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5.7. Calculation of Definite Integrals

Cauchy first caught the imagination of the mathematical world with his abil-
ity to compute some definite integrals where an explicit antiderivative is not
available, and this use of complex variables is still central to many applied
areas. Since it it not central to the theoretical concerns that dominate this
book, we’ll not spend as long as some texts, but we’d be remiss if we didn’t
say something. The choice of contour is an art as much as a science, so
we’ll mainly study by example, which we’ll break into six parts. All use the
residue theorem, Theorem 4.3.1.

5.7.1. Periodic Functions Over a Period. These are the simplest since
they essentially come as an integral over a closed contour.

Example 5.7.1. For a > |b| both real, computeˆ 2π

0

1

a+ b cos θ

dθ

2π
(5.7.1)

Let z = eiθ so dz = iz dθ and the integral in (5.7.1) becomes (with the usual
counterclockwise contour on ∂D)

1

2πi

‰
1

a+ 1
2b(z + z−1)

dz

z
=

1

2πi

‰
2

bz2 + 2az + b
dz

The poles are at (±
√
a2 − b2 − a)/b = z±. Both are in (−∞, 0), one inside

the circle, one outside. The polynomial is thus b(z − z+)(z − z−) and the

residue is 1/b(z+ − z−) = 1/2(
√
a2 − b2), that is,ˆ 2π

0

1

a+ b cos θ

dθ

2π
=

1√
a2 − b2

(5.7.2)

Taking a = 1 and expanding both sides as a power series in b (using the
binomial theorem for (1− b2)−1/2) one gets (one can also get this from the
binomial theorem and go backwards to (5.7.2))ˆ 2π

0
cos2n(θ)

dθ

2π
=

(2n)!

22n(n!)2
(5.7.3)

�

5.7.2. Integrals of Rational Functions. Most of the remaining exam-
ples are

´∞
−∞ or

´∞
0 and so are “improper,” that is, over infinite intervals.

There are three possible meanings of such an integral:

(a)
´∞
0 |f(x)| dx < ∞ or

´∞
−∞|f(x)| dx < ∞. Such integrals are said to be

absolutely convergent.

(b) limR→∞
´ R
0 f(x) dx exists but

´∞
0 |f(x)| dx = ∞. Such integrals are

said to be conditionally convergent.
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(c) limR→∞
´ R
−R f(x) dx exists but limR→∞

´ R
0 f(x) dx does not. Such in-

tegrals are called principal values at infinity (written pv).

Examples of the three types are
´∞
−∞

dx
1+x2 (see Example 5.7.3 below),´∞

−∞
sinx
x dx (see Example 5.7.5 below), and pv

´∞
−∞

x dx
x2+1

= 0. While on the

subject of principal values, if
´
|x|>ε, x∈(a,b)|f(x)| dx is finite for all ε > 0 but´ ε

0 |f(x)| dx =
´ 0
−ε|f(x)| dx (=∞), we define for a < 0 < b,

pv

ˆ b

a
f(x) ≡ lim

ε↓0

[ˆ −ε

a
f(x) dx+

ˆ b

ε
f(x) dx

]
(5.7.4)

if the limit exists. If the singular point is at x0 rather than 0, we make a
similar definition. If γ is a simple contour, C1, near γ(t0), we can similarly
define a principal value as integrating without (t0 − ε, t0 + ε). Here is the
key fact:

Theorem 5.7.2. Let γ be a simple closed contour, f meromorphic in a
neighborhood of ins(γ) so that f has only simple poles on Ran(γ) and with
γ C1 near these poles. If γ is oriented so that n(γ, z) = 1 on ins(γ)int, then

1

2πi
pv

‰
f(x) dz =

∑
z0∈ins(γ)int

Res(f ; z0) +
1
2

∑
z0∈Ran(γ)

Res(f ; z0) (5.7.5)

Proof. Letting γ̃r be the contour

γ̃r(t) = reπit, 0 ≤ t ≤ 1 (5.7.6)

the standard calculation (see Example 2.2.2) shows the integralˆ
γ̃r

z−1 dz = πi (5.7.7)

Thus, if γ(ε) is the contour γ with symmetric gaps of size 2ε about each point
on γ and if γ(ε)� is γ(ε) with semicircles running outside (see Figure 5.7.1)ˆ

γ(ε)

f(z) dz =

ˆ
γ(ε)	

f(z) dz − πi
∑

z0∈Ran(γ)

Res(f ; z0) +O(ε) (5.7.8)

From the residue theorem, we get (5.7.5). �

γ (ε)

γ (ε) 

Figure 5.7.1. Resolving a principal value.

If P/Q is a rational function with no poles on R,
´∞
−∞(P (x)/Q(x)) dx

is absolutely convergent if deg(Q) ≥ 2 + deg(P ). If deg(Q) = 1 + deg(P )
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so P (x)/Q(x) = c/x+ O(1/x2) at infinity, then only the principal value at
infinity exists and is easy to accommodate. Thus, we will limit ourselves here
to deg(Q) ≥ 2 + deg(P ). Using Theorem 5.7.2, it is easy to accommodate
simple poles on R.

Example 5.7.3. Compute for a > 0,ˆ ∞

−∞

dx

x2 + a2
(5.7.9)

This is the limit as R → ∞ of
´ R
−R. We now “close the contour,” that

is, add and subtract the integral counterclockwise along |z| = R from R
to −R. If R > a, the amount subtracted is bounded by πR(R2 − a2)−1,
since sup|z|=R|1/(z2 + a2)| ≤ 1/(R2 − a2). This goes to zero as R → ∞.

Thus, if CR is the closed contour (see Figure 5.7.2), the integral in (5.7.9)
is the limit as R → ∞ of the integral over the closed contour (which we’ll
see is R-independent if R > a). Inside the contour, z2 + a2 has one pole at
z = ia and the residue is 1/2ia. Thus,ˆ ∞

−∞

dx

x2 + a2
=

π

a
(5.7.10)

The reader should do the computation if the contour is closed in the lower
half-plane.

-R R

z = ia

Figure 5.7.2. Contour for Example 5.7.3.

Since (x2 + a2)−1 = a−1 d
dx arctan(

x
a ), this can also be computed by

standard real variable methods. Indeed, by the method of partial fractions,
every P/Q which is real on R with all poles in C\R can be reduced to sums
of the form (5.7.9) and powers of that integrand. �

5.7.3. Trigonometric Times Rational and Exponential Functions.
This class illustrates the power of complex variable methods since the inte-
grand in (5.7.11) is not the derivative of any elementary function.

Example 5.7.4. Compute for a > 0 and b real with b �= 0,ˆ ∞

−∞

cos bx

x2 + a2
dx (5.7.11)

Without loss, suppose b > 0. Since Re(eibx) = cos bx, we need only compute
the integral with eibx replacing cos bx. We can close the contour in the upper
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but not lower half-plane (since |eib(x+iy)| = e−by). Computing the residue at
x = ia yields ˆ ∞

−∞

cos bx

x2 + a2
=

πe−|b|a

a
(5.7.12)

�

Example 5.7.5. Compute for a > 0,

ˆ ∞

−∞

sin ax

x
dx (5.7.13)

This has four subtleties compared to the last example. First, it is not abso-
lutely convergent, but by general principles (see Problem 3), it is condition-
ally convergent.

Second, we cannot close the contour naively in either half-plane because
the function sin az/z grows badly in each half-plane. The obvious solution
is to write sinaz/z = (eiaz − e−iaz)/2iz, and for each term close in different
half-planes. The problem is that while sin az/z is regular at z = 0, e±iaz/z

are not. Here, what we do is replace
´∞
−∞ by

´∞
ε +

´ −ε
−∞+

´
Cε

where Cε

lies in the lower half-plane as the semicircle from −ε to ε. Since sin az/z is
bounded on that circle uniformly in ε and the contour is O(ε), we are sure
to recover the given integral as ε ↓ 0 (and, indeed, by the CIT, this sum is
ε-independent!).

Third, we cannot close trivially with a large semicircle (although with
extra work, one can (see Problem 4(b)). Instead, we close the contour for
eiaz/2iz by going from −R to R along R (with the ε-change above), go

upwards to R + i
√
R, horizontally and backward to −R + i

√
R, and then

down (see Figure 5.7.3). A simple estimate (Problem 4(a)) shows that as
R→∞, this extra contour contributes zero.

There results two integrals, one involving eiaz/2iz in the upper half-
plane and the other e−iaz/2iz in the lower half-plane. The second encloses
no poles (with our choice of deformation near zero) and the other only a

−R + i R R + i R

−R R−ε ε

Figure 5.7.3. Contour for Example 5.7.5.
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pole at zero. The result is 2πi/2i, so
ˆ ∞

−∞

sin ax

x
dx = π (5.7.14)

The last subtlety concerns the fact that while (5.7.14) is independent
of a, for a = 0, the integral is zero! This lack of continuity was discovered
by Cauchy and concerned him. It shows the difficulty of interchanging limits
and conditionally convergent integrals (or sums). �

Example 5.7.6. For 0 < a < 1, computeˆ ∞

−∞

eax

1 + ex
dx (5.7.15)

Exponentials and trigonometric functions are brothers. Since for x > 0,
this function vanishes as e−(1−a)x, and for x < 0 as e−a|x|, the integral is
absolutely convergent. Illustrating that contour integrals are an art, we close
this contour by letting

F (z) =
eaz

1 + ez
(5.7.16)

and note that

F (z + 2πi) = e2πiaF (z) (5.7.17)

Thus, we take the rectangle in Figure 5.7.4 with corners at ±R and ±R+2πi.
The contributions of the vertical edges go to zero as R → ∞. Thus, the
contour integral as R→∞ goes to

(1− e2πia)

ˆ ∞

−∞

eax

1 + ex
dx (5.7.18)

On the other hand, there is one pole within the contour at z = iπ where
the residue is

eiπa
[

d

dz
(1 + ez)

∣∣∣∣
z=iπ

]−1

= −eiπa

Thus,

(5.7.18) = −2πi eiπa (5.7.19)

−R + 2πi 

−R R

R + 2πi 

Figure 5.7.4. Contour for Example 5.7.6.
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Since −2πieiπa/(1 − e2πia) = π/ sin(πa), we see that (see also (5.7.30) and
Problem 10) ˆ ∞

−∞

eax

1 + ex
dx =

π

sin(πa)
(5.7.20)

�

5.7.4. Examples with Branch Cuts.

Example 5.7.7. Compute for a > 0,ˆ ∞

0

log(x)

x2 + a2
dx (5.7.21)

For −π/2 < arg(z) < 3π/2, define

F (z) =
log(z)

z2 + a2
(5.7.22)

and integrate F (z) over the contour from −R to R along R and then along
the semicircle in the upper half-plane. The contribution of the semicircle is
O
(
(R log(R))/R2

)
as R→∞, and so goes to zero.

Since log(−x) = log(x) + iπ for this branch of log(z), the integral over
the real axis piece as R→∞ goes to

2

ˆ ∞

0

log(x)

x2 + a2
+ iπ

ˆ ∞

0

dx

x2 + a2
(5.7.23)

On the other hand, for large R, the contour has one pole at z = ia with
residue log(ia)/2ia = (log(a) + iπ/2)/2ia. Thus, if I is the integral in
(5.7.21), we get

2I + iπ

ˆ ∞

0

dx

x2 + a2
=

π

a

[
log(a) +

iπ

2

]
(5.7.24)

We could just take real parts (but, in fact, the imaginary parts are equal by
(5.7.10)). Thus, ˆ ∞

0

log(x) dx

x2 + a2
=

π

2a
log(a) (5.7.25)

In fact, this can be computed by conformal invariance alone (see Problem 6).
�

Example 5.7.8. This integral is also evaluated in Problem 10. For 0 < a <
1, compute ˆ ∞

0

xa−1

1 + x
dx (5.7.26)

We define on C \ [0,∞),

f(z) =
(−z)a−1

1 + z
(5.7.27)
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R

R

Figure 5.7.5. Contour for Example 5.7.8.

where we take the branch of (−z)a−1 which is positive for z < 0, that is, for
z = reiθ, 0 < θ < 2π,

(1 + z)f(z) = ra−1ei(θ−π)(a−1) (5.7.28)

Thus, for x > 0,

f(x± i0) =
e±iπ(1−a)

1 + x
xa−1 (5.7.29)

Consider the contour that goes above the cut from 0 to R, circles to
around just below R, and back to 0 (see Figure 5.7.5). The contribution
of the circle to

�
f(z) dz is bounded by Ra−1(2πR)/(R− 1) goes to zero as

R → ∞. Thus, as R → ∞, the integral is equal to [eiπ(1−a) − e−iπ(1−a)]
(integral in (5.7.26)).

f has one pole at z = −1 and the residue is 1. Thus, since eiπ = −1,
the integral is (2πi)/(eiπa − e−iπa) = π/ sin(πa) andˆ ∞

0

xa−1

1 + x
dx =

π

sin(πa)
(5.7.30)

�

The reader may have noticed that the right sides of (5.7.30) and (5.7.20)
agree. This is no coincidence—the change of variable x = ey in (5.7.30) turns
one integral into the other! (See also Problem 10.)

Example 5.7.9. In Section 5.7.2, we saw how to evaluate
´∞
−∞

P (x)
Q(x)dx if

degQ ≥ degP + 2 (5.7.31)

where Q(x) has no zeros on R. One need only close the contour in the upper

half-plane. Here, we’ll consider
´∞
0

P (x)
Q(x) dx if Q has no zeros on [0,∞)

and (5.7.31) holds. A simple example (which can be computed by other
means!) is ˆ ∞

0

dx

(x+ 1)2
(5.7.32)
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Let f(z) = log(−z)/(z + 1)2 and consider the integral of f along the
contour shown in Figure 5.7.5. Since |f(z)| = o( 1

|z|) at infinity, the circle

makes a vanishing contribution as R → ∞. Since log(−x + i0) − log(−x −
i0) = −2πi, the combined integral along the cut is −2πiI, where I is the
integral in (5.7.32). Near z = −1, log(−z) = −(z + 1) +O((z + 1)2), so the
residue of f at −1 is −1. Therefore, −2πiI = −2πi, that is, I = 1 (which
can be obtained from the antiderivatives). Clearly, the same method works

for any
´∞
0

P (x)
Q(x) dx of the type discussed (see Problem 11). �

Example 5.7.10. Compute ˆ 1

−1

dx√
1− x2

(5.7.33)

Of course, this can be done via trigonometric substitution x = sin θ to

get
´ π/2
−π/2 dθ = π. But we can do it and more complicated examples (see

Problem 8) using contour integration. Put a branch cut for (1−z2)−1/2 from
−1 to 1 and take the branch which is positive for z = x+ i0, −1 < x < 1, so
the branch which is positive for z = iy, y > 0. The integrand at z = x−i0 is
−(1−x2)−1/2, so a contour around the top returning on the bottom (which
is clockwise) is −2× (5.7.33). This can be deformed to a contour around a
large circle, so large that the Laurent series at infinity converges.

Near z =∞,

f(z) =
i√

z2 − 1
=

i

z

(
1− 1

z2

)−1/2

(5.7.34)

where we pick
√
−1 = i rather than −i to have f(iy) > 0 for y > 0. Since¸

dz
z�

= 0 for � > 1, we see

(5.7.33) = −1

2
(2πi)(i) = π (5.7.35)

�

5.7.5. Gaussian and Related Integrals.

Example 5.7.11 (Gaussian Integral). Evaluate the Gaussian integralˆ ∞

−∞
e−x2/2 dx (5.7.36)

using residue calculus.

Remark. The simplest method of evaluating this integral uses polar coor-
dinates; see Proposition 4.11.10 of Part 1 or Theorem 9.6.6. Part 1 also had
a third proof using the Fourier inversion formula; see Problem 11 of Sec-
tion 6.2. We will also find a method using Euler’s gamma function in Sec-
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tion 9.6 (see especially the remark following Corollary 9.6.5). Problems 26
and 28 sketch two other proofs.

This is a tricky example since there are no poles and no obvious closed
contours to use.

The arithmetic will be easier for e−x2
rather than e−x2/2; we’ll then scale

to get (5.7.36). A special role will be played by the complex number

β =
√
π eiπ/4 (5.7.37)

which obeys

β2 = πi (5.7.38)

Thus,

e−(z+β)2 = e−z2−β2−2βz = −e−z2e−2βz (5.7.39)

The minus sign is promising, but e−2βz looks problematic. However, since

e−2β2
= e−2πi = 1, h(z) = e−2βz obeys h(z + β) = h(z).

This leads us to define

f(z) =
e−z2

1 + e−2βz
(5.7.40)

As noted, the denominator is invariant under z → z + β, so by (5.7.39),

f(z)− f(z + β) = e−z2 (5.7.41)

We therefore consider the contour, ΓR, which is a parallelogram with
corners, −R,R,R + β,−R+ β (Figure 5.7.6). By (5.7.41),ˆ R

−R
e−z2 dz =

ˆ
bottom–top of ΓR

f(z) dz (5.7.42)

It is an easy exercise (Problem 12) to see the contribution of the sides goes
to zero as R→∞, so by the residue theorem,ˆ ∞

−∞
e−z2 dz = 2πi

∑
poles

zj of f(z) in {z|0<Im z<Imβ}

Res(f ; zj) (5.7.43)

The poles of f(z) are solutions of

e−2βz = −1 (5.7.44)

−R+β R+β

−R R

1
2

β

Figure 5.7.6. Contour for Example 5.7.11.



210 5. More Consequences of the CIT

that is,

2βz = (2n+ 1)πi = (2n+ 1)β2 (5.7.45)

or

zn = (n+ 1
2)β, n = 0,±1, . . . (5.7.46)

Only z0 is in the strip {z | 0 < Im z < Imβ} (see Figure 5.7.6) and the
residue there is

e−
1
4
β2

d
dz (1 + e−2zβ)

∣∣
z=β/2

=
e−β2/4

−2βe−β2 =
e−iπ/4

2β
=

1

2i
√
π

Thus, 2πi
∑

z in stripRes(f ; z) =
√
π, and we see thatˆ ∞

−∞
e−x2

dx =
√
π (5.7.47)

By scaling, for a > 0, ˆ ∞

−∞
e−ax2

dx =
√

π/a (5.7.48)

and, in particular, ˆ ∞

−∞
e−

1
2
x2

dx =
√
2π (5.7.49)

From this, one can easily see (Problem 13) that for all w ∈ C,ˆ ∞

−∞
e−

1
2
x2
eiwx dz√

2π
= e−

1
2
w2

(5.7.50)

�

Example 5.7.12 (Fresnel Integrals). Evaluateˆ ∞

0
sin(x2) dx and

ˆ ∞

0
cos(x2) dx (5.7.51)

Obviously, these integrals are not absolutely convergent. They are con-
ditionally convergent; indeed, if

f(R) =

ˆ R

0
eix

2
dx (5.7.52)

then, changing variables to y = x2, we have

f(R) =

ˆ R2

0
eiy

dy

2
√
y

(5.7.53)

and Problem 3 implies limR→∞ f(R) exists.

In fact (see Problem 14), uniformly in α ≥ 0, for R fixed,

sup
R′>R≥1

∣∣∣∣ˆ R′

R
e(i−α)x2

dx

∣∣∣∣ ≤ cR−1 (5.7.54)
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That implies limR→∞
´ R
0 e(i−α)x2

dx converges uniformly in α ≥ 0, which
justifies interchanging limits to conclude

lim
R→∞

ˆ R

0
eix

2
dx = lim

α↓0

ˆ ∞

0
e(i−α)x2

dx (5.7.55)

In the region Re a > 0, both sides of (5.7.48) are analytic (the left by
Theorem 3.1.6). Since they are equal for a real, they are equal for all a with
Re a > 0 and, in particular, for a = α− i with α > 0.

Thus, by (5.7.55),ˆ ∞

0
eix

2
dx =

1

2

√
π

−i =
1

2
√
2
(1 + i)

√
π (5.7.56)

Taking real and imaginary parts,ˆ ∞

0
cos(x2) dx =

ˆ ∞

0
sin(x2) dx =

√
π

2
√
2

(5.7.57)

These are called Fresnel integrals; more generally, the Fresnel functions
are defined by

C(x) =

ˆ x

0
cos(y2) dy, S(x) =

ˆ x

0
sin(y2) dy (5.7.58)

The curve

E(t) = C(t) + iS(t) (5.7.59)

(see Figure 5.7.7) is called the Euler or Cornu spiral. It enters in optics and
in civil engineering. There is more about these functions in the Notes and
in Problems 15 and 16. �

Figure 5.7.7. The Euler spiral, x = C(t), y = S(t).
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5.7.6. Infinite Sums Via the Residue Calculus. Remarkably, some in-
finite sums can be calculated as finite sums of residues. Besides the theorem
below, one can use contour integration on sums to prove the Poisson sum-
mation formula (Theorem 6.6.10 of Part 1), see Problem 29, and to prove a
suitable version of the Nyquist–Shannon sampling theorem (Theorem 6.6.16
of Part 1), see Problem 20.

Theorem 5.7.13. Let f be a rational function f(z) = P (z)/Q(z), where

(i) deg(Q) ≥ 2 + deg(P )
(ii) P and Q have no common zeros and Q is nonvanishing at every n ∈ Z.

Then
∞∑

n=−∞
f(n) = −

∑
zeros zk of Q

Res(fg; zk) (5.7.60)

where

g(z) = π cot(πz) (5.7.61)

Remarks. 1. Since |f(n)| ≤ C|n|−2 for n large, the sum is absolutely
convergent.

2. If f has a simple pole at zk, then

Res(fg; zk) = g(zk)Res(f ; zk) (5.7.62)

Proof. Let

F (z) = f(z)g(z) (5.7.63)

which is meromorphic on all of C. Let Γn be the rectangle with corners at
(±(n+ 1

2),±n) oriented counterclockwise. We claim that

lim
n→∞

1

2πi

‰
Γn

F (z) dz = 0 (5.7.64)

We note first that

g(z + 1) = g(z) (5.7.65)

since cos(πz) and sin(πz) are periodic. When z = 1
2 + iy e±iπz = ±ie±πy, so

|g(12 + iy)| = π|tanh(πy)| ≤ π (5.7.66)

Therefore, on the vertical sides of Γn, |g(z)| is bounded by π.

On the horizontal sides, where |eiπz| and |e−iπz| are eπn and e−πn or
vice-versa,

|g(x± in)| ≤ π

(
e2nπ + 1

e2nπ − 1

)
= π(1 +O(e−2nπ)) (5.7.67)

which, for n large, is certainly bounded by 2π.


