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Complex Analysis 
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SECTION 1 
ANALYTIC AND HARMONIC FUNCTIONS 

5101 

True-False. If the assertion is true, quote a relevant theorem or reason; if 
false, give a counterexample or other justification. 

(a) if f(z) = u + iv is continuous at z = 0, and the partials u,, uy, v,, vy 
exist at z = 0 with u, = vy and 1-ly = -21, at  z = 0, then f'(0) exists. 

(b) if f(z) is analytic in R and has infinitely many zeros in R ,  then f E 0. 
(c) if f and g are analytic in R and f(z)  . g(z)  E 0 in R, then either f E 0 

(d) if f(z) is analytic in R = { z ;  Rez > 0 } ,  continuous on with If(iy)I 5 1 

(e) if C a n z n  has radius of convergence exactly R, then Cn3a,zn has 

(f) sin f i  is an entire function. 

or g 0. 

(-co < y < +co), then If(z)I 2 1 ( z  E R). 

radius of convergence exactly R. 

(Indiana-Purdue) 
Solution. 

(a) False. f satisfies Cauchy- 
Riemann equations at  z = 0, but f'(0) doesn't exist. 

(b) False. A counterexample is f (z)  = sin&. f is analytic in R = { z  : 
IzI < l}, and has zeros z = 1 - 6, n = 1,2, . -- .  But f is not identically zero 
in R. 

(c) True. If neither of f and g is identically zero in R ,  then both f and g 
have at  most countably many zeros in R, and the zeros have no limit point in 
R. Then f(z) . g ( z )  is not identically zero in R. 

(d) False. A counterexample is f(z) = e", which is analytic in R, and 
continuous on a with If(iy)I E 1. But f (z )  is not bounded in R. 

(e) True. Because lim G= 1, it follows from 

A counterexample is f ( z , y )  = m. 

n-+m 
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(f) False. sin f i  is not analytic a t  z = 0. Actually, z = 0 is a branch point 
of sin &. 

5102 

(a) Let f(z) be a complex-valued function of a complex variable. If both 
f ( z )  and z f ( z )  are harmonic in a domain Q, prove that f is analytic there. 

(b) Suppose that f is analytic with If(z)I < 1 in IzI < 1 and that f ( i -u)  = 0 
where u is a complex number with 0 < la1 < 1. Show that If(0)l 5 u2. What 
can you conclude if this holds with equality. 

(c) Determine all entire function f that  If’(.)[ < l f ( z ) I .  
(Stunf07-d) 

Solution. 
(a) It  is well known that the Laplacian can be written as 

and 

that 

which implies that f ( z )  is analytic in R. 

then F ( z )  is analytic in (1.1 < 1). When IzI = 1, 

1-7iz 1+az 

hence 
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which implies that  IF(.)[ 5 1 for IzI < 1. Take z = 0, we obtain 

I f (0) l  I bI2. 
When it holds with equality, we have F ( z )  elel which is equivalent to  

z - u  z + a  f (z )  = ,a’-. -. 
1-Tiz 1 + z z  

(c) From lf’(z)l < lf(z)I, we know that f has no zero in a‘, which implies 
that fIIl is also an entire function. It follows from I $$I < 1 that % = c,  
IcI < 1. Integrating on both sides, we obtain logf(z) = cz + d. Hence f(z)  = 
c’e‘”, where c and c’ are constants and JcI < 1. 

f(2) 

5103 

Let G be a region in a‘ and suppose u : G -t lR is a harmonic function. 
(a) Show that 2 - i% is an analytic function on G. 
(b) Show that u has a harmonic conjugate on G if and only if - ie has 

a primitive (anti-derivative) on G. 

Solution. 
(a) Let 

(Indiana) 

Because u is a harmonic function, we have 

We also have 

ap  aQ a Z u  

ax  a y  a x 2  a y 2  

a p  aQ a Z U  a z u  
a y  ax  axay  azay  

- -+ ~ = 0. 

= 0. -+-=-- -  

So P ( x ,  y) and Q ( x ,  y)  satisfy the Cauchy-Riemann equations, hence 

au au 
ax a y  

P + i Q = - - i -  

is analytic on G. 
(b) If 2 - ig has a primtive, then for any closed curve c c G, the integral 
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It  follows that 
dU du 

- K d x  + z d y  = 0 

holds for any closed curve c c G. Hence we can define a single-valued function 

where zo, z E G, and the integral is taken along any curve connecting zo and 
z in G.  Because av au av - au 

a x  dy ’  a y  a x ’  
_ _  - - - _ -  - 

we know that v(x, y) is a harmonic conjugate of u(x, y) on G. 
On the contrary, if u has a harmonic conjugate v on G, then 

av a V  d U  dU dv = -dx + -dy = --dx + -dy. ax a Y  ay ax 
For any closed curve c C G ,  we have 

= l d ( u  + iv) = 0. 

Hence % - i k  has a primitive sz: aY 

5104 

Suppose that u and v are real valued harmonic functions on a domain R 
such that u and v satisfy the Cauchy-Riemann equations on a subset S of R 
which has a limit point in R. Prove that u + iv must be analytic on 0. 

(Indiana-Purdue) 
Solution. 

- iau aY aY 
are analytic functions on a. The reason lies on the fact that  the real and ima- 
ginary parts of fi and f2 satisfy the Cauchy-Riemann equations respectively 
(see 5103 (a)). 

Because u and v are harmonic functions, fi = 2 - ik and f2 = 
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By the assumption of the problem, 

au av du av - - - _ _  - _ -  - 
ax d y ’  d y  ax 

when z E S c Q. Hence 

fi = & bu - i& au  = if 2 = i ( g - i $ )  

when z E S. Because the subset S has a limit point in Q, by the uniqueness 
theorem of analytic functions, we know that f1 = if2 holds for all z E Q. It 
follows from fi = i f 2  for z E R that 

for z E Q, which implies that u + iw is analytic on Q. 

5105 

Let Q = [0,1] x [0,1] c a‘ be the unit square, and let f be holomorphic in 
a neighborhood of Q .  Suppose that 

f (z  + 1) - f (z )  is real and 2 0 
f (z  + i) - f (z )  is real and 2 0 

for z E [O,i] 
for z E [0,1]. 

Show that f is constant. 

Solution. 

theorem, we have 

(Indiana) 

Because f is holomorphic on the closed unit square Q, by Cauchy integral 

As 
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for 0 5 z 5 1 and 
f(1 + Yi) - f ( Y 4  2 0 

for 0 I y 5 1, by comparing the real and imaginary parts in the above identity, 
we obtain that f(z+i) = f (z)  for 0 5 z 5 1 and f ( l + y i )  = f (yi)  for 0 5 y _< 1. 
Hence f ( z )  can be analytically extended to  a double-periodic function by 

f (z )  = f ( z  + 1) = f ( z  + i ) ,  

which is holomorphic in a‘ and satisfies 

lf(z)I I %${If (.)I1 < 

This shows that f (z )  must be a constant. 

5106 

Let f be continuous on the closure 3 of the unit square 

s = { z  = z + i y E @ ’ :  0 < 2 < l , o  < y < l}, 

and let f be analytic on S. If Rf = 0 on sn ({y = O }  U {y = l)), and if If = 0 
on Sn ({z = 0) U (2 = l}), prove that f = 0 everywhere on S. 

Solution. 
Define F ( z )  = si f(z)dz, where the integral is taken along any curve in 

which has endpoints 0 and z. Then F ( z )  is analytic in S and continuous on 
S. For z E as, we choose the integral path on dS and consider the differential 
form f(z)dz in the integral. Let f = u + i w ,  then 

(Indiana) 

- 

f(z)dz = (udz - vdy) + i(wdz + udy) .  

On 3 n  ({y = 0) U {y = 1)) we have u = 0 and dy = 0, and on sn ({z = 
0) u {z  = 1)) we have v = 0 and dz = 0. Hence we obtain Re(f(z)dz) = 0 on 
dS which implies ReF(z) = 0 when z E dS. 

Let G ( z )  = e F ( * ) .  Then G(z) is analytic in S and IG(z)I = 1 when z E 85’. 
Because G(z)  has no zeros in S, so l/G(z) is also analytic in S and 11/G(z)l = 1 
when z E dS. Apply the maximum modulus principle to both G ( z )  and 
l /G(z),  we obtain IG(z)I 1 for z E S, which implies that  G ( z )  is a constant 
of modulus 1. It follows from G(z) = eF(’) that F ( z )  is also a constant. Hence 
f (z )  = F’(z)  G 0. 
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5107 

(a) Find the constant c such that the function 

C -- 1 
f ( z ) =  z 4 + z 3 + 2 2 + 2 - 4  z - 1  

is holomorphic in a neighborhood of z = 1. 

closed disk { z  : IzI 5 1). 

Solution. 

(b) Show that the function f is holomorphic on an open set containing the 

(Iowa) 

(a) As 

1 
24 + 23 + 22 + z - 4 

lim(z - 1) - 
2 4 1  

1 
= lim 

2 4 1  (z4 + 23 + 22 + z - 4)’ 
1 = lim 

2-1  4z3 + 3z2 + 2z + 1 
1 

10’ 
- - - 

1 we know that z = 1 is a simple pole of a4+as+2z+2-4  with residue equal to  &. 
Hence when c = A, f (z )  is holomorphic in a neighborhood of z = 1. 

(b) When IzI 5 1, we have 

3 
l z4 + z 3  + z 2  + - 41 2 4 - lz4 + 2 + z 2  + z~ 2 4 - 1 4 4  - l z 1  - lz12 - l z 1  1 0, 

and the equalities hold if and only if z = 1, which shows that z = 1 is the only 
zero of z4 + z3 + z2 + z - 4 in { z  : IzJ 5 l}. By (a), we obtain that f ( z )  has 
no singular point in { z  : IzI 5 l}, hence f (z )  is holomorphic on an open set 
containing { z  : IzI 5 I}. 

5108 

Let P ( z )  be a polynomial of degree d with simple roots z1, z2, .  . . , zd. A 
“partial fractions” expression of $ has the form: 
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(a) Give a direct formula for cn in terms of P. 
(b) Show that 2 really has a representation of the form (*). 
(c) Give a formula similar to (*) that works when z1 = z2 but all other 

p(.) 

roots are simple. 
(Courant Inst.) 

Solution. 

(4 
1 - z - zn 

c n =  lim 
z-+.zm P ( z )  P’(zn)’ 

which is the residue of -2- a t  z = z,. 
P ( . )  

(b) Let 

Then f ( z )  is analytic o n c  and lim f ( z )  = 0. By Liouville’s theorem, f(z)  is 
identically equal to zero, hence 

I 4 0 0  

(c) Denote the Taylor expansion of P ( z )  at  z = z1(= z2) by 

00 

P(2)  = c an(z  - Z1)n. 

Then the Laurent expansion of 2 a t  z = z1 is 
P ( Z )  

Hence 1 has the form: 
P ( , )  



343 

5109 

Suppose f is meromorphic in a neighborhood of D (D = { ( z (  < 1)) whose 
only pole is a simple one at  z = a E D. If f ( a D )  C IR, show that there is a 
complex constant A and a real constant B such that 

Az2 + Bz + z 
f(.) = ‘(z - a ) ( l -  Tiz) * 

(Indiana) 
Solution. 

Assume that the residue o f f  at z = a is Al.  Define 

Ai Aiz 
z - a  1 - z z  

g(z) = f (z )  - - - -. 

It is obvious that g ( z )  is analytic on D and g(aD)  C lR. By the reflection 
principle, g ( z )  can be extended to an analytic function on the Riemann sphere 
z, hence g ( z )  must be a constant. Suppose g ( z )  B1, then B1 is real and 

Az2 + Bz + z 
( z  - a ) ( l -  Tia)’ 

- - 

where A = 2 1  - ZB1, B = -(ZAl + a z l )  + B1(1+ (at2) E lR. 

5110 

Let K1, K2, . . . , Kn be pairwise disjoint disks in C, and let f be an analytic 

function inC\  U Kj. Show that there exist functions f1, fz,... , fn such that 
n 

j=1 
(a) f j  is analytic in C\Kj, and 

(b) f (z )  = C fj(z) for z €C\ U Kj. 
n n 

j=1 j=1 
(Indiana) 

Solution. 
Assume K1 = { z ;  (a  - z l (  5 rl}.  Choose c1 > 0 sufficiently small, such that 

n 

C1 = { Z; TI < ) Z  - ~1 < + ~ 1 )  C C\ U Kj  * 
j =  1 
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In C1, f (z )  has the Laurent expansion 

+m 

f(z) = c u p ( z  -.I)? 

k = - m  

Set 
0 

fl(Z) = c u p ( z  - z1)5  
k = - o o  

f l ( z )  is analytic in @\K1. Because f (z )  - fi(z) has an analytic continuation 
n 

to  K1, f (z )  - fl(z) is analytic in @\ u Kj.  
j = 2  

Assume K2 = { z ;  Iz - 221 5 7-2). Choose ~2 > 0 sufficiently small, such 

Laurent expansion 

(2) uk ( z  - ~ 2 ) ~ .  f2(z) is analytic in@\KZ. Because f(z) - 

fl(z)-f2(z) has an analytic continuation to K2, f(z)-fl(z)-f2(z) is analytic 

in @\ ij ~ j .  

0 

k = - m  
Set f2(z) = 

j = 3  

Repeat the above procedure n - 1 times, we get a function f (z )  - fl(z) - 
fZ(Z) - * * * - f n - l ( z ) ,  which is analytic in @\Kn. Set 

Then we have 
n 

j=1 

where f j (z)  is analytic in@\Kj,  and the above identity holds for z E @\ U Kj. 
n 

j = 1  

5111 

Recall that a divisor Df of a rational function f(z) on @ is a set { p  E 
@ u {m}}, consisting of zeros and poles p of f(z) (including the point co), 
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counted with their multiplicities np E 2. Let f and g be two rational functions 
with disjoint divisors. Prove that 

(SUNY, Stony Brook) 

Let pi (i = 1,2, . - 1 ,  n) be all the zeros and poles of f(z) with multiplicities 
npi respectively. I t  should be noted that p;  is a zero of f when npi > 0 and 
a pole of f when npi < 0. By the property of rational functions, we have 

C npi = 0. Similarly, let q j  ( j  = 1 ,2 , .  . . , m) be all the zeros and poles of g ( z )  

with multiplicities mqj respectively, then we have 

Solution. 

n 

i = l  
m 

j=1 
mqj = 0. 

First we assume that the point 00 is not a zero or a pole o f f  or g, then f 
and g can be represented by 

n 

f (z )  = A JJ(z - p i ) n p i  

and 
m 

Then 

n n n m  

and 

m m m n  
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In case the point 00 is a zero or a pole of f or g, we may assume p ,  = 00 

without loss of generality. Then 

n-1 

f ( z )  = A n ( z  - 
i = l  

and 
m 

g ( z )  = B n ( ~  - 4j)"'j. 

j=1 

m 

j=1 
Since C mpj = 0, we may assume that g(p,) = g(m) = B.  Hence 

n- 1 

i = l  

n-1 m 

and 

i = l  j=1 

which completes the proof of the problem. 

5112 

Let f ( z )  be the "branch" of logz defined off the negative real axis so that 

(a) Find the Taylor polynomial of f of degree 2 at  -4 + 3i, simplifying the 

(b) Find the radius of convergence R of the Taylor series T ( z )  of f ( z )  at 

f( 1) = 0. 

coefficients. 

-4 + 3i. 
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(c) Identify on a picture any points z where T ( z )  converges but T ( z )  # 
f(z), and describe the relationship between f and T at such points. If there 
are no such points, is this something special to this example, or a general 
impossibility? Explain and/or give examples. 

(Minnesota) 
Solution. 

(a) When z is in the neighborhood of zo = -4 + 3i, we have 

f (z )  = logz = l0g[(-4 + 3i) + (Z + 4 - 3i)] 

I [ -4 + 3i 
z + 4 - 3 i  

log( -4 + 3i) + log 1 + 
3 z + 4 - 3 i  
5 - 4 + 3 i  

log 5 + i(7r - arcsin -) + 
2 1 z + 4 - 3 i  

-5 ( -4+3 i  ) +...* 

Hence the Taylor polynomial of f of degree 2 at -4 + 3i is 

co + c1(z + 4 - 3i) + cg(z + 4 - 3 4 2 ,  

where 

3 
co = log 5 + i(7r - arcsin -), 

4 + 3i 
25 ' 

5 
-- c1 = 

and 
25 + 24i 

c2 = - 
1250 ' 

(b) Denote the Taylor series of f(z) at -4 + 3i by T ( z ) .  Because log z has 
only z = 0 and z = 00 as its branch points, and has no other singular point, the 
radius of convergence R of T ( z )  is equal to the distance between z = -4 + 3i 
and z = 0. Hence R = 5. 

(c) Denote the shaded domain shown in Fig.5.1 by a. When z E Cl = 
{ z  : Iz + 4 - 3i( < 5,Imz < 0 } ,  T ( z )  # f(z). It is because T ( z )  in R is the 
continuation of logz at -4 + 3i in the disk { z  : Iz + 4 - 3il < 5}, while f (z)  
in R is the continuation of log z at  -4 + 3i in the slit plane @\(-m, 01. Hence 
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the difference is 2ai, i.e., T(z)  = f (z )  + 27ri. 

Fig.5.1 

5113 

Let f be the analytic function defined in the disk A = { z  : Iz - 41 < 4) so 
that f ( z )  = z i ( z  + 1)i in A and f(z) is positive for 0 < 2 < 8. An analytic 
function g in A is obtained from f by analytic continuation along the path 
starting and ending at  z = 4 (see Fig.5.2). Express g in terms of f .  

(Indiana) 

Fig.5.2 

Solution. 

z goes along r from the start point to the end point by A,$(.). Then 
Denote the closed path in Fig.5.2 by I?, and denote the change of $ ( z )  when 

g ( z )  = Ig(z)leia%dz) = ~f(.) I,l(argf(z)+Arargf(zr)). 

We have 
1 1 1 1 
-Arargz + -Ararg(z + 1) = -(27~) + - ( - 2 ~ )  
3 2 3 2 Arargf(z) = 

Hence 
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5114 

Define 
eJ; - e - f i  

sin& * 
f ( z )  = 

(a) Where is f single-valued and analytic? 
(b) Classify the singularities o f f .  
(c) Evaluate 4x,=25 f(z)dz. 

(Indiana) 
Solution. 

(a) It is known that z = 0 and z = 00 are the branch points of function &. 
Let r = { z  : IzI = T } ,  and when z goes along I’ once in the counterclockwise 
sense, f i  is changed to -fi, while f(z) is changed to 

e - 6  - e& e f i  - e-J; 
- - 

sin(-&) sin f i  
which is still f(z). Hence z = 0 and z = 00 are no longer the branch points of 

When z is in the small neighborhood of z = 0, f(z) can be represented by 
f ( z ) .  

03 

2 c  n = O  -zn 
- 

00 
- > c O n z n  

(%+I)! 
n = O  

which implies that z = 0 is a removable singular point of f (z) .  It is obvious 
that z = n2R2 (n = 1 , 2 , .  . .) are poles of f (z) .  Hence f ( z )  is single-valued and 
analytic inC\{z = n2r2 : n = 1 , 2 , . . . }  . 

(b) We have 

which shows that z = n2r2 are simple poles of f (z )  with residues 

2 n ~ ( - l ) ~ ( e ~ =  - e-nn).  
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As to z = 00, it is the limit point of the poles of f(z), and hence is a 

(c) f (z )  has only one pole z = 7r2 in the disk { z  : IzI < 25). Hence 
non-isolated singular point of f(z).  

f(z)dz = 2 ~ i R e s ( f ,  r2 )  
L < 2 5  

5115 

Let fl be the plane with the segment (-1 5 z 5 1 , y  = 0) deleted. For 
which of the multi-valued functions 

(a) f(z) = 
(b) g ( z )  = 1 

can we choose single-valued branches which are holomorphic in fl. Which of 
these branches are (is) the derivative of a single-valued holomorphic function 
in 0. Why? 

(Indiana-Purdue) 
Solution. 

Let I? be an arbitrary simple closed curve in a, and denote by A,r#J(z) the 
change of r#J(z) when z goes continuously along I' counterclockwise once. It is 
known that f and g can be represented by 

and 

- 1 - ,{-+log(l+z)-+log(l--l)} 
g ( z )  - 4- - 

1 1 
2 2 

Because 
Ar[argz - -arg(l + z )  - -arg(l - z ) ]  = 0 

and 

0 
-27r 

(-1 5 z 5 1 , y  = 0) not inside r 
(-1 5 z 5 1 , y  = 0) inside I? 

1 1 
2 2 

Ar[--arg(l + z )  - -arg(l - z ) ]  = 
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we have A r f ( z )  = 0 and Apg(z) = 0. Hence both f (z )  and g ( z )  have single- 
valued branches which are holomorphic in Q, and each of f and g has two 
single-valued branches. 

In order t o  know which of f and g has a single-valued primitive in R, we 
consider the integrals 1, f(z)dz and 1, g(z)dz.  If the segment (-1 5 z 5 
1, y = 0) is not inside I?, it is obvious that s, f (z)dz = 0 and Sr g(z)dz = 0. 
If the segment (-1 5 z 5 1,y = 0) is inside I?, we consider the Laurent 
expansion of f and g about z = 03: 

1 1  a2 a4 

2 2  
f (z )  = *i(l - -)-5 = f i  (1 + 7 + 7 + * * .) , 

1 ( z 2 3  z 
1 b3 b5 
- + - + Ti +... g(2) = *-(1- -)-T =fi i 1 1  

z 2 2  

It follows that sr f(z)dz = 0 and lrg(z)dz = f 2 a .  Hence we obtain that 
both of the single-valued branches of f are the derivatives of single-valued 
holomorphic functions in Q, and the primitives are szt f(z)dz + c,  where the 
integral is taken along any curve connecting zo and z in 0. But neither of the 
branches of g is the derivative of a single-valued holomorphic function in a. 

5116 

(a) Let D c C be the complement of the simply connected closed set 
(eetie 1 6 E R} U (0). Let log be a branch of the logarithm on D such that 
loge = 1. Find log el5. Justify your answer. 

(b) Let y denote the unit circle, oriented counterclockwise. By lifting the 
integration to  a n  appropriate covering space, give a precise meaning to  the 
integral J'(1og ~ ) ~ d z  and find all possible values which can be assigned to it. 

Solution. 
(a) The set {ee+ie I 6 E IR} U (0) is a spiral which intersects the positive 

real axis a t  {e2nn : n = 0,*1,*2,. . a ) .  The single-valued branch of logz is 
defined by loge = 1. Hence loge15 = loge + A r l o g z ,  where I' is a continuous 
curve connecting z = e and z = el5 in D and A r  log z is the change of log z 
when z goes continuously along r from z = e to z = el5. I t  follows that 
Ar logz  = Aplog IzI + iArargz,  and Ar log  IzI = 15 - 1 = 14. Because 
e E (e', e2=), el5 E (e4A, e6=), we know that when I' connects e and el5 in D, 
Arargz must be 4a. Hence log el5 = 1 + (14 + 4ai) = 15 + 4ai. 

(b) Define the lift mapping by w = logz which lifts the unit circle y one-to- 
one onto a segment with length 2ir on the imaginary axis of w-plane. Because 

(HUT7NZrd) 
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both the starting point of y and the single-valued branch of log z on y can be 
arbitrarily chosen, the segment on w-plane can be denoted by [it,i(t + 27r)), 
where t can be any real number. Hence we have 

i ( t + 2 * )  i( t+27r) 

weWdw 
- 21t i ( t + 2 x )  

J ( W 2 d z  = lt w2ewdw = (w2ew)lit 
7 

i ( t+la)  

+ 2 1 t  ewdw 
i ( t + Z U )  = eit(-47rt - 47r2) - (2wew)lit 

-47~(t  + ?r + i)eit  = 47r(t + 7~ + i )e i ( t+7r) ,  = 

which implies that  the set of values being assigned to the integral J (log ~ ) ~ d z  
is a spiral (4-43 + i)ezs : s E R}. 

7 

5117 

Find the most general harmonic function of the form f(lzI), z E C\O. Which 
of these f(I.1) have a single valued harmonic conjugate? 

Solution. 
Because f ( I . 1 )  is harmonic, we have reason to  assume that the function f 

(with real variable t )  has continuous derivatives f’(t) and f”(t). Note that the 
Laplacian 

(Indiana) 

a2 a2 a2 
a x 2  a y 2  azaz7 

A = - - - + - - - = 4 -  

and 

we obtian 

where t = IzI. This differential equation is easy to solve, and the solution is 
f ( t )  = Q log t + 0, where (Y,P are two real constants. Hence the most general 
harmonic function of the form f( 1.1) in C\O is Q log IzI + 0. 

Since log IzI has no single-valued harmonic conjugate inC\O, we know that 
when f( 1.1) has a single-valued harmonic conjugate in C\O, it must be a con- 
stant. 
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5118 

Consider the regular pentagram centered at  the origin in the complex plane. 
Let u be the harmonic function in the interior of the pentagram which has 
boundary values 1 on the two segments shown and 0 on the rest of the bound- 
ary. What is the value of u at the origin? Justify your claim. 

Solution. 
Denote the interior domain of the pentagram shown in Fig.5.3 by D, and the 

ten segments of the boundary by I l l  I z ,  . . . , 110, put in order of counterclockwise. 

(Stanford) 

Fig.5.3 

Then denote the harmonic function on D with boundary values 1 on l k  and 
0 on the rest of the boundary by u k ( z ) ,  k = 1 ,2 ,  .. . , 10. By the symmetry of 
domain D, we have 

It follows from 
i n  
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5119 

Suppose G is a region in C, [0,1] c G, and h : G + lR is continuous. 
h l ,qp l ]  is harmonic, does this implies that h is harmonic on G? 

Solution. 
(Iowa) 

The answer is No. 
A counterexample is h ( z )  = Red-, where the single-valued branch 

of d m  is chosen by d m l z = z  = 4. Since d m  is analytic 
in C\[O, 11, h ( z )  is harmonic there. When 0 5 2 5 1, 

lim & z - i j = & c T ) i ,  

lim d m  = -4-i. 

z=x+yi+z 

Y>O 

z=x+yi-+x 

Y<O 

Hence h ( z )  = 0 when z = 2, 0 5 2 5 1, and h ( z )  is continuous onC.  But h(z)  
is not harmonic on&, because z = 0 and z = 1 are branch points of d m .  

Remark. If the problem is changed to h : G -+ C is continuous and 
hl~\[o,l] is holomorphic, then h must be holomorphic on G. 

5120 

Let 7 be an arc of the unit circle. Suppose that u and v are harmonic in 
D = { z  : IzI < 1) and continuously differentiable on D u y. If the boundary 
values satisfy u = v on y and the radial derivatives satisfy = on y, prove 
that u = v in D. 

Solution. 
Let u* be a conjugate harmonic function of u in D and v* be a conjugate 

harmonic function of v in D. We know that a variation of Cauchy-Riemann 
equations for f = u + iu* and g = v + iv* are 

(Indiana) 

dU* - d u  du* au r-=- - 
dr ae ae --'dr 



and 
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It follows from the continuous differentiability of u and v on D U y that u* 
and v* can be continuously extended to  D U y and then are also continuously 
differentiable on D U y. Let zo be a fixed point on y, and for z E y denote 
the subarc of y from zo to z by yz.  Without loss of generality, we may assume 
that u * ( z o )  = v*(zo) = 0. Then for z E y, 

= lz :dB = v*(z). 

Hence we obtain two functions f = u + iu* and g = v + iv* which are analytic 
in D and continuous on D Uy, such that f = g on y. Let F = f - g. Then by 
the reflection principle, F can be analytically extended to  an analytic function 
on D u y U D*, where D* = {z : IzI > 1). Since F = 0 on y,  we obtain F 0 
on D U y U D*, which implies u = v in D. 

5121 

Use conformal mapping to find a harmonic function U ( z )  defined on the 
unit disc { Iz1 < 1) such that 

+1 f o r O < d < a  
-1 for 7r < 8 < 27r. 

lim U(reie) = 
r + l -  

Give the correct determination of any multiple-valued functions appearing in 
your answer. 

(Courant Insf.) 
Solution. 

It is easy to know that w = -is is a conformal mapping of the unit 
disc D = { z  : IzI < 1) onto the upper half plane H = {w : Imw > 0). The 
boundary correspondence is that the negative real axis {w : --oo < w < 0)  
corresponds to  the arc I’l = { z  = eie : 0 < 8 < T) and the positive real axis 
{w : 0 < w < +a} corresponds to  the arc rz = { z  = eie : T < d < 2 ~ } .  

It is well known that u(w) = targw - 1 is a harmonic function in H and 
assume $1 on the negative real axis and -1 on the positive real axis. Hence 

z S 1  2 z + l  
z - 1  T z - 1  

U ( z )  = u(-i-) = -arg(-) - 2, 



where the single-valued branch of arg( 2) is defined by arg( %)lr=o  = a, is 
a harmonic function in D = { z  : It1 < 1) with the boundary values $1 on 
and -1 on I'2. 

as  follows: 
Remark. This problem can be solved directly from the Poisson formula 

1 
= -A,,{2arg(C - z )  - argc) - 1 

2 z + l  
- -arg- -2 .  

R 2 - 1  

A 

- 

5122 

Determine all continuous functions on { z  E C : 0 < 1z1 5 l} which are 
harmonic on { z  : 0 < IzI < 1) and which are identically 0 on { z  EC : IzI = 1). 

(Minnesota) 
Solution. 

Suppose u ( z )  is a continuous function on (0 < IzI 5 1) which is harmonic 
on (0 < IzI < 1) and identically zero on { Iz I  = 1). Let * d u  = -u,dz + u,dy 
and A = hzl=r*du,  where A is a real number not necessarily zero. Denote 
w(z) = Jz * d u ,  then w(z) is the conjugate harmonic function of u ( z ) ,  but may 
be not single-valued. Define 

A 
2 R  

f ( z )  = (u(2) + i.(Z)) - - log 2, 



357 

then f ( z )  is a single-valued analytic function on (0 < Iz1 < 1) and Ref(z) is 
identically zero on { IzI = 1). 

5 u,zn be the Laurent expansion of f ( z )  on (0 < IzI < Let f ( z )  = 
n=-m 

00 

l}, then lim = 0 and lim 5 1. Define g(z) = C bnzn, 
n=-m ,--too n-cc 

- 
satisfying 6-,  = -bn for n = 0,1,2,  .. 0 ,  and b-, = a_ ,  for n = 1 , 2 , .  . -. Then 
g ( z )  is an analytic function on (0 < IzI < +m}. When IzI = 1, it follows from 
Rebo = 0 and 

-1 03 03 

n=-cc n = l  n = l  n= l  

00 

that Reg(z) = 0. c,zn is an analytic function in 

(1.1 < 1) and Re(f(z) - g(z ) )  is identically zero on (1.1 = 1). Consider 
P ( z )  = ef( ' ) -g( ' )  which is analytic and does not assume zero in { IzI < l}, and 
IF(z)I = 1 on (1.1 = l}, by the maximum and minimum modulus principles, 
we have F ( z )  i~ eia ,  hence f(z)  = g ( z )  + ia. 

Then f (z )  - g(z) = 
n=O 

From the above discussion, we finally obtain 

+cc 
A 

b,zn + -log Iz], 
21r 

u ( z )  = Re 
n=-m 

- 
where b-, = -bn and lim = 0. 

n+cc 

5123 

(a) Let f ( z )  be a holomorphic function in the disc IzI 5 T whose zeros in 
this disc are given by all  a2, , a ,  counted with multiplicity. Suppose further 
that luj I < T for all j = I, 2,. . . , n, and If(0)l = 1. Jensen's formula states 
that 

Prove this. 

(j = 1 ,2 , .  +.  , n) such that ( u j (  5 t .  Using Jensen's formula, show that 
(b) With the hypotheses and notations of (a), let n(t) be the number of uj 
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(c) For r < R deduce an estimate on n(r)  in terms of max log If(Reie)l. 

(d) What can be said about the zeros of bounded holomorphic functions in 
0 < 8 5 2 x  

the unit disc? 

Solution. 
(a) Let 

(Hamard) 

then F ( z )  is holomorphic and has no zero in the disc ( 1 . ~ 1  5 r } ,  which im- 
plies that log IF(.)/ is harmonic in (1.1 5 r} .  By the mean value theorem of 
harmonic functions, 

(b) It is obvious that log 2 = h:j, $. By the definition of the function 
la3 I 

n(t) we have 

which shows that the identity holds. 
(c) Apply the identity in (b), we have 

& Lzx log Jf(Re2')ldB = 
R 

Denote max log If(Re")J by M ( R ) ,  we obtain 

R 
n(r) 5 M(R)/log -. 

0 < 8 < 2 R  
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(d) Let f (z)  be a bounded holomorphic function in { z  : IzI < 1). We know 
that f(z) can have countably many zeros. Suppose z = 0 is a zero of f (z )  of 
multiplicity m 2 0 with = a, and let the other zeros be ordered by 
0 < lull 5 la21 I -... Obviously Ian1 -+ 1. Apply Jensen's formula in (a) to  
F ( z )  = with 0 < T < 1 such that there is no zero of f on ( 1 . ~ 1  = T } ,  we 

Since f(z) is bounded, we assume 

For any n, we can choose T such that T > lun[, and hence 

Let T -+ I, we obtain 
n 

00 

which implies that  the series C (1 - luj I) is convergent. 
j=1 



SECTION 2 
GEOMETRY OF ANALYTIC FUNCTIONS 

5201 

Find a one-to-one holomorphic map from the unit disk (1.1 < l} ont 

(SUNY,  Stony B 
slit disk {IwI < 1) - {[0,1)). 

Solution. 
We construct the map by the following steps: 

. z +  1 
z - 1  21 = 41(z) = 2- : { z  : IzI < 1) ---f (21 : Imzl < O}; 

{zi : Imzl < 0)  ---t {z2 : 1.~21 < 1 and Imzz > O}; 

4 3 ( 2 2 )  = 22” : {z2 : 1221 < 1 and Imz2 > 0} + 

{w : Iw( < l}\{w : Imw = 0,O 5 Rew < 1). 

w 1 

Then w = 43 0 4 2  o 41(z) = f ( z )  is a one-bone  holomorphic map from the 
unit disk {IzI < l} onto the slit disk {IwI < 1}\{[0,1)}. 

5202 

(a) Find a function f that conformally maps the region { z  : largzl < 1) 
one-to-one onto the region {w : 1wI < l}. Show that the function you have 
found satisfies the required conditions. 

(b) Is it possible to require that f(1) = 0 and f(2) = $? If yes, give an 
explicit map; if No, explain why not. 

(Illinois) 
Solution. 

(a) < = f l (z)  = z:  = , 5 logr  (log 1 = 0) is a conformal map of { z  : 
largzl < l} onto {< : Re( > 0}, and w = f 2 ( ( )  = 5 is a conformal map of 
{< : Re< > 0) onto { w  : IwI < l}. Hence 
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is a conformal map of { z  : largzl < 1) onto {w : IwI < 1) with f(1) = 0 and 
f (2)  = 2q--1. 

2r+1 -. ._ 
(b) Suppose W = f (z )  is an arbitrary conformal map of {z : largzl < 1) onto 

{W : 161 < 1) with f(1) = 0. Then w = F(6) = foY-'(G) is a conformal map 
of { G  : 161 < 1) onto {w : IwI < 1) with F ( 0 )  = 0, and W = F(w) = fof - ' (w)  
is a conformal map of {w : IwI < 1) onto {W : 161 < l} with F ( 0 )  = 0. By 
Schwarz's lemma, we have both [F(G) (  5 161 and IF (w) l  5 Iw(, which implies 
that If(.)( = lY(z)I for every z E { z  : (argzl < 1). Since 

- 
- - 

- 
we cannot require that f(2) = i. 

5203 

(1) Find one 1-1 onto conformal map f that sends the open quadrant 
( ( 2 , ~ )  : 2 > 0 and y > 0) onto the open lower half disc {(z,y) : x 2  + y2 < 
1 and y < 0). 

(2) Find all such f .  
( Toronto) 

(1) Let C = 41(z) = z2 .  It is a conformal map of { z  = 2 + iy : 2 > 

Let w = 4 2 ( ( )  = d m + ( ,  where d-1 = -ai. It is a conformal 

Then w = 4 2  o &(z) = d n  + z2 ,  where d-1 =; = -ai is a 
required conformal map. 

(2) I f f  is an arbitrary conformal map satisfying the condition of (l), then 
4T1 o f o 4F1(C) is a conformal map of the upper half plane onto itself, which 
can be represented by $([) = s, where a,  b, c,  d E IR, ad - bc > 0. Hence f 
can be written as 4 2  o II, 0 &(z) .  

Solution. 

0 and y > 0) onto {C = < + iv : 77 > 0). 

(=a  

map of {C = < + iq : 7 > 0) onto {w = u + iw : u2 + v2 < 1 and w < 0). 

z=e 4 

5204 

Map the disk { Izl < 1) with slits along the segments [a, 11, [-1, -b] (0 < 
a < 1,0 < b < 1) conformally on the full disk {IwI < 1) by means of a function 
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w = f(z) with f(0)  = 0, f'(0) > 0. Compute f'(0) and the lengths of the arcs 
corresponding to the slits. 

Solution. 
(Haruard) 

We construct the conformal mapping by the following steps. 
( i ) z 1 = 4 1 ( z ) = z + i : { I z I <  1 } \ { [ a , 1 ] U [ - 1 , - b ] } + ~ \ { [ - b - ~ , a + ~ ] } .  

It has the point correspondences # q ( O )  = 00, 4l (a)  = a + +, 41(b) = -b - i;, 1 

#1(1) = 2 and &(-1) = -2. 
z i + ( b +  ") 

(ii) z2 = 4 2 ( 4  = -Zl+(aP+) 
the point correspondences 

42(..) = -1, 

and 

4 2  (2) 

and it is easy to know that 

: @\{ [-6 - ; , a  + i]} -+ C\[O, +a). It has 

1 1 + b + -) < 0. b ( 4 2  0 41)'(0) = - (a  + 
(iii) z3 = 43(~2) = fi : C\[O, +m) -+ (z3 : Imz3 > 0). It has the point 

correspondences 

and 

For the convenience of computation, let 

L - 4  &+4 
&+&' 6 

A =  B =  2-4' 

We also know that +i(-l) = -i. 
that 44(i) = 0 and d k ( i )  = -f. 

(iv) w = 44(z3) = ~3 : {z3 : Imz3 > 0) --t {w : lwl < 1). It is obvious .rs+i 
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Now we define w = f (z)  = 4 4  o 4 3  o 4 2  o &(z) .  From the above discussion, 
we know that f maps the unit disk with slits [-1, -b] and [a, 11 conformally 
onto the unit disk with f(0) = 0 and 

What correspond to the slits are the arc with endpoints and 2 
and containing containing point z = -1 and the arc with endpoints 

point z = 1. The lengths of the two arcs are 

A - i  A + i  5 4  
A+z  A - i  T + &  

I1 = arg- - arg- = 4arctgA = 4arctg 

and 
B + i  B - i  1 $4 
B - 2  B + z  B A + & -  I2 = xg- - arg- = 4arctg- = 4arctg 

5205 

Let 0 < E < a, let denote the arc {eit : E 5 t 5 27r - E }  and let fir be 
the complement of yE in the Riemann sphere. I f f  is the conformal map of the 
unit disk onto a,, f(0) = 0, f'(0) > 0, describe the part of the unit disc that 
f maps onto (1.1 > I}. 

Solution. 
(Stanford) 

We are going to find the map f by the following steps: 
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C .  (shown in Fig.5.4), with q53(e-+a) = 0, arg$$(e-T*) = f + 5 ,  where D1 is a 
domain bounded by {C = eie, 5 B 5 27r - ;} and an circular arc I, which is 
orthogonal to  c .  = 1) and connects points e f*  and e - T a  in { / < I  5 1). 

Fig.5.4 

Let + ( z )  = $3 o $2 o # q ( z ) ,  then @ maps { z  : IzJ < l} conformally onto D1 
with @(O)  = 0, W(0) > 0. After considering the boundary correspondence, we 
know that 1, corresponds to  the arc { z  = eit : It( < E }  under the map @. Since 
the symmetric domain of (1.1 < 1) with respect to arc { z  = eit : It( < E }  is 
(1.1 > l}, and the symmetric domain of D1 with respect t o  I, is D2 = (111 < 
l}\n1, by the reflection principle, @ ( z )  can be extended to  a conformal map 
of fie onto {C : ICI < 1). Hence the conformal map f in the problem is nothing 
but the inverse of @, and the domain f maps onto (1.1 > 1) is D2, which is 
bounded by circular arcs I, and {C = eie : (01 5 i}. 

5206 

Suppose that w = f (z)  maps a simply conncted region G one-to-one and 
conformally onto a circular disk DT with center w = 0, radius r ,  such that 
f ( a )  = 0 and If'(a)l = 1 for some point a E G. 

(1) Prove that the radius r = r (G,a)  of D, is uniquely determined by G 
and a. 

(2) Determine r (G ,a )  if G is the region between the hyperbola zy = 1 
(z > 0, y > 0) and the positive axes, and if a = 1 + i. 
Solution. 

(1)Suppose c = g ( z )  is another conformal map of G onto a circular disk 
D,, with center C = 0 and radius T I ,  such that g(a)  = 0 and Ig'(a)l = 1, then 
w = F ( C )  = f o g-'(C) is a conformal map of {C : 1" < r1) onto {w : Iwl < r }  

(Indian u)  



365 

with F ( 0 )  = 0 and IF'(0)l = l # l  = 1. Apply Schwarz's lemma to F(C) and 
we have IF'(0)l 5 2, hence TI 5 T .  For the same reason, apply Schwarz's 
lemma to F- ' (w )  and we have T 5 TI ,  which implies TI = T .  In other words, 
T is uniquely determined by G and a. 

(2) We construct a conformal map of G onto a circular disk D, in the 
following steps: 

z1 = & ( z )  = z2 : G + { q  : 0 < Imzl < 2 } ,  

with 41(1+ f) = $ + i, 11#:(1+ f)./ = A. 
2 2  = 42(z1)  = eHZ1 : (21 : o < Imzl < 2 )  -+ (22  : Imzz > 01, 

with 42(: + i) = icy, Id;($ + i)l = f e y .  

with 43(ie%") = 0, Irj5i(iegx)I = 2 
d % l r e t = *  

Define f ( z )  = 4 3 . 4 2  o 41(z),  then w = f ( z )  : G ---f {w : JwI < -&}, with 
* f ( a )  = 0 ,  If'(a)I = 1. Hence r ( G , a )  = 

5207 

Let T ( z )  = 3 be a Mobius transformation. 
(a) Assume that z1, z2 E a' are two distinct fixed points for T ,  i.e., T ( z i )  = 

zi, i = 1,2.  Show that there exists a constant c such that 

T ( z )  - z 1  z -21 

T ( z )  - z2 
= c-. 

z - z2 

(b) Use (a) to find an expression for T " ( z ) ,  n = 1,2 ,3 ,  .. -, if 
1 - 32 

2 - 3  
T ( z )  = -. 

(Iowa) 
Solution. 

invariant under Mobius transformations, we have 
(a) Let a E a' be a point different from z1, z2. Because the cross ratio is 
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which is 

Denoting 

we obtain 

T ( a )  - z1 
T ( a )  - 3 2  . a - 3 2  

T ( z )  - z 1  - z - z 1  

a - z1 = c ,  .- 

- c-. 
T ( z )  - ~ 2  z - z Z  

(b) Since T " ( z )  = T(T"-l(z)), it is easy to  have 

z - z1 
Cn -. ... = - - T"(3) - 31 - T"-l(z)  - z1 = czT"-2(z) - 31 

T"(z)  - 2 2  CT"- l ( z )  - 2 2  T"-2(z) - 22 z - z2 
- 

When T ( z )  = s, by solving the equation = z, we obtain that z = f l  
are two fixed points of T. Choose a = 2, then T(a)  = 5, hence c = 5-1 5+1 : 2-1 2+1 - - 
2. 

It follows from 
T"(z)- l  2 - 1  
T n ( z ) + l  z + l  

= 2"- 

that  
(2" + 1). - (2" - 1) 
(2" + 1) - (2n - 1)z' 

T"(z) = 

5208 

(a) Justify the statement that  "the curves 

- 1  +-- 22 Y2 
a2+X b2+X 

form a family of confocal conics". 
(b) Prove that such confocal conics intersect orthogonally, if a t  all. 
(c) Show that the transformation 20 = $(z+:) carries straight lines through 

the origin and circles centered at  the origin into a family of confocal conics. 

Solution. 
(a) Without loss of generality, we assume a > b > 0. When -a2 < X < -b2, 

the curves form a family of hyperbolas, while when X > -b2, the curves form 

(Humurd) 
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a family of ellipses. Suppose the focuses of the conics are ( ~ c ( X ) , O ) .  When 
-a2 < A < 4 2 ,  

.(A) = J(a2 + A) + [-(b2 + A)] = m. 
When A > -b2 ,  

Hence the curves 
2 2  Y2 

a 2 + A  b 2 + A  
+-=1 

form a family of confocal conics. 
(b) Suppose (xO, yo) is the intersection point of 

= 1  L 1 : - + -  X2 Y2 
u 2 + A i  b 2 + X i  

and 

Y2 - 1, 
L 2 : - + - -  X2 

a2+ A2 b 2 +  A2 

where A 1  # X 2 .  It follow-from 

and 

that 
Y; 4 + 

(b2  + Al)(b2  + A,) = O. (u2 + Al)(U2 + A,) 

Noting that the tangent vector of L1 at (xo,yo) is t i  = (&, *), and 
the tangent vector of L2 at (xo,yo) is 7 2  = ($&, &), we have 

which implies that  the confocal conics intersect orthogonally, if at all. 
(c) Let z = Tez', and 

1 1 1 1  i 1 
w = u + iv = - (z  + -) = - (T + -) cos 8 + -(r 2 T  - -) sin 8. 

2 Z 2 T  



The image of straight lines through the origin is 

which are hyperbolas in w-plane. Because 

cos2 e + sin2 e = I, 

the focuses of the hyperbolas are ( f l ,  0). 
The image of circles centered at  the origin is 

which are ellipses in w-plane. Because a(r + :)2 - $(r  - :)' = 1, the focuses 
of the ellipses are (fl, 0). Hence the transformation 

1 1  
w = z ( z  + ;) 

carries straight lines through the origin and circles centered at the origin into 
a family of confocal conics. 

5209 

If f : D(0,l) = { z  : IzJ < 1) --fa' is an analytic function which satisfies 
f (0)  = 0, and if 

IRef(z)l < 1 for all z E D(0,  l), 

prove that 

Solution. 
It is easy to know that 

is a conformal mapping of the domain 
{w : lwl < 1) with g(0) = 0. Hence 

(Indiana) 

e Y c  + 1 

{C : lReCl < 1) onto the unit disk 
w = F ( z )  = g o f (z )  is analytic in 
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D(0,l) and satisfies F ( 0 )  = 0 and IF(.)[ < 1. By Schwarz's lemma, we have 
IF'(0)l 5 1. Because 

it follows from f (0)  = 0 that 

4 
I f ' (0 ) l  I -. 

7r 

5210 

Let R = { z  E a'; -1 < Imz < l}, and let F be the family of all analytic 
functions f : R -+a' such that I f 1  < 1 on R and f(0) = 0. Find 

(Indiana) 
Solution. 

is a conformal mapping of fl onto the unit disk with the origin fixed. For 
any analytic function w = f ( z )  : fl --+a' such that I f 1  < 1 and f (0 )  = 0, we 
consider the composite function w = F(C) = f o f{'(C). F(C) is analytic in 
the unit disk such that IF(C)I < 1 and F ( 0 )  = 0. By Schwarz's lemma, 

IF(C>l I ICI. 
.E 

Choose (0  = w, we have 
e T + 1  

The equality holds if and only if F(C) = e"C, which implies 

and the supremum is attained by f (z )  = e"fo(z),  where 8 is a real number. 
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5211 

Let f be an analytic function on D = { z ;  IzI < 1) such that f ( 0 )  = -1, and 
suppose that 11 + f ( z ) I  < 1 + I f ( z ) I  whenever JzJ < 1. Prove that If’(0)l 5 4. 

Solution. 

1 + If(z)I that  f (0 )  C R. 

(Indiana) 

Let R = C\{W = u + iv : u 2 0 and w = 0). It follows from 11 + f ( z ) I  < 

Set g(w) = E, (fit = 2) .  Then g o  f ( z )  is an analytic function 
w = - 1  

on D with g o f ( 0 )  = 0 and 1g o f ( z ) I  < 1. By Schwarz’s lemma, 

I(s O f)’(O)l L 1. 

we obtain 
If’(O>l L 4. 

5212 

Let P be the set of holomorphic function f on the open unit disc so that 
(i) Both the real and imaginary parts of f ( z )  are positive for IzI < 1, (ii) 
f ( 0 )  = 1 + i. Let E = {f(i)  : f E P}. Describe E explicitly. 

(Minnesota) 
Solution. 

Let f E P and define 

f2(z) - 2i < = F ( z )  = 
f2(z) + 2i’ 

Then F is a holomorphic function on the unit disc with F ( 0 )  = 0 and IF(z)I < 
1. By Schwarz’s lemma, we have IF(z)I 5 121, which implies IF($)]  5 i. It 
should be noted that when f changes in P, F ( i )  can take any value in the 
disc {C : (that is the inverse of C = s) is a 23 1+c 

1-c 5 f}. Because w = 
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conformal mapping of { C  : 
the set {f2(i) : f E P} is equal to 

5 :} onto {w : Iw - $'il 5 $}, we obtain that 

1 0 .  8 lr 4 20 
3 3 2 -  5 3 { w : I w - - z ~ <  - } = { w = p e * + :  I d - - 1 < a r c s i n - , p ~ - - p s i n d + 4 < 0 ) .  

Hence 

E = {f(-) : f E P }  = {reio : 18 - - 1  < -arcsin - ,r4 - -r2sin28 + 4 5 0). 

If we denote the two roots of p2 - y p s i n 4  + 4 = 0 by PI(+) ,  p2(4)  where 
pl(q5) < p z ( 4 )  and Iq5 - $ 1  5 arcsin $, the set E can also be represented by 

1 l r 1  4 20 
2 4 - 2  5 3 

5213 

Let 
u2 w 2  

5 2  3 
R =  {w = u+iw: -+  > l}. 

If F is the family of all analytic function on R such that I f 1  5 1 in R and 
lim f ( w )  = 0, find sup If(8)l. Your answer should be an explicit number, 

f € 3  W + C C  

and you should prove your assertion. 

Solution. 

map of D = { z  : IzI < 1) onto R with d(0) = 00 and 4(4 - a) = 8. 

and IF(z)I 5 1. By Schwarz's lemma, 

(Indiana) 

Define w = + ( z )  = 2(5+ :), it is easy to know that w = 4 ( z )  is a conformal 

Then F ( z )  = f o 4 ( z )  = f (2(  5 + 4 ) )  is analytic in D and satisfies F ( 0 )  = 0 

IF(.)I 5 1.4. 
Hence 

If(8)l = IF(4 - &)I 5 4 - a. 
This upper bound can be reached if we let f = q5-l which belongs to family 7 
and satisfies 4-l(8) = 4 - a. So we obtain 

sup If(8)l = 4 - a. 
f E 3  



372 

5214 

Let D be the upper-half and let f # id be a conformal map of D onto itself 
such that f o f = id. Prove that f has a unique fixed point inside D. 

Solution. 

where a, b, c, d E IR and ad - bc > 0. Then 

(SUNY,  S t o n y  Brook) 

Since f is a conformal map of D onto itself, it can be written as f ( z )  = s, 
(a2 + bc)z + b(a + d) 

f ( z )  = C(U + d)z + d2 + bc * 

It  follows from f o f = id that b(a + d) = c(a + d) = 0 and a2 + bc = 
d2 + bc # 0. 

If a + d  # 0, then b = c = 0. Hence ad-bc > 0 and a2+bc = d2+bcimpies 
f = id, which contradicts the condition f # id. Thus we have a + d = 0 and 
the inequality a d  - bc > 0 can be written as bc + a2 < 0. 

= z ,  which is equivalent to  
cz2 + (d - a)z  - b = 0. Since A = (d - a)2  + 4bc is equal to 4bc + 4a2 < 0, we 
know that f ( z )  = z has two conjugate roots, one in the upper-half plane and 
the other in the lower-half plane. So f has a unique fixed point inside D. 

Now we consider the equation f ( z )  = 

5215 

Let fl be a convex, open subset of a‘ and let f : R ---f a‘ be an analytic 
function satisfying Ref’(z) > 0, z E 51. Prove that f is one-to-one in 51 (i.e., f 
is injective). 

Solution. 

is the line segment connecting z1 and 22. Since R is convex, L c il, we have 

( I n d i a n a )  

Let z1 # z2 be two arbitrary points in R. L : z ( t )  = zl +t (zz  - z l ) ,  t E [0, 13 

Hence 

Since Ref‘(z) > 0 for z E Q, we know that Ji f‘(z(t))dt # 0, which implies 
f ( z 1 )  # f ( z 2 )  whenever z1 # 22.  
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5216 

Show that if the polynomial P ( z )  = a,zn + un-1zn-' + + alz + ao, 
n > 1, is one-to-one in the unit disk IzI < 1 and a1 = 1, then [nu,[ 5 1. 

Solution. 
It follows from the univalence of P ( z )  in { IzI < 1) that P'(z) =  nu,^^-^ + 

(n- l ) ~ , - l z " - ~ + . . . + 2 u ~ z + u l  # 0 for all z E (1.1 < 1). In other words, the 
roots of P' ( z )  are all situated outside the open unit disk. Let z1, zz , .  . , z,-1 

be the roots of P' ( z ) ,  then Izj 2 1 for j = 1,2 ,  .. . , n - 1. Because P' ( z )  can 
also be written as nu, ( z  - z1)(z - 2 2 )  ( z  - z,-l), by comparing the constant 
terms, we have 

(SUNY,  Stony Brook) 

n-1 

(-l)n-lna, zj  = a l .  
j=1 

Since a1 = 1, we obtain 

Inu,l = ~ l a l '  5 1. n-1 

j=1 
n 14 

5217 

Let P ( z )  be a polynomial on the complex plane, not identically zero; let 

(a) If all roots of P ( z )  lie in H ,  show that the same is true for the roots of 

(b) For any non-vanishing polynomial P ( z ) ,  use the result in (a) to  show 

H = { z  : Rez > 0). 

dP/dz .  

that the convex hull of the roots of P ( z )  contains the roots of d P / d z .  

Solution. 
(Courant Inst.) 

(a) Let z1, z2 , .  . , z, be the zeros of P ( z ) .  By assumption, 

Rezj > 0 ( j  = 1,2, . . . ,n) ,  

and P ( z )  = u(z - zl)(z - z 2 ) .  . . ( z  - z,). It  follows that 

1 1 1 + - + ...+ - P ' k )  - - (logP(z))' = - - P ( z )  z - 21 z - 22 z - z, 
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When z E { z  : Rez 5 0}, then < arg(z-zj) < $, or equivalently, Re& < 
0. Hence Re C & < 0, which shows p(,) can not be zero on { z  : Rez 5 0). 

(b) Let z1, z2, .  . . , z, be the zeros of P ( z ) ,  and I is a directed straight line 
passing through two zeros zk and zi such that the other zeros are on the right 
side of I (including on I ) .  Denote the intersectional angle from the positive 
direction of the imaginary axis to  I by 8. When z is on the left side of I, we 
have Re{e-ae(z - z j ) )  < 0. Hence 

n 

j=1 

which shows that the zeros of P’(z )  do not lie on the left side of I .  After 
considering all the directed straight lines passing through two of the zeros of 
P ( z )  such that the other zeros are on the right side of the line, we obtain that 
the zeros of P’(z) lie on the convex hull of the zeros of P ( z ) .  

5218 

Let f ( z )  be a Laurent series centered a t  0, convergent inC\{O}, with residue 

(a) Show that there exists < on { z  
b at  z = 0. 

: IzI = 1) with 

(b) Characterize those functions with 

(Minnesota) 
Solution. 

t o o  

n=-cu 
(a) Let f (z )  = C bnzn,  then 

Hence 
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If If(() - <-l1 < J b  - 1) holds for all C with I(I = 1, then 

which is a contradiction. Hence there exists ( with = 1 such that 

(b) If max I f ( < )  - 
ICI=1 

= Ib - 11, it follows from 

that 
If(C) - P I  = Ib - 11 

holds for all C with I ( I  = 1. 

real-valued function. It follows fiom 
Let f(() - <-l = ( b  - l)ei+(e), where ( = eie and 4(8) is a continuous 

that 

which implies that  (p(8) = -8, and hence 

b - 1  
f ( 0  - c-l = 7 

holds on {C : 1[1 = 1). Apply the discreteness of zeros for analytic functions 
to f (z )  - p, we obtain f(z) = p, z EC\{O}. 

5219 

Assume f is analytic in a neighborhood of 0, f maps D into D ,  and f 

(a)  Show that Vz E aD, f’(z) # 0. 
(b) Show that -&[argf(e”)] > 0 for 8 in R. 

maps d D  into a l l ,  where D = { z  : IzI < 1). 
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(c) Assume that f (0)  = f'(0) = 0 and f l a ~  is a two-to-one map from a D  

( Indiana-Purdue) 
onto dD. Show that f(z) # 0 whenever 0 < IzI < 1. 

Solution. 
(a) Assume f'(z0) = 0, where zo E d o .  Let f(z0) = wo E all .  Then 

where n 2 2, 
g ( z )  = b o + b l ( z - z o ) + b z ( z - ~ 0 ) 2 + . . . ,  

with bo # 0. Let I' be an arc in defined by I' = { z  E % : ) z  - zoI = r ) ,  
and denote by Ar#(Z) the change of # ( z )  when z goes along the arc I' in 
the counterclockwise sense. It is demanded that r is sufficiently small such 
that Ararg(z - zo) > when z E I?. It follows from 
f (z )  - wo = ( z  - zo)"g(z)  (n >_ 2) ,  that 

and Ig(z) - bol < 

3T n- 
2 3  

Ararg(f(z) - W O )  = nArarg(z - ZO) + Arargg(z) > - - - > K ,  

which implies that f (z )  assumes values outside the disk when z E I'. It is 
a contradiction to the fact that f maps D into D. Hence f'(z) # 0 for all 
2 € aD. 

(b) Let z = rei6, and w = f(z) = Rei@. A variation of the Cauchy-Riemann 
equations for analytic function w = f(z) is 

Since f maps a D  into a l l ,  we know that %(ei6)  = 0. If g ( e i e )  1 0 ,  then 
at point ei6, = 2 = 2 = 0, which implies that g ( e i 6 )  = f'(ei0) = 
0. But from (a) it is impossible. If g ( e i e )  < 0 ,  it follows from 7-s = Rg 

aR i6 that %(e ) < 0. Since R = 1 when r = 1, g ( e i 6 )  < 0 implies that R > 1 
when r < 1. This is also impossible. Hence we obtain 

= 

(c) Because f l a ~  is a tweto-one map from 8 0  onto aD,  &Alzl=largf(z) = 
2, which implies that f (z )  has two zeros (counted by multiplicity) in D. Since 
f(0)  = f'(0) = 0, z = 0 is a zero of f of multiplicity m = 2. Hence f(z)  has 
no zero in (0  < It1 < I}. 
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SECTION 3 
COMPLEX INTEGRATION 

5301 

Evaluate the integral 

(Indiana) 
Solution. 

around z = 0 is: 
Function eez  is analytic in { z  : 0 < IzI < +co}, and its Laurent expansion 

The coefficient of the term $ in the above development is 

1 1 1 + 1 + 2! + .  .. + ~ + . - .  = e. 
(n  - l)! 

By the residue theorem, we obtain 

5302 

Evaluate 

where y is the positively oriented circle { Jz1 = 1). 
(Indiana) 
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Solution. 
is analytic in { z  : 0 < IzI 5 l}, and with z = 0 as a 

pole. The Laurent expansion of & around z = 0 can be obtained as follows: 
It  is obvious that 

1 - 1 
- -  
sin3 z ( z  - k.23 + $ 2 5  - . . . I ~  

1 

Hence the coefficient of the term p in the above development is $. By the 
residue theorem, we have 

- 2aiRes ( 3 , O )  1 = ~ i .  
sin z 

5303 

For what value of a is the function 

f ( z )  = LZ (; + 5) coszdz 

single-valued? 

Solution. 

Laurent expansion around z = 0 is: 

(Indiana) 

Function F ( z )  = ( $  + 5 ) c o s z  is analytic in { z  : 0 < IzI < +a}, and its 

1 F ( z )  = (;+;)cosz= (:+;) (1. 1 2  t 4 ! z 4 - . . .  1 

= 2+('-2)P+(;-;)Z+.... U a 1  

The necessary and sufficient condition for f (z )  to be single-valued is that  
in the the residue of F ( z )  a t  z = 0 is zero, i.e., the coefficient of the term 

above development is zero. Hence we obtain a = 2. 
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5304 

Define 
h ( z )  = L m ( l  + zte-t)-le-t  cos(t2)dt. 

What is the largest possible P so that h ( z )  is analytic for IzI < P? 

Solution. 
( Indiana-Purdue) 

When z = -e, 

dt .  
et - et 

It is easy to see that when t -+ 1, 

A 
(t  - 1)2’ 

-- cos(t2) 
et - et 

where A = $ cos 1, which implies that the integral is divergent. Hence P can 
not be larger than e .  

For any r < e ,  let IzI 5 T .  Consider the integral 

dt. 
et + z t  

It follows from let + ztl 2 et - rt and the convergence of the integral 

dt 

that 

is uniformly convergent in any compact subset of { z  : IzI < e}.  By Weierstrass 
theorem, we know that h ( z )  is analytic in { z  : IzI < e} .  Hence the largest 
possible P is equal to  e. 

5305 

Let f ( z )  be analytic in S = { z  €67; IzI < 2). Show that 
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(Iowa) 
Solution. 

It is easy to see that 

It follows from the above three equalities that 

5300 

Suppose that the real-valued function u is harmonic in the disk {IzI < 2}, 
'u is its harmonic conjugate and u(0) = v(0) = 0. Show that 

d z  d z  
z 

where y(t) = eZnit ,  t E [0, 11. 

Solution. 
(SUNY,  Stony Brook) 

Let f ( z )  = u ( z )  + iw(z). Then f (z )  is analytic in { z  : IzI < 2}, and we have 
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It follows from 

and 

that 

f (z )  +m u ( z )  = 

f (.> - f w(z) = 

2 
- 

22 

5307 

Let f be an analytic fqnction on an open set containing D(0,l) = { z ;  IzI 5 

(a) Prove that 
11. 

d”f(0) = /2T e-nie[Re f (eie)]dO. 
dzn 0 

(b) If f(0) = 1, and if Ref(z) > 0 for all points z E D(0,  l), prove that 

(Indian u)  
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Solution. 
(a) Assume that 

00 

k=O 

we have 

By Cauchy Integral Formula, 

Hence 

(b) Because Ref(z) is harmonic on D(0,  l), by the mean-value formula of 
harmonic functions, 

Ref(e")de = Ref(0) = 1. k I'" 
Noting that Ref(eis) 2 0, we have 

= 2(n!) .  
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5308 

I f f  is analytic in the unit disk and its derivative satisfies 

IfWI I (1 - 14)-1, 
show that the coefficients in the expansion 

n =O 

satisfy lunl < e for n 2 1, where e is the base of natural logarithms. 

Solution. 
(Stanford) 

00 
It follows from 

f ( z >  = C anzn 
n=O 

00 
that 

f’(2) = c nunzn-l, 
n = l  

where 
nu, = - 1 f ) o d z ,  (0 < T < 1). 

It is obvious that 
lull = If’(0)l I 1 < e .  

For n > 1, we choose T = 1 - :, 

1 
(1 + -)-I < e. n - 1  

5309 

Let f = u + iw be an entire function. 
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(a) Show that if u 2 ( z )  2 wz(z) for all z EC, then f must be a constant. 
(b) Show that if If(z)I  5 A+BIzlh for all z € @ w i t h  some positive numbers 

A,  B ,  h, then f ( z )  is a polynomial of degree bounded by h. 

Solution. 
(a) Let 

( Stanford) 

F ( z )  = e - f 2 ( z )  = , - (ua(z)-v2(z))-Ziu(L)v(r)  

Then F ( z )  is an entire function with 

-(.'(.)-."(.)) 5 1. IF(z>I = e 

By Liouville's theorem, F ( z )  must be a constant, which implies that f ( z )  is a 
constant. 

(b) Let 

For any integer n > h, 

A + B R ~  
R" . 5 

Letting R -+ +m, we obtain that a,  = 0, which implies that  f ( z )  is a polyno- 
mial of degree bounded by h. 

5310 

Let f be an entire function that satisfies IRe{f(z)}I 5 lzln for all z,  where 
n is a positive integer. Show that f is a polynomial of degree at most n. 

Solution. 

theorem that when IzI < R, 

(Indiana) 

Let R be an arbitrary positive number. Then it follows from Schwarz's 
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Especially when IzI = +, 
1 

If(.)l L -3R" * 2n + IIm{f(O))l = 3R" + IIm{f(O))lr 

which implies that there exist constants A ,  B such that 

If(z>I 5 AlzY + B 

holds for all z EC. 
Let 

where 

Hence when k > n, 

which shows that f(z) is a polynomial of degree at most n. 

5311 

Compute the double integral 

1 J ,  cos z d x d y  

where D is the disk given by { z  = x + i y  E a' : x 2  + y2  < 1). 

Solution. 
(Iowa) 

First we have the following complex forms of Green's formula: 
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The problem can be solved directly by either one of the above two forms: 

or 

1 
sin zd? = - - sin zd( -) 

JJDcoszdxdy = Z 

sin z -dz = R. 

5312 

n = O  

be analytic in D = (1.1 < 1) and assume that the integral 

is finite. 
(a) Express A in terms of the coefficients an. 
(b) Prove that 

for z E D. 
(Indiana) 

Solution. 
(a) BY 

n = l  

we have 
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Noting that 

we obtain that 

.1 00 00 

(b) By Cauchy’s inequality, we have 

5313 

Let f be analytic in (0 < IzI < 1) and in L2 with respect to planar Lebesque 
measure. Is 0 a removable singularity? Proof or counterexample. 

Solution. 
( Stanford) 

The answer to the problem is Yes. 
Let the Laurent expansion of f in {z : 0 < IzI < l} be 

00 

From 
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we have 

Let E < 1 be a small positive number, and then 

1' la, 12r2n+1dr < 
- 21r 

Then a,  must be zero when n 5 -1. Otherwise, let E -+ +0,  the left side of 
the above inequality will tend to infinity, while the right side of the inequality 
is finite, which leads to  a contradiction. Hence 

n=O 

which shows that z = 0 is a removable singularity of f .  

5314 

Evaluate the integral 

(Indiana) 
Solution. 

Let z = peie,  a = rei+. 



When r < p, 

When r > p, 

5315 

Evaluate 

by the method of residues. 
(Columbia) 

Solution. 
Denote 

It is obvious that I ( u )  is an analytic function in { u  : la1 > 1). Then we have 

lr 

2dx I ( a )  = 

dx dx 
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Let z = eisl then 

dz 
iz ' 
- dx = 

z + 2-1 
2 '  

cosx = 

and 
i d z  

= iz,=l 22 - 2(2u + l )z  + 1' 

= iz,=l ( z  - z1)(z - z2) z1 - z2 

Denote the two roots of z2  - 2(2u + 1). + 1 = 0 by z1 and z2. Since z1 -z2 = 1, 
we may assume that lzll > 1, 1221 < 1. By the residue theorem we have 

27T -- idz  
- 

7T - 27r - - d(Zl -t 2 ~ ) ~  - 42122 - 2 d m '  
is also analytic in { u  : la1 > l}, and the 

2%& 
It should be noted that 

* ~ ,  

branch of d m  should be chosen by a r g d w  0. 

5316 

Consider the function 

(a) Use the residue theorem to find an explicit formula for 

2n 

f ( z )  = 1 g(z,6)de 

when ( z (  < 1. 
(b) Integrate the Taylor expansion 

n=O 

term by term to find the coefficients in the Taylor expansion 
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(c) Verify directly that (a) and (b) agree when IzI < 1. 
(Courant Inst.) 

Solution. 
(a) Let c = ele. Then 

C2 - 1 
22 2ic ' 

,i0 - e - i O  
- sin8 = - 

and 

where ci = $(d=--l), (2 = i ( - d n - l ) ,  and the single-valued branch 
of d m  in (1.1 < 1) is defined by 4- I r = ~ =  1. Because IC1 . C21 = 1, 

(b) It  follows from I sin81 5 1 and IzI < 1 that 

00 

g(z,e) = C ( - 1 ) ' s i n k 8 . z k ,  (1.1 < 1). 
k=O 

Since the series converges uniformly for all 8 E [0,27r], the integration with 
respect to  8 can be taken term by term, and 

f(z)=$'  ( g ( - l ) k s i n k 8 . z k  00 

k=O 

where 
2 r  

Uk = (-1)' sink ode. 

It is easy to  obtain that uzn-l = 0 and 

2R 

(c) In order to  verify that (a) and (b) agree when IzI < 1, we develop the 
function f(z) in (a) into a power series: 

00 2-K f ( z )  = ~ - 27r(l- z"-i = 27r-y- l )"CIf ,Z2" 
d C - 7  - n=O 
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we know that the results in (a) and (b) agree when J z J  < 1. 

5317 

If a is real, show that 

exists and is independent of a. 
(UC, Irvine) 

Solution. 
First we have 

It follows from the existence of 
R hllRe-x2dz 

that 

exists. 

r3 u r4 as shown in Fig.5.5. 
Define f (z )  = e-" and choose the contour of integration I' = rl U I'2 U 

Fig.5.5 

As f (z )  is analytic inside I', by Cauchy integral theorem, 
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dY - ie-R2 J,' ey2+2Ryi 

= 0. 

Letting R -+ 00, it follows from the facts that  e-R2 -+ 0 ( R  + CQ) and 

5318 

Let n 2 2 be an integer. Compute 

Solution. 
(Iowa) 

0 R 

Fig .5.6 

Let f ( z )  = &, and select the integral contour r as shown in Fig.5.6. 
f ( z )  has one simple pole z = eEi inside I'. By the residue theorem, we have 

f ( z ) d z  = 2 ~ i R e s ( f , e : * ) .  
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and 

5319 

Evaluate 

with full justification. 

Solution. 

cos (x ') dx JD- 
(Minnesota) 

Fig.5.7 

Define 
f(z) = e - z 2 ,  

3 
and choose the contour of integration r = r j  as shown in Fig.5.7. B 

j=1 
caus 

f (z )  = e - I Z  is analytic on I' and inside I', by Cauchy integral theorem, we 
have 

3 

j = 1  
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For the integral of f (z)  on r2, we make a change of variable by w = z2, then 

where 
7F 

7 2  = { w :  lwl= R2,O 5 argw 5 -}. 
2 

By Jordan's lemma, we have 

For the integral of f (z )  on r3, we have 

It is well known that 

f i  l, f(z)dz = I" e-x2dz + - 2 

when R -+ 00. Hence we obtain by letting R ---f co that 

& 
0 2 '  

00 

L m ( c o s  z2 + sin x2)dz + i / (cos z2 - sin z2)dz = - 

which implies 

5320 

Evaluate 

(Iowa) 
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Solution. 

Fig.5.8 

Define 

and select the integral contour 
inside r, by Cauchy integral theorem, 

as shown in Fig.5.8. Because f(z) is analytic 

where 

It is easy to see that 

lim I' iReie f (Reie)d6 = 0 
R-r 00 

and 
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Since the Laurent expansion of f about z = 0 is 
00 

where a-1 = -2i, we know that Res(f, 0) = -22. 
Letting E -+ 0 and R + ca, we obtain 

7r 
dx = -. 

2 

5321 

Let f (z )  be holomorphic in the unit disk IzI 5 1. Prove that 

where respective integration goes along the straight line from 0 to  1 and along 
the positively oriented unit circle starting from the point z = 1. The branch 
of log is chosen to be real for positive z. 

Solution. 
(SUNY,  Stony Brook) 

Fig.5.9 

Let the contour of integration I' be shown as in Fig.5.9, and the single- 
valued branch of logz be chosen by argzl,=-I = T .  Since f(z) logz is holo- 
morphic inside the contour I?, by Cauchy integral theorem, 

J, f ( z )  logzdz = 0, 
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where 

It is easy to  see that 

Letting E + 0, we obtain 

where the integration contour IzI = 1 has starting point and end point z = 1, 
and the value of logz at the starting point z = 1 is defined as 0. 

5322 

where a and b are complex constants, not both equal to zero. 

Solution. 
First we assume la1 > lbl, and then the multi-valued analytic function 

log(a + bz) has single-valued branch on { z  : IzI 5 1). Take ei@ = z ,  then 
d4 = g, and 

(Hamud) 

2 r  I log la + be'@]& = Re 

= R e ( 2 ~ l o g a )  = 2rlog lal. 
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When la1 < lbl, we have 

In the case la1 = lbl, let b = ae". Then 

Fig.5.10 

In order to  evaluate the integral 

we define 
log( 1 + z )  

7 z f(.) = 

where the single-valued branch is defined by log(1 + z )  lz=o= 0. Choose a 
contour of integration = r, Uy, as shown in Fig.5.10. Since f ( z )  is analytic 
on I' and inside r, by Cauchy integral theorem, s, f(z)dz = 0. Because 

we have 

I* log 11 + ei@1d4 = Re IR log(1 + e*+)d4 
J -R J -R 
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Hence we obtain 

log la + beiGldq5 = 2 7 ~  max(l0g la[, log lbl}. J,'" 

5323 

Evaluate 

(Iowa) 
Solution. 

Fig.5.11 

Let 

and select the integral path I? as shown in Fig.5.11. The single-valued branch 
of logz is chosen by argzI,,-1 = ?r. By the residue theorem, we have 

J ,  f(z)dz = 2?riRes(f, -l), 
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where 

(logx + 2ai)' 2 X  

iRege f (Reie)d6 + dx 

rO 

+ 1; ice"f (&eie)d6. 

It is obvious that 

lim J,'" iReief(Reie)d6 = 0 
R-rm 

and 

In order to find Res(f,-l), we consider the Laurent expansion of f about 
z = -1: 

= c a n ( z +  lyl  
n=-3 

where a-1 = 1 - ai. Hence 

2aiRes( f ,  -1) = 27ri + 2 2 .  

AS E -+ 0 and R -+ 00, it turns out that 

-4ai log x + 4a2 
dx = 2ai + 2 2 .  

Comparing the imaginary parts on the two sides of the above identity, we 
obtain 
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5324 

Evaluate the following integrals: 
at (the integration is over the imaginary axis), +im 

(a) S-im ( t 2 - 4 )  l o g ( r + l )  

(b) 

Solution. 

&dz for CY in the range -1 < QI < 2. 
(Courant Inst.) 

(a) 

Fig.5.12 

1 
Define 

The single-valued branch for log(z + 1) is chosen by log(z + l ) l z = o  = 0, and 
the contour I' of integration is shown in Fig.5.12. As f ( z )  is analytic on and 
inside J? except a simple pole a t  z = 2, we have 

f ( z ) d z  = 2 ~ i R e s (  f ,  2), 

where 

and 

Because 
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and 

by letting E -+ 0 and R --+ 00, we obtain 

dz Ti 2 +ice 

= -(1- -). ,/,, ( z 2  - 4)log(z + 1) 4 log3 

Fig.5.13 

Define 

The single-valued branch for zm is chosen by argzIr=z,O = 0, and the contour 
I.' of integration is shown in Fig.5.13. As f ( z )  is analytic on and inside r except 
a simple pole at z = e:', we have 

f ( z ) d z  = 2~iRes(f ,  e:')), 
I F  

where 

and 

Res(f,efa) = lim ( z  - efa) f ( z )  
z+e: '  

3e +a 

e f i  

1 

- - - 

-- - - 
3e f ( 2 - m ) i  ' 
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Because 
2.z 

lirn f (Re ie ) iRe ied8  = 0 
R-CU 

2a 
when a < 2 and - lilil ' f (&eie) iseied8 = 0 

when a > -1, by letting E -+ 0 and R + co, we obtain 

7r 
d x  = 

5325 

00 X u  7r( 1 - a )  
Show that 

J, ( 1 + x 2 ) 2 d x  = 4 cos( y )  ' 
for -1 < a < 3, a # 1. What happens if a = l? 

Solution. 
Let 

where (argza)z=z>O = 0, and select the integral path I' as shown in Fig.5.14. 
By the residue theorem, we have 

f ( z ) d z  = 2aiRes(f(z), i ) ,  

Fig. 5.14 

where 
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+ J," iEeie f (&eie)d8 

and 

Res(f(z),i) = lim [ (  ~ ta 1'-9 - e i" 2 .  
2'2 2 + i ) 2  

It follows from a < 3 that 

lim iReie f (Re")dB = 0 ,  
R-CO 

and from a > -1 that 

Letting E + 0 and R --$ 00, we obtain 

XQ a ( 1 - a )  1" 
e 2 .  

2 

When a # 1, 

a(1 - a )  - 2" a(l - a )  I- ( 1  + x y d X  = 4 cos( y) ' 

when a = 1. 
T ( 1 - a )  1 - X 

5326 

(a) Prove that 

converges if 0 < a < 1 
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(b) Use complex integration to  show that 

?fa 
x P a  cos x d x  = sin - . I?( -a + 1). 

2 

(Hamad) 
S o h  tion. 

(4 
03 1 03 1 e i x x - u d x  = ( J! x - ~  cos x d x  + x P a  cos x d x )  + i x - ~  sin x d x .  

It follows from a < 1 that 

z - ~  cos x d x  

is convergent. It is also obvious that 

lLA cos x d x  1 5 2 ,  

xPa is monotonic decreasing and 

lim x - ~  = O  X-++03  

s i n x d x  5 2, LA I 
for (Y > 0. 

By Dirichlet’s criterion, we know that s;” 2 - O  cos x d x  and 
also convergent. Hence 

x - ~  sin x d x  are 
e i z x - a d x  is convergent when 0 < a < 1. 

(b) 

zRD iC o c  R 

Fig.5.15 

Let f (z)  = z - a e - z ,  and the contour of integration r is chosen as shown in 
Fig.5.15. The single-valued branch of f (z )  on I? is definde by z-aIz=2>o > 0. 
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By Cauchy integral theorem, 

0 +L i&e"f(&eie)de = 0. 

It follows from -a < 1 that 

0 
l i i  L ice'e f (&eie)d8 = 0, 

and from -a > 0 and Jordan's lemma that 
.* ilm 1 a iReie f (Reie)de = 0. 

Letting E -+ 0 and R -+ 00, we have 

Multiplying both sides by e y i ,  and comparing the imaginary parts, we obtain 

T-a 
x - ~  cos xdx = sin -I?( --a + 1). I" 2 

5327 

Use a change of contour to show that 

dt 7 

provided that -a and p are positive. Define the left side as a limit of proper 
integral and show that the limit exists. 

(Courant Inst.) 
Solution. 

Since 
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is monotonic with respect to x and 

= 0, lim - 
1 

x - + + a ,  x + p 
the convergence of the integral 

dx 

follows from Dirichlet's criterion. 
Define 

and choose the contour of integration I' = I'l U I'2 U I'3 as shown in Fig.5.16. 

Fig.5.16 

By Cauchy integral theorem, we have 

R --ax R - a x i  (' - + l2 f ( z ) d z  - 1 b d x  = 0. = 1 x 2 + p z  

It follows from Jordan's lemma that 
r 

Letting R --+ 00 and considering the real part in the above identity, we obtain 



409 

5328 

(a) Let c be the unit circle in the complex plane, and let f be a continuous 
a'-valued function on c .  Show that 

is a holomorphic function of z in the interior of the unit disk. 

associated function F is identically zero. 

Solution. 

Choosing 6 > 0 such that 6 < p, we prove that 

(b) Find a continuous f on c which is not identically zero, but so that the 

(Minnesota) 

(a) Let zo be an arbitrary point in the unit disk. Then 1 - lzol = p > 0. 

has a power series expansion in { Iz - zo I 5 6). 
It is clear that  

when Iz - z0I 5 6 and C E c. We can also assume I f  (<)I 5 M because f is 
continuous on c .  Thus 

f (0 1 
< - zo 1 - z--lo 
-. - f o =  f (0 - 

(C - 20) - ( z  - zo) c - z  C - 2 0  

As 

00 

and (f)n is convergent, the series C (z)" converges uni- 

formly for all E c .  Hence termwise integration is permissible, and we obtain 
n = O  n = O  



410 

Since zo is arbitrarily chosen in the unit disk, Ff  ( z )  is holomorphic in { IzI < 1). 
(b) Take f ( C )  = f (Icl = 1). Then 

1 1 1 
F f ( z )  = / -d< = (- - t )  dC = ;(2ai - 2ai) = 0. 

C 

In fact, f (C)  can be taken as - for any positive integer n and fixed 
zo E { z  : IzI < 1). When c E c ,  

5329 

Let [a, b] be a finite interval in B and define, for z in D = C - [a, bll 

f (z)  = J." A. t - z  

Show that f(z) is analytic in D. Given c, a < c < b, calculate the limit of f ( z )  
as z tends to c from the upper half plane and as z tends to c from the lower 
half plane. 

(UC, Iv ine)  
Solution. 

For any zo E D ,  choose 6 > 0 sufficiently small such that { z  : Iz - 201 5 
6 } n { z = a : + i y : y = O , a L z I , b ) = 8 .  Whenlz-zol < b , a < t < b , w e h a v e  

00 1 1 -. - - 
1 - 1 

-- 
t - z  ( t -zo) - (z -zo)  t - - 0  1-- 

t - % a  n = O  

and the series converges uniformly for t with a I, t 5 b. Hence 
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holds for z E { z  : Iz -201 < b } ,  which implies f(z) is analytic in { z  : )z - zoJ < 
6). Since zo is an arbitrary point in D, we obtain that f(z) is analytic in D. 

For z E D, f ( z )  can also be represented explicitly by 

where the single-valued branch is defined by arg r = s o > b  = 0. Let rl 
and r2 be two continuous curves connecting z = xo > b and z = c in the upper 
half plane and the lower half plane respectively. Then the limit of f (z )  as z 
tends to  c from the upper half plane is 

a - b  c - b  
log - I:::[ +iAr,arg- - 

while the limit of f ( z )  as z tends to c from the lower half plane is 

- log 1-1 + *i, c - - a  z - - a  

5330 

For each z E U = { z  : Imz > 0) define 

1 sin2 t 
g(z )  = C l ,  t-a dt. 

Determine which points a E B have the following property: there exist E > 0 
and an analytic function f on D(u,E)  such that f(z) = g ( z )  for all z E U n 
D(-a, E l .  

(Indiana) 
Solution. 

defined from point z = -1 to point z = 1, and define a function 
Let I' be the half unit circle in the lower half plane whose direction is 

It follows from the Cauchy integral theorem that when z E U, f ( z )  5 g(z) .  
With a similar reason as in problem 5328, f ( z )  is analytic in the complement 
of I?. Hence we obtain that for any a E a, a # fl ,  there exists E > 0 
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( E  < min{la-ll, la+ll}) such that f (z )  is analyticin D(u,E)  = { z  : Iz-al < E }  

and f (z )  = g ( z )  for all z E U n D(u,E). 
When a = 3 ~ 1 ,  such a f(z) does not exist. The reason is as follows: As 

sin2 t sin2 t - sin2 z sin2 z +- t - z  t - z  t - z '  

where sin2 t--sina -x is an analytic function of two variables for ( t ,  z )  E a' x a', we 
know that 

2 ~ i  'J -' t - z  

- -- 

t--x 

dt 
' sin2 t - sin2 z 

h ( z )  = - 

is analytic for z E C. But 

sin2z ' sin2z z - 1 dlog(t - z )  = - 
dt = -Il 2Ti 2Ti log z+l' 

which has branch points z = f l ,  hence g ( z )  can not be analytically continued 
to D(&l,&).  
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SECTION 4 
THE MAXIMUM MODULUS AND 

ARGUMENT PRINCIPLES 

5401 

Let u €67, JuJ 5 1, and consider the polynomial 
- 

U a 2  
2 2 P ( z )  = - + (1 - I.(">. - -z . 

Show that ( P ( z ) (  5 1 whenever 12) 5 1. 

Solution. 

- 
U a 2  
2 2 

z [ ( l -  la12) + -(- - izz)]. 

~ ( z )  = - + (1 - IaIz)z - --z 

l a  
2 2  

= 

When IzI = 1, 

U a -  u a  
Re( - - Zz)  = Re[- - (Cz)] = Re[- - -1 = 0, 

IIm(-- - az)I _< 21al. 

z Z z z  
a 
2 

Hence when ( z (  = 1, 

l a  
2 2  

lp(z)12 = (1 - Ia12)>" + (Im[-( - - ~ i z ) ] ) ~  

<_ (1 - 2[u(' + la14) + [aI2 = 1 - luI2 + laI4 5 I. 

By the maximum modulus principle, IP(z)( 5 1 whenever IzJ 5 1. 

5402 

(Indiana) 

Let f be holomorphic in the unit disk (1.1 < l}, continuous in (1.1 5 1) 
and If(.)/ = 1 whenever (zJ = 1. Prove that f is a rational function. 

(SUNY,  Stony Brook) 
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Solution. 
If f (z )  has infinite many zeros, by the isolatedness of the zeros of holomor- 

phic functions, the zeros must have limit points on the boundary of the unit 
disk. But it will violate the fact that f is continuous in ( 1 . ~ 1  5 1) and I f ( . ) /  = 1 
whenever IzI = 1. Hence f has only finite zeros in the unit disk. Denote all 
these zeros by zlr 22,. . . , z,, multiple zeros being repeated, and define 

Then F ( z )  is holomorphic in (1.1 < 1). continuous in (1.1 5 1) and IF(z)I = 1 
when IzJ = 1. By the maximum modulus principle, IF(z)I 5 1 in ( 1 . 1  5 1). 
Since F ( z )  has no zero in (IzI 5 1) -L- is also holomorphic in (1.1 < l}, 

F ( z )  

continuous in ( 1 . ~ 1  5 1) and I&JI = 1 when IzI = 1. Application of the 
maximum modulus principle to & yields IF(z)I 2 1 in (1.1 5 1). Hence 
IF(z)I = 1 holds in ( 1 . ~ 1  5 l}, which implies F ( z )  = eia with Q: a real number. 
So we obtain 

5403 

Let f be a continuous function on v = { z  : IzI 5 1) such that f is analytic 
in U. If f = 1 on the half-circle y = (eie : 0 5 8 5 a}, prove that f = 1 
everywhere in v. 
Solution. 

Define F ( z )  = ( f (z)  - l ) ( f ( -z )  - l), then F ( z )  is also continuous on V and 
analytic in U. When z E d U ,  we have either f (z)  - 1 = 0 or f(-z) - 1 = 0. 
Hence F ( z )  = 0 holds for all z E v, which implies either f (z )  - 1 0 or 
f ( -z )  - 1 0, we obtain 
f ( z )  

Remark. The condition that “f = 1 on the half-circle y” can be weakened 
to  that “f = 1 on an arc y = (eie : 0 5 8 5 f } ,  where n is a natural number”. 
In this case, the proof is the same except that F ( z )  is defined by 

(Indiana) 

0. Since f(z) - 1 0 is equivalent to f(-z) - 1 
1 for all z E V .  

2n- 1 
~ ( z )  = ( f (z>  - l)(j(ze:z) - l ) ( f ( ze+ i )  - ~ ) . . . ( f ( z e ? ~ a )  - 1). 
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5404 

Let S denote the sector in the complex plane given by S = { z  : -5 < 
argz < $}. Let 3 denote the closure of S. Let f be a continuous complex 
function on 3 which is holomorphic in S. Suppose further 

(1) If(z)I 5 1 for all z in the boundary of S; 
(2) ~ f ( z  + i y ) ~  5 efi  for all z + iy  E S. 

Prove that If(z)J 5 1 for all z E S. 

Solution. 
Let F ( z )  = e- '"f (z ) ,  where E > 0 is an arbitrary fixed number. Then 

F ( z )  is also continuous on 3 and analytic in S. When z is on the boundary 
of S, JF(z ) I  = e-'"If(z)I 5 1. When IzI -+ $00 (-4 < argz < %), IF(z)I 5 
e-€" . e f i  + 0. By the maximum modulus principle, we have IF(z)I 5 1 for 
all z E S, which implies If(z)I 5 lea'[ = ear for all z E S. Because E > 0 can 
be arbitrarily chosen, letting E -+ 0, we obtain lf(z)I 5 1 for all z E S. 

(SVNY, Stony Brook) 

5405 

Let K be a compact, connected subset of@ containing more than one point 
and let f be a one-to-one conformal map of@\K onto A = {z : JzJ < 1) with 
f(00) = 0. If p is a polynomial of degree n for which Ip(z)I 5 1 for z E K, 
prove that 

M z ) I  5 If(z)I-" for z EG\K. 

(Indiana) 
Solution. 

Because f is a one-to-one conformal map of@\K onto A with f(w) = 0, 
it has a simple zero at  z = 00. Since p is a polynomial of degree n, it has a 
pole of order n at  z = M. Hence the function F ( z )  = p(z)fn(z) is analytic in 
G\K which contains point z = 00. As f ( z )  maps@\K onto A = { z  : IzJ < l}, 
we have lim lf(z)J = 1. Together with Ip(z)I 5 1 for z E K, we know that the 

limit of IF(.)\ when z tends to K can not be larger than 1. Apply the maximum 
modulus principle to F ( z )  on@\K, we obtain IF(z)I 5 1 for z EG\K,  which 
implies Ip(z)I 5 If(z)I-" for all z E@\K. 

%-+K 
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5406 

Suppose f and g (non-constant functions) are analytic in a region G and 
of the region. Assume that E is compact. Prove continuous on the closure 

that I f 1  + (g (  achieves its maximum value on the boundary of G. 

Solution. 

prove that if zo E G ,  then f and g must be constants. 

(Iowa) 

Assume that I f 1  + 191 achieves its maximum value c ( c  > 0) at zo E z, we 

Let 
I f(zo)I = f (zo)e*+’ ,  Ig(zo)I = g(zo)ei+2. 

Then for fixed 41 and 4 2 ,  

~ ( z )  = f (z)ei+l  + g(z)e”Z 

is analytic in G and continuous on G. It follows from 

IF(.)I 5 If(.>I + Is(z)I L c ,  

~ ( 2 0 )  = f (zo)e i+ l+  g(zO)ei” = ~f(zo)I + Ig(zo)I = c 

and zo E G that 
~ ( z )  = f (z )e i+ l  + g(z)ei+2 

must be the constant c.  
Without loss of generality, we assume that f is not a constant, and try to 

lead to a contradiction. Since the image of an open set { z  : Iz - 201 < 6) c G 
under f is an open set which contains point f(zo), f (z)  assumes all the values 
f(z)  = f(z0) + &ei+ for small E > 0 and 0 5 4 < 27r in { z  : Iz - z0I < 6). Then 
when 4 + 41 # 0, ?r, we have 

lf(.)I + lg(z)l = lf(.)I + Ic - f ( z ) e i 9  
= l f (z0) + + ~c - f(zo)ea+l - &ei(+++l)l 

- - l,cei(++h) + f(zo)e”l  I + l&ei(+++l) - g(zo)ei@21 

> f(zo)ei+l + g(zO)ei+Z = c,  

which contradicts that zo is a maximum value point of I f 1  + lgl. Hence f must 
be a constant, which also implies g is a constant too. 
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5407 

Suppose f(z)  is an entire function with 

Show that f(z) is identically 0. 
(Iowa) 

Solution. 
For any R > 0, consider function 

g ( z )  = (Z - Ri>(z + Ri) f ( z ) .  

When IzI = R, and Imz 2 0, denote by 0 the angle between the line 
perpendicular to the imaginary axis and the line passing through z and Ri. 
Then 0 5 0 5 5, and 

When Iz( = R, and Imz < 0, denote by 8 the angle between the line perpen- 
dicular to the imaginary axis and the line passing through z and -Ri. Then 
0 5 0 < t ,  and 

It follows from the above discussion that when JzI = R, 

By the maximum modulus principle, when IzI < R, 

Now fixing z, and letting R -+ +m, we obtain f(z) = 0. Since R can be 
arbitrarily large, we have f(z)  = 0 for all t EC. 
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5408 

Suppose f is analytic on (2; 0 < IzI < 1) and 

Show that f E 0. 
(Indiana) 

Solution. 
Denote the Laurent expansion o f f  on { z ;  0 < IzI < 1) by 

where 

It follows that 

When n < 0, letting r + 0, we have 

a, = O  (n= -1,-2,...), 

which implies z = 0 is a removable singularity of f .  In other words, f can be 
extended to an analytic function of the unit disk. 

= 0 when IzI = 1. By the maximum modulus principle, we 
obtain 

Since log 
121 

f 0. 

5409 

Let f be an analytic function on D = { z  : IzI < l}, f ( D )  E D and f(0)  = 0. 
(a) Prove that If(.) + f ( -z)I  5 2)zI2 for all z in D and if equality occurs 

for some non-zero z in D,  then f(z) = eiaz2. 
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(b) Prove that 

(Indiana) 
Solution. 

(a) Let F ( z )  = f(z) + f(-z), then F(O) = 0, 

Hence is analytic in D ,  and when z tends to dD, the limit of can 
not be larger than 2. By the maximum modulus principle, If(.) + f(--z)I 5 
21zI2 holds for all z E D .  

I I  
If equality occurs for some non-zero z in D,  we have 

f(z) + f ( - z )  = 2eioz2, 

where a. is a real constant. 
Let 

M 

n = l  

it follows from 
f ( z >  + f ( - z )  = 2eiaz2 

that 
a2 = eio,  a4 = a6 = ... = 0. 

Because If(z)I < 1 for z E D ,  we have 

Since a2 = e ia ,  the other coefficients must be zero, which implies f (z)  = e iaz2 .  

(b) 
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5410 

I f f  is analytic and lf(z)I < 1 on { z  : IzI 5 l}, prove that f ( z )  has a fixed 

(Rutgers) 
point. 

Solution. 
Let F ( z )  = f (z)  - z and G ( z )  = -z. 
When IzI = 1, 

IF(z) - G ( z ) /  = lf(z)I < 1 = IG(z)l. 

By RouchC’s theorem) F ( z )  and G(z) have the same number of zeros in 
{ z  : IzI < 1). Since G(z )  has only one simple zero in { z  : IzI < 1)) we conclude 
that f ( z )  - z has one zero in { z  : IzI < l}, which implies that f ( z )  has a fixed 
point in { z  : IzI < 1). 

5411 

Let f ( z )  = z+e- ’ ,  X > 1. Prove or disprove: f (z)  takes the value X exactly 
once in the right half-plane. If the answer is yes, is the point necessarily real? 
Justify. 

Solution. 

curve I’ on the right half-plane, where 

(Iowa) 

Let R be a sufficiently large real number such that R > 2A. Take a closed 

?r ?r I’ = { z  = t + i y  : t = 0, -R 5 y 5 R} u { z  : Izl = R, -- < argz 5 -}. 
2 -  2 

Define 
F ( z )  = X - z - e-” 

and 
G ( z )  = X - Z .  

When z E I?, 
IF(z)  - G(z)l = le-”l 5 1 < IG(z)I. 

Since G ( z )  has exactly one zero inside I’, it follows from RouchC’s theorem that 
F ( z )  has exactly one zero inside I?. Because R can be arbitrarily large, F ( z )  
has exactly one zero in the right half-plane. Hence f(z) takes value X exactly 
once in the right half plane. 
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Take z = x 2 0. We have 

F ( x )  = X - x - e-", 

which is a real-valued function of real variable x. Since F ( x )  is continuous and 

lim F ( z )  = -m, 

there must exist 20, 0 < xo < $00, such that F(z0 )  = 0. In other words, the 
point z in the right half-plane such that f ( z )  = X is necessarily real. 

F(O) > 0, 

x-++w 

5412 

Suppose f is analytic in a region which contains the closed unit disc {z : 
(z(  5 1). Assume f is non-zero on the unit circle {z : IzI = 1). Let C denote 
the unit circle traversed in the counterclockwise sense. Suppose that 

and 

Find the location of the zeros o f f  in the open unit disc {z : IzI < 1). 

Solution. 

being repeated. Then 

(Iowa) 

Assume z1, z2, +. - ,  z, are the zeros of f ( z )  in {z : IzI < l), multiple zeros 

n 

f(z) = !dz) nc. - Zj), 
j=1 

where g(z) is analytic and has no zero in {z : Izl 5 1). We have 
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It follows from (1) that n = 2, i.e., f ( z )  has two zeros in the unit disk. Then 
for f (z)  = ( z  - z1)(z - zz )g (z ) ,  

and 

which show that z1,2 = ki. Hence z = 4 ~ 2  are the only zeros of f(z) in the 
unit disc. 

5413 

(a) How many roots does this equation 

z 4 + z + 5 = 0  

have in the first quadrant? 
(b) How many of them have argument between f and $? 

(Indiana-Purdue) 
Solution. 

(a) Let R be sufficiently large such that when IzI = R, 

Set 
f (z )  = z4 + z + 5 

g ( z )  = z4 + 5. 
and 

Choose a closed curve 

lr I' = { z  = z +iy;O 5 z 5 R,y = 0) U { z  : IzI = R,O 5 argz 5 -} 
2 

U { z = z + i y : z = O , O < y L  R}. 
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It is obvious that 
If(.) - g(z)I < Is(z.)l 

holds when z E I?. By RouchC's theorem, the numbers of the zeros of f and 
g inside I' are equal. Since g has only one zero inside I?, f has also one zero 
inside I'. Noting that R can be arbitrarily large, we know that 

z4 + z + 5 = 0 

has one root in the first quadrant. 

zero. Set 
(b) Let R be sufficiently large such that when la1 = R, 9 is approximately 

f ( z ) = z 4 + z + 5  

and 

and 
A A r3 = { z  : IzI = R, - < argz 5 -}. 4 -  2 

It is easy to  see that Imf(z) > 0 when 

f(0) = 5, and 

f ( ~ i )  E {w : o < argw < E } ,  f (a$*) E {w : ?r - E < argw < 

where E > 0 is very small. We also know that 

Ar,argf(z) = Ar,argz4 + Ar,arg (1 + F) , 

where Ar,mgf(z) denotes the change of argf(z) when z goes continuously 
from Re<' to Ri along I'3. It is obvious that 

Ap,argz4 = A, 

while 
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is very small. Let I' = I'l U r2 U r3 is taken once counterclockwise, it follows 
from the above discussion that 

By the argument principle, the number of the roots of f (z )  = 0 inside 
equal to 

is 

Hence 
f(z) = z4 + z + 5 = 0 

has exactly one root in the domain 

x x 
{ z  : - < argz < -}. 

4 2 

5414 

Prove that the equation sin z = z has infinitely many solutions in C. 
(Indiana) 

Solution. 
Let 

f(z) = sinz - z 

and z = z + i y ,  then f (z )  can be written as 

For any fixed natural number n, choose a positive number t >> logn and a 
closed contour I' = rl U I'2 U r3 U r4 in the counterclockwise sense, where 
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Then we consider the image of r under w = f (2): 

f(rl) = {w = u + i~ : -2(n + 1 ) ~  5 u 5 - 2 7 ~ ~ )  v = 0)  

with the direction from the right to the left; 

1 
2 f(rz) = {w = u + i v  : ti = -2(n+ ~ ) T , o  5 w 5 - (et - e-t  ) - t )  

with the direction upwards; f(I’3) lies in the annulus 

starting from 

w = -2(n + 1)n + i 

in the counterclockwise sense; 

with the direction downwards, 
Hence the winding number of f(r) around w = 0 is 1. By the argument 

principle, f ( z )  = sinz - z has one zero inside the contour I?. Since n is 
arbitrarily chosen, we conclude that sinz = z has infinitely many solutions in 
c. 

Remark. This problem can also be proved by Hadamard’s theorem. 
Assume that 

f (z )  = sinz - z 

has only finite zeros in (X, and denote all the zeros by z1, zz , .  * , zn ,  multiple 
zeros being repeated. By Hadamard’s theorem, f (z )  can be written as 

f(z) = eg(z) P k ) )  

where n 

P ( Z >  = - zg)  
k=l 

and g( z) is a polynomial. 
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It is obvious that f ( z )  is an entire function of order X = 1, where 

T - 0 3  

which implies that g ( z )  must be a polynomial of degree 1. Hence we have 

sin z - z = ear+bp(z) .  

Let z = z+iy and z be fixed. By letting y + +oo and y -+ -oo respectively, 
and comparing the increasing order on both sides, we obtain that Imu < 0 in 
the former case and that Imu > 0 in the latter case. This contradiction implies 
that sin z = z has infinite many solutions in C. 

5415 

(a) Let f be a non-constant analytic function in the annulus (1 < IzI < 2) 
and suppose that I f  I = 5 on the boundary. Show that f has at least two zeros. 

(b) I f f  is meromorphic in the annulus, is the statement in part (a) still 
true? 

Solution. 
(a) Let D = { z  : 1 < It1 < 2) and d D  = rl U r2, where rl = { z  : IzI = 2) 

is in the counterclockwise sense, and I'2 = { z  : IzI = 1) is in the clockwise 
sense. Because f is non-constant analytic in D and I f 1  = 5 when z E dD, we 
know that both f(I'1) and f(rz) must be {w : lwl = 5) in the counterclockwise 
sense. Hence &Ap,argf(z) 2 1 and &Ar,argf(z) 2 1. In other words, 

(Stanfod)  

which shows by the argument principle that f has at least two zeros in D. 
(b) If f is meromorphic in D, the statement in (a) is not true. It might 

occur that f(rl) and f(r2) are two subarcs of {w : IwI = 5), or both f(r1) 
and f(r2) are {w : IwI = 5) in the clockwise sense. In the latter case, f has no 
zero in D. The following is a counterexample. Let g(C) be a conformal map of 

{ ( = < + i r l : $ + $ < l ,  
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onto {w : IwI > 5) with the normalization g(0) = M, g'(0) > 0. Then 

is a non-constant meromorphic function in D with I f  I = 5 when t E LID. But 
f has no zero in D. 

5416 

Let n be a positive integer, and let P be a polynomial of exact degree 2n: 

P ( Z )  = a0 + alz  + a2z2 + e . 0  + aZntzn, 

where each aj €67, and aZn # 0. Suppose that there is no real number x such 
that P ( z )  = 0, and suppose that 

Prove that P has exactly TI roots (counted with multiplicity) in the open upper 
half plane { z  E 67 : Imz > 0). 

(Indiana) 
Solution. 

Let T > 0 be sufficiently large such that when I z I  = T ,  

( a 2 n ~ 2 n (  > (ao+alz+.. .+azn_1z2"-11. 

Take a closed contour I? = I'l U I'2 in the counterclockwise sense, where 

rl = { Z  = TP : o 5 8 L .) 

and 
r2 = { z  = X + i y :  -T 5 T,y = 01. 

Then the number of zeros of P ( z )  inside I' is equal to 

It is already known that 
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We also have 

d log P(z)  = G A r ,  1 argP(z) 

Note that 
1 

-Ap,arg (u2nz2n) = n 
2a 

and 

we obtain that P has exactly n roots (counted with multiplicity) in the open 
upper half plane. 

5417 

Consider the function 
1 1 1  1 1  
z 2!z2 n! zn 

f (z)  = 1 +  - + -- + .* .+ --. 

(a) What does the integral 

count? 
(b) What is the value of the integral for large n and fixed r? 
(c) What does this tell you about the zeros of f (z )  for large n? 

(Courant Inst.) 
Solution. 

(a) Let 

1 1 1 1 
c F(C) = f(-) = 1 + c  + 3c2 + ,e3+ * . - +  gcn. 

From 
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we know that the negative of 

represents the number of zeros of F(C) in (111 < :}, which is just  the number 
of zeros of f (z)  in (1.1 > T } .  

(b) When n -+ 00, F(C) converges to ec uniformly in any compact subset 
of@. Let 

min leCl = m, 
IC l=? 

then m > 0. 
When n is sufficiently large, 

lF(C) - ec I < m I 1ec I 
for ICI = :, which implies the numbers of zeros for F(C) and eC in { / ( I  < :} 
are equal. Since ec has no zero in a', we obtain 

for fixed T and large n. 
(c) From the above discussion, we conclude that for any fixed T > 0, when 

n is sufficiently large, there is no zero of f ( z )  in { IzI > T } .  In other words, all 
the n zeros of f ( z )  are in { IzI 5 T } .  

5418 

(a) Suppose that f ( z )  is analytic in the closed disk IzI 5 R, and that there 
is a unique, simple solution z1 of the equation f (z)  = w in (1.1 < R}. Show 
that this solution is given by the formula 

(b) Show that,  if the integer n is sufficiently 

W 

large, the equation 

has exactly one solution with ( z (  < 2. 
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(c) If z1 is the solution in (b), show that 

1 1  

n-cc 2 
lim (zl - 1)- = -. 

(Courant Inst.) 
Solution. 

(a) Let 
f (z )  - w = ( z  - zi)&(z), 

where Q ( z )  is analytic and has no zero in { IzI < R}. Then 

1 &’ (z )  f’(z) = [log(f(z) - w)]’ = [log(z - z ~ )  + log&(~)] ’  = - +- f - w z - z i  Q ( z )  * 

Hence 

(b) Let 
fn(z)  = z - 1 - 

rE = 
and 

= 2 - €1. 
For fixed large n, we choose E > 0 sufficiently small such that when z E re ,  

z n  E 
Ifn(z) - g(z) l= 151 = (1 - 5)” < 1 - E L Ig(z>I. 

Hence fn(z) and g ( z )  have the same number of zeros in { IzI < 2 - E } ,  and the 
number is 1. Since E can be arbitrarily small, the equation z = 1 + ( 5 ) ”  has 
exactly one solution (denoted by z p ’ )  in (1.1 < 2). 

(c) f,(z) is a continuous real-valued function for 1 5 2 5 $. When n is 
sufficiently large, we have fn (1) < 0 and fn ( z )  > 0. 

Hence we have z?’ E (1, $). It follows from 

that 
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which implies 

5419 

Let 
1 1  
2 2  

R = D(O,l)\{-, --}. 

Find all analytic functions f : S2 + R with the following property: if y is 
any cycle in R which is not homologous to zero (mod R), then f * y is not 
homologous to zero (mod R). 

Solution. 

must be the removable singularities o f f .  Let 

(Indiana) 

Since f is analytic in R and bounded by lf(z)I < 1, the points z = =kf 

where E > 0 is small, and the directions of 71 and 7 2  are both in the counter- 
clockwise sense. Since 71, 7 2  are not homologous to zero (mod R), f * yl and 
f *y2 are also not homologous to zero (mod R). As E tends to zero, f(rl) and 
f(y2) will tend to either 20 = 5 or 2u = -;, because otherwise, f * 71 or f * y2 

will be homologous to zero (mod R). Hence we obtain 

1 

1 1 
2 

f(*-) = f2. 

Now we claim that the case that f(i) = f(-;) will not happen. If, for 
example, 

1 1 1  
2 2 

we assume that z = f is a zero of f(z) - f of order n and z = -f is a zero of 
f (z)  - $ of order m, then 

is homologous to zero (mod Q), while my1 - ny2 is not homologous to zero 
(mod R), which is a contradiction. Thus we obtain either 

f(-1 = f(--) = 5, 

f * (my1 - nr2) 

1 1  1 1 
f(-) = - f(--) = -- 

2 2 '  2 2 
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or 1 1  
2 2  

f(-) 1 = --, 1 f(--) = -. 
2 2 

we consider the function 
1 
2 fk)- t . - - 

1 - i f ( z )  1 - t z  
F ( z )  = 

which is analytic in D(0,l)  and satisfies IF(z)I 5 1. It follows from F ( -  i) = 1 
that F ( z )  = 1, which implies that f (z)  = z. 

we consider the function 
f ( z ) + i  z - 5  1 

1 + if(.) - 1 - zz  
- -  

1 G(z) = 

which is also analytic in D(0,l) and satisfies IG(z)I 5 1. It follows from 
G ( - i )  = -1 that G(z) = -1, which implies that f(z) = -z. Thus we 
conclude that the functions which satisfy the requirements of the problem are 
f (z)  = z and f(z)  = -2. 
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SECTION 5 
SERIES AND NORMAL FAMILIES 

5501 

00 
Let 

n=O 

have a radius of convergence T and let the function f ( z )  to  which it converges 
have exactly one singular point zo, on It1 = T ,  which is a simple pole. Prove 
that 

lim an/an+l = zo. 
n-+w 

Solution. 
Assume that the residue of f ( z )  at zo is A ,  and define 

(Indiana) 

A 
z - zo 

F ( z )  = f ( z )  - -. 

Then F ( z )  is analytic on { z  : 1zJ 5 T } .  In other words, the Taylor expansion 
of F ( z )  a t  z = 0 has a radius of convergence larger than T .  Hence the power 
series 

A 00 

F ( z )  = C a n t n  - - 
z - zo 

n=O 

is convergent a t  z = zo, which implies 

It follows that 
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and 

and we obtain 
a n  lim - = zo. 

n-+co % + I  

5502 

(1) Show that the series 

n> 1 

is convergent for 1 # a EC with la/ = 1. 
(2) Show that this series converges to log(1 - a )  for such a. 

(Minnesota) 
Solution. 

(1) Let a = eit ,  t E ( 0 , 2 ~ ) ,  then 

-c,=-c an cos nt + i sin nt 
n 

n > l  n > l  

For t E ( 0 , 2 ~ )  we have 

and 

Because 
both C 
for 1 # a EC with la1 = 1. 

tends to zero monotonically, by Dirichlet’s criterion we know that 
converge, which shows that - C $ is convergent and C 

n > l  n > l  n > l  

(2) Let 
zn 
n f ( z )  = - c - (1.1 < 1). 

n > l  

Differentiating term by term, we have 

-1 
1 - Z  

n >  1 
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Integrating both sides on the above identity, we obtain f(z)  = log(1- z ) ,  for 

Let Q = eit, z = Teat where 0 < T < 1, 0 < t < 2a. It follows from Abel's 
(a1 < 1. 

limit theorem that 

-C-  an = -C,= eint l i m - C -  (Teit)n 
r-+1- n 

n> 1 n > l  
n 

n> 1 

= lim log(1- Te i t )  = log(1- e i t )  = log(1 - a). 
r+ l -  

5503 

Consider a power series 
O01 I C -zn. .  

n 
n= 1 

Show that the series converges to a holomorphic function on the open unit 
disk centered at origin. Prove that the boundary of the disk is the natural 
boundary of the function. 

Solution. 

of 

( Columbia) 

First of all, we prove the following proposition: If the radius of convergence 

n =O 

is equal to 1 and an 2 0 for all n, then a = 1 is a singular point of f(z).  
Assume the proposition is false, i.e., z = 1 is a regular point of f, then for 
fixed 2 E (0 , l )  there exists a small real number 6 > 0 such that the power 
series expansion of f at point 3: is convergent at z = 1 + 6. Suppose the series 
is 
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Thus 
00 w w  n(n - 1) . . a ( .  - Ic + 1)  

x b k ( z  - z ) k  = &I an(z - z )kzn-k  
n,. 

k=O k=On=k 

is convergent at z = 1 + 6 .  Noting that when z = 1 + 6 the right side in the 
above identity is a convergent double series with positive terms, and hence the 
order of summation can be changed, we assert that  when z = 1 + 6 ,  

." . 
n=O k=O 
W 

n=O 

which contradicts the statement that the radius of convergence of 

n=O 

is equal to 1. 
Now we return to  the power series 

It follows from 

that the radius of convergence of 

c " 1  -zn! 

n 

is equal to 1. By the above proposition, z = 1 is a singular point of F ( z ) .  For 
any natural numbers p and q,  

n = l  
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Since z = 1 is a singular point of 

" 1  I c -zn., 
n 

n = p  

it is also a singular point of F ( z e 9 " ' ) .  In other words, z = e-?4,i is a singular 
point of F ( z ) .  Since the set { e - p r i  : p , q  = 1,2,...} is dense on {It1 = l}, we 
conclude that the unit circle {IzI = 1) is the natural boundary of F ( z ) .  

Remark. By the above discussion, the boundary of the unit disk is also the 

natural boundary of the function C $zn! although the series is absolutely 

and uniformly convergent on the closure of the unit disk. 

aq 

00 

n=l 

5504 

Suppose f is analytic in U = (1.1 < 1) with f(0) = 0 and If(z)I < 1 for all 
z E U .  If the sequence { f n }  is defined by composition 

and 
f n ( z >  4 g(z) 

for all z E U ,  prove that either g ( z )  = 0 or g ( z )  = z.  
(Indiana-Purdue) 

Solution. 
By Schwarz's lemma, it follows from f(0)  = 0 and If(z)l < 1 that If(.)[ 5 

IzI for all z E U, and if If(z)I = 1.1 for some z # 0, then f(z)  = einz where a 
is a real number. 

In the case when f (z )  = eiaz. f n ( z )  = einaz. Since f n (z )  is convergent, 
we obtain a = 0, which implies that f (z )  = z and g(z)  = t. 

In other cases, we have 

for all z E U .  Let 0 < r < 1. Then 
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For all z E { IzI 5 T } ,  we have 

. . .  

.. 

Hence fn(z) converges to zero uniformly in-{lzl 5 T } .  Since 0 < T < 1 is 
arbitrarily chosen, we obtain g ( z )  = 0 for all z E U .  

5505 

Let {fn}r=l be a sequence of analytic functions in a domain D which 
converges uniformaly on compact subsets of D t o  a function f on D. 

(a) Prove that if fn(z) # 0 for all n 2 1 and z E D,  then either f is 
identically zero in D or f(z) # 0 for all z E D. 

(b) If each fn is one-to-one on D ,  show that f is either constant or one-to- 
one on D .  

(UC, Irvine) 
Solution. 

(a) First of all, we know from Weierstrass’ theorem that f is analytic on 
D .  Suppose f is pot identically zero, but has a zero point zo E D. Since the 
zeros of a non-zero analytic function are isolated, there exists T > 0, such that 
f(z) # 0 when 

z E {Z : 0 < I Z  - Z O I  5 T }  C D .  

Let m be the minimum value of If(.)/ on 

{ z  : Iz - z01 = T } .  

Then m > 0. As {fn} converges to f(z) uniformly on compact subsets of D ,  
we know that for sufficiently large n, 

Ifn(z> - f(z>I < m 5 l f ( z> I  

holds on {z : Iz - z0I = T } .  It follows from RouchC’s theorem that fn and 
f have the same number of zeros in { z  : Iz - z0I < T } .  Since zo is a zero of 
f ,  fn must have a zero in { z  : Iz - z0I < T } .  which is a contradiction to  the 
assumption that fn(z) # 0 for all z E D. 
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(b) Suppose f is not a constant, and is not one-to-one on D. Then there 
exist zl,z2 E D (z1 # zz), such that f(z1) = f(z2) (denote it by u).  Choose 
T > 0 sufficiently small, such that 

and f (z )  - a  # 0 in {z : 0 < (z  - z l (  5 T }  U {z : 0 < Iz - 221 5 T } .  Let rn be 
the minimum value of If(.) - a1 on { z  : I Z  - zll = T or Iz - z2)  = T } .  Then 
m > 0. With the same reason as in (a), when n is sufficiently large, 

I(fn(z) - a)  - (f(z) - .)I = Ifn(z) - f(z)I < m L If(.) - al 

holds on { z  : Iz - zll = T or (z - z2 (  = T } .  It follows from RouchC’s theorem 
that f n  (z) - a and f(z) - a have the same number of zeros in {z : )z  - z11 < T }  

and { z  : (z - 221 < T }  respectively. In other words, there exists 

2: E { z  : Iz - 211 < T }  

and 
z: E { z  : (z - z2( < T } ,  

such that fn(Z{) - a = 0 and fn(zi) - u = 0, which implies fn(z{) = fn(zi) 
(2: # 24). This is a contradiction to the assumption that fn is one-to-one on 
D. 

5506 

Let D c a! be a bounded domain, and let { f n }  be a sequence of analytic 
automorphisms of D such that 

lim fn(a) = b E 8D 
n - + m  

for some point u E D. Prove that 

lim f n ( z )  = b 
n+m 

for every z E D. 
(Indiana) 
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Solution. 
Take a0 E D ,  ao # a. If {fn(ao)} does not converge to  b, there exists a 

subsequence of {fn(ao)} converging to bo # b. Without loss of generality, we 
assume 

lim fn(u) = b 6 dD,  

lim fn(ao) = bo # b. 
n-Pm 

n+ca 

Since { f n ( z ) }  is a normal family, there is a subsequence { f n k ( z ) )  converging 
uniformly on compact subsets of D to f (z) .  Because f(u) # f ( a o ) ,  f (z)  is a 
non-constant analytic function of D .  

Let T be sufficiently small such that f ( z ) - b  has no zero in { z  : 0 < Iz -u[  5 
T }  c D, then m = min{lf(z) - bl : )z - a1 = T }  > 0. Since { f n k }  converges 
uniformly to f on { z  : ( z  - a1 = T } ,  when Ic is sufficiently large, 

on { z  : Iz - a1 = T } .  By Rouche’s theorem, fnk(z) - b has zero(s) in { z  : 
Iz - a1 < T } ,  which is a contradiction to the fact that fnk does not assume the 
value b E d D  in D because f n k  is an automorphism of D .  

5507 

Which of the following families are normal, and which is compact? Justify 

(a) 3 = {f : f is analytic in D ,  f(0) = 0, diam f ( D )  5 2) 
(b) B = { g  : g is analytic in D,g(O) = l ,Re{g} > 0, diam g(D)  2 1). 

Here the diameter of a set S is diam S = sup{lz - CI : z ,  C E S}. 

S o h  tion. 
(a) For any f E F, it follows from f(0) = 0 and diam f ( D )  5 2 that 

lf(z)I 5 2, which shows that 7 is normal. 
Let {fn} be a sequence of functions in F. Then there exists a subsequence 

{ f n k }  converging uniformly in compact subsets of D to f(z), which obviously 
satisfies the conditions that f(z) is analytic in D and f(0)  = 0. For any two 
fixed points z,C E D ,  we have 

your answers. 

(Indiana) 
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because diam fn , (D)  5 2. We choose a compact subset K c D such that 
z,C E K .  It follows from the uniform convergence of {f,,} on K that 

If(.) - f(0l 52. 

Since z , c  E D can be arbitrarily chosen, we obtain diam f ( D )  5 2, hence 
f(z)  E 7, which shows that F is also compact. 

(b) Let { g , }  be any sequence of functions in Q. Then for Gn(z) = e-gn('), 

we have IGn(z)l < 1. Hence there exists a subsequence {Gnk} converging 
uniformly in compact subsets of D to a function G(z) which is either a constant 
or a non-constant analytic function in D .  If G(z) is a constant, then the 
constant is e-l because 

~ ( 0 )  = lim e-gn(') = e-1; 

if G(z) is non-constant analytic, since G,(z) # 0 for all z E D ,  by Hurwitz's 
theorem, we have G(z) # 0 for all z E D .  Hence we can define an analytic 
function g ( z )  = -log G(z), where the single-valued branch is chosen by g(0) = 
- log G(0) = 1, and we conclude that 

n-vw 

gn,( . )  = -logGn,(z) 

converges uniformly in compact subsets of D to g ( z ) ,  which shows that family 
Q is normal. But family Q is not compact. First we can choose a sequence of 
functions g n ( z )  in Q as follows: g n ( z )  is a conformal mapping of D onto 

1 1 
4 n R, = {w : Iw - 11 < -} U {w : Iw - 31 < 1) U {w : IImwl < -, 1 < Rew < 3) 

satisfying gn(0) = 1, gL(0) > 0. By the Riemann mapping theorem, such a 
mapping gn exists and is unique, and it is obvious that gn satisfies all the con- 
ditions required by the family Q. Because the domain sequence {a,} converges 
to R = {w : ( w  - 11 < a} which is called the kernel of {R,} with respect to 
w = 1, by Caratheodory's theorem, { g n ( z ) }  converges uniformly in compact 
subsets of D to g(z )  which is a conformal mapping of D onto 52. Since diam 
g(D)  = i, g ( z )  does not belong to the family 0, which shows that is not 
compact. 

5508 

Suppose that 1 5 p < 00 and c 2 0 is a real number. Let 7 be the set of 
all analytic functions f on { IzI < 1) such that 
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sup /'^ If(reioe)lPde 5 c. 
O<r<l o 

Show that 3 is a normal family. 
(Illinois) 

Solution. 
It suffices to prove that the functions in 3 are uniformly bounded on every 

compact set of { z I  < 1). We prove the assertion by contradiction. If it is 
not the case, then there exist zn E D, f n  E F such that zn --+ zo E D and 

Let 1 - lzol = 3r. Then when n is sufficiently large, Izn - 201 < r. By 
f n ( Z n )  + 00. 

Cauchy integral formula, 

Hence 

where 

Then 

1 1  
- + - = l .  
P q  

As n + co, the left side of the above inequality tends to infinity, while the 
right side of the inequality is a constant. The contradiction implies that 3 is 
a normal family. 
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5500 

(a) Let f be holomorphic for 121 < R and satisfy f(0) = 0, f'(0) # 0, 
f (z)  # 0 for 0 < IzI < r 5 R. Let C be the circle IzI = p where p < T .  Show 
that 

1 t f ' ( t ) d t  
g(w) = 2?ri J, f ( t )  - w 

define a holomorphic function of w for 

1wI < m = m p  If(pe")l, 

and that z = g(w) is the unique solution of 

that tends to zero with w. 

series expansion of the root of the equation 
(b) Find the Taylor's expansion of g(w), and apply this to find the explicit 

z3 + 32 - w = 0 

that tends to  zero with w. 

Solution. 
(a) It follows from 

IwI < m = rnp lf(pe")l 

that when t E C, 

Hence 

=5 (&J ,p  t f ' ( t )  d t )  wn, g(w) = GJ, f ( t )  - w n=O 

1 t f ' ( t ) d t  

which implies that g(w) is holomorphic in {w : IwI < m}. 
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Let r be the image of C under f where C is the circle { z  : IzI = p }  taken 
once counterclockwise. Because 

lwl < m = min I f (pe”)l ,  

@ , O )  = n(r, w), 

9 

the winding number 

which shows that f(z) and f ( z )  - w have the same number of zeros in { z  : 
IzI < p } .  Since z = 0 is the only simple zero of f in { z  : IzI < p } ,  we know that 
f (z)  = w has a unique solution in { z  : 1x1 < p} .  Denote the unique solution 
by z l ,  then 

f(t) - w = (t - zi)Q(t) 

where Q(t)  is analytic and has no zero in {t : It1 < p } ,  and 

1 Q’(t> 
= pog(f(t) - w)]’ = [log(t - z1) + log Q(t)]’ = - + - f(t) - w t - zi Q(t) * 

f’(t) 

Hence 

which shows that g(w) is just the unique solution of f (z)  = w. As the constant 
term in the Taylor expansion of g(w) is 

which is obviously zero, we assert that the unique solution g(w) tends to zero 
together with w . 

(b) Let 
f (z)  = z3 + 32, 

then 

where 
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After some computation, we obtain a 2 k  = 0 and 

a2k-1  = z l  1 3 2 k - l t 2 k - 1  [ 2 '-2k k - 2  (:)k-2 + '-2k k - 1  (5)k-'] dt 

- - 33k-2  ( 3ck-2 -2k t c",:) . 

5510 

Find an explicit formula for a meromorphic function f whose only singu- 
larities are simple poles at -1, -2, - 3 , - - -  with residue n at  z = -n. Prove in 
detail that your function has all the required properties. 

(Illinois) 
Solution. 

By Mittag-Leffler's theorem, we construct 

For any natural number N ,  when IzI 5 N ,  n 2 2N, 

2N2 

Hence 

converges uniformly in { IzI 5 N }  to a function which is analytic in { IzI < N } .  
In addition. 

z2 2N-1 

n = l  

is a meromorphic function whose only singularities in { IzI < N }  are simple 
poles at z = -1, -2, * - .  , - N  + 1 with residue n at z = -n. So f ( z )  is analytic 
in (1.1 < N}\{- l , -2 , . . . , -N+1} ,  andz  = -1,-2,...,-N+lareitssimple 
poles with residue n at z = -n. 

Because N can be chosen arbitrarily large, it is obvious that f ( z )  has all 
the required properties of the problem. 
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5511 

(a) Does there exist a sequence of polynomials {P,} such that Pn(z)  --i 5 
uniformly on the annulus 1 < IzI < 2? If Yes, give an explicit formula for the 
Pn ; if No, explain why not. 

(b) Does there exist an entire function g whose zero-set is {+( 1 + i) : n = 
0,1,2,3, .  . -)? If Yes, give an explicit formula for g; if No, explain why not. 

(Illinois) 
Solution. 

(a) No. If there exists asequence of polynomials {P,} such that Pn(z)  -+ 5 
uniformly on (1 < 1.1 < 2} ,  then for any E E (0, a), there exists N > 0 such 
that when n > N ,  IPn(z) - $ 1  < E holds for all z E (1 < Izl < 2). Multiply 
both sides by )zI2,  we have 

Because z2Pn(z )  - 1 is an analytic function in (1.1 < 2}, it follows from the 
maximum modulus principle that 

holds for all z E { Izl < 2 ) .  The contradiction follows by taking z = 0 in the 
inequality. 

(b) Yes. The function g can be chosen as 

where an = fi(1 + i). 
For any R > 0, let (z( 5 R and choose N > R2. Then when n 2 N ,  

It is easy to see that 
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00 

Because C 5 converges, we know that 
n=N 

is analytic in {z : IzI < R}, which implies 

m 

is analytic in { z  : IzI < R } .  Hence g(z) is analytic in {z  : IzI < R}, and its 
zeros in {z  : 1z1 < R} are 0,al,a2,...,ak (q - 1 5 IC < $). Since R can 
be arbitrarily large, we see that g(z) is an entire function with the required 
zereset. 

5512 

State whether the following statement is True or False, and prove your 

For each positive integer n there exists an entire function fn such that 
assertion. 

(Indiana) 
Solution. 

False. 
We prove the assertion by contradiction. 
If for each positive number n there exists an entire function fn such that 

then for 15 IzI 5 2, we have 

-1 5 Refn(z) 5 1+log2.  

Define Fn(z) = efn('). Then Fn(z) are entire functions with no zeros, and 

1 - 5 ~ ~ ~ ( z > l =  eRefm(z) < - 2e 
e 
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for 15 IzI 5 2. By the maximum modulus principle, IF,(z)I 5 2e for IzI 5 2. 
Hence {F,(z)} is a normal family in { z  : ( z (  < 2), and there exists a subse- 
quence {Fnk(z)} converging locally uniformly to an analytic function F ( z )  in 
{ z  : IzI < 2). Since IFn(z)l 2 for 15 IzI 5 2, F ( z )  cannot be identically 
zero, and by Hurwitz's theorem F ( z )  has no zero in { z  : 1x1 < 2). But we have 
for 15 IzI < 2, 

which implies that F ( z )  = cyz with 
contradiction to the fact that F ( z )  has no zero in { z  : IzI < 2). 

= 1 in { z  : It1 < 2). This is a 

5513 

Let G = D\(-1,0], where D = { z  : IzI < 1). 
(a) Give a single-valued definition for zi in G. 
(b) Why should there exist a sequence of polynomials P, such that 

lim P,(z) = z* 
n-rm 

for all t in G? 

IPn(z)l 5 M for all z E G and all n? Justify your answer. 

Solution. 
(a) zi is defined by eil0gz. In domain G, single-valued branch of logz can 

be chosen. For example, a single-valued branch of zi in G can be defined by 

(c) Can the polynomials be chosen so that there exists a constant M with 

(Indiana) 

argzlo<2<l = 0. 
(b) Choose 

where n > 2. Then K, C Kn+lr and 

lim K, = G. 
n-rco 

Because the complement of K, is connected and contains z = 00, we know by 
Runge's theorem that there exists a sequence of polynomials which converges 
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uniformly on K ,  to z i .  In other words, we can find a polynomial Pn(z) such 
that 

for all z E K,. Hence {Pn(Z); n = 1,2, . . - }  converges to zi uniformly on 
compact subsets of G. 

(c) No. If there exists M with IPn(z)l 5 M for all z E G and all n, 
then because Pn(z) are continuous on D, IPn(z)l 5 M for all z E D and 
all n. It follows that {Pn(z)} is a normal family in D, and there exists a 
subsequence P,, ( z )  which converges uniformly on compact subsets of D to an 
analytic function f (z )  in D. Since Pn(z) converges to  zi in G, hence zi = f (z)  
for z E G, which implies that z' can be extended to a single-valued analytic 
function in D. It is obvious impossible, so the contradiction is obtained. 

5514 

(a) Prove that 

(b) Use this to show that 

l o o  2z 
a c o t a z  = - + c - Z 2 2  - n2 ' 

n = l  

Justify your steps. 

use of (b), with enough terms to find the values of C 5 and C 
(c) Develop a cot az in a Laurent series about the origin directly and by 

00 00 
1 

n = l  n = l  
(Hamad) 

Solution. 
(a) Let 

a2 
f (z)  = G. 

1 The singular part of f at z = n (n = 0, fl, f2, - * .) is - (2-n)2. Now we consider 
the series 
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For any natural number N and la1 5 N, 

00 

holds for n 2 2N and n 5 -2N. It follows from the convergence of C 5 
n=2N 

n=-2N M ~~ 

and C 5 that C & is analytic in 
-cQ n=-m 

Because N can be arbitrarily large, we obtain the result that 

1 00 

n=-cc 

is a meromorphic function which has the same singulaxities as f(z). 
Let 

Then g ( z )  is an entire function. 
As f (z)  and 

are both periodic functions with period equal to 1, we restrict z in the strip 

{ z  : 0 < Rez 5 1). 

It is obvious that 
lim f (z )  = 0. 

Imt+f00 

As the convergence of 

is uniform for 
lIm4 2 1, 

the limit of the series for Imy -+ fco can be obtained by taking the limit in 
each term and the limit is also zero. Hence g(z )  is a bounded entire function, 
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which implies that g ( z )  is a constant. It is obvious that the constant must be 
zero. Thus we obtain the identity 

(b) Let 
F ( z )  = 7rctg7rz. 

The singular part of F at z = n (n = 0, fl ,  &2, - - - )  is A. Now we consider 
the series 

1 "  22 

n = l  

With similar discussion to that in (a), we know that 

is a meromorphic function which has the same singularities as F ( z ) .  
Let 

22 

22 - n2 + G(z) .  
1 "  

F ( z )  = ; + c - 
n = l  

Then G ( z )  is an entire function. Differentiating both sides of the above identity, 
we obtain 

- G'(z) 
T 2  1 "  1 1 

n = l  

Comparing this identity with (l), we have G'(z) = 0 which implies that G = c 
( c  is a constant). For 

+ c,  z2 - n2 
n = l  

it follows from the fact that F ( z )  and 

1 "  22 - + E n  n = l  

are both odd functions that c = 0. Hence we obtain 

1 "  22 

n = l  

7rcot?fz= -+c- 
z2 - n2' 
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(c) The Laurent expansion of 7rcot 7rz about the origin is 

1 7r2 7r4 

z 3 45 
jl. cot r z  x - - -z - -23 - . . . . 

It follows from (2) and (3) that around the origin, 

(3) 

Take z = 0, we obtain 

After differentiating (4) on both sides, we can also obtain 

5515 

Let z1, - - , Zn be distinct complex numbers. Let f and g be polynomials, 
f of degree 5 n - 2 and 

g ( z )  = ( z  - tl) 9 * - ( z  - zn). 

(a) Show that 

(b) Show that there exists a polynomial of degree 5 n - 2 with f (zj) = uj 

if and only if 
n 

(c) Given a sequence of complex numbers z1,z2,. . - such that lzn 1 + 00, 

does there exist an entire function f with f(zj) = aj? Can you write this 
function down? 

(Hamad) 
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Solution. 
(a) Take R sufficiently large such that 

Z l , Z 2 , " ' , Z ,  E (1.1 < RS. 

g ( z )  = ( z  - q ) ( z  - z 2 )  * .  . ( z  - Z n )  

Because 

is of degree n, while f ( z )  is of degree 5 n - 2, 

-dz = lim -dz = 0. 

we obtain 

? # = O .  
j = 1  

(b) If f ( z )  is a polynomial of degree 5 n - 2 with f(zj) = uj ( j  = 
1,2,. - .  , n), then by (a), we have 

If u l ,  u 2 ,  . - , an are n complex numbers such that 
n 

we construct the function f ( z )  by 

For each j ,  

-- g ( z )  - (2 - z1) .  . . ( z  - z j - l ) ( z  - Z j + l ) .  . . ( z  - z,) 
z - zj 

is a polynomial of degree n - 1, and the coefficient of zn-' is 1. Since 
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the coefficient of zn-l  of f(z) is zero. In other words, f(z) is a polynomial of 
degree 5 n - 2. 

Because 
aj d z )  - 

- a j ,  lim -. ~ 

z + r j  g ’ ( z j )  ( z  - Zj) 

while for k # j ,  

f ( z )  satisfies the condition f(zj)  = aj ( j  = 1,2,  
(c) For the given sequence z1, z2, - a ,  such that 11, I -+ 00, by the Weierstrass 

theorem about the canonical product of entire functions, we can construct an 
entire function g ( z )  with simple zeros z l ,  z2,. - -. Then we define 

- ,  n). 

where 7, is chosen such that when IzI 5 k$, 

Because Iz,I -+ 00, for any R > 0, there exists N > 0 such that Iz,I > 2R 
when n 2 N .  Hence 

1 
Iun(z>l 5 2 

00 

holds for all IzI 5 R when n 2 N .  In other words, un(a)  converges uni- 

formly for all IzI 5 R, so that f (z)  is analytic in (1.1 < R}. Since R can be 
arbitrarily large, f ( z )  is an entire function. 

n = l  

It is easy to see that 

while for k # n, 
u k ( z n )  = 0, 

which implies that f ( z )  is an entire function satisfying the required condition. 


