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1.1a k[x, y]/(y − x2) is identical with its subring k[x].
1.1b A(Z) = k[x, 1/x] which contains an invertible element not in k and is therefore not a polynomial ring

over k.
1.1c Any nonsingular conic in P 2 can be reduced to the form xy + yz + zx = 0 and this curve is isomorphic

to P 1. (Proof: choose any 3 points on the conic, and choose coordinates so that these points are
(1 : 0 : 0), (0 : 1 : 0), (0, 0, 1); this means the conic must have the equation cxy + ayz + bzx = 0, with
a, b, c all nonzero (otherwise the conic is singular). Then multiplying x, y, z by a, b, c shows that the
conic has equation xy + yz + zx = 0. Hence all nonsingular conics are isomorphic to this one, and as it
is easy to find one isomorphic to P 1 they all are.) Therefore (regular function on a conic) = (regular
functions on the conic xy + yz + zx = 0 - some hyperplane) = (regular functions on P 1 - 1 or 2 points)
= A(Y ) or A(z). The ring is A(Y ) if and only if the conic ax2 + bxy + cy2+(terms of degree < 2)
intersects the line at infinity in exactly one point, which happens if and only if b2 = 4ac.

1.2 Y is isomorphic to A1 and is therefore an affine variety of dimension 1, and A(Y ) = k[x]. I(Y ) is
generated by Y −X2, Z −X3.

1.3 xy = x, so x = 0 or z = 1. x2 = yz, so x = 0, y = 0 or x = 0, z = 0, or z = 1, x2 = y. Therefore Y is
the union of 2 lines and a parabola. The prime ideals are generated by x, y or x, z or z − 1, x2 − y.

1.4 The line x = y is closed in A2 but not in A1 ×A1 (at least if k is infinite).
1.5 B is a finitely generated algebra over k and has no nilpotents. If x1, ...xn is a set of generators for B

then B = k[x1, . . . , xn]/I for some ideal I, and
√

I = I as B has no nilpotents. Hence I(V (I)) = I by
the nullstellensatz, so that B is the coordinate ring of V (I) in An.

1.6 Put U ⊂ X, U open, X irreducible. Then X = (X − U) ∪ Ū , so Ū = X, so U is dense in X. If
U ⊂ C1 ∪ C2, then X = Ū = C̄1 ∪ C̄2 = C1 ∪ C2, so C1 or C2 contains U , so U is irreducible.

1.7a (i) is equivalent to (iii) by taking complements. (ii) implies (iv) is trivial. (i) implies (ii) because if some
set contains no smallest closed subset then we can choose an infinite descending chain C1 ⊃ C2 ⊃ · · ·
using Zorn’s lemma. The proof that (iii) is equivalent to (iv) is similar.

1.7b If U is any open cover of X, apply (a)(iv) to the unions of the finite subsets of U .
1.7c Follows from (a)(iv).
1.7d X Noetherian and Hausdorff implies X Hausdorff and every subset Noetherian implies X Hausdorff

and every subset compact implies X compact and every subset closed implies X compact and discrete
implies X finite and discrete.

1.8 Let H have ideal (f). As Y is not contained in H, f is neither a unit nor a zero divisor in the
coordinate ring B of Y . Therefore by 1.11A every minimal prime P containing f has height 1. By 1.8A
dim(B/P ) = r − 1. If X is an irreducible component of Y ∪H then the ideal of X is a minimal prime
ideal P of B containing f and the coordinate ring of X is B/P .

1.9 The dimension of any component of Z(a) = transcendence degree of its function field. This function
field contains x1, . . . , xn and the algebraic relations between these are a consequence of the r generators
of a. Therefore the dimension of any component is at least n−number of generators of a ≥ n− r.

1.10a If Y0 ⊂ Y1 ⊂ · · · ⊂ Yn is a chain of irreducible closed subsets of Y , then Ȳ0 ⊂ Ȳ1 ⊂ · · · ⊂ Ȳn is a chain
of irreducible closed subsets of X.

1.10b By (a), dim(X) ≥ sup dim(Ui). If X0 ⊂ · · ·Xn is a sequence of irreducible closed subsets of X with X0

a point, choose some set U in the cover with X0 ∈ U . Then by 1.6 Xi∩U is irreducible and dense in Xi

and therefore not contained in Xi−1. Hence X0 ∩ U ⊂ X1 ∩ U ⊂ · · · ⊂ Xn ∩ U is a sequence of closed
strictly increasing irreducible subsets of U , so dim(X) ≤ dim U ≤ sup dim Ui.

1.10c X = {u, v} (a 2 point set) with open sets ∅, {u} = U, X.
1.10d If Y0 ⊂ · · · ⊂ Yn is a chain of closed irreducible subsets of Y and Y 6= X, then we can add X to the end

of this chain to see that dim(X) ≥ dim(Y ) + 1 so either dim(X) =∞ or dim(X) > dim(Y ).
1.10e The set of positive integers, closed sets those of the form {1, 2, 3, . . . , n}.
1.11 t→ (t3, t4, t5) is a homeomorphism from A1 to Y , so dim(Y ) = 1, so P has height 2. No element of the

ideal of P has homogeneous components of degree 0 or 1, and the possible homogeneous components
of degree 2 form a vector space of dimension 3, so P needs at least 3 generators. (P is generated by
x2y − z2, zx− y2, x3 − zy.)

1.12 f(x, y) = y4 + y2 + x2(x− 1)2.
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2.1 a is homogeneous and so defines a cone in An+1. f vanishes on all the elements of this cone (including

0 as f has positive degree) so fq ∈ a for some q > 0 by the usual Nullstellensatz.
2.2 (iii) implies (i) is trivial as xd

i ∈ Sd. Proof that (i) implies (ii): If Z(a) is empty, then in An+1, Z(a)
must be empty or (0, . . . , 0), so

√
a must be S or ⊕d>0Sd. Proof that (ii) implies (iii):

√
a contains xi,

so there is some m with xm
i ∈ a for all i, so a contains Sm(n+1) as any monomial of degree m(n + 1)

must have xm
i as a factor for some i.

2.3 (a),(b),(c),(e) are trivial. For (d), clearly I(Z(a)) contains
√
a. As Z(a) is nonempty, any nonzero

homogeneous polynomial vanishing on it must have positive degree. By 2.1, this implies that fq ∈ a.
Therefore I(Z(a)) is contained in

√
a as it is a homogeneous ideal.

2.4a Follows from 2.3d,e, and 2.2.
2.4b If Y = Y1 ∪ Y2, then I(Y ) = I(Y1) ∩ I(Y2) ⊃ I(Y1)I(Y2). Therefore if I(Y ) is prime, I(Y ) must be

either I(Y1) or I(Y2), so Y is Y1 or Y2. On the other hand if Y is not prime, then ab ∈ I(Y ), with
a /∈ I(Y ), b /∈ I(Y ). Therefore Y is the union of the proper subsets Y ∩Z(a), Y ∩Z(b) and is therefore
not irreducible.

2.4c I(Pn) = 0 which is a prime ideal.
2.5a Pn can be covered by n+ 1 copies of An which is Noetherian.
2.5b See proposition 1.5 and part (a) of this question.

2.6 S(Y) is the coordinate ring of the cone in An+1 corresponding to Y (assuming Y is nonempty). S(Y )xi

is the coordinate ring of the cone Y − (xi = 0) if xi is not identically 0 on Y , i.e., Yi is nonempty.
Therefore the homogeneous part of degree 0 of S(Y )xi is the coordinate ring of the cone with xi = 0,
which is isomorphic to Yi, and therefore S(Y )xi

= A(Yi)[xi, 1/xi] as every element of S(Y )xi
is the sum

of monomials of the form (x±n
i × element of degree 0). Therefore Tr.deg.(S(Y )xi

) = Tr.deg.(A(Yi) +
1) = Tr.deg.S(Y ). Therefore dim(S(Y )) = 1 + dim(Yi) whenever Yi 6= 0. The Yi’s cover Y , so
dim(Y ) = sup(dim(Yi)), so dim(S(Y ) = 1 + dim(Y ).

2.7a Pn is covered by n+ 1 open copies of An, so dim(Pn) = sup(dim(An)) = n.
2.7b Y is contained in Pn, and therefore covered by n+1 copies of An. In each copy Ai of An, Y ∪Ai = Y ∪Ai

as Ai is open. Hence dim(Y ∩Ai) = dim(Y ∩Ai) = dim(Y ∩Ai), and therefore dim(Y ) = sup(dim(Y ∩
Ai) = sup dim(Y ∩Ai) = dim(Y ).

2.8 If f is any homogeneous polynomial of positive degree then the zero set of f has dimension n − 1 as
it has this dimension on some affine subsets and is a proper closed subset of Pn. Also f is irreducible,
so the homogeneous ideal generated by it is prime (as rings of polynomials are U.F.D.’s so irreducibles
are primes) so its variety is irreducible. Conversely if Y is any proper closed subset of Pn then there is
some homogeneous polynomial f vanishing on Y which we can assume to be irreducible because Y is
irreducible (so some factor of f must also vanish on Y if f is not irreducible). Then the zero set of f
is an irreducible n− 1 dimensional closed subset of Pn containing the n− 1 dimensional closed subset
Y , and so must be equal to Y (because any proper closed subset of an irreducible topological space has
smaller dimension).

2.9a βg(x0, . . . , xn) = xd
0g(x1/x0, . . . , xn/x0) if g is of degree d. If g vanishes on Y then βg vanishes on

Ȳ , so I(Ȳ ) ⊇ β(I(Y )). If h vanishes on Ȳ then we can assume h is homogeneous. If g(x1, . . . , xn) =
h(1, x1, . . . , xn), then h = βg, so I(Ȳ ) is generated by β(I(Y ))

2.9b {(t, t2, t3)} = Y , and I(Y ) = (x2 − x2
1, x3 − x3

1). β(x2 − x2
1) = x0x2 − x2

1 and β(x3 − x3
1) = x2

0x3 − x3
1.

But I(Ȳ ) contains x1x3 − x2
2 which is not contained in (β(x2 − x2

1), β(x3 − x3
1)).

2.10a Obvious.
2.10b They have the same ideal, which is prime if and only if they are irreducible.
2.10c See 2.6.
2.11a I(Y ) is generated by linear polynomials {pi} if and only if Y is the intersections of the hyperplanes

{pi = 0}.
2.11b Any hyperplane in Pn is a copy of Pn−1, and the intersection of any other hyperplane of Pn with this

Pn−1 is a hyperplane of the Pn−1. Therefore any r-dimensional linear variety in Pn is the intersection
of n− r hyperplanes and not the intersection of n− r− 1 hyperplanes. Therefore its ideal is minimally
generated by n− r linear polynomials.
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2.11c Y is the intersection of n − r hyperplanes and Z is the intersection of n − s hyperplanes, so Y ∩ Z is
the intersection of 2n − r − s hyperplanes, which has dimension at least n − (2n − r − s) = r + s − n.
In particular it is nonempty if r + s ≥ n.

2.12a θ maps k[y0, . . . , yN ] to an integral domain, so its kernel is a prime ideal. If f ∈ k[y0, . . . , yN ], f =
f0 + fi + · · · with fi of degree i, then θ(fi) has degree di, so θ(f) = 0 if and only if θ(fi) = 0 for all i,
and therefore the kernel is also a homogeneous ideal.

2.12b If f ∈ Ker(θ) then f(M0, . . . ,Mn) = 0. Hence f vanishes on any point (M0(a), . . . ,Mn(a)), so Im(ρd) ⊆
Z(a). This proves the easy half. Any monomial raised to the power of d is a product of monomials of
the form xd

i . Choose any point (m0, . . . ,mN ) ∈ Z(a). Some mi is nonzero and md
i =

∏
N mjn

where
each mjN

corresponds to some monomial xd
i , hence some mi corresponding to a monomial xd

i is nonzero;
say i = 0. If mi1 , . . . ,min

correspond to xd−1
0 x1, . . . , x

d−1
0 xn then put x0 = 1, xk = mik

/m0, and try to
use this to define a map to Pn on the set with m0 6= 0. We have to show that m0Mi(1, x1, . . . , xn) = mi

(where m0 corresponds to xn
0 ), i.e., that m0Mi(1,mi1/m0, . . . ,min/m0) = mi. But this is true because

xd
0Mi(1, x1/x0, . . . , xn/x0) = Mi(x0, . . . , xn), and therefore (m0, . . . ,mN ) is the image of (x0, . . . , xn).

Hence Im(ρd) ⊇ Z(a).
2.12c ρd is continuous and bijective from Pn to Z(a). To show that it is a homeomorphism it is sufficient

to show that its inverse is continuous on any open set of Z(a) of the form mi 6= 0 (notation as above)
because these open sets cover Z(a). But this follows from the construction of this inverse above.

2.12d The 3-tuple embedding of P 1 into P 3 maps (x0 : x1) to (x3
0 : x2

0x1 : x0x
2
1 : x3

1) which is the projective
closure of {(x1, x

2
1, x

3
1)} in P 3, i.e., the twisted cubic curve.

2.13 The map is given by (x0 : x1 : x2) → (x2
0 : x2

1 : x2
2 : x0x1 : x1x2 : x2x0). Any curve in P 2 is defined by

some polynomial f(x0, x1, x2) = 0, f homogeneous, and therefore also by the polynomial f(x0, x1, x2)2 =
g(x2

0, x
2
1, x

2
2, x0x1, x1x2, x2x0) for some polynomial g. Then some factor of this polynomial g defines a

suitable hypersurface containing the image of the curve Z. (This assumes that P 2 is isomorphic to its
image which is easy to check (see 2.14 below) once one has defined isomorphisms of varieties, so that
curves in the image of P 2 correspond to curves in P 2.)

2.14 The image of ψ is the set Y defined by the equations of the form xabxcd = xacxbd. Proof: the image
is clearly contained in Y . Conversely if (x00 : x10 : · · · : xrs) ∈ Y the we may assume that x00 (say) is
nonzero. But then the point is the image of (x00 : x10 : · · · : xr0)× (x00 : x01 : · · · : x0s) ∈ P r × P s.

2.15a (a0 : a1) × (b0 : b1) = (a0b0 : a0b1 : a1b0 : a1b1) = (w : x : y : z), and the image of P 1 × P 1 is then the
subvariety xt− zw = 0 as in 2.14.

2.15b Q is isomorphic to P 1 × P 1, so we can take the two families of lines to correspond to point×line and
line×point. (It is easy to check that these are lines in Q ⊂ P 3; for example the image of (a0 : a1)× P 1

is the set of points (w : x : y : z) ∈ P 3 with a1w = a0y, a1x = a0z.)
2.15c The closed subset x = y of Q is not one of these lines.
2.16a x2 = yw, xy = zw, so y2w = xzw, so w = 0 or y2 = xz. Hence Q1 ∩ Q2 is the intersection of the line

w = x = 0 and the twisted cubic x2 = yw, xy = zw, y2 = xz.
2.16b L ∩ C is the point P = (0 : 0 : 1), so I(P ) = (x, y), but I(L) + I(C) = (x2, y) 6= (x, y).
2.17a By problem 1.8, the intersection of q hypersurfaces has dimension at least n− q. If a can be generated

by q elements then Z(y) is the intersection of q hypersurfaces and therefore has dimension at least n− q
(using problem 2.8).

2.17b If I(Y ) can be generated by r elements then Y is the intersection of their hypersurfaces.
2.17c Y is the intersection of H1 = Z(x2 −wy) and H2 = Z(y3 +wz2 − 2xyz) as (xy−wz)2 = w(y3 +wz2 −

2xyz) + y2(x2 − wy) and (y2 − xz)2 = y(y3 + wz2 − 2xyz) + z2(x2 − wy), and y3 = wz2 − 2xyz =
y(y2 − xz) + z(wz − xy). On the other hand I(Y ) has no homogeneous elements of degree 0 or 1 and
the space of homogeneous elements of degree 2 is 3 dimensional, so any set of generators must have at
least 3 elements.

2.17d Still an unsolved problem (as far as I know).

2



Hartshorne, Chapter 1.3 Answers to exercises. REB 1994
3.1a Follows from exercise 1.1 as 2 affine varieties are isomorphic if and only if their coordinate rings are.
3.1b The coordinate ring of any proper subset of A1 has invertible elements not in k and o is not isomorphic

to the coordinate ring of A1.
3.1c The aut group of P 2 acts transitively on sets of 3 points not on a line, so we can assume the conic

contains (0 : 0 : 1), (0 : 1 : 0), and (1 : 0 : 0), i.e., it is of the form axy + byz + czx = 0 for some a, b, c,
which are nonzero as otherwise the conic would be a union of two lines. We can multiply x, y, and z
by constants to make a, b, and c all equal to 1, so we can assume the conic is xy + yz + zx = 0, and in
particular all conics are isomorphic. Hence we only have to show 1 conic is isomorphic to P 1, e.g., the
image of P 1 under the 2-uple embedding.

3.1d Any 2 1-dimensional closed subsets of P 2 intersect (see ex. 3.7a), but A2 does not have this property.
3.1e By theorem 3.4 the regular functions on a projective variety is the ring k, which is only possible for an

affine variety if it is a point.
3.2a If φ had an inverse, this would give a polynomial f(x, y) such that f(t2, t3) = t, which is impossible.
3.2b φ is 1:1 because if xp = yp in characteristic p then (x − y)p = 0 so x = y. It has no inverse because

there is no polynomial f with f(tp) = t.
3.3a If f is a regular function defined on a neighborhood V of φ(p) then f ◦ φ is a regular function on the

neighborhood φ−1(V ) of p, This gives a map from Oφ(p),Y to Op,X which is a homomorphism.
3.3b We have to show that if V is an open set in X, and f is regular on V , then f ◦ φ−1 is regular on φ(V ).

If φ(p) ∈ φ(V ) then f ∈ Op,X , so φ−1∗
p maps f to an element of Oφ(p),y, so f ◦ φ−1 is regular near φ(p),

so it is regular on φ(V ).
3.3c If φ∗p(f) = 0 then f vanishes on φ(X)∩V which is a dense subset of V . As f is continuous and vanishes

on a dense subset, it must be 0. Therefore φ∗p is injective.
3.4 It is enough to show that φ−1 is regular near φ(1 : x1 : · · · : xn), where φ is the d-uple embedding. But

near this point φ−1 takes (m0 : · · · : mN ) to (mi0 : · · · : min) where mik is the coordinate corresponding
to the monomial xd−1

0 xk, and this is a regular map.
3.5 Identify Pn with its image under the d-uple embedding. Then H is the intersection of a hyperplane in

PN with Pn, so Pn −H is a closed subset of PN −H = AN and is therefore an affine variety.
3.6 Any regular function on X has the form f(x, y)/g(x, y) where f and g are coprime. The curves of f

and g only intersect in a finite number of points and g can only vanish at (0, 0) or where f = 0, so g
has only a finite number of zeros and must therefore be constant. Hence O(X) = k[x, y]. Therefore
the map from X to A2 is an isomorphism of their coordinate rings, so if X was affine it would be an
isomorphism of varieties, which it obviously is not as is is not surjective on points.

3.7b Suppose Y ∩H = φ. Then Y is a closed subset of an affine variety Pn −H and therefore a finite set of
points, as any projective subset of an affine variety is finite.

3.8 Any regular function on Pn−Hi is of the form fi(x0, . . . , xn)/xdi
i where di is the degree of the homoge-

neous polynomial fi. Hence for a function to be regular except on Hi ∪Hj we would have fix
dj

j = fjx
di
i

for some fi, fj . But this implies fi = xdi
i , so the function must be constant.

3.9 S(X) is the polynomial ring k[X0, X1], but S(Y ) is the subring k[X2
0 , X0, X1, X

2
1 ] of k[X0, X1, X2],

which is not a graded polynomial ring in 2 variables (as the space of elements of the smallest nonzero
degree is 3 dimensional).

3.10 For any point x ∈ X ′ there is an affine neighborhood U of x in X and a regular function f from U to Y
with φ|U = f . Therefore f is a regular function from the neighborhood U ∩X ′ of x to Y and therefore
to Y ′. Hence φ is regular near each point of X ′ and is therefore regular.

3.11 We can assume that X is affine as the irreducible varieties of X containing P are just the closures of the
irreducible varieties containing P of any affine neighborhood of P . But then the varieties containing P
just correspond to the prime ideals of A(X) contained in the maximal ideal M of P , which correspond
to the prime ideals of the ring A(X) localized at M , which are the prime ideals of the local ring OP .

3.12 By exercise 2.6 there is an affine neighborhood Y of P with dim(Y ) = dim(X). But OP,X = OP,Y so
dim(X) = dim(Y ) = dim(OP,Y ) (by 3.2c) = dim(OP,X).

3.13 OY,X is clearly a ring. Put I = image of set of pairs {U, f}, f regular on U , with f = 0 on U ∩ Y .
Then I is the unique maximal ideal, because if {V, g} is not in I then it has an inverse {W, 1/g} where
W = V ∩(set where g 6= 0), as W ∩ Y 6= 0. The residue field is obviously K(Y ). To prove the result
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about dimensions, we can assume X affine. Put B = A(X), p=functions on X vanishing on Y . Then by
1.8A, height(p) + dim(B/p) = dim(B). But dim(B) = dim(X) and dim(B/p) = dim(Y ) and height of
p in B = height of maximal ideal of OY,X = dimension of OX,Y . Hence dim(OX,Y + dim(Y ) = dim(X).

3.14a We can assume that Pn is the set where x0 6= 0, and p is the point (1 : 0 : · · · : 0). If x = (x0 : · · · :
xn) ∈ Pn+1 − P , then xi 6= 0 for some i > 0. Therefore the line containing P and x meets Pn in
(0 : x1 : · · · : xn), which is a morphism in the neighborhood xi 6= 0 of x. Therefore φ is a morphism.

3.14b The projection maps (t3, t2u, tu2, u3) to (t3, t2u, u3) ∈ P 2. It is easy to check that the image is the
whole of the variety given by the equation x3

1 = x2x
2
0. For x2 6= 0 this is the same as the variety given

by y3 = x2 which has a cusp at (0, 0), i.e., the image has a cusp at (0, 0, 1).

2



Hartshorne, Chapter 1.4 Answers to exercises. REB 1994
4.1 If f = g on U ∩V , then the function which is f on U and g on V is clearly regular. Therefore the union

of all open sets on which f is represented by a regular function is the largest open set on which f is
regular.

4.2 A map is regular if and only if it is regular in a neighborhood of each point, so the conclusion follows
as in 4.1.

4.3a f = x1/x0 is defined in the set where x0 6= 0. This set is isomorphic to A2, and f is just projection to
the first coordinate.

4.3b φ is defined everywhere except the point (1 : 0 : 0).
4.4a See exercise 3.1c.
4.4b The maps taking t ∈ A1 to (t3, t2) and (x, y) to y/x (for x 6= 0) are inverse birational isomorphisms

from the cuspidal curve to A1.
4.4c The projection maps (x : y : z) to (x : y) if (x : y : z) 6= (0 : 0 : 1). The inverse map from P 1 to Y takes

(x : y) to ((y2 − x2)x : (y2 − x2)y : x3) for (x : y) 6= (1 : ±1).
4.5 The subvariety of Q given by w 6= 0 is isomorphic to A2 by (w : x : y : z) → (x/w, y/w), (x, y) → (1 :

x : y : xy). Thererfore Q is birational to Q − {w = 0}, which is isomorphic to A2, which is birational
to P 2. Q is isomorphic to P 1 ×P 1, which is not isomorphic to P 2 as it contains 2 closed 1-dimensional
subvarieties that do not intersect.

4.6ab Put U = V = {(x : y : z)|xyz 6= 0}. Φ clearly maps U to V , and φ2 maps (x : y : z) to (ax : xy : az) =
(x : y : z) where a = xyz, so φ2 is the identity map.

4.6c φ = φ−1 is defined everywhere on P 2 except at the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1). Remark:
The group of birational transformations of P 2 is generated by quadratic transformations (or by one
quadratic transformation and PGL3(k)) and very little about it seems to be known beyond the fact
that it is very large.

4.7 We can assume that X and Y are closed subsets of An, and P = Q = 0. If f is a homomorphism from
OQ,Y to OP,X then define a map g from an open subset of X to Y by

g(x1, . . . , xn) = (f(y1)(x1, . . . , xn), f(y2)(x1, . . .), . . .)

where yi is the i’th coordinate function on An. This is defined on the open set where all the f(yi)’s are
defined. Likewise we can define a similar map from an open set of Y to X, and the composition of these
two maps is the identity wherever it is defined. Therefore there is an isomorphism from an open set of
X to an open set of Y taking P to Q.

4.8a Clearly the cardinality of Pn is at most (n + 1)card(k)n which is the cardinality of k. To prove the
other inequality we can assume that X is contained in An. If the possible values of any coordinate
x1, . . . , xn are finite, the X consists of a finite number of points, so we can assume that one coordinate,
say x1, takes on an infinite number of values. By elimination theory the condition for a point with a
given value of x1 to exist on X is given by a finite number of equalities and inequalities in x1. Therefore
the possible values of x1 are either a finite set or the complement of a finite set in k. But we know the
number of possible values of x1 is infinite, so the number of values is the cardinality of k minus a finite
number, which is the cardinality of k.

4.8b Any two curves have the same cardinality and the finite complement topology, and so are homeomorphic.
4.9 We can assume that X is affine and is contained in An, the set of points in Pn with first x0 6= 0.

The field of fractions k(X) is generated by x1, . . . , xn, so we can assume that x1, . . . , xr is a separating
transcendence basis for k(X)/k by 4.7A and 4.8A, and k(X) is generated by ar+1xr+1 + · · ·+ anxn for
some ai’s in k, by 4.6A. As r ≤ n − 2 we can find a form br+1xr+1 + · · · + bnxn not proportional to
ar+1xr+1 + · · ·+anxn. Choose any point at infinity not in this plane or in X̄. Then the projection from
this point to the plane maps k(hyperplane) onto k(X), so it is an isomorphism from the function field
of the image of X to k(X), and therefore a birational isomorphism.

4.10 If (x, y, w : z) ∈ A2×P 2 is in φ−1(Y )−(exceptional curve) then y2 = x3, xz = yw, so x2(z2−xw2) = 0,
so z2 − xw2 = 0. Therefore the only possibility for this point to lie on the exceptional curve x = y = 0
is (0, 0, 1 : 0). If w = 0 then x = 0 which is not possible, so we can define the map f from Ȳ to A1 by
f(x, y, w : z) = z/w. The inverse takes t to (t2, t3, 1 : t), so Ȳ is isomorphic to A1.
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Hartshorne, Chapter 1.5 Answers to exercises. REB 1994
5.1a This is the tacnode. The singular points are the points with x2 = x4 + y4, 2x = 4x3, and 4y3 = 0, so

(at least in characteristic 0) the only singular point is (0, 0).
5.1b This is the node; singular point is (0, 0).
5.1c This is the cusp; singular point is (0, 0).
5.1d This is the triple point; singular point is (0, 0).
5.2 The singular points of f(x, y, z) = 0 are given by f = 0, ∂f

∂x = 0, ∂f
∂y = 0, and ∂f

∂z = 0.
5.2a This is the pinch point; singular points are where xy2 = z2, y2 = 0, 2xy = 0, and 2z = 0, which is the

line y = z = 0.
5.2b This is the conical double point; singular points are where x2 + y2 = z2, 2x = 0, 2y = 0, and 2z = 0,

which is the point (0, 0, 0).
5.2c This is the double line; singular points are where xy+x3 + y3 = 0, y+ 3x2 = 0, x+ 3y2 = 0, and 0 = 0,

which is the line x = y = 0.
5.3a If P is a point on Y then P is a nonsingular point of Y is equivalent to saying that one of ∂f

∂x , ∂f
∂y are

nonzero at P , which is equivalent to saying that f has a term of degree 1 in x and y, which is equivalent
to saying that µP (Y ) = 1.

5.3b The singularities in 1a, 1b, and 1c have multiplicity 2, and 1d has multiplicity 3.
5.4a f and g both vanish at only a finite number of points, so we can find a polynomial h(y) which vanishes

whenever f and g both vanish, so hn ∈ (f, g) for some n, so we can assume n = 1. The submodules of
OP /(f, g) correspond to ideals of OP containing f and g, so it is sufficient to show that k[x, y]/(f, g) is
finite dimensional (as its dimension is at least the length of OP /(f, g)). But if we have polynomials h1(x)
and h2(y) of degrees m and n in (f, g) then k[x, y]/(f, g) has dimension at most that of k[x, y]/(h1, h2)
which is mn which is finite.

5.4b Put P = (0, 0) and take any line L not in the tangent cone of Y . We can assume that L is the line
y = 0, so the terms of lowest degree in f contain xm (where m is the multiplicity of Y at P ). Then
OP /(f, g) = OP /(y, xm + · · ·) = OQ/(xm + · · ·) which has length m (where OQ is the local ring of
Q = 0 ∈ A1).

5.4c We can assume that L is y = 0. If z 6= 0, the equation of the curve Y is f(x) + y(∗) = 0 where f if a
polynomial in x of some degree n. Then if x is a root of f of multiplicity m, we have (L.Y )(x, 0) = m,
so the sums of the intersection multiplicities along the x axis is the number of roots of f which is n.
On the other hand, at the point (0 : 1 : 0) the intersection multiplicity is d− n as the equation for f is
locally zd−n + · · ·+ x(∗) = 0. So the sum of all intersection multiplicities is n+ d− n = d.

5.5 If the characteristic p does not divide d we can use xd + yd + zd = 0 Otherwise we can use xyd−1 +
yzd−1 + zxd−1 = 0.
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Hartshorne, Chapter 1.6 Answers to exercises. REB 1994
6.1a By 6.7, Y is isomorphic to an open subset of some projective space, and therefore to a proper open

subset of P 1, and therefore to some open subset of A1.
6.1b We can assume Y = A1\{a1, . . . , an}. Then Y is isomorphic to the subset y(x− a1) · · · (x− an) = 0 of

A1.
6.1c Any element of A(Y ) can be written uniquely in the form a(x− b1)c1 · · · (x− bn)cn with ci some integer,

and ci positive if bi is not one of a1, . . . , an. Hence A(Y ) is a U.F.D. with primes x−bi for bi 6= a1, . . . , an.
6.2a Singular points must satisfy y2−x3 +x = 0, 2y = 0, −3x2 +1 = 0, and if k does not have characteristic 2

this implies y = 0, x = 0,±1 which contradicts −3x2 + 1 = 0. The polynomial y2−x3 +x is irreducible,
because if it were reducible then its two factors would intersect somewhere (possibly at infinity) and
this point of intersection would be singular. (We should really also check that the curve has no singular
points at infinity!) As Y is nonsingular, all points of Y are normal, so Y is normal, so A(Y ) is integrally
closed.

6.2b k[x] is clearly a polynomial ring, and y2 ∈ k[x] so y is in the integral closure of k[x]. So A is contained in
the integral closure of k[x], and is therefore equal to the integral closure because A is integrally closed.

6.2c The automorphism x 7→ x, y 7→ −y is an automorphism of k[x, y] which maps the ideal (y2 − x3 + x)
to itself and therefore induces an automorphism of A (fixing x). Any element of A can be written as
yf(x) + g(x), so its norm is (g(x) + yf(x))(g(x)− yf(x)) = g(x)2− f(x)2(x3−x) ∈ k[x]. The remaining
properties of N(a) are trivial to check.

6.2d If a is a unit then N(a) is also a unit (with inverse N(1/a)) so must be an element of k as these are the
only units in k[x]. But if a = yf(x) + g(x), then its norm is g(x)2 − f(x)2(x3 − x) and if f is nonzero
then the second term has odd degree while the first has even degree so their sum cannot be a constant.
Hence f = 0, and g2 is a constant, so a is a constant. To show that A is not a UFD, note that x and
y are irreducible (this follows easily by looking at their norms x2 and x3 − x and noting that there are
no elements whose norms is a degree 1 polynomial). But x|y2 and y is not a unit times x, so A cannot
be a UFD.

6.2e Y is clearly not P 1, and by exercise 6.1c it is not A1 minus a finite number of points, so Y is not rational.
6.3a Map A2\(0, 0) to P 1 by (x, y) 7→ (x : y).
6.3b Map P 1\∞ to A1 in the obvious way.
6.4 Any nonconstant rational map from Y to P 1 induces φ∗ from k(x) to k(Y ), which is injective. Then

every valuation ring of k(x) can be extended to one of k(Y ), so every point of P 1 is the image of a point
of Y . For every p ∈ P 1, φ−1(P ) is closed. If it was infinite it would have to be all of Y as the closure
of any infinite subset of Y is Y , so the map φ would have to be constant.

6.5 We know that X̄ is a curve. If x ∈ X̄ −X then by 6.8 the map from X to X can be extended to a map
from x ∪X to X which is impossible. (Alternatively this problem follows from the fact that the image
of any projective variety under a regular map is closed.)

6.6a The inverse of x 7→ (ax+ b)/(cx+ d) is x 7→ (dx− b)/(a− cx) if ad− bc 6= 0.
6.6b Follows from corollary 6.12 (i) and (iii).
6.6c Any automorphism of k(x) maps x to f(x)/g(x) for some coprime polynomials f and g, and x =

h(f(x)/g(x)) for some rational function h. Therefore f(x)/g(x) is not equal to f(y)/g(y) if x 6= y. But
if f or g have degree greater than 1 then g(y)a = f(y) will usually have more than one solution for y.
Hence f and g have degrees at most 1, and the result follows from part (a).

6.7 Any map from one curve to the other can be extended to a map from P 1 to P 1, so the points Pi must
be mapped to the points Qj , so r = s. The converse is true if and only if r ≤ 3, because any set of at
most 3 distinct points in P 1 can be mapped to any other set of the same size under Aut(P 1), but this
is not true for sets of 4 or more points.
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Hartshorne, Chapter 1.7 Answers to exercises. REB 1994
7.1a The polynomials of degree m in N +1 variables restricted to the image of Pn in PN give the polynomials

of degree md in n + 1 variables. Hence the Hilbert polynomial of the embedding of Pn in PN is f(dk)
where f(k) =

(
k+n

n

)
is the Hilbert polynomial of Pn (embedded in itself). So the Hilbert polynomial of

the d-tuple embedding is
(
dk+n

n

)
= (dk)n/n! + · · · so the degree of the embedding is dn.

7.1b Similarly we find that the Hilbert polynomial of the Segre embedding of P r × P s is the product of the
Hilbert polynomials of P r and P s, which is(

k + r

r

)(
k + s

s

)
= (kr/r! + · · ·)(ks/s! + · · ·) =

(
r + s

r

)
kr+s/(r + s)! + · · ·

so the degree of the Segre embedding is
(
r+s

r

)
.

7.2a This follows from the fact that the Hilbert polynomial PP n(k) =
(
n+k

n

)
has constant term 1.

7.2bc By 7.6c, PH(k) =
(
k+n

n

)
−

(
k−d+n

n

)
, whose value at 0 is 1−

(
n−d

n

)
= 1− (−1)n

(
d−1

n

)
.

7.2d The Hilbert polynomial of this complete intersection is(
k + 3

3

)
−

(
k − a + 3

3

)
−

(
k − b + 3

3

)
+

(
k − a− b + 3

3

)
whose constant term is 1−

(
3−a
3

)
−

(
3−b
3

)
+

(
3−a−b

3

)
which is 1− (ab(a + b− 4)/2 + 1).

7.2e The Hilbert polynomial of Y ×Z is the product of the Hilbert polynomials of Y and Z, from which the
result follows easily.

7.3 We can assume that P is (0, 0) ∈ A2, and we can assume that if f if the function defining Y then
f(x, y) = y+(terms of degree at least 2). By Ex. 5.4 the only line whose intersection multiplicity with
Y at P is the line y = 0. In general the mapping takes (x0 : x1 : x2) ∈ Y to the point (f0(x0, x1, x2) :
f1(x0, x1, x2) : f2(x0, x1, x2)) where fi = ∂f

∂xi
, which is well defined as long as one of the 3 numbers

fi(x0, x1, x2) is nonzero, i.e., the point P is nonsingular.
7.4 By Ex. 5.4, any line not tangent to Y and not passing through a singular point meets Y in exactly d

distinct points. As Y has only a finite number of singular points, the lines intersection at least one of
these form a proper closed subset of P 2∗ (in fact a union of lines). By 7.3 the lines tangent to Y are
also contained in a proper closed subset of P 2∗, so there is a nonempty open subset U of lines in P 2∗

intersecting Y in exactly d points.
7.5a We can assume that any point P of multiplicity at least d is (0, 0). But then the equation f(x, y)

defining Y has all terms of degree exactly d, so it is a product of linear factors, which is not possible if
Y is irreducible of degree greater than 1.

7.5b As in 7.5a we can assume that the equation defining Y is of the form f(x, y) + g(x, y) = 0 where f is
homogeneous of degree d− 1 and g is homogeneous of degree d. If we make the substitution t = y/x we
find that y = −f(t, 1)/g(t, 1), x = yt gives an inverse rational map so that Y is birational to A1.

7.6 Any linear variety obviously has degree 1 (by calculating its Hilbert polynomial). Assume that Y has
degree 1. Then by 7.6b, Y is irreducible (as all components of Y have the same dimension). By theorem
7.7 if H is any hyperplane then Y ∩ H also has degree 1 (or Y ⊂ H, in which case Y is linear by
induction on n). Therefore Y ∩H is linear for every hyperplane H, and therefore for every linear variety
H. In particular if p, q ∈ Y , then the intersection of Y with the line pq is linear and therefore is the line
joining p and q. Hence Y contains any line joining two of its points, and is therefore linear.

7.7a We show that X is birational to the cone on Y which will show that X is irreducible and of dimension
r + 1. We choose a hyperplane “at infinity” in Pn not containing P or Y , and map X to the cone on
Y by taking any line PQ\(point at infinity) to the affine line on the cone over Y by taking Q to Q, P
to the vertex of the cone. We can define a rational inverse in the obvious way.

7.7b We prove this when Y is any closed algebraic set, not necessarily reducible. If Y has dimension 0 then
it is a union of d points and X is a union of at most d − 1 lines, so the result is true in this case. If
Y has dimension > 0 choose a generic hyperplane H containing P , which can be chosen to intersect Y
transversely at generic points of the intersection as Y is nonsingular at P . The intersection of Y and H
has degree at most d× deg(H) = d by 7.7. The intersection of X with H is the union of the set of lines

1



joining P and H ∩ Y which has degree less than d by induction on dim(Y ). Again by 7.7, the degree of
X is equal to the degree of X ∩H as all components of X ∩H have multiplicity 1 in the intersection (as
H is generic). Hence the degree of X is less than that of Y . (Note that the intersection X ∩H of an
irreducible algebraic set X with a generic hyperplane H need not be irreducible! But see remark 7.9.1
on p. 245 of Hartshorne.)

7.8 Applying 7.7 to Y r shows that Y is contained in a degree 1 variety H of dimension r + 1 in Pn, which
by 7.6 is a linear variety and therefore isomorphic to P r+1.
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Solution to Math256a section IV.1
1.1) Choose a positive integer n larger than deg(K) = 2g − 2, and g. By

Riemann-Roch theorem, l(nP ) = n+1−g > 1. Thus there exists a non-constant
rational function f over X which has a pole at P of order n > 0, and regular
everywhere else.

1.2) Induction on r. The case r = 1 follows from the previous exercise. Now
assume there is a rational function f having poles at each of P1, · · · , Pr−1 of
positive orders and regular everywhere else. Since f has no pole at Pr, we may
let nr ≥ 0 be the coefficient of Pr in (f) (as a divisor). We may choose a rational
function g which has a pole at Pr of order > nr and regular everywhere else
(Cf. 1.1). Then f · g has poles precisely at P1, · · · , Pr of positive orders.

1.5) Since D is effective, |K − D| ⊆ |K|. Therefore l(K − D) ≤ l(K). By
Riemann-Roch theorem, l(D) = l(K−D)−g+deg(D)+1 ≤ l(K)−g+deg(D)+
1 = deg(D) + 1, since l(K) = g. It follows that dim(|D|) = l(D)− 1 ≤ deg(D).
Proof showes that the equality holds iff l(K − D) = l(K) = g. If D = 0, it is
trivially true. If g = 0, deg(K) = −2, so deg(K −D) < 0. Hence l(K −D) = 0.
It follows that l(K −D) = l(K) = 0.

Conversely, suppose l(K − D) = l(K) = g. Suppose D 6= 0. Let P ∈
Supp(D). Then |K −D| ⊆ |K − P | ⊆ |K|, thus l(K −D) ≤ l(K − P ) ≤ l(K),
and hence they are all equal. By Riemann-Roch, l(P ) = l(K − P ) + 2− g = 2.
Therefore there is a rational function f with one pole at P of order 1 and
regualr everywhere else. This function defines an isomorphism from X to P1,
thus g(X) = g(P1) = 0.

1.6) Let P be a point on X. By Riemann-Roch,

l((g + 1)P ) = l(K − (g + 1)P ) + (g + 1) + 1− g ≥ 2.

Thus there exists a rational function f with a pole at P of order g + 1 and
regular everywhere else. This ration function induces a morphism f : X → P1

by sending (g+1)P to∞ ∈ P1. By II Prop. 6.9, deg(f) = deg((g+1)P ) = g+1.
1.7) (a) It is clear that deg(K) = 2g − 2 = 2 and dim(|K|) = l(K)− 1 = 1.

Suppose P is a base point of |K|, then l(K − P ) = l(K) = 2 by definition. By
Riemann-Roch, l(P ) = 2 + 2− 2 = 2. Thus there exist a non-constant rational
function f with a pole at P of order 1 and regular everywhere else. As we did
before, f defines an isomorphism from X to P1, contradiction since X has genus
2 not 0. Therefore |K| has no base point. Alternatively, one may apply directly
Prop 3.1 on page 307. By II, 7.8.1, there is a finite morphism f : X → P1 with
degree equal to deg(K) = 2. Therefore X must be a hyperelliptic curve.
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Solution to Math256a section IV.3 (H.Zhu, 1994)
3.1) One direction follows easily from 3.3.4. We show that D is not very

ample when deg(D) < 5. Now suppose D is very ample, then l(D) = l(D −
P − Q) + 2 ≥ 2. Futhermore, if l(D) = 2, dim|D| = 1, thus |D| defines an
isomorphism from X to P1, which is obsurd. Thus we have l(D) > 2.

If deg(D) ≤ 1, Since l(D) 6= 0, we may apply Ex. 1.5., l(D) ≤ deg(D) + 1 ≤
2, thus D is not very ample.

If deg(D) = 2, l(D) = l(K − D) + 1. Since D 6= 0, l(K − D) < l(K) = 2.
Thus l(D) ≤ 2. Contradiction.

If deg(D) = 3, then l(K −D) = 0. So l(D) = 2. Contradiction.
If deg(D) = 4, then l(D) = 3. By 3.2, we know that D is base point free.

Thus |D| defines a morphism from X to P2. But this is impossible since any
plane curve has genus (d− 1)(d− 2)/2, which is never 2. Contradiction.

We conclude that deg(D) ≥ 5.
3.2) (a) From I, Ex.7.2, g(X) = 3. It results in l(K) = 3 and deg(K) = 4.

Denote D =: X.L. Recall Bezout’s theorem from I, 7. so deg(D) = 4. Now
claim that l(D) ≥ 3. Since the line L on X is determined exactly by two points
(not necessary distinct) so dim|L| = 2, i.e. l(D) = 3. (This may be rigorously
proved by considering the possible linearly independent sets.) Then l(K−D) =
l(D)+g−deg(D)−1 = 1. But deg(K−D) = 0 and l(K−D) = deg(K−D)+1,
thus K = D by Ex.1.5.

(b) SinceD is an effective divisor of degree 2, D = P1+P2 for some two points
on X (not necessary distinct). Suppose there is an effective divisor Q1 + Q2

such that P1 + P2 ∼ Q1 +Q2. Since the line passing thru P1 and P2 intersects
X at two other points P3 and P4. By (a) we have K = P1 + P2 + P3 + P4, so
Q1, Q2, P3, P4 is collinear. Hence Q1, Q2 coincide with P1, P2. Thus dim|D| = 0.

(c) From Ex. 1.7.(a), dim|K| = 1. But we may pick an effective canonical
divisor K such that dim|K| = 0 by (b). Thus X can not be a hyperelliptic
curve.

3.3) It is clear that the second statement follows from the first one since
K is not very ample on a hyperelliptic curve. (Cf. 5.2.) By II.Ex.8.4, ωX

∼=
O(

∑
di−n−1). Since the dimension of the global section of this invertible sheaf

equals g ≥ 2, ωX has to be very ample. (Otherwise it has no global sections.)
This is equivalent to saying that the canonical divisor K is very ample.

We showed in Ex.1.7 that any curve of genus 2 has to be a hyperelliptic
curve, and its canonical divisor is not very ample. Thus it can not be a complete
intersection in Pn.

3.4) (a) Denote θ as the corresponding ring homomorphism. deg(θ) = d. We
know that the image of the d-uple embedding is Z(ker(θ)). We may check that
ker(θ) is generated by x2

i+1 − xixi+2, for i = 0, · · · , d− 2, and x0xd − x1xd−1.
(b) If i is the close immersion, denote i∗(O(1)) as D. Because dim|D| = n

and deg(D) = d, we have l(D) = n+ 1 ≤ deg(D) + 1 = d+ 1 ≤ n+ 1. Therefore
n = d and g = 0 by Ex..1.5. Consequently, X ∼= P1. Since X does not lie in
Pn−1, the natural map Γ(Pn,O(1)) → Γ(X, i∗(O(1)) is injective. Thinking X

1



as P1, D corresponds to a (n + 1)-dimension subspace V ∈ Γ(P1,O(n)) hence
they are equal since the later has dimension n + 1. Therefore, X is indeed a
rational normal curve. (see II. 7.8.1).

(c) It is clear this curve X can not be in P1. From (b), X is a plane curve
of degree 2.

(d) Suppose X is not a plane cubic curve, we apply (b), have X ⊆ P3\P2,
thus it is a rational normal curve of degree 3, which is indeed a twisted cubic.

3.6) (a) When n ≥ 4, Ex.3.4 (b) implies that X is a rational normal curve.
If X is a plane curve, g(X) = (d− 1)(d− 2)/2 = 3. Otherwise, X ⊆ P3\P2, we
claim that g = 0, 1. Suppose g = 2, then Ex.3.1 shows that any divisor of degree
4 is not very ample, that is X can not be embedded to P3, which is absurd. If
g = 0, then it is a rational quartic curve by II,7.8.6. g can not be 3 since X is
not a plane curve. Thus g has to be 1.

3.7) Suppose C is a nonsingular curve which projects to the given curve X.
We prove that deg(C) = 4 which will soon lead a contradiction with assertions
in Ex.3.6. To prove our first claim, we carefully choose a suitable hyperplane
H passing the projection point to cut C which intersects with P2 by a line L
such that there is a 1-1 map from C.H to X.L. We conclude that deg(C) = 4
by recalling Bezout’s Theorem.

Since C has a node, it can not lie in case (1) or (2) in Ex.3.6. By Hurwitz’s
theorem, g(C) ≥ g(X̃) = 3− 1 from 3.11.1, thus g(X) 6= 1. Contradiction with
Ex.3.6. Thus such C does not exist.

3.8) (a) By a simple calculation, the tangent vector is (1, 0, 0) at each point.
Pick an point P = (x0, y0, z0) on X, its tangent line is given by the intersection
of two hyperplanes: y = y0 and z = z0. Writen in homogeneous polynomial,
y = y0w and z = z0w. Thus all tangent lines pass through the point at infinity
(1 : 0 : 0 : 0). There is one strange point on this curve.

(b) Note that when char(k) = 0, X has finitely many singular points. By
choosing a proper projection, we may still project X in P3. Suppose P is a
strange point on X. Choose an affine cover such that P is the infinity point on
x-axis, and other relevant conditions in the proof of Theorem 3.9. The resulted
morphism is ramified at all but finitely many points on X. The image is thus a
point otherwise the map is inseparable which is not the case over a field of char
0. Hence X is the line P1.

3.9) Three points are collinear iff there is a multisecant line passing through
them. A hyperpalne in P3 intersects X at exactly d points iff the hyperplane
does not pass any tangent lines of X. Prop 3.5 showed that dim(Tan(X)) ≤ 2.
Also it is not hard to show that the dimension of the space of multisecant lines
of X has dimension ≤ 1. Hence the union of these two spaces is a proper closed
subspace of P3∗ which is of dimension 3. Therefore almost all hyperplanes
intersect X in exactly d points.
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