)

while for k # j,
ar_ g(2)
9'(zx) 2z — 2k lo=z;
f(z) satisfies the condition f(z;) =a; (7 =1,2,:--,n).
(c) For the given sequence 21, z, - - -, such that {z,| — 0o, by the Weierstrass
theorem about the canonical product of entire functions, we can construct an

=0,

entire function ¢g(z) with simple zeros 21, z2,- - -. Then we define

o0

f@zZ%@:Zwmmﬂﬂ_%
n=1

n=1 Z—Zn g’(z"),

where 4, is chosen such that when |z| < ]z—z"i,

e‘y,,(z—z,,) g(Z) . an
z—2n ¢'(2n)

1
[ (2)] = <5

Because |z,| — oo, for any R > 0, there exists N > 0 such that |z,| > 2R
when n > N. Hence
1
[un(2)] <

o0

holds for all |z2] < R when n > N. In other words, Y. u,(z) converges uni-

n=1
formly for all |z] < R, so that f(z) is analytic in {|z] < R}. Since R can be
arbitrarily large, f(z) is an entire function.
It is easy to see that

lim up(z) = lim e“’"(“”")—g—(—zl-- Ia,, = Qn,
2oz P z2—2n ¢'(zn)

while for k # n,
uk(zn) =0,

which implies that f(z) is an entire function satisfying the required condition.



