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Lecture 01: Homological algebra

Contents
1 Chain complexes 2

2 Ordinary chain complexes 9

3 Closed model categories 22

1 Chain complexes

R = commutative ring with 1 (eg. Z, a field k)

R-modules: basic definitions and facts

• f : M→ N an R-module homomorphism:

The kernel ker( f ) of f is defined by

ker( f ) = {all x ∈M such that f (x) = 0}.

ker( f )⊂M is a submodule.

The image im( f )⊂ N of f is defined by

im( f ) = { f (x) | x ∈M }.

The cokernel cok( f ) of f is the quotient

cok( f ) = N/ im( f ).
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• A sequence

M
f−→M′

g−→M′′

is exact if ker(g)= im( f ). Equivalently, g · f =
0 and im( f )⊂ ker(g) is surjective.

The sequence M1 → M2 → ··· → Mn is exact if
ker = im everywhere.

Examples: 1) The sequence

0→ ker( f )→M
f−→ N→ cok( f )→ 0

is exact.

2) The sequence

0→M
f−→ N

is exact if and only if f is a monomorphism (monic,
injective)

3) The sequence

M
f−→ N→ 0

is exact if and only if f is an epimorphism (epi,
surjective).
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Lemma 1.1 (Snake Lemma). Given a commuta-
tive diagram of R-module homomorphisms

A1 //

f1
��

A2
p
//

f2
��

A3 //

f3
��

0

0 //B1 i
//B2 //B3

in which the horizontal sequences are exact. There
is an induced exact sequence

ker( f1)→ ker( f2)→ ker( f3)
∂−→ cok( f1)→ cok( f2)→ cok( f3).

∂ (y) = [z] for y ∈ ker( f3), where y = p(x), and
f2(x) = i(z).

Lemma 1.2 ((3×3)-Lemma). Given a commuta-
tive diagram of R-module maps

0

��

0

��

0

��

0 //A1 //

��

A2 //

��

A3 //

��

0

0 //B1
f
//

��

B2
g
//

��

B3 //

��

0

0 //C1 //

��

C2 //

��

C3 //

��

0

0 0 0

With exact columns.
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1) If either the top two or bottom two rows are
exact, then so is the third.

2) If the top and bottom rows are exact, and g ·
f = 0, then the middle row is exact.

Lemma 1.3 (5-Lemma). Given a commutative di-
agram of R-module homomorphisms

A1
f1 //

h1
��

A2 //

h2
��

A3 //

h3
��

A4
g1 //

h4
��

A5
h5
��

B1 f2
//B2 //B3 //B4 g2

//B5

with exact rows, such that h1,h2,h4,h5 are isomor-
phisms. Then h3 is an isomorphism.

The Snake Lemma is proved with an element chase.
The (3×3)-Lemma and 5-Lemma are consequences.

e.g. Prove the 5-Lemma with the induced diagram

0 // cok( f1) //

∼=
��

A3 //

h3
��

ker(g1) //

∼=
��

0

0 // cok( f2) //B3 // ker(g2) // 0
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Chain complexes
A chain complex C in R-modules is a sequence of
R-module homomorphisms

. . .
∂−→C2

∂−→C1
∂−→C0

∂−→C−1
∂−→ . . .

such that ∂ 2 = 0 (or that im(∂ ) ⊂ ker(∂ )) every-
where. Cn is the module of n-chains.

A morphism f : C→ D of chain complexes con-
sists of R-module maps fn : Cn→ Dn, n ∈ Z such
that there are comm. diagrams

Cn
fn //

∂
��

Dn

∂
��

Cn−1 fn−1
//Dn−1

The chain complexes and their morphisms form a
category, denoted by Ch(R).

• If C is a chain complex such that Cn = 0 for
n < 0, then C is an ordinary chain complex.
We usually drop all the 0 objects, and write

→C2
∂−→C1

∂−→C0

Ch+(R) is the full subcategory of ordinary chain
complexes in Ch(R).
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• Chain complexes indexed by the integers are
often called unbounded complexes.

Slogan: Ordinary chain complexes are spaces,
and unbounded complexes are spectra.

• Chain complexes of the form

· · · → 0→C0→C−1→ . . .

are cochain complexes, written (classically) as

C0→C1→C2→ . . . .

Both notations are in common (confusing) use.

Morphisms of chain complexes have kernels and
cokernels, defined degreewise.

A sequence of chain complex morphisms

C→ D→ E

is exact if all sequences of morphisms

Cn→ Dn→ En

are exact.
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Homology
Given a chain complex C :

· · · →Cn+1
∂−→Cn

∂−→Cn−1→ . . .

Write
Zn = Zn(C) = ker(∂ : Cn→Cn−1), (n-cycles), and
Bn = Bn(C) = im(∂ : Cn+1→Cn) (n-boundaries).

∂ 2 = 0, so Bn(C)⊂ Zn(C).

The nth homology group Hn(C) of C is defined by

Hn(C) = Zn(C)/Bn(C).

A chain map f : C→ D induces R-module maps

f∗ : Hn(C)→ Hn(D), n ∈ Z.

f :C→D is a homology isomorphism (resp. quasi-
isomorphism, acyclic map, weak equivalence) if
all induced maps f∗ : Hn(C)→ Hn(D), n ∈ Z are
isomorphisms.

A complex C is acyclic if the map 0→C is a ho-
mology isomorphism, or if Hn(C)∼= 0 for all n, or
if the sequence

. . .
∂−→C1

∂−→C0
∂−→C−1

∂−→ . . .

is exact.
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Lemma 1.4. A short exact sequence

0→C→ D→ E→ 0

induces a natural long exact sequence

. . .
∂−→Hn(C)→Hn(D)→Hn(E)

∂−→Hn−1(C)→ . . .

Proof. The short exact sequence induces compar-
isons of exact sequences

Cn/Bn(C) //

∂∗
��

Dn/Bn(D) //

∂∗
��

En/Bn(E) //

∂∗
��

0

0 // Zn−1(C) // Zn−1(D) // Zn−1(E)

Use the natural exact sequence

0→Hn(C)→Cn/Bn(C)
∂∗−→Zn−1(C)→Hn−1(C)→ 0

Apply the Snake Lemma.

2 Ordinary chain complexes

A map f : C→ D in Ch+(R) is a

• weak equivalence if f is a homology isomor-
phism,

• fibration if f : Cn→ Dn is surjective for n > 0,

• cofibration if f has the left lifting property (LLP)
with respect to all morphisms of Ch+(R) which
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are simultaneously fibrations and weak equiv-
alences.

A trivial fibration is a map which is both a fibra-
tion and a weak equivalence. A trivial cofibration
is both a cofibration and a weak equivalence.

f has the left lifting property with respect to all
trivial fibrations (ie. f is a cofibration) if given
any solid arrow commutative diagram

C //

f
��

X
p
��

D //

??

Y
in Ch+(R) with p a trivial fibration, then the dotted
arrow exists making the diagram commute.

Special chain complexes and chain maps:

• R(n) [= R[−n] in “shift notation”] consists of
a copy of the free R-module R, concentrated in
degree n:

· · · → 0→ 0→
n
R→ 0→ 0→ . . .

There is a natural R-module isomorphism

homCh+(R)(R(n),C)∼= Zn(C).

• R〈n+1〉 is the complex

· · · → 0→
n+1
R 1−→

n
R→ 0→ . . .
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• There is a natural R-module isomorphism

homCh+(R)(R〈n+1〉,C)∼=Cn+1.

• There is a chain α : R(n)→ R〈n+1〉

. . . // 0 //

��

0 //

��

R
1
��

// 0

��

// . . .

. . . // 0 //R 1
//R // 0 // . . .

α classifies the cycle 1 ∈ R〈n+1〉n.

Lemma 2.1. Suppose that p : A→ B is a fibration
and that i : K→ A is the inclusion of the kernel of
p. Then there is a long exact sequence

. . .
p∗−→Hn+1(B)

∂−→ Hn(K)
i∗−→ Hn(A)

p∗−→ Hn(B)
∂−→ . . .

. . .
∂−→ H0(K)

i∗−→ H0(A)
p∗−→ H0(B).

Proof. j : im(p)⊂ B, and write π : A→ im(p) for
the induced epimorphism. Then Hn(im(p))=Hn(B)
for n > 0, and there is a diagram

H0(A)
p∗ //

π∗ &&

H0(B)

H0(im(p))
i∗

88

in which π∗ is an epimorphism and i∗ is a monomor-
phism (exercise). The long exact sequence is con-
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structed from the long exact sequence in homol-
ogy for the short exact sequence

0→ K i−→ A π−→ im(p)→ 0,

with the monic i∗ : H0(im(p))→ H0(B).

Lemma 2.2. p : A→ B is a fibration if and only if
p has the RLP wrt. all maps 0→ R〈n+1〉, n≥ 0.

Proof. The lift exists in all solid arrow diagrams

0 //

��

A
p
��

R〈n+1〉 //

::

B

for n≥ 0.

Corollary 2.3. 0→ R〈n+ 1〉 is a cofibration for
all n≥ 0.

Proof. This map has the LLP wrt all fibrations,
hence wrt all trivial fibrations.

Lemma 2.4. The map 0→ R(n) is a cofibration.

Proof. The trivial fibration p : A→ B induces an
epimorphism Zn(A)→ Zn(B) for all n≥ 0:

An+1 // //

����

Bn(A) //

��

Zn(A) //

��

Hn(A) //

∼=
��

0

Bn+1 // //Bn(B) // Zn(B) //Hn(B) // 0
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A chain complex A is cofibrant if the map 0→ A
is a cofibration.

eg. R〈n+1〉 and R(n) are cofibrant.

All chain complexes C are fibrant, because all chain
maps C→ 0 are fibrations.

Proposition 2.5. p : A→ B is a trivial fibration
and if and only if

1) p : A0→ B0 is a surjection, and

2) p has the RLP wrt all α : R(n)→ R〈n+1〉.
Corollary 2.6. α : R(n)→ R〈n+ 1〉 is a cofibra-
tion.

Proof of Proposition 2.5. 1) Suppose that p : A→
B is a trivial fibration with kernel K.

Use Snake Lemma with the comparison

A1
∂ //

p
����

A0 //

p
��

H0(A)
∼=
��

// 0

B1
∂

//B0 //H0(B) // 0

to show that p : A0→ B0 is surjective.

Suppose given a diagram

R(n) x //

α
��

A
p
��

R〈n+1〉 y
//B
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Choose z∈ An+1 such that p(z) = y. Then x−∂ (z)
is a cycle of K, and K is acyclic (exercise) so there
is a v∈Kn+1 such that ∂ (v) = x−∂ (z). ∂ (z+v) =
x and p(z+ v) = p(v) = y, so v+ z is the desired
lift.

2) Suppose that p : A0→ B0 is surjective and that
p has the right lifting property with respect to all
R(n)→ R〈n+1〉.
The solutions of the lifting problems

R(n) 0 //

��

A
p
��

R〈n+1〉 x
//

;;

B

show that p is surjective on all cycles, while the
solutions of the lifting problems

R(n) x //

��

A
p
��

R〈n+1〉 y
//

;;

B

show that p induces a monomorphism in all ho-
mology groups. It follows that p is a weak equiv-
alence.
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We have the diagram

Zn+1(A) //

p
����

An+1
∂ //

p
��

Zn(A)
p
����

//Hn(A)
∼=p
��

// 0

Zn+1(B) //Bn+1
∂

// Zn(B) //Hn(B) // 0

Then p : Bn(A)→ Bn(B) is epi, so p : An+1→ Bn+1

is epi, for all n≥ 0.

Proposition 2.7. Every chain map f : C→ D has
two factorizations

E
p
��

C f
//

i
??

j ��

D

F
q

??

where

1) p is a fibration. i is a monomorphism, a weak
equivalence and has the LLP wrt all fibrations.

2) q is a trivial fibration and j is a monomor-
phism and a cofibration.
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Proof. 1) Form the factorization

C⊕ (
⊕

x∈Dn+1,n≥0 R〈n+1〉)
p

))C f
//

i 55

D

p is the sum of f and all classifying maps for
chains x in all non-zero degrees. It is therefore
surjective in non-zero degrees, hence a fibration.

i is the inclusion of a direct summand with acyclic
cokernel, and is thus a monomorphism and a weak
equivalence. i is a direct sum of maps which have
the LLP wrt all fibrations, and thus has the same
lifting property.

2) Recall that A→ B is a trivial fibration if and
only if it has the RLP wrt all cofibrations R(n)→
R〈n+1〉, n≥−1.

Notation: R(−1)→ R〈0〉 is the map 0→ R(0).

Consider the set of all diagrams

D : R(nD)
αD //

��

C
f=q0
��

R〈nD+1〉
βD
//D
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and form the pushout⊕
D R(nD)

(αD) //

��

C0

j1
�� q0

��

⊕
D R〈nD+1〉

(θD)

//

(βD) **

C1

q1 ��
D

where C = C0. Then j1 is a monomorphism and
a cofibration, because the collection of all such
maps is closed under direct sum and pushout.

Every lifting problem D as above is solved in C1:

R(nD)
αD //

��

C0
j1 //C1

q1
��

R〈nD+1〉
βD

//
θD

55

D

commutes.

Repeat this process inductively for the maps qi to
produce a string of factorizations

C0
j1 //

q0
��

C1
q1

~~

j2 //C2

q2
vv

j3 // . . .

D
Let F = lim−→i

Ci. Then f has a factorization

C j
//

f ��

F
q
��

D
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Then j is a cofibration and a monomorphism, be-
cause all jk have these properties and the family of
such maps is closed under (infinite) composition.

Finally, given a diagram

R(n) α //

��

F
q
��

R〈n+1〉
β

//D

The map α factors through some finite stage of the
filtered colimit defining F , so that α is a composite

R(n) α ′−→Ck→ F

for some k. The lifting problem

R(n) α ′ //

��

Ck
qk
��

R〈n+1〉
β

//D

is solved in Ck+1, hence in F .

Remark: This proof is a small object argument.

The R(n) are small (or compact): hom(R(n), )

commutes with filtered colimits.
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Corollary 2.8. 1) Every cofibration is a monomor-
phism.

2) Suppose that j : C→ D is a cofibration and a
weak equivalence. Then j has the LLP wrt all fi-
brations.

Proof. 2) The map j has a factorization

C i //

j ��

F
p
��

D
where i has the left lifting property with respect to
all fibrations and is a weak equivalence, and p is a
fibration. Then p is a trivial fibration, so the lifting
exists in the diagram

C i //

j
��

F
p
��

D 1
//

??

D

since j is a cofibration. Then j is a retract of a map
(namely i) which has the LLP wrt all fibrations,
and so j has the same property.

1) is an exercise.
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Resolutions
Suppose that P is a chain complex. Proposition
2.7 says that 0→ P has a factorization

0 j
//

��

F
q
��

P
where j is a cofibration (so that F is cofibrant) and
q is a trivial fibration, hence a weak equivalence.

The proof of Proposition 2.7 implies that each R-
module Fn is free, so F is a free resolution of P.

If the complex P is cofibrant, then the lift exists in

0 //

��

F
q
��

P 1
//

??

P

All modules Pn are direct summands of free mod-
ules and are therefore projective.

This observation has a converse:

Lemma 2.9. A chain complex P is cofibrant if and
only if all modules Pn are projective.

Proof. Suppose that P is a complex of projectives,
and p : A→ B is a trivial fibration.
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Then p : An→ Bn is surjective for all n≥ 0 and has
acyclic kernel i : K→ A.

Suppose given a lifting problem

0 //

��

A
p
��

P f
//

θ
??

B

There is a map θ0 : P0→ A0 which lifts f0:

A0
p0
��

P0

θ0
>>

f0
//B0

Suppose given a lift up to degree n, ie. homomor-
phisms θi : Pi→ Ai for i≤ n such that piθi = fi for
i≤ n and ∂θi = θi−1∂ for 1≤ i≤ n

There is a map θ ′n+1 : Pn+1→An+1 such that pn+1θ ′n+1 =

fn+1.

Then

pn(∂θ
′
n+1−θn∂ )= ∂ pn+1θ

′
n+1− fn∂ = ∂ fn+1− fn∂ = 0

so there is a v : Pn+1→ Kn such that

inv = ∂θ
′
n+1−θn∂ .

Also
∂ (∂θ

′
n+1−θn∂ ) = 0
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and K is acyclic, so there is a w : Pn+1→Kn+1 such
that

in∂w = ∂θ
′
n+1−θn∂ .

Then
∂ (θ ′n+1− in+1w) = θn∂

and

pn+1(θ
′
n+1− in+1w) = pn+1θ

′
n+1 = fn+1.

Remarks:

1) Every chain complex C has a cofibrant model,
i.e. a weak equivalence p : P→C with P cofi-
brant (aka. complex of projectives).

2) M = an R-module. A cofibrant model P →
M(0) is a projective resolution of M in the usual
sense.

3) Cofibrant models P→C are also (commonly)
constructed with Eilenberg-Cartan resolutions.
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3 Closed model categories

A closed model category is a category M equipped
with three classes of maps, namely weak equiva-
lences, fibrations and cofibrations, such that the
following conditions are satisfied:

CM1 The category M has all finite limits and col-
imits.

CM2 Given a commutative triangle

X g
//

h ��

Y

f��
Z

of morphisms in M , if any two of f ,g and h
are weak equivalences, then so is the third.

CM3 The classes of cofibrations, fibrations and weak
equivalences are closed under retraction.

CM4 Given a commutative solid arrow diagram

A //

i
��

X
p
��

B //

??

Y
such that i is a cofibration and p is a fibration.
Then the lift exists making the diagram com-
mute if either i or p is a weak equivalence.
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CM5 Every morphism f : X → Y has factorizations

Z
p

  
X f

//

i
>>

j   

Y

W
q

>>

where p is a fibration and i is a trivial cofi-
bration, and q is a trivial fibration and j is a
cofibration.

Theorem 3.1. With the definition of weak equiva-
lence, fibration and cofibration given above, Ch+(R)
satisfies the axioms for a closed model category.

Proof. CM1, CM2 and CM3 are exercises. CM5
is Proposition 2.7, and CM4 is Corollary 2.8.

Exercise: A map f : C→D of Ch(R) (unbounded
chain complexes) is a weak equivalence if it is a
homology isomorphism.

f is a fibration if all maps f : Cn→ Dn, n ∈ Z are
surjective.

A map of is a cofibration if and only if it has the
left lifting property with respect to all trivial fibra-
tions.

Show that, with these definitions, Ch(R) has the
structure of a closed model category.

24



Lecture 02: Spaces

Contents
4 Spaces and homotopy groups 1

5 Serre fibrations and the model structure for CGWH 17

4 Spaces and homotopy groups

Some definitions
CGWH is the category of compactly generated
weak Hausdorff spaces.

A space X is compactly generated if a subset Z is
closed if and only if Z ∩K is closed for all maps
K→ X with K compact.

A compactly generated space X is weakly Haus-
dorff if and only if the image of the diagonal ∆ :
X → X ×X is closed in X ×X , where the product
is in the category of compactly generated spaces.

CGWH is the “convenient category” for homo-
topy theory, because it’s cartesian closed, as well
as complete and cocomplete.

The product X ×Y in CGWH has the underlying
point set that you expect, but it’s topologized as
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a colimit of all products C×D where C→ X and
D→ Y are maps such that C and D are compact.

If X and Y are compact, this definition doesn’t af-
fect the topology on X×Y .

All CW -complexes (spaces inductively built from
cells) are members of CGWH.

See the preprint
N.P. Strickland. The category of CGWH spaces. Preprint,
Sheffield http://www.neil-strickland.staff.shef.ac.
uk/courses/homotopy/cgwh.pdf, 2009

Examples that we care about
The topological standard n-simplex is the space
|∆n| defined by

|∆n|= {(t0, . . . , tn) ∈ Rn+1 | ∑ ti = 1, ti ≥ 0 }.

|∆0| is a point, |∆1| is a copy of the unit interval,
|∆2| is a triangle, etc.

n = {0,1, . . . ,n}, n ≥ 0, with the obvious poset
structure — this is the finite ordinal number n.

The finite ordinal numbers n, n ≥ 0, form a cate-
gory ∆, whose morphisms are the order-preserving
functions (aka. poset morphisms) θ : m→ n.
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The monomorphisms di : n−1→ n have the form

di( j) =

{
j if j < i, and

j+1 if j ≥ i.

with 0 ≤ i ≤ n. The map di misses the element
i ∈ n.

s j : n+1→ n, 0 ≤ j ≤ n, is the unique poset epi-
morphism such that s j( j) = s j( j+1) = j.

The s j, 0 ≤ j ≤ n form a complete list of epimor-
phisms n+1→ n in ∆.

The singular set
There is a functor

|∆| : ∆→ CGWH

with n 7→ |∆n|. The morphism θ : m→ n induces
the continuous map θ∗ : |∆m| → |∆n|, with

θ∗(t0, . . . , tm) = (s0, . . . ,sn),

and
si = ∑

j∈θ−1(i)

t j.

An n-simplex of a space X is a continuous map
σ : |∆n| → X .
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The ith face di(σ) of the n-simplex σ is the com-
posite

|∆n−1| di
−→ |∆n| σ−→ X .

The vertex v j of σ is the composite

|∆0| j−→ |∆n| σ−→ X ,

(an element of X), where j : 0→ n is defined by
j(0) = j ∈ n.

v j is the vertex opposite the face d j(σ).

Example: Suppose σ : |∆2| → X is a 2-simplex.
Here’s the picture:

v0
d2(σ)

//

d1(σ)   

v1
d0σ

��
v2

0 [0,1]
//

[0,2] ��

1
[1,2]
��

2

Some language:

S(X)n = hom(|∆n|,X)

is the set of n-simplices of X .

An ordinal number map θ : m→ n induces a func-
tion θ ∗ : Sn(X)→ Sm(X) by precomposition with
θ : |∆m| → |∆n|.
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The composite

|∆m| θ−→ |∆n| σ−→ X

is θ ∗(σ) ∈ Sm(X).

The simplices and precompositions define a (con-
travariant) functor

S(X) : ∆
op→ Set

taking values in sets. S(X) is a simplicial set, called
the singular set for the space X .

Path components
A path in X is a 1-simplex ω : |∆1| → X of X ,
while a vertex is an element x : |∆0| → X .

A path has a natural orientation:

x = d1(ω)
ω−→ d0(ω) = y

reflects
d1(0) = 0→ 1 = d0(0)

in 1.

The set of path components π0|X | of X is defined
by a coequalizer

S(X)1
d0 //

d1
// S(X)0 // π0|X |

in the set category.
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Fundamental groupoid
Suppose that the paths ω,ω ′ : |∆1| → X start at x
and end at y in the sense that d1(ω) = d1(ω

′) = x
and d0(ω) = d0(ω

′) = y.

Alternate notation:

∂ (ω) = ∂ (ω ′) = (y,x).

Say that ω is homotopic to ω ′ rel. end points if
there is a commutative diagram

(|∆0|t |∆0|)× I pr
//

(d1,d0)×I
��

(|∆0|t |∆0|)
(x,y)
��

|∆1|× I h //X

|∆1|t |∆1|
(d1,d0)

OO

(ω,ω ′)

55

Here, I = [0,1], or some homeomorphic copy of
it, like |∆1|.
The map h is a homotopy from ω to ω ′ (note the
direction). One represents h by the following pic-
ture:

x ω //

x
��
⇓

y
y
��

x
ω ′
// y

Homotopy of paths rel end points in a space X is
an equivalence relation (exercise), and the set of

6



homotopy classes of paths rel end points from x to
y is denoted by π(X)(x,y). This is the set of mor-
phisms from x to y in the fundamental groupoid
π(X) of the space X .

There’s a law of composition for π(X), but we
need more notation to describe it.

Nice little spaces
1) |∂∆n| is the topological boundary of |∆n|: it is
the union of the faces di : |∆n−1| → |∆n|. Any two
such faces intersect in a lower dimensional face
|∆n−2|, and there is a coequalizer picture⊔

i< j,0≤i, j≤n |∆n−2| //
//
⊔

0≤i≤n |∆n−1| // |∂∆n|

in spaces, which is defined by the identities d jdi =

did j−1 for i < j.

2) |Λn
k| ⊂ |∂∆n| is obtained by throwing away the

the kth face dk : |∆n−1| → |∆n|. There is a coequal-
izer⊔

i< j,i, j 6=k |∆n−2| //
//
⊔

0≤i≤n,i 6=k |∆n−1| // |Λn
k|

defined by the identities d jdi = did j−1 for i < j.
|Λn

k| is the kth horn of |∆n|.
The inclusion i : |Λn

k| ⊂ |∆n| is a strong deforma-
tion retraction.
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There is a map r : |∆n|→ |Λn
k| (projection along the

normal to the missing simplex) such that r · i = 1
and i ·r is homotopic to the identity on |∆n| rel |Λn

k|.

It follows that the dotted arrow exists, making the
diagram commute in all solid arrow pictures

|Λn
k|

α //

i
��

X

��|∆n| //

>>

∗

The lift is given by the composite α · r, and ∗ is
the one-point space (aka |∆0|), which is terminal
in CGWH.

Here’s some other inclusions which admit strong
deformation retractions (secretly made up of in-
stances of inclusions of horns in simplices):

• (|∆n|×{ε})∪(|∂∆n|× I)⊂ |∆n|× I where ε =

0,1,

• (|∆n|×{0,1})∪ (|Λn
k|× I)⊂ |∆n|× I.

I = [0,1] is the unit interval, and I ∼= |∆1|.
Any space X has the right lifting property for these
inclusions, as for the maps |Λn

k| ⊂ |∆n|.
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Composition law

A map |Λ2
1| → X is a string of paths x ω−→ y

γ−→ z in
X , and there is an extension

|Λ2
1|

(γ,?,ω)
//

��

X

|∆2|
σ

;;

The face d1σ represents a well defined element
[d1σ ] of π(X)(x,z) which is independent of the
classes of ω and γ , by an argument involving an
extension

(|∆2|×{0,1})∪ (|Λ2
1|× I) //

��

X

|∆2|× I

55

[This is a prototypical “prismatic” argument. Flling
in the labels on the diagram is an exercise.]

We therefore have the composition law

[γ]∗ [ω] = [d1(σ)]

defined for the fundamental groupoid π(X).

Associativity
Suppose given a string of paths

x0
ω1−→ x1

ω2−→ x2
ω3−→ x3

9



in X . There is a corresponding string of paths

0
[0,1]−−→ 1

[1,2]−−→ 2
[2,3]−−→ 3

which defines a subspace P⊂ |∆3|, while the string
of paths in X can be represented as a map ω : P→
X . The map ω : P→X extends to a map σ : |∆3|→
X , in the sense that the diagram

P ω //

��

X

|∆3|
σ

>>

commutes.

[Fill in [0,1,2], [1,2,3], [0,1,3], then [0,1,2,3].]

The image of the path [0,3] in |∆3| represents both
[ω3] ∗ ([ω2] ∗ [ω1]) and ([ω3] ∗ [ω2]) ∗ [ω1], so the
composition law in π(X) is associative.

Identities
Write x for the constant path

|∆1| s0
−→ |∆0| x−→ X

at an element x of X .

Suppose that ω : x→ y is a path of X . Then

∂ s0(ω) = (ω,ω,x) and ∂ s1(ω) = (y,ω,ω).

The constant paths are 2-sided identities for the
composition law.
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Inverses
Again, suppose that ω : x→ y is a path of X . Then
there are extensions

|Λ2
0|

(?,x,ω)
//

��

X

|∆2|

;; and |Λ2
2|

(ω,y,?)
//

��

X

|∆2|

;;

so that the composition law on π(X) is invertible.

We have therefore shown that the fundamental groupoid
π(X) of a space X is a groupoid.

Fundamental groups
The fundamental group π1(X ,x) of X based at the
element x is the set of homomorphisms (isomor-
phisms) π(X)(x,x) from x to itself in π(X).

Explicitly, π1(X ,x) is the group of homotopy classes
of loops x→ x rel end points in X , with composi-
tion law defined by extensions

|Λ2
1|
(ω2,?,ω1) //

��

X

|∆2|

99

with identity defined by the constant path at x.
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Higher homotopy groups
Suppose that x is a vertex (aka. element) of X . The
members of πn(X ,x) are homotopy classes

[(|∆n|, |∂∆
n|),(X ,x)]

of simplices with boundary mapping to x, rel bound-
ary. These classes are represented by diagrams

|∂∆n| x //

��

X

|∆n|
α

==

which one tends to refer to by the name of the sim-
plex, in this case α .

Here’s a cheat: one can show inductively (or by an
explicit homeomorphism of pairs) that the set

[(|∆n|, |∂∆
n|),(X ,x)]

is in bijective correspondence with the set

[(I×n,∂ I×n),(X ,∗)].

One starts the induction by using using extensions

(|∆n|×{0,1})∪ (|Λn
0|× I)

((α,x),x)
//

��

X

|∆n−1|× I
d0×I

// |∆n|× I

44
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to show that there is a bijection

[(|∆n|, |∂∆
n|),(X ,x)]∼= [(|∆n−1|×I,∂ (|∆n−1|×I)),(X ,x)].

Homotopy classes of maps (I×n,∂ I×n) → (X ,x)
can be composed in multiple directions, potentially
giving n different group structures according to the
description given above (recall that I = |∆1|).
These multiplications have a common identity, namely
the constant cell at x, and they satisfy interchange
laws

(a1 ∗i a2)∗ j (b1 ∗i b2) = (a1 ∗ j b1)∗i (a2 ∗ j b2).

The multiplications therefore coincide and are abelian
if n≥ 2 (exercise).

The interchange laws follow from the existence of
solutions to lifting problems

|Λ2
1|× |Λ2

1| //

��

X

|∆2|× |∆2|

::

(exercise again).
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Homotopy equivalences, weak equivalences
The construction of π0(X), π(X) and all πn(X ,x)
are functorial: every map f : X → Y induces

• f∗ : π0(X)→ π0(Y ) (function between sets),

• f∗ : π(X)→ π(Y ) (functor between groupoids),

• f∗ : πn(X ,x)→ πn(Y, f (x)), n≥ 1, x∈X (group
homomorphisms).

A) A map f : X → Y is said to be a homotopy
equivalence if there is a map g : Y → X such that
g · f ' 1X (homotopic to the identity on X) and
f ·g' 1Y .

B) f : X → Y is a weak equivalence if

1) f∗ : π0(X)→ π0(Y ) is a bijection, and

2) f∗ : πn(X ,x)→ πn(Y, f (x)) is an isomorphism
for all n≥ 1 and all x ∈ X .

Exercises

1) Show that every homotopy equivalence is a weak
equivalence.

2) Show that every weak equivalence f : X → Y
induces an equivalence of groupoids f∗ : π(X)→
π(Y ).
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Group objects
Write X0 for the set of points underlying X (the
vertices of S(X)). Every base point x ∈ X0 has an
associated homotopy group πn(X ,x), and we can
collect all such homotopy groups together to de-
fine a function

πn(X) =
⊔

x∈X0

πn(X ,x)→
⊔

x∈X0

∗= X0.

The function πn(X)→ X0 defines a group object
over the set X0 for n≥ 1 which is abelian if n≥ 2.

Fact: A map f : X → Y is a weak equivalence if
and only if

1) the function f∗ : π0(X)→ π0(Y ) is a bijection,
and

2) the induced diagrams

πn(X)
f∗ //

��

πn(Y )

��

X0 f∗
//Y0

are pullbacks (in Set) for n≥ 1.
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5 Serre fibrations and the model structure for CGWH

A map p : X → Y is said to be a Serre fibration if
it has the RLP wrt all |Λn

k| ⊂ |∆n|, n≥ 1.

All spaces X are fibrant: the map X →∗ is a Serre
fibration.

Main formal properties of Serre fibrations:

Lemma 5.1. A map p : X → Y is a Serre fibration
and a weak equivalence if and only if it has the
right lifting property with respect to all inclusions
|∂∆n| ⊂ |∆n|, n≥ 0.

Here, |∂∆0|= /0.

Lemma 5.2. Suppose that p : X → Y is a Serre
fibration, and that F = p−1(y) is the fibre over an
element y ∈ Y . Then we have the following:

1) For each x ∈ F there is a sequence of pointed
sets

. . .πn(F,x)
i∗−→ πn(X ,x)

p∗−→ πn(Y,y)
∂−→ πn−1(F,x)→ . . .

. . .π1(Y,y)
∂−→ π0(F)

i∗−→ π0(X)
p∗−→ π0(Y )

which is exact in the sense that ker = im every-
where.
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2) There is a group action

∗ : π1(Y,y)×π0(F)→ π0(F)

such that ∂ ([α])= [α]∗[x], and such that i∗[z] =
i∗[w] if and only if there is an element [β ] ∈
π1(Y,y) such that [β ]∗ [z] = [w].

The boundary map

∂ : πn(Y, p(x))→ πn−1(F,x)

is defined by ∂ ([α]) = [d0θ ], where θ is a choice
of lifting in the following diagram

|Λn
0|

x //

��

X
p
��

|∆n|
α

//

θ

>>

Y

Lemma 5.1 is needed for the following result, while
Lemma 5.2 is needed for almost all calculations of
homotopy groups.

The proof of Lemma 5.1 is sketched below, and
the proof of Lemma 5.2 is an exercise.

A map i : A→ B is said to be a cofibration if it has
the LLP wrt all trivial Serre fibrations.

Lemma 5.1 implies that all inclusions |∂∆n| ⊂ |∆n|
are cofibrations. All CW -complexes (spaces built
inductively by attaching cells) are cofibrant.
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Theorem 5.3. The weak equivalences, Serre fibra-
tions and cofibrations as defined above give CGWH
the structure of a closed model category.

Proof. p : X → Y is a Serre fibration if and only if
it has the RLP wrt all |Λn

k| ⊂ |∆n|.
p is a trivial Serre fibration if and only if it has the
RLP wrt all |∂∆n| ⊂ |∆n| by Lemma 5.1.

All inclusions |Λn
k| ⊂ |∆n| are strong deformation

retractions, as are all of their pushouts.

Pushouts of monomorphisms are monomorphisms.

A small object argument (which depends on an
observation of J.H.C. Whitehead that a compact
subset of a CW -complex meets only finitely many
cells) shows that every continuous map f : X → Y
has factorizations

Z
p

  
X f

//

i
>>

j   

Y

W
q

>>

such that i is a trivial cofibration which has the
LLP wrt all fibrations and p is a Serre fibration,
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and j is a cofibration and a monomorphism and q
is a trivial Serre fibration. This gives CM5.

Suppose that j : A→ B is a trivial cofibration. j
has a factorization

A i //

j ��

C
p
��

B
such that i is a trivial cofibration which has the
LLP wrt all Serre fibrations, and p is a Serre fibra-
tion. Then p is a trivial Serre fibration, so the lift
exists in the diagram

A i //

j
��

C
p
��

B 1
//

α
??

B

Then j is a retract of i, so j has the LLP wrt all
Serre fibrations.
For CM4, suppose given a diagram (lifting prob-
lem)

A //

i
��

X
p
��

B //

??

Y
where i is a cofibration and p is a Serre fibration.
The lift exists if p is trivial (definition of cofibra-
tion), and we just showed that every trivial cofi-
bration has the LLP wrt all Serre fibrations.
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The other model axioms are exercises.

We need the following for the proof of Lemma 5.1:

Lemma 5.4. A map α : (∆n,∂∆n)→ (X ,x) repre-
sents the identity element of πn(X ,x) if and only if
the lifting problem

|∂∆n+1| (α,x,...,x)
//

��

X

|∆n+1|

66

can be solved.

Proof. Exercise.

Proof of Lemma 5.1. 1) Suppose p : X → Y is a
trivial Serre fibration, and suppose given a lifting
problem

|∂∆n| α //

��

X
p
��

|∆n|
β

//

==

Y

Suppose x = α(0). There is a homotopy of dia-
grams

|∂∆n|× I //

��

X

��

|∆n|× I //Y
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from the original diagram to one of the form

|∂∆n| (α0,x,...,x) //

��

X
p
��

|∆n|
β ′

//

66

Y

so the two lifting problems are equivalent.

p∗([α0]) = 0 so [α0] = 0 ∈ πn−1(X ,x), and it fol-
lows from a second homotopy of diagrams that the
original lifting problem is equivalent to one of the
form

|∂∆n| x //

��

X
p
��

|∆n|
β ′′

//

==

Y

Since p∗ : πn(X ,x)→ πn(Y, p(x)) is surjective, β ′′

lifts up to homotopy rel |∂∆n| to a simplex of X ,
so that this last diagram is homotopic to a diagram
for which the lifting problem is solved.

2) Suppose p : X →Y has the RLP wrt all |∂∆n| ⊂
|∆n|.
Then p has the right lifting property with respect
to all |Λn

k| ⊂ |∆n| (exercise), so p is a Serre fibra-
tion.
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Suppose that [α] ∈ πn(X ,x) such that p∗([α]) = 0.
Then there is a commutative diagram

|∂∆n+1| (α,x,...,x)
//

��

X
p
��

|∆n+1|
β

//

66

Y

and the existence of the indicated lift implies that
[α] = 0 ∈ πn(X ,x). Thus, p∗ is a monomorphism.

The existence of liftings

|∂∆n| x //

��

X
p
��

|∆n|
β

//

θ

==

Y

means that p∗ is surjective: p∗([θ ]) = [β ].
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6 Example: Chain homotopy

C = an ordinary chain complex. We have two con-
structions:

1) CI is the complex with

CI
n =Cn⊕Cn⊕Cn+1

for n > 0, and with

CI
0 = {(x,y,z)∈C0⊕C0⊕C1 | (x−y)+∂ (z) = 0 }.

The boundary map ∂ : CI
n→CI

n−1 is defined by

∂ (x,y,z) = (∂ (x),∂ (y),(−1)n(x− y)+∂ (z)).

2) C̃ is the chain complex with

C̃n =Cn⊕Cn+1

for n > 0 and

C̃0 = {(x,z) ∈C0⊕C1 | x+∂ (z) = 0 }.
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The boundary ∂ : C̃n→ C̃n−1 of C̃ is defined by

∂ (x,z) = (∂ (x),(−1)nx+∂ (z)).

Lemma 6.1. The complex C̃ is acyclic.

Proof. If ∂ (x,z) = 0 then ∂ (x) = 0 and ∂ (z) =
(−1)n+1x. It follows that

∂ ((−1)n+1z,0) = (x,z)

if (x,z) is a cycle, so (x,z) is a boundary.

There is a pullback diagram

CI α //

p
��

C̃
p′
��

C⊕C
β

//C

in which p and p′ are projections defined in each
degree by p(x,y,z) = (x,y) and p′(x,z) = x. The
map α is defined by α(x,y.z) = (x− y,z), while
β (x,y) = x− y.

p′ is a fibration, and fibrations are closed under
pullback, so p is also a fibration. The maps α and
β are surjective in all degrees, and the diagram
above expands to a comparison

CI α //

p
��

C̃ //

p′
��

0

0 //C
∆

//

s
<<

C⊕C
β

//C // 0

2



where ∆ is the diagonal map.

Lemma 6.1 and a long exact sequence argument
imply that the map s is a weak equivalence.

We have a functorial diagram

CI

p
��

C
∆

//

s
<<

C⊕C

(1)

in which p is a fibration and s is a weak equiva-
lence. This is a path object.

A commutative diagram of chain maps

CI

p
��

D
( f ,g)

//

h
;;

C⊕C

(2)

is a right homotopy between the chain maps f ,g :
D→C

The map h, if it exists, is defined by

h(x) = ( f (x),g(x),s(x))

for a collection of R-module maps s : Dn→Cn+1.
The fact that h is a chain map forces

s(∂ (x)) = (−1)n( f (x)−g(x))+∂ (s(x))

for x ∈ Dn. Thus

(−1)ns(∂ (x)) = ( f (x)−g(x))+∂ ((−1)ns(x)),
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so

(−1)ns(∂ (x))+∂ ((−1)n+1s(x) = f (x)−g(x).

The maps x 7→ (−1)n+1s(x), x ∈ Dn, arising from
the right homotopy h define a chain homotopy be-
tween the chain maps f and g.

All chain homotopies arise in this way.

Exercise: Show that there is a functorial diagram
of the form (1) for unbounded chain complexes C,
such that the corresponding right homotopies (2)
define chain homotopies between maps f ,g : D→
C of unbounded chain complexes.

7 Homotopical algebra

A closed model category is a category M equipped
with weak equivalences, fibrations and cofibrations,
such that the following hold:

CM1 The category M has all (finite) limits and col-
imits.

CM2 Given a commutative triangle

X g
//

h ��

Y

f��
Z

4



in M , if any two of f ,g and h are weak equiv-
alences, then so is the third.

CM3 The classes of cofibrations, fibrations and weak
equivalences are closed under retraction.

CM4 Given a commutative solid arrow diagram

A //

i
��

X
p
��

B //

??

Y
such that i is a cofibration and p is a fibration.
Then the lift exists if either i or p is a weak
equivalence.

CM5 Every morphism f : X → Y has factorizations

Z
p

  
X f

//

i
>>

j   

Y

W
q

>>

where p is a fibration and i is a trivial cofi-
bration, and q is a trivial fibration and j is a
cofibration.
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Here’s the meaning of the word “closed”:

Lemma 7.1. 1) i : A→ B is a cofibration if and
only if it has the LLP wrt all trivial fibrations.

2) i : A→ B is a trivial cofibration if and only if
it has the LLP wrt all fibrations.

3) p : X →Y is a fibration if and only if it has the
RLP wrt all trivial cofibrations.

4) p is a trivial fibration if and only if it has the
RLP wrt all cofibrations.

Proof. I’ll prove statement 2). The rest are similar.

If i is a trivial cofibration, then it has the LLP wrt
all fibrations by CM4.

Suppose i has the LLP wrt all fibrations. i has a
factorization

A j
//

i ��

X
p
��

B
where j is a trivial cofibration and p is a fibration.
Then the lifting exists in the diagram

A j
//

i
��

X
p
��

B

??

1
//B
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Then i is a retract of j and is therefore a trivial
cofibration by CM3.

Corollary 7.2. 1) The classes of cofibrations and
trivial cofibrations are closed under composi-
tions and pushout. Any isomorphism is a triv-
ial cofibration.

2) The classes of fibrations and trivial fibrations
are closed under composition and pullback. Any
isomorphism is a trivial fibration.

Remark: Lemma 7.1 implies that, in order to de-
scribe a closed model structure, one needs only
specify the weak equivalences and either the cofi-
brations or fibrations.

We saw this in the descriptions of the model struc-
tures for the chain complex categories and for spaces.

Homotopies

1) A path object for Y ∈M is a commutative di-
agram

Y I

p
��

Y

s
<<

∆

//Y ×Y

7



such that ∆ is the diagonal map, s is a weak
equivalence and p is a fibration.

2) A right homotopy between maps f ,g : X → Y
is a commutative diagram

Y I

p
��

X
( f ,g)

//

h
;;

Y ×Y Y
∆

oo

s
cc

where p is the fibration for some (displayed)
path object for Y .

f is right homotopic to g if such a right homo-
topy exists. Write f ∼r g.

Examples: 1) Path objects abound in nature, since
the diagonal map ∆ : Y → Y ×Y factorizes as a
fibration following a trivial cofibration, by CM5.

2) Chain homotopy is a type of right homotopy in
both Ch+(R) and Ch(R).

3) For ordinary spaces X , there is a space X I, whose
elements are the paths I→ X in X . Restricting to
the two ends of the paths defines a map d : X I →
X×X , which is a Serre fibration (exercise). There
is a constant path map s : X → X I, and a commu-

8



tative diagram

X I

d
��

X

s
;;

∆

//X×X

The composite X I d−→ X ×X
prL−−→ X is a trivial fi-

bration (exercise), so s is a weak equivalence.

The traditional path space defines a path object
construction. Right homotopies X → Y I are tra-
ditional homotopies X× I→ Y by adjointness.

Here’s the dual cluster of definitions:

1) A cylinder object for an object X ∈M is a
commutative diagram

X tX ∇ //

i
��

X

X⊗ I
σ

;;

where ∇ is the “fold” map, i is a cofibration
and σ is a weak equivalence.

2) A left homotopy between maps f ,g : X → Y is
a commutative diagram

X X tX∇oo
( f ,g)

//

i
��

Y

X⊗ I
h

;;

σ

cc

9



where i is the cofibration appearing in some
cylinder object for X .

Say f is left homotopic to g if such a left ho-
motopy exists. Write f ∼l g.

Examples: 1) Suppose X is a CW -complex and I
is the unit interval. The standard picture

X tX ∇ //

i
��

X

X× I
pr

;;

is a cylinder object for X . The space X × I is ob-
tained from X tX by attaching cells, so i is a cofi-
bration.

2) There are lots of cylinder objects: the map ∇ :
X tX → X has a factorization as a cofibration fol-
lowed by a trivial fibration, by CM5.

Duality
Here is what I mean by “dual”:

Lemma 7.3. M = a closed model category.

Say a morphism f op : Y → X of the opposite cat-
egory M op is a fibration (resp. cofibration, weak
equivalence) if and only if the corresponding map
f : X → Y is a cofibration (resp. fibration, weak
equivalence) of M .

10



Then with these definitions, M op satisfies the ax-
ioms for a closed model category.

Proof. Exercise.

Reversing the arrows in a cylinder object gives a
path object, and vice versa. All homotopical facts
about a model category M have equivalent dual
assertions in M op.

Examples: In Lemma 7.1, statement 3) is the dual
of statement 1), and statement 4) is the dual of
statement 2).

Lemma 7.4. Right homotopy of maps X→Y is an
equivalence relation if Y is fibrant.

The dual of Lemma 7.4 is the following:

Lemma 7.5. Left homotopy of maps X → Y is an
equivalence relation if X is cofibrant.

Proof. Lemma 7.5 is equivalent to Lemma 7.4 in
M op.

Proof of Lemma 7.4. If Y if fibrant then any pro-
jection X×Y → X is a fibration (exercise).

Thus, if
Y I

(p0,p1)
��

Y
∆

//

s
<<

Y ×Y

11



is a path object for a fibrant object Y , then the
maps p0 and p1 are trivial fibrations.

Suppose given right homotopies

Y I

(p0,p1)
��

X //

h1
99

( f1, f2)
//Y ×Y

and Y J

(q0,q1)
��

X

h2
99

( f2, f3)
//Y ×Y

Form the pullback

Y I×Y Y J p∗ //

q∗
��

Y J

q0
��

Y I
p1

//Y

The diagram

Y I×Y Y J p∗ //

(q∗,q1 p∗)
��

Y J

(q0,q1)
��

Y I×Y p1×1
//Y ×Y

is a pullback and p0× 1 : Y I×Y → Y ×Y is a fi-
bration, so the composite

Y I×Y Y J (p0q∗,q1 p∗)−−−−−−→ Y ×Y

is a fibration. The weak equivalences s,s′ from the
respective path objects determine a commutative

12



diagram
Y I×Y Y J

(p0q∗,q1 p∗)
��

Y
∆

//

(s,s′) ::

Y ×Y

and the map (s,s′) is a weak equivalence since
p0q∗ is a trivial fibration.

The homotopies h,h′ therefore determine a right
homotopy

Y I×Y Y J

(p0q∗,q1 p∗)
��

X
( f1, f3)

//

(h,h′) ::

Y ×Y

It follows that the right homotopy relation is tran-
sitive.

Right homotopy is symmetric, since the twist iso-
morphism Y ×Y

∼=−→ Y ×Y is a fibration.

Right homotopy is reflexive, since the morphism
s in a path object is a right homotopy from the
identity to itself.
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Here’s the result that ties the homotopical room
together:

Lemma 7.6. 1) Suppose Y is fibrant and X ⊗ I is
a fixed choice of cylinder object for an object
X. Suppose f ,g : X → Y are right homotopic.
Then there is a left homotopy

X tX
( f ,g)

//

i
��

Y

X⊗ I
h

;;

2) Suppose X is cofibrant and Y I is a fixed choice
of path object for an object Y . Suppose f ,g :
X→Y are left homotopic. Then there is a right
homotopy

Y I

p
��

X
( f ,g)

//

h
;;

Y ×Y

Proof. Statement 2) is the dual of statement 1).
We’ll prove statement 1).

Suppose

X tX ∇ //

i
��

X

X⊗ I
σ

;; and Y I

(p0,p1)
��

Y
∆

//

s
<<

Y ×Y
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are the fixed choice of cylinder and the path ob-
ject involved in the right homotopy f ∼r g, respec-
tively, and let h : X → Y I be the right homotopy.
Form the diagram

X tX
(s f ,h)

//

i
��

Y I

p0
��

p1 //Y

X⊗ I f σ
//

θ

88

Y

The lift θ exists because p0 is a trivial fibration
since Y is fibrant (exercise). The composite p1θ is
the desired left homotopy.

Corollary 7.7. Suppose f ,g : X→Y are morphisms
of M , where X is cofibrant and Y is fibrant. Sup-
pose

X tX ∇ //

i
��

X

X⊗ I
σ

;; and Y I

p
��

Y
∆

//

s
<<

Y ×Y

are fixed choices of cylinder and path objects for X
and Y respectively. Then the following are equiv-
alent:

• f is left homotopic to g.

• There is a right homotopy h : X→Y I from f to
g.

15



• f is right homotopic to g.

• There is a left homotopy H : X⊗ I→ Y from f
to g.

Thus, if X is cofibrant and Y is fibrant, all notions
of homotopy of maps X → Y collapse to the same
thing.

Write f ∼ g to say that f is homotopic to g (by
whatever means) in this case.

Here’s the first big application:

Theorem 7.8 (Whitehead Theorem). Suppose f :
X → Y is a weak equivalence, and the objects X
and Y are both fibrant and cofibrant. Then f is a
homotopy equivalence.

Proof. We can assume that f is a trivial fibration:
every weak equivalence is a composite of a trivial
fibration with a trivial cofibration, and the trivial
cofibration case is dual.

Y is cofibrant, so the lifting exists in the diagram

/0 //

��

X
f
��

Y 1
//

j
??

Y

16



Suppose
X tX ∇ //

i
��

X

X⊗ I
σ

;;

is a cylinder object for X , and then form the dia-
gram

X tX
( j f ,1)

//

i
��

X
f
��

X⊗ I f σ
//

h
;;

Y

The indicated lift (and required homotopy) exists
because f is a trivial fibration.

Examples: 1) (traditional Whitehead Theorem) Ev-
ery weak equivalence f : X → Y between CW -
complexes is a homotopy equivalence.

2) Every weak equivalence f : C→ D in Ch+(R)
between complexes of projective R-modules is a
chain homotopy equivalence.

3) Any two projective resolutions p : P→ M(0),
q : Q→M(0) of a module M are chain homotopy
equivalent.

The maps p and q are trivial fibrations, and both P
and Q are cofibrant chain complexes, so the lift θ

17



exists in the diagram

Q
q
��

P p
//

θ

==

M(0)

The map θ is a weak equivalence of cofibrant com-
plexes, hence a chain homotopy equivalence.

3 bis) f : M → N a homomorphism of modules.
p : P→M(0), q : Q→N(0) projective resolutions.

The lift exists in the diagram

0 //

��

Q
q
��

P p
//

f1
55

M(0) f
//N(0)

since P is cofibrant and q is a trivial fibration, so f
lifts to a chain complex map f1.

If f also lifts to some other chain complex map
f2 : P→ Q, there is a commutative diagram

P⊕P
( f1, f2) //

i
��

Q
q
��

P⊗ I
σ
//

h
33

P p
//M(0) f

//N(0)

for some (any) choice of cylinder P⊗ I.

18



Then f1 'l f2, so f1 and f2 are chain homotopic
since P is cofibrant and Q is fibrant.

4) X = a space. There is a trivial fibration p : U→
X such that U is a CW complex (exercise).

Suppose Y is a cofibrant space. Then Y is a retract
of a CW -complex (exercise).

Suppose f : X → Y and choose trivial fibrations
p : U → X and q : V → Y such that U and V are
CW -complexes. Then there is a map f ′ : U → V
which lifts f in the sense that the diagram

U f ′
//

p
��

V
q
��

X f
//Y

commutes, and any two such maps are “naively”
homotopic (exercise).
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8 The homotopy category

For all X ∈M find maps

X
pX←− QX

jX−→ RQX

such that

• pX is a trivial fibration and QX is cofibrant, and
jX is a trivial cofibration and RQX is fibrant
(and cofibrant),

• QX = X and pX = 1X if X is cofibrant, and
RQX = QX and jX = 1QX if QX is fibrant.

Every map f : X → Y determines a diagram

X
f
��

QXpXoo

f1
��

jX //RQX
f2
��

Y QYpY
oo

jY
//RQY

since QX is cofibrant and RQY is fibrant.

Lemma 8.1. The map f2 is uniquely determined
up to homotopy.

Proof. Suppose f ′1 and f ′2 are different choices for
f1 and f2 respectively.
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There is a diagram

QX tQX
( f1, f ′1) //

i
��

QY
pY
��

QX⊗ I
σ

//

55

QX f pX
//Y

for any choice of cylinder QX ⊗ I for QX , so f1

and f ′1 are left homotopic.

The maps jY f1 and jY f ′1 are left homotopic, hence
right homotopic because QX is cofibrant and RQY
is fibrant. Thus, there is a right homotopy

RQY I

p
��

QX
( jY f1, jY f ′1)

//

h
44

RQY ×RQY

for some (actually any) path object RQY I. Form
the diagram

QX h //

jX
��

RQY I

p
��

RQX
( f2, f ′2)

//

H
55

RQY ×RQY

Then f2 and f ′2 are homotopic.

π(M )c f is the category whose objects are the cofibrant-
fibrant objects of M , and whose morphisms are
homotopy classes of maps.
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Lemma 8.1 implies that there is a well-defined func-
tor

M → π(M )c f

defined by X 7→ RQX and f 7→ [RQ( f )], where

RQ( f ) = f2.

The homotopy category Ho(M ) of M has the same
objects as M , and has

homHo(M )(X ,Y ) = homπ(M )c f (RQX ,RQY ).

There is a functor

γ : M → Ho(M )

that is the identity on objects, and sends f : X→Y
to the homotopy class [RQ( f )].

γ takes weak equivalences to isomorphisms in Ho(M ),
by the Whitehead Theorem (Theorem 7.8).

Lemma 8.2. Suppose f : RQX → RQY represents
a morphism [ f ] : X → Y of Ho(M ). Then there is
a commutative diagram

X
[ f ]
��

QX
γ(pX )oo

[ f ]
��

γ( jX ) //RQX
γ( f )
��

Y QY
γ(pY )
oo

γ( jY )
//RQY

in Ho(M ).
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Proof. The maps γ(pX) and γ( jX) are isomorphisms
defined by the class [1RQX ] in π(M )c f .

Theorem 8.3. Suppose M is a closed model cate-
gory, and F : M → D takes weak equivalences to
isomorphisms.

There is a unique functor F∗ : Ho(M )→ D such
that the diagram of functors

M
γ
//

F %%

Ho(M )
F∗
��

D
commutes.

Proof. This result is a corollary of Lemma 8.2.

Remarks: 1) Ho(M ) is a model for the category
M [WE]−1 obtained from M by formally invert-
ing all weak equivalences.

2) γ : M → Ho(M ) induces a fully faithful func-
tor γ∗ : π(Mc f )→Ho(M ). Every object of Ho(M )

is isomorphic to a (cofibrant fibrant) object in the
image of γ∗.

It follows that the functor γ∗ is an equivalence of
categories.

This last observation specializes to well known
phenomena:
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• The homotopy category of CGWH is equiva-
lent to the category of CW -complexes and or-
dinary homotopy classes of maps between them.

• The derived category of Ch+(R) is equivalent
to the category of chain complexes of projec-
tives and chain homotopy classes of maps be-
tween them.

One final thing: the functor γ : M → Ho(M ) re-
flects weak equivalences:

Proposition 8.4. Suppose that M is a closed model
category, and that f : X → Y is a morphism such
that γ( f ) is an isomorphism in Ho(M ). Then f is
a weak equivalence of M .

For the proof, it is enough to suppose that both
X and Y are fibrant and cofibrant and that f is a
fibration with a homotopy inverse g : Y →X . Then
the idea is to show that f is a weak equivalence.

This claim is a triviality in almost all cases of inter-
est, but it is a bit tricky to prove in full generality.
This result appears as Proposition II.1.14 in [1].
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9 Simplicial sets

A simplicial set is a functor

X : ∆
op→ Set,

ie. a contravariant set-valued functor defined on
the ordinal number category ∆.

One usually writes n 7→ Xn.

Xn is the set of n-simplices of X .

A simplicial map f : X → Y is a natural transfor-
mation of such functors.

The simplicial sets and simplicial maps form the
category of simplicial sets, denoted by sSet — one
also sees the notation S for this category.

If A is some category, then a simplicial object in
A is a functor

A : ∆
op→A .
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Maps between simplicial objects are natural trans-
formations.

The simplicial objects in A and their morphisms
form a category sA .

Examples: 1) sGr = simplicial groups.

2) sAb = simplicial abelian groups.

3) s(R−Mod) = simplicial R-modules.

4) s(sSet) = s2Set is the category of bisimplicial
sets.

Simplicial objects are everywhere.

Examples of simplicial sets:

1) We’ve already met the singular set S(X) for a
topological space X , in Section 4.

S(X) is defined by the cosimplicial space (covari-
ant functor) n 7→ |∆n|, by

S(X)n = hom(|∆n|,X).

θ : m→ n defines a function

S(X)n = hom(|∆n|,X)
θ∗−→ hom(|∆m|,X) = S(X)m

by precomposition with the map θ : |∆m| → |∆m|.
The assignment X 7→ S(X) defines the singular
functor

S : CGWH→ sSet.
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2) The ordinal number n represents a contravariant
functor

∆
n = hom∆( ,n) : ∆

op→ Set,

called the standard n-simplex.

ιn := 1n ∈ hom∆(n,n).
The n-simplex ιn is the classifying n-simplex.

The Yoneda Lemma implies that there is a natural
bijection

homsSet(∆
n,Y )∼= Yn

defined by sending the map σ : ∆n→ Y to the ele-
ment σ(ιn) ∈ Yn.

A map ∆n→ Y is an n-simplex of Y .

Every ordinal number morphism θ : m → n in-
duces a simplicial set map

θ : ∆
m→ ∆

n,

defined by composition.

We have a covariant functor

∆ : ∆→ sSet

with n 7→ ∆n. This is a cosimplicial object in sSet.
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If σ : ∆n→ X is a simplex of X , the ith face di(σ)

is the composite

∆
n−1 di
−→ ∆

n σ−→ X ,

The jth degeneracy s j(σ) is the composite

∆
n+1 s j
−→ ∆

n σ−→ X .

3) ∂∆n is the subobject of ∆n which is generated
by the (n−1)-simplices di, 0≤ i≤ n.

Λn
k isthe subobject of ∂∆n which is generated by

the simplices di, i 6= k.

∂∆n is the boundary of ∆n, and Λn
k is the kth horn.

The faces di : ∆n−1→ ∆n determine a covering
n⊔

i=0

∆
n−1→ ∂∆

n,

and for each i < j there are pullback diagrams

∆n−2 d j−1
//

di
��

∆n−1

di
��

∆n−1
d j

//∆n

(Excercise!). It follows that there is a coequalizer⊔
i< j,0≤i, j≤n ∆n−2 //

//
⊔

0≤i≤n ∆n−1 // ∂∆n
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in sSet.
Similarly, there is a coequalizer⊔

i< j,i, j 6=k ∆n−2 //
//
⊔

0≤i≤n,i 6=k ∆n−1 //Λn
k.

4) Suppose the category C is small, ie. the mor-
phisms Mor(C) (and objects Ob(C)) form a set.

Examples include all finite ordinal numbers n (be-
cause they are posets), all monoids (small cate-
gories having one object), and all groups.

There is a simplicial set BC with n-simplices

BCn = hom(n,C),

ie. the functors n→C.

The simplicial structure on BC is defined by pre-
composition with ordinal number maps: if θ : m→
n is an ordinal number map (aka. functor) and
σ : n→C is an n-simplex, then θ ∗(σ) is the com-
posite functor

m θ−→ n σ−→C.

The object BC is called the classifying space or
nerve of C (the notation NC is also common).

If G is a (discrete) group, BG “is” the standard
classifying space for G in CGWH, which classi-
fies principal G-bundles.
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NB: Bn = ∆n.

5) Suppose I is a small category, and X : I→ Set
is a set-valued functor (aka. a diagram in sets).

The translation category (“category of elements”)
EI(X) has objects given by all pairs (i,x) with x ∈
X(i).

A morphism α : (i,x)→ ( j,y) is a morphism α :
i→ j of I such that α∗(x) = y.

The simplicial set B(EIX) is the homotopy col-
imit for the functor X . One often writes

holim−−−→ I X = B(EIX).

Here’s a different description of the nerve BI:

BI = holim−−−→ I ∗ .

BI is the homotopy colimit of the (constant) func-
tor I→ Set which associates the one-point set ∗ to
every object of I.

There is a functor

EIX → I,

defined by the assignment (i,x) 7→ i.

This functor induces a simplicial set map

π : B(EIX) = holim−−−→ I X → BI.
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A functor n→C is specified by a string of arrows

a0
α1−→ a1

α2−→ . . .
αn−→ an

in C, for then all composites of these arrows are
uniquely determined.

The functors n→EIX can be identified with strings

(i0,x0)
α1−→ (i1,x1)

α2−→ . . .
αn−→ (in,xn).

Such a string is specified by the underlying string
i0 → ·· · → in in the index category Y and x0 ∈
X(i0).

It follows that there is an identification

(holim−−−→ I X)n = B(EIX)n =
⊔

i0→···→in

X(i0).

The construction is functorial with respect to nat-
ural transformations in diagrams X .

A diagram X : I → sSet in simplicial sets (a sim-
plicial object in set-valued functors) determines a
simplicial category m 7→ EI(Xm) and a correspond-
ing bisimplicial set with (n,m) simplices

B(EIX)m =
⊔

i0→···→in

X(i0)m.

The diagonal d(Y ) of a bisimplicial set Y is the
simplicial set with n-simplices Yn,n. Equivalently,
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d(Y ) is the composite functor

∆
op ∆−→ ∆

op×∆
op Y−→ Set

where ∆ is the diagonal functor.

The diagonal dB(EIX) of the bisimplicial set B(EIX)

is the homotopy colimit holim−−−→ I X of the functor
X : I→ sSet.
There is a natural simplicial set map

π : holim−−−→ I X → BI.

6) Suppose X and Y are simplicial sets. The func-
tion complex

hom(X ,Y )

has n-simplices

hom(X ,Y )n = hom(X×∆
n,Y ).

If θ : m→ n is an ordinal number map and f :
X ×∆n → Y is an n-simplex of hom(X ,Y ), then
θ ∗( f ) is the composite

X×∆
m 1×θ−−→ X×∆

m f−→ Y.

There is a natural simplicial set map

ev : X×hom(X ,Y )→ Y
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defined by

(x, f : X×∆
n→ Y ) 7→ f (x, ιn).

Suppose K is a simplicial set.

The function

ev∗ : hom(K,hom(X ,Y ))→ hom(X×K,Y ),

is defined by sending g : K → hom(X ,Y ) to the
composite

X×K
1×g−−→ X×hom(X ,Y ) ev−→ Y.

The function ev∗ is a bijection, with inverse that
takes f : X ×K → Y to the morphism f∗ : K →
hom(X ,Y ), where f∗(y) is the composite

X×∆
n 1×y−−→ X×K

f−→ Y.

The natural bijection

hom(X×K,Y )∼= hom(K,hom(X ,Y ))

is called the exponential law.

sSet is a cartesian closed category.

The function complexes also give sSet the struc-
ture of a category enriched in simplicial sets.
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10 The simplex category and realization

Suppose X is a simplicial set.

The simplex category ∆/X has for objects all sim-
plices ∆n→ X .

Its morphisms are the incidence relations between
the simplices, meaning all commutative diagrams

∆m
τ
&&

θ
��

X
∆n σ

88

(1)

∆/X is a type of slice category. It is denoted by
∆ ↓ X in [2]. See also [6].

In the broader context of homotopy theories asso-
ciated to a test category (long story — see [4]) one
says that the simplex category is a cell category.

Exercise: Show that a simplicial set X is a colimit
of its simplices, ie. the simplices ∆n→ X define a
simplicial set map

lim−→
∆n→X

∆
n→ X ,

which is an isomorphism.
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There is a space |X |, called the realization of the
simplicial set X , which is defined by

|X |= lim−→
∆n→X

|∆n|.

Here |∆n| is the topological standard n-simplex, as
described in Section 4.

|X | is the colimit of the functor ∆/X → CGWH
which takes the morphism (1) to the map

|∆m| θ−→ |∆n|.

The assignment X 7→ |X | defines a functor

| | : sSet→ CGWH,

called the realization functor.

Lemma 10.1. The realization functor is left ad-
joint to the singular functor S : CGWH→ sSet.

Proof. A simplicial set X is a colimit of its sim-
plices. Thus, for a simplicial set X and a space Y ,
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there are natural isomorphisms

hom(X ,S(Y ))∼= hom( lim−→
∆n→X

∆
n,S(Y ))

∼= lim←−
∆n→X

hom(∆n,S(Y ))

∼= lim←−
∆n→X

hom(|∆n|,Y )

∼= hom( lim−→
∆n→X

|∆n|,Y )

= hom(|X |,Y ).

Remark: Kan introduced the concept of adjoint
functors to describe the relation between the real-
ization and singular functors.

Examples:

1) |∆n| = |∆n|, since the simplex category ∆/∆n

has a terminal object, namely 1 : ∆n→ ∆n.

2) |∂∆n| = |∂∆n| and |Λn
k| = |Λn

k|, since the real-
ization functor is a left adjoint and therefore
preserves coequalizers and coproducts.

The nth skeleton skn X of a simplicial set X is the
subobject generated by the simplices Xi, 0≤ i≤ n.
The ascending sequence of subcomplexes

sk0 X ⊂ sk1 X ⊂ sk2 X ⊂ . . .
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defines a filtration of X , and there are pushout di-
agrams ⊔

x∈NXn ∂∆n //

��

skn−1 X

��⊔
x∈NXn ∆n // skn X

(2)

NXn is the set of non-degenerate n-simplices of X .

σ ∈ Xn is non-degenerate if it is not of the form
s j(y) for some (n−1)-simplex y and some j.

Exercise: Show that the diagram (2) is indeed a
pushout.

For this, it’s helpful to know that the functor X 7→
skn X is left adjoint to truncation up to level n.

For that, you should know that every simplex x
of a simplicial set X has a unique representation
x = s∗(y) where s : n � k is an ordinal number epi
and y ∈ Xk is non-degenerate.

Corollary 10.2. The realization |X | of a simplicial
set X is a CW-complex.

Every monomorphism A→ B of simplicial sets in-
duces a cofibration |A| → |B| of spaces. ie. |B| is
constructed from |A| by attaching cells.

13



Lemma 10.3. The realization functor preserves fi-
nite limits.

Proof. There are isomorphisms

|X×Y | ∼= | lim−→
∆n→X ,∆m→Y

∆
n×∆

m|

∼= lim−→
∆n→X ,∆m→Y

|∆n×∆
m|

∼= lim−→
∆n→X ,∆m→Y

|∆n|× |∆m|

∼= |X |× |Y |
One shows that the canonical maps

|∆n×∆
m| → |∆n|× |∆m|

are isomorphisms with an argument involving shuf-
fles — see [1, p.52].

If σ ,τ : ∆n→ Y are simplices such that

|σ |= |τ| : |∆n| → |Y |,

then σ = τ (exercise).

Suppose f ,g : X → Y are simplicial set maps, and
x ∈ |X | is an element such that f∗(x) = g∗(x).

If σ is the “carrier” of x (ie. non-degenerate sim-
plex of X such that x is interior to the cell defined
by σ ), then f∗(y) = g∗(y) for all y in the interior of

14



|σ | (by transforming by a suitable automorphism
of the cosimplicial space |∆|— see [1, p.51]).

But then

| f σ |= |gσ | : |∆n| → |Y |,

so f σ = gσ and x ∈ |E|, where E is the equalizer
of f and g in sSet.

11 Model structure for simplicial sets

A map f : X → Y of simplicial sets is a weak
equivalence if f∗ : |X |→ |Y | is a weak equivalence
of CGWH.

A map i : A→ B of simplicial sets is a cofibra-
tion if and only if it is a monomorphism, ie. all
functions i : An→ Bn are injective.

A simplicial set map p : X → Y is a fibration if it
has the RLP wrt all trivial cofibrations.

Remark: There is a natural commutative diagram

X tX ∇ //

(i0,i1) ��

X

X×∆1
pr

;; (3)

for simplicial sets X . (i0, i1) is the cofibration

1X× i : X×∂∆
1→ X×∆

1

15



induced by the inclusion i : ∂∆1 ⊂ ∆1. The two
inclusions iε of the end points of the cylinder are
weak equivalences, as is pr : X×∆1→ X .

The diagram (3) is a natural cylinder object for the
model structure on simplicial sets (see Theorem
11.6). Left homotopy with respect to this cylinder
is classical simplicial homotopy.

Lemma 11.1. A map p : X → Y is a trivial fibra-
tion if and only if it has the RLP wrt all inclusions
∂∆n ⊂ ∆n, n≥ 0.

Proof. 1) Suppose p has the lifting property.

Then p has the RLP wrt all cofibrations (exercise:
induct through relative skeleta), so the lifting s ex-
ists in the diagram

/0 //

��

X
p
��

Y 1Y
//

s
??

Y

since all simplicial sets are cofibrant.

The lifting h exists in the diagram

X tX
(sp,1)

//

i ��

X
p
��

X×∆1
p·pr

//

h
;;

Y

16



so the map p∗ : |X | → |Y | is a homotopy equiva-
lence, hence a weak equivalence.

2) Suppose p is a trivial fibration and choose a fac-
torization

X j
//

p   

U
q
��

Y
such that j is a cofibration and q has the RLP wrt
all maps ∂∆n ⊂ ∆n (such things exist by a small
object argument).

q is a weak equivalence by part 1), so j is a trivial
cofibration and the lift r exists in the diagram

X 1X //

j
��

X
p
��

U q
//

r
??

Y

Then p is a retract of q, and has the RLP.

Say that a simplicial set A is countable if it has
countably many non-degenerate simplices.

A simplicial set K is finite if it has only finitely
many non-degenerate simplices, eg. ∆n, ∂∆n, Λn

k.

Fact: If X is countable (resp. finite), then all sub-
complexes of X are countable (resp. finite).

17



The following result is proved with simplicial ap-
proximation techniques:

Lemma 11.2. Suppose that X has countably many
non-degenerate simplices.

Then π0|X | and all homotopy groups πn(|X |,x) are
countable.

Proof. Suppose x is a vertex of X , identified with
x ∈ |X |.
A continuous map

(|∆k|, |∂∆
k|)→ (|X |,x)

is homotopic, rel boundary, to the realization of a
simplicial set map

(sdN
∆

k,sdN
∂∆

k)→ (X ,x),

by simplicial approximation [3].

The (iterated) subdivisions sdM
∆k are finite com-

plexes, and there are only countably many maps
sdM

∆k→ X for M ≥ 0.

18



Here’s a consequence:

Lemma 11.3 (Bounded cofibration lemma). Sup-
pose given cofibrations

X
i
��

A //Y

where i is trivial and A is countable.

Then there is a countable B⊂ Y with A⊂ B, such
that the map B∩X → B is a trivial cofibration.

Proof. Write B0 = A and consider the map

B0∩X → B0.

The homotopy groups of |B0| and |B0∩X | are count-
able, by Lemma 11.2.

Y is a union of its countable subcomplexes.

Suppose that

α,β : (|∆n|, |∂∆
n|)→ (|B0∩X |,x)

become homotopic in |B0| hence in |X |.
The map defining the homotopy in |X | is compact
(ie. defined on a CW -complex with finitely many
cells), so there is a countable B′ ⊂ Y with B0 ⊂ B′

such that the homotopy lives in |B′∩X |.
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The image in |Y | of any morphism

γ : (|∆n|, |∂∆
n|)→ (|B0|,x)

lifts to |X | up to homotopy, and that homotopy
lives in |B′′| for some countable subcomplex B′′ ⊂
Y with B0 ⊂ B′′.

It follows that there is a countable subcomplex
B1 ⊂ Y with B0 ⊂ B1 such that any two elements

[α], [β ] ∈ πn(|B0∩X |,x)

which map to the same element in πn(|B0|,x) must
also map to the same element of πn(|B1 ∩X |,x),
and every element

[γ] ∈ πn(|B0|,x)

lifts to an element of πn(|B1∩X |,x), and this for
all n≥ 0 and all (countably many) vertices x.

Repeat the construction inductively, to form a count-
able collection

A = B0 ⊂ B1 ⊂ B2 ⊂ . . .

of subcomplexes of Y .

Then B =
⋃

Bi is a countable subcomplex of Y ,
and the map B∩X→B is a weak equivalence.
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Say that a cofibration A→ B is countable if B is
countable.

Lemma 11.4. Every simplicial set map f : X → Y
has a factorization

X i //

f ��

Z
q
��

Y

such that q has the RLP wrt all countable trivial
cofibrations, and i is constructed from countable
trivial cofibrations by pushout and composition.

The proof of Lemma 11.4 is an example of a trans-
finite small object argument.

Lang’s Algebra [5] has a quick introduction to car-
dinal arithmetic.

Proof. Choose an uncountable cardinal number κ ,
interpreted as the (totally ordered) poset of ordinal
numbers s < κ .

Construct a system of factorizations

X is //

f ��

Zs
qs
��

Y

(4)

of f with js a trivial cofibration as follows:
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• given factorization of the form (4) consider all
diagrams

D : AD //

iD
��

Zs
qs
��

BD //Y
such that iD is a countable trivial cofibration,
and form the pushout⊔

D AD //

��

Zs

js
��⊔

D BD // Zs+1

Then the map js is a trivial cofibration, and the
diagrams together induce a map qs+1 : Zs+1→
Y . Let is+1 = jsis.

• if γ < κ is a limit ordinal, let Zγ = lim−→t<γ
Zt .

Now let Z = lim−→s<κ
Zs with induced factorization

X
j−→ Z

q−→ Y

Suppose given a lifting problem

A α //

j
��

Z
q
��

B //Y
with j : A→B a countable trivial cofibration. Then
α(A) is a countable subcomplex of X , so α(A) ⊂
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Zs for some s < κ , for otherwise α(A) has too
many elements.

The lifting problem is solved in Zs+1.

Remark: The map j : X → Z is in the saturation
of the set of countable trivial cofibrations.

The saturation of a set of cofibrations I is the
smallest class of cofibrations containing I which
is closed under pushout, coproducts, (long) com-
positions and retraction.

If a map p has the RLP wrt all maps of I then it
has the RLP wrt all maps in the saturation of I.
(exercise)

Classes of cofibrations which are defined by a left
lifting property with respect to some family of maps
are saturated in this sense. (exercise)

Lemma 11.5. A map q : X→Y is a fibration if and
only if it has the RLP wrt (the set of) all countable
trivial cofibrations.

We use a recurring trick for the proof of this result.
It amounts to verifying a “solution set condition”.
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Proof. 1) Suppose given a diagram

A //

j
��

X
f
��

B //Y
where j is a cofibration, B is countable and f is a
weak equivalence.

Lemma 11.1 says that f has a factorization f =

q · i, where i is a trivial cofibration and q has the
RLP wrt all cofibrations.

The lift exists in the diagram

A //

j
��

X
i��

Z
q��

B //

θ
::

Y

θ(B) is countable, so there is a countable sub-
complex D ⊂ Z with θ(B) ⊂ D such that the map
D∩X → D is a trivial cofibration.

We have a factorization

A //

j
��

D∩X //

��

X
f
��

B //D //Y
of the original diagram through a countable trivial
cofibration.
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2) Suppose that i : C→ D is a trivial cofibration.

Then i has a factorization

C j
//

i ��

E
p
��

D
such that p has the RLP wrt all countable trivial
cofibrations, and j is built from countable trivial
cofibrations by pushout and composition. Then j
is a weak equivalence, so p is a weak equivalence.

Part 1) implies that p has the RLP wrt all countable
cofibrations, and hence wrt all cofibrations.

The lift therefore exists in the diagram

C j
//

i
��

E
p
��

D 1D
//

θ
??

D

so i is a retract of j.

Thus, if q : Z→W has the RLP wrt all countable
trivial cofibrations, then it has the RLP wrt all triv-
ial cofibrations.

Exercise: Find a different, simpler proof for Lemma
11.5. Hint: use Zorn’s lemma.
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Theorem 11.6. With the definitions of weak equiv-
alence, cofibration and fibration given above the
category sSet of simplicial sets satisfies the axioms
for a closed model category.

Proof. The axioms CM1, CM2 and CM3 are easy
to verify.

Every map f : X → Y has a factorization

X j
//

f   

W
q
��

Y
such that j is a cofibration and q is a trivial fi-
bration — this follows from Lemma 11.1 and a
standard small object argument. The other half of
the factorization axiom CM5 is a consequence of
Lemma 11.4 and Lemma 11.5.

CM4 also follows from Lemma 11.1.

Remark: In the adjoint pair of functors

| | : sSet � CGWH : S

the realization functor (the left adjoint part) pre-
serves cofibrations and trivial cofibrations. It’s an
immediate consequence that the singular functor S
preserves fibrations and trivial fibrations.
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Adjunctions like this between closed model cat-
egory are called Quillen adjunctions or Quillen
pairs. We’ll see later on, and this is a huge result,
that these functors form a Quillen equivalence.

Remark: We defined the weak equivalences of sim-
plicial sets to be those maps whose realizations
are weak equivalences of spaces. In this way, the
model structure for sSet, as it is described here, is
induced from the model structure for CGWH via
the realization functor | |.
Alternatively, one says that the model structure on
simplicial sets is obtained from that on spaces by
transfer.
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Lecture 05: Fibrations, geometric realization
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12 Kan fibrations

A map p : X → Y is a Kan fibration if it has the
RLP wrt all inclusions Λn

k ⊂ ∆n.

Example: A fibration of simplicial sets, (Section
11), is a Kan fibration, since |Λn

k| → |∆n| is a weak
equivalence.

The converse statement is also true: every Kan fi-
bration is a fibration. This is Theorem 13.5 below.

Say that X is a Kan complex if the map X → ∗ is
a Kan fibration.

Exercise: Suppose C is a small category. Show
that the nerve BC is a Kan complex if and only if
C is a groupoid.

Example: The ordinal number posets n are not
groupoids if n ≥ 1, so the simplices ∆n = Bn are
not Kan complexes.
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The saturation of the set of cofibrations Λn
k ⊂ ∆n is

normally called the class of anodyne extensions.

This is the class of cofibrations which has the LLP
wrt all Kan fibrations.

Lemma 12.1. The following sets of cofibrations
have the same saturations:

• A1 = all maps Λn
k ⊂ ∆n,

• A2 = all inclusions

(∆1×∂∆
n)∪ ({ε}×∆

n)⊂ ∆
1×∆

n, ε = 0,1.

Proof. 1) The saturation of A2 includes all maps

(∆1×K)∪ ({ε}×L)⊂ ∆
1×L, ε = 0,1.

induced by inclusions K ⊂ L, since L is built from
K by attaching cells.

The functor rk : n×1→ n specified by the picture

0 //

��

1 //

��

. . . // k //

��

k //

��

. . . // k

��
0 // 1 // . . . // k // k+1 // . . . // n

and the functor i : n → n× 1 defined by i( j) =
( j,1) together determine a retraction diagram

Λn
k

//

��

(Λn
k×∆1)∪ (∆n×{0}) //

��

Λn
k

��

∆n //∆n×∆1 //∆n

2



(NB: ∆n×{0} is mapped into Λn
k) so Λn

k ⊂ ∆n is in
the saturation of the family A2 if k < n.

The map Λn
k ⊂ ∆n is a retraction of

(Λn
k×∆

1)∪ (∆n×{1})⊂ ∆
n×∆

1

if k > 0. Thus, the saturation of A1 is contained in
the saturation of A2.

2) The non-degenerate (n + 1)-simplices of hi :
∆n×∆1 are functors n+1→ n×1 defined by the
pictures

(0,0) // (1,0) // . . . // (i,0)

��

(i,1) // . . . // (i,n)

Let (∆n × ∆1)(i) be the subcomplex of ∆n × ∆1)

generated by ∂∆n×∆1 and the simplices h0, . . . ,hi.
Let

(∆n×∆
1)(−1) = (∂∆

n×∆
1)∪ (∆n×{0}).

Then (∆n×∆1)(n)=∆n×∆1, and there are pushouts

Λ
n+1
i+2

//

��

(∆n×∆1)(i)

��

∆n+1 // (∆n×∆1)(i+1)

It follows that the members of A2 are in the satu-
ration of the set A1.
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Lemma 12.2. Suppose i : K → L is an anodyne
extension and j : A→ B is a cofibration.

Then the inclusion

(K×B)∪ (L×A)⊂ L×B

is anodyne.

Proof. The class of cofibrations K′→ L′ such that

(K′×B)∪ (L′×A)⊂ L′×B

is anodyne is saturated, and includes all cofibra-
tions

(∆1×∂∆
n)∪ ({ε}×∆

n)⊂ ∆
1×∆

n, ε = 0,1,

by rebracketing (see [2, I.4.6]).

Corollary 12.3. The cofibrations

(Λn
k×∆

m)∪ (∆n×∂∆
m)⊂ ∆

n×∆
m

are anodyne.
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Here’s something else that Lemma 12.2 buys you:

Corollary 12.4. Suppose p : X→Y is a Kan fibra-
tion and j : A→ B is a cofibration.

Then the map

hom(B,X)
( j∗,p∗)−−−→ hom(A,X)×hom(A,Y )hom(B,Y )

is a Kan fibration.

If either p is a trivial fibration or j is anodyne,
then the map ( j∗, p∗) is a trivial fibration.

Proof. Solutions of the lifting problem

K //

i
��

hom(B,X)

( j∗,p∗)
��

L //

44

hom(A,X)×hom(A,Y ) hom(B,Y )

are equivalent to solutions of the lifting problem

(L×A)∪ (K×B) //

(i, j)∗
��

X
p
��

L×B //

66

Y

by the exponential law. The map (i, j)∗ is anodyne
if either i or j is anodyne, by Lemma 12.2.

Corollary 12.5. The function complex hom(X ,Y )
is a Kan complex if Y is a Kan complex.

The proof of Corollary 12.5 is an exercise.
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Lemma 12.6. Simplicial homotopy of maps

X → Y

is an equivalence relation if Y is a Kan complex.

Proof. It’s enough to show that simplicial homo-
topy classes of vertices ∆0→ Z is an equivalence
relation if Z is a Kan complex, since hom(X ,Y ) is
a Kan complex.

The paths
x

ω2−→ y
ω0−→ z

define a map (ω0, ,ω2) : Λ2
1→ Z which extends to

a 2-simplex σ : ∆2→ Z. The 1-simplex d1σ is a
path x→ z. Thus, the path relation is transitive.

Suppose ω2 : x→ y is a path in a Kan complex Z.
Let x : x→ x denote the constant path (degenerate
1-simplex) at x. Then there is a diagram

Λ2
0
( ,x,ω2) //

��

Z

∆2
θ

;;

so there is a path d0θ : y→ x. The path relation is
therefore symmetric.

The constant path ∆1 s0
−→ ∆0 x−→ X is a path from x

to x, so the relation is reflexive.
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Path components
Write π0(Z) for the path components, aka. sim-
plicial homotopy classes of vertices ∆0→ Z for a
Kan complex of Z.

The argument for Lemma 12.6 implies that there
is a coequalizer

Z1
d0 //

d1
// Z0 // π0(Z)

in Set.
More generally, the set π0X of path components
is defined for an arbitrary simplicial set X by the
coequalizer

X1
d0 //

d1
//X0 // π0(X)

Exercise: Show that there is a natural bijection

π0(X)∼= π0(|X |)

for simplicial sets X .
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Combinatorial homotopy groups
Suppose Y is a Kan complex, and x∈Y0 is a vertex.

The map i∗ in the pullback diagram

Fx //

��

hom(∆n,Y )
i∗
��

∆0
x
// hom(∂∆n,Y )

is a Kan fibration by Corollary 12.4.
The vertices of the Kan complex Fx are diagrams

∂∆n

i
��

x //Y

∆n

==

or simplices α : ∆n→Y which restrict to the trivial
map ∂∆n→ ∆0 x−→ Y on the boundary.

The path components π0(Fx) are the simplicial ho-
motopy classes of maps

(∆n,∂∆
n)→ (Y,x)

rel ∂∆n.

πs
n(Y,x) denotes this set of simplicial homotopy

classes.

The set πs
n(Y,x) has the structure of a group for

n≥ 1, and this group is abelian if n≥ 2. These are
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the simplicial homotopy groups of a Kan complex.

The multiplication is specified for [α], [β ]∈ πs
n(Y,x)

by
[α]∗ [β ] = [dnσ ],

where σ : ∆n+1→ Y is a lifting

Λn+1
n

(x,...,x,α,?,β )
//

��

Y

∆n+1
σ

77

Equivalently, πs
n(Y,x) can be identified with ho-

motopy classes of maps

((∆1)×n,∂ ((∆1)×n))→ (Y,x)

by the same (prismatic) argument as the correspond-
ing result for topological spaces (Section 5).

The group πs
2(Y,x) is the group of automorphisms

of the constant loop x → x in the combinatorial
fundamental groupoid πs(Ω(Y )) for the loop ob-
ject Ω(Y ) at x. The loop “space” Ω(Y ) is defined
by the pullback diagram

Ω(Y ) //

��

hom(∆1,Y )

��

∆0
x
// hom(∂∆1,Y )

9



The combinatorial fundamental groupoid πs(Z)
is defined for a Kan complex Z by analogy with
the definition of the fundamental groupoid of a
space. Exercise: Construct πs(Z).

This group multiplication is defined by one of the
two directions implicit in the maps

((∆1)×2,∂ (∆1)×2)→ (Y,x).

The second multiplication coincides with this one
(and has the same identity), since the inclusions

Λ
2
1×Λ

2
1→ ∆

2×∆
2

are anodyne (exercise). It follows that πs
2(Y,x) is

an abelian group.

The group laws for all πs
n(Y,x),n ≥ 2, are con-

structed similarly, and are abelian. πs
n(Y,x) is an

automorphism group of the combinatorial funda-
mental groupoid πsΩn−1(Y ) of the iterated loop
space Ωn−1(Y ) (at x).
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Long exact sequence
Suppose p : X → Y is a Kan fibration such that Y
(hence X) is a Kan complex.

Define the fibre F over a vertex y ∈ Y by the pull-
back diagram

F i //

��

X
p
��

∆0
y
//Y

Suppose x is a vertex of F . There is a boundary
homomorphism

∂ : π
s
n+1(Y,y)→ π

s
n(F,x)

which is defined for [α] ∈ πs
n+1(Y,y) by setting

∂ ([α]) = [d0θ ], where θ is a choice of lifting mak-
ing the diagram

Λ
n+1
0

x //

��

X
p
��

∆n+1
α

//

θ

==

Y

commute.

The same arguments as for Lemma 5.2 apply, giv-
ing
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Lemma 12.7. p : X → Y is a Kan fibration such
that Y is a Kan complex, and F is the fibre over a
vertex y ∈ Y .

1) For each vertex x ∈ F there is a sequence of
pointed sets

. . .πs
n(F,x)

i∗−→ π
s
n(X ,x)

p∗−→ π
s
n(Y, p(x)) ∂−→ π

s
n−1(F,x)→ . . .

. . .πs
1(Y, f (x)) ∂−→ π0(F)

i∗−→ π0(X)
p∗−→ π0(Y )

which is exact in the sense that ker = im every-
where.

2) There is a group action

∗ : π
s
1(Y, p(x))×π0(F)→ π0(F)

such that ∂ ([α]) = [α]∗ [x], and i∗[z] = i∗[w] iff
there is [β ] ∈ π1(Y, p(x)) st [β ]∗ [z] = [w].

Here’s a combinatorial analogue of Lemma 5.1:

Lemma 12.8. p : X → Y is a Kan fibration and
Y is a Kan complex. Suppose p induces a bijec-
tion π0(X)∼= π0(Y ), and isomorphisms πs

n(X ,x)∼=
πs

n(Y, p(x)) for all n ≥ 1 and all vertices x of X.
Then p is a trivial fibration of sSet.

Proof. Show that p has the right lifting property
with respect to all inclusions ∂∆n⊂ ∆n, n≥ 0. The
argument is the same as for Lemma 5.1.
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A combinatorial weak equivalence is a map f :
X → Y of Kan complexes that induces an isomor-
phism in all possible simplicial homotopy groups,
ie. f induces a bijection and isomrphisms

π
s
n(X ,x)∼= π

s
n(Y, f (x)), x ∈ X0,n≥ 1.

Equivalently, f induces a bijection

π0(X)∼= π0(Y )

and all diagrams

πs
n(X) //

��

πs
n(Y )

��

X0 //Y0

are pullbacks of sets. Here,

π
s
n(X) :=

⊔
x∈X0

π
s
n(X ,x).

By Lemma 12.8, a map p that is a Kan fibration
and a combinatorial weak equivalence between Kan
complexes must also be a trivial fibration.
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13 Simplicial sets and spaces

Here’s a major theorem, due to Quillen:

Theorem 13.1. The realization of a Kan fibration
is a Serre fibration.

Proof. This will only be a brief sketch — the de-
tails can be found, for example, [2, I.10].

The idea is to use the theory of minimal fibrations
to show that every Kan fibration p : X → Y has a
factorization

X
p ��

g
// Z

q
��

Y
where g is a trivial fibration (ie. has the right lift-
ing property with respect to all ∂∆n ⊂ ∆n) and q is
a minimal Kan fibration.

Garbriel and Zisman show [1], [2] that the realiza-
tion of a minimial fibration q : Z → Y is a Serre
fibration: the idea is that every pullback q−1(σ) of
a simplex σ : ∆n→ Y is isomorphic over ∆n to a
simplicial set F×∆n, where F is a fibre over some
vertex ∆n, and it follows that the realization of q is
locally a projection, hence a Serre fibration.
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The trivial fibration g sits in a diagram

X 1X //

(1X ,g)
��

X
g
��

X×Z pr
//

;;

Z

and is therefore a retract of a projection.

A Kan fibration p : X→Y is said to be minimal if,
given simplices α,β : ∆n→Y (with ∂ (α) = ∂ (β )

and p(α) = p(β )), then the existence of a diagram

∂∆n×∆1 pr
//

i×1 ��
∂∆n

��

∆n×∆1 h //

pr ��
X

p��
∆n //Y

(fibrewise homotopy rel boundary) forces α = β .

Every Kan fibration has a minimal Kan fibration as
a strong fibrewise deformation retract, and every
fibrewise weak equivalence of minimal fibrations
is an isomorphism. See [2, I.10].

The Milnor Theorem is a consequence of Quillen’s
theorem:

Theorem 13.2 (Milnor). Suppose that Y is a Kan
complex and η : Y → S(|Y |) is the adjunction ho-
momorphism.

Then η is a combinatorial weak equivalence.
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We need the path-loop fibre sequence for the proof
of Theorem 13.2.

If Y is a Kan complex, then the map ∂∆1 ⊂ ∆1

induces a Kan fibration

hom(∆1,Y )
(p0,p1)−−−−→ Y ×Y ∼= hom(∂∆

1,Y ),

and the induced maps p0, p1 are trivial fibrations,
by Corollary 12.4.

Take a vertex x ∈ Y , and form the pullback

PxY i //

p0∗
��

hom(∆1,Y )
p0
��

∆0
x

//Y

The map p0∗ is a trivial fibration, so PxY is con-
tractible.

There is a pullback

PxY i //

(p0∗,p1i)
��

hom(∆1,Y )
(p0,p1)
��

∆0×Y
(x,1Y )

//Y ×Y

so π = p1i : PxY → Y is a Kan fibration. The loop
space ΩY is the fibre of π over x ∈ Y .

We have the Kan fibre sequence

ΩY → PxY
π−→ Y

16



This is the path-loop fibre sequence for the Kan
complex Y .

PxY is the path space at x.

Proof of Theorem 13.2. The map η : Y → S(|Y |)
induces a bijection π0(Y )∼= π0(S(|Y |)).
The maps

S(|ΩY |)→ S(|PxY |)→ S(|Y |)

form a Kan fibre sequence by Theorem 13.1 and
the exactness of the realization functor (Lemma
10.1).

The Kan complex S(|PxY |) is contractible.

There is a commutative diagram of functions

πs
1(Y,x)

η∗ //

∂ ∼=
��

πs
1(S(|Y |),x)
∼= ∂
��

π0(ΩY )
η∗

∼= // π0(S(|ΩY |))

so η∗ : πs
1(Y,x)→ πs

1(S(|Y |),x) is an isomorphism.

Inductively, all maps πs
n(Y,x)→ πs

n(S(|Y |),x) are
isomorphisms, for all vertices x of Y .
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Corollary 13.3. There are natural isomorphisms

π
s
n(Y,x)∼= πn(|Y |,x)

at all vertices x for all Kan complexes Y .

Proof. The adjunction isomorphism

[(∆n,∂∆
n),(S(X),x)]∼= [(|∆n|, |∂∆

n|),(X ,x)]

gives an isomorphism

π
s
n(S(X),x)∼= πn(X ,x)

for each space X .

Lemma 13.4. Suppose p : X → Y is a Kan fibra-
tion and a weak equivalence. Then p is a trivial
fibration.

Proof. The class of maps which are both Kan fi-
brations and weak equivalences is stable under pull-
back.

In effect, given a pullback diagram

Z×Y X //

p∗
��

X
p
��

Z //Y

the realization |p| is a trivial Serre fibration by
Theorem 13.1, so |p∗| is also a trivial Serre fibra-
tion, since realization preserves pullbacks.
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It is enough to show (by a lifting argument) that,
if p : X → ∆n is a Kan fibration and a weak equiv-
alence, then p is a trivial fibration.

As in the proof of Theorem 13.1, p has a factor-
ization

X g
//

p $$

F×∆n

pr
��

∆n

where g is a trivial fibration and the projection pr
is minimal.

pr is a weak equivalence, so all homotopy groups
of the space |F | vanish, and Theorem 13.2 (Mil-
nor Theorem) implies that all simplicial homotopy
groups of F vanish.

By Lemma 12.8, all lifting problems

∂∆m //

��

F×∆n

pr
��

∆m //

99

∆n

have solutions.
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Theorem 13.5. Every Kan fibration is a fibration.

Proof. Suppose i : A→ B is a trivial cofibration.
Then i has a factorization

A j
//

i ��

Z
p
��

B
such that j is an anodyne extension and p is a Kan
fibration.

Then j is a weak equivalence, so p is a weak equiv-
alence, and is a trivial fibration by Lemma 13.4.

The lifting exists in the diagram

A j
//

i
��

Z
p
��

B 1B
//

??

B

so i is a retract of an anodyne extension and is
therefore an anodyne extension.

Thus, every Kan fibration has the right lifting prop-
erty with respect to all trivial cofibrations.

Remark: The approach to constructing the model
structure for simplicial sets that is given here is
non-standard.
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Normally, as in [2], one decrees at the outset that
the Kan fibrations are the fibrations, and the weak
equivalences and cofibrations are as defined here.

The model structure is produced much more quickly
in these notes (as in [3]), at the expense of know-
ing that the Kan fibrations are the fibrations until
the very end.

Replacing maps by fibrations
Suppose f : X → Y is a map of Kan complexes.

Form the pullback diagram

X×Y hom(∆1,Y ) f∗ //

p0∗
��

hom(∆1,Y ) p1 //

p0
��

Y

X f
//Y

where p0 and p1 are the trivial fibrations arising
from the standard path object

hom(∆1,Y )
(p0,p1)
��

Y

s
99

∆

//Y ×Y

for the Kan complex Y .
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Remark: The right homotopy relation associated
to this path object is classical simplicial homotopy.

There is a pullback diagram

X×Y hom(∆1,Y ) f∗ //

(p0∗,p1 f∗)
��

hom(∆1,Y )
(p0,p1)
��

X×Y f×1Y
//Y ×Y

and X is fibrant, so π := p1 f∗ is a fibration.

p0∗ is a trivial fibration. The map s f defines a sec-
tion s∗ of p0∗, so s∗ is a weak equivalence.

Finally, πs∗ = p1s f = f .

Thus, every map f : X → Y between Kan com-
plexes has a functorial factorization

X s∗ //

f
((

X×Y hom(∆1,Y )
π
��

Y

(1)

such that π is a fibration and s∗ is a section of a
trivial fibration.

Remark: This construction is an abstraction of the
classical replacement of a map by a fibration, and
works for the subcategory of fibrant objects in an
arbitrary simplicial model category.
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The dual of this construction is the mapping cylin-
der, which replaces a map by a cofibration up to
weak equivalence (exercise).

Simplicial sets and spaces

Theorem 13.6. The adjunction maps η : X→ S(|X |)
and ε : |S(Y )| → Y are weak equivalences, for all
simplicial sets X and spaces Y , respectively.

Proof. Every combinatorial weak equivalence f :
X → Y between Kan complexes is a weak equiva-
lence.

In effect, every map which is a fibration and a
combinatorial weak equivalence is a weak equiv-
alence by Lemma 12.8, and then one finishes by
replacing the map f with a fibration as above.

The adjunction map η : X→ S(|X |) is a weak equiv-
alence if X is fibrant (Theorem 13.2).

Choose a fibrant model for an arbitrary simplicial
set X , ie. a weak equivalence j : X → Z such that
Z is fibrant.

Then in the diagram

X η
//

'
��

S(|X |)
'
��

Z
η

' // S(|Z|)
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the indicated maps are weak equivalences, so η :
X → S(|X |) is a weak equivalence too.

Suppose Y is a space. In the triangle identity

S(Y ) η
//

1 %%

S(|S(Y )|)
s(ε)
��

S(Y )

S(ε) is a weak equiv. of Kan complexes, so ε :
|S(Y )| → Y is a weak equiv. of spaces.

The realization and singular functor adjunction

| | : sSet � CGWH : S

is a classic example of a Quillen equivalence. In
particular we have the following:

Corollary 13.7. The realization and singular func-
tors induce an adjoint equivalence

| | : Ho(sSet)� Ho(CGWH) : S.

The final result of this section gives the closed
“simplicial’ model structure for the sSet.
Lemma 13.8. Suppose p : X→Y is a fibration and
i : A→ B is a cofibration.

Then the induced map

hom(B,X)
(i∗,p∗)−−−→ hom(A,X)×hom(A,Y )hom(B,X)

(2)
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is a fibration. This map is a trivial fibration if ei-
ther i or p is a weak equivalence.

Proof. If j : K → L is a cofibration, then the in-
duced map

(B×K)∪(A×K) (A×L)→ B×L (3)

is a cofibration, which is a weak equivalence if ei-
ther i or j is a weak equivalence (exercise).

Use an adjunction argument to show that the map
(2) has the RLP wrt j : K → L if and only if the
map p : X → Y has the RLP wrt the map (3).

Roughly speaking (see [2] for a full definition),
a closed simplicial model category is a closed
model category M together with an internal func-
tion space construction with exponential law such
that the following holds:

SM7: Suppose p : X→Y is a fibration and i : A→
B is a cofibration. Then the map

hom(B,X)
(i∗,p∗)−−−→ hom(A,X)×hom(A,Y )hom(B,X)

is a fibration, which is trivial if either i or p is a
weak equivalence.

Second example: The category CGWH has a closed
simplicial model category structure, with the usual
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mapping space construction. The statement SM7
follows from the observation that two cofibrations
i : A→ B and j : C→ D induce a cofibration

(B×C)∪(A×C) (A×D)→ B×D,

which is trivial if either i or j is trivial (exercise).

References
[1] P. Gabriel and M. Zisman. Calculus of fractions and homotopy theory. Ergebnisse

der Mathematik und ihrer Grenzgebiete, Band 35. Springer-Verlag New York, Inc.,
New York, 1967.

[2] P. G. Goerss and J. F. Jardine. Simplicial Homotopy Theory, volume 174 of
Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
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Lecture 06: Simplicial groups, simplicial mod-
ules

Contents
14 Simplicial groups 1

15 Simplicial modules 14

16 Eilenberg-Mac Lane spaces 25

14 Simplicial groups

A simplicial group is a functor G : ∆op→Grp.

A morphism of simplicial groups is a natural trans-
formation of such functors.

The category of simplicial groups is denoted by
sGr.

We use the same notation for a simplicial group G
and its underlying simplicial set.

Lemma 14.1 (Moore). Every simplicial group is a
Kan complex.

The proof of Lemma 14.1 involves the classical
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simplicial identities. Here’s the full list:

did j = d j−1di if i < j

dis j =


s j−1di if i < j

1 if i = j, j+1

s jdi−1 if i > j+1

sis j = s j+1si if i≤ j.

Proof. Suppose

(x0, . . . ,xk−1,x`−1, . . . ,xn)

(` ≥ k + 2) is a family of (n− 1)-simplices of G
such that dix j = d j−1xi for i < j.

Suppose there is an n-simplex y∈G such that di(y)=
xi for i≤ k−1 and i≥ `.

Then dix`−1 = did`−1(y) for i≤ k−1 and i≥ `−1,
and

di(s`−2(x`−1d`−1(y−1))y) = xi

for i≤ k−1 and i≥ `−1.

Alternatively, suppose S⊂ n and |S| ≤ n.

Write ∆n〈S〉 for the subcomplex of ∂∆n which is
generated by the faces diιn for i ∈ S.

Write
G〈S〉 := hom(∆n〈S〉,G).
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Restriction to faces determines a group homomor-
phism d : Gn→ G〈S〉.

We show that d is surjective, by induction on |S|.
There is a j ∈ S such that either j− 1 or j + 1 is
not a member of S, since |S| ≤ n.

Pick such a j, and suppose θ : ∆n〈S〉→G is a sim-
plicial set map such that θi = θ(diιn) = e for i 6= j.
Then there is a simplex y∈Gn such that d j(y) = θ .

For this, set y = s jθ j if j+ 1 /∈ S or y = s j−1θ j if
j−1 /∈ S.

Now suppose σ : ∆n〈S〉 → G is a simplicial set
map, and let σ ( j) denote the composite

∆
n〈S−{ j}〉 ⊂ ∆

n〈S〉 σ−→ G.

Inductively, there is a y∈Gn such that d(y) = σ ( j),
or such that diy= σi for i 6= j. Let yS be the restric-
tion of y to ∆n〈S〉.
The product σ ·y−1

S is a map such that (σ ·y−1
S )i = e

for i 6= j. Thus, there is a θ ∈Gn such that d(θ) =
σ · y−1

S .

Then d(θ · y) = σ .

The following result will be useful:
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Lemma 14.2. 1) Suppose that S⊂n such that |S| ≤
n. Then the inclusion ∆n〈S〉 ⊂ ∆n is anodyne.

2) If T ⊂ S, and T 6= /0, then ∆n〈T 〉 ⊂ ∆n〈S〉 is
anodyne.

Proof. For 1), we argue by induction on n.

Suppose that k is the largest element of S. There is
a pushout diagram

∆n−1〈S−{k}〉d
k−1

//

��

∆n〈S−{k}〉

��

∆n−1
dk

//∆n〈S〉

(1)

By adding (n−1)-simplices to ∆n〈S〉, one finds a
k ∈ n such that the maps in the string

∆
n〈S〉 ⊂ Λ

n
k ⊂ ∆

n

are anodyne.

Write

Nn(G) = ∩i<n ker(di : Gn→ Gn−1).

The simplicial identities imply that the face map
dn induces a homomorphism

dn : Nn(G)→ Nn−1(G).

In effect, if i < n−1, then i < n and

didn(x) = dn−1di(x) = e
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for x ∈ Nn(G).

The image of dn : Nn(G)→ Nn−1(G) is normal in
Gn, since

dn((sn−1x)y(sn−1x)−1) = xdn(y)x−1.

for y ∈ Nn+1(G) and x ∈ Gn.

Lemma 14.3. 1) There are isomorphisms

ker(dn : Nn(G)→ Nn−1(G))

im(dn+1 : Nn+1(G)→ Nn(G)
)
∼=−→ πn(G,e)

for all n≥ 0.

2) The homotopy groups πn(G,e) are abelian for
n≥ 1.

3) There are isomorphisms

πn(G,x)∼= πn(G,e)

for any x ∈ G0.

Proof. The group multiplication on G induces a
multiplication on πn(G,e) which has identity rep-
resented by e ∈ G and satisfies an interchange law
with the standard multiplication on the simplicial
homotopy group πn(G,e).

Thus, the two group structures on πn(G,e) coin-
cide and are abelian for n≥ 1.
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Multiplication by the vertex x defines a group ho-
momorphism

πn(G,e)→ πn(G,x),

with inverse defined by multiplication by x−1.

Corollary 14.4. A map f : G→ H of simplicial
groups is a weak equivalence if and only if it in-
duces isomorphisms

π0(G)∼= π0(H), and
πn(G,e)∼= πn(H,e), n≥ 1.

Lemma 14.5. Suppose p : G→ H is a simplicial
group homomorphism such that p : Gi → Hi is a
surjective group homomorphism for i≤ n.

Then p has the RLP wrt all morphisms Λm
k ⊂ ∆m

for m≤ n.

Proof. Suppose given a commutative diagram

Λm
k

α //

��

G
p
��

∆m
β

//H

and let K be the kernel of p.

Since m ≤ n there is a simplex θ : ∆m → G such
that pθ = β . Then pθ |Λm

k
= pα , and there is a
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simplex γ : ∆m→ K such that the diagram

Λm
k

α(θ |
Λm

k
)−1

//

��

K

∆m
γ

66

commutes, since K is a Kan complex (Lemma 14.1).
Then (γθ)|Λm

k
= α and p(γθ) = β .

Lemma 14.6. Suppose p : G→ H is a simplicial
group homomorphism such that the induced ho-
momorphisms Ni(G) → Ni(H) are surjective for
i≤ n.

Then p is surjective up to level n.

Proof. Suppose β : ∆n → H is an n-simplex, and
suppose that p is surjective up to level n−1.

p is surjective up to level n− 1 and is a fibration
up to level n−1 by Lemma 14.5.

It follows from the proof of Lemma 14.2, ie. the
pushouts (1), that p has the RLP wrt to the inclu-
sion ∆n−1 ⊂ ∆n〈S〉 defined by the inclusion of the
minimal simplex of S.

Thus, there is map α : Λn
n→ G such that the fol-
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lowing commutes

Λn
n

α //

��

G
p
��

∆n
β

//H

Choose a simplex θ : ∆n → G which extends α .
Then (β p(θ)−1)|Λn

n = e so there is an n-simplex
γ ∈ Nn(G) such that p(γ) = β p(θ)−1.

But then β = p(γθ).

Lemma 14.7. The following are equivalent for a
simplicial group homomorphism p : G→ H:

1) The map p is a fibration.

2) The induced map p∗ : Nn(G)→ Nn(H) is sur-
jective for n≥ 1.

Proof. We will show that 2) implies 1). The other
implication is an exercise.

Consider the diagram

G p
//

��

H

��

K(π0G,0) p∗
//K(π0H,0)

where K(X ,0) denotes the constant simplicial set
on a set X .
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Example: K(π0G,0) is the constant simplicial group
on the group π0(G).

Every map K(X ,0)→ K(Y,0) induced by a func-
tion X → Y is a fibration (exercise), so that the
map p∗ is a fibration, and the map

K(π0G,0)×K(π0H,0) H→ H

is a fibration.

The functor G 7→ Nn(G) preserves pullbacks, and
the map

p′ : G→ K(π0G,0)×K(π0H,0) H

is surjective in degree 0 (exercise).

Then p′ induces surjections

Nn(G)→ Nn(K(π0G,0)×K(π0H,0) H)

for n ≥ 0, and is a fibration by Lemmas 14.5 and
14.6.

Here are some definitions:

• A homomorphism p : G→H of simplicial groups
is said to be a fibration if the underlying map
of simplicial sets is a fibration.

• The homomorphism f : A→B in sGr is a weak
equivalence if the underlying map of simpli-
cial sets is a weak equivalence.
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• A cofibration of sGr is a map which has the
left lifting property with respect to all trivial
fibrations.

The forgetful functor U : sGr→ sSet has a left ad-
joint X 7→G(X) which is defined by the free group
functor in all degrees.

A map G→ H is a fibration (respectively weak
equivalence) of sGr iff U(G)→U(H) is a fibra-
tion (resp. weak equivalence) of simplicial sets.

If i : A→ B is a cofibration of simplicial sets, then
the map i∗ : G(A)→ G(B) of simplicial groups is
a cofibration.

Suppose G and H are simplicial groups and that K
is a simplicial set.

The simplicial group G⊗K has

(G⊗K)n = ∗x∈KnGn

(generalized free product, or coproduct in Gr).

The function complex hom(G,H) for simplicial
groups G,H is defined by

hom(G,H)n = {G⊗∆
n→ H}.

There is a natural bijection

hom(G⊗K,H)∼= hom(K,hom(G,H)).
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There is a simplicial group HK defined as a sim-
plicial set by

HK = hom(K,H),

with the group structure induced from H. There is
an exponential law

hom(G⊗K,H)∼= hom(G,HK).

Proposition 14.8. With the definitions of fibration,
weak equivalence and cofibration given above the
category sGr satisfies the axioms for a closed sim-
plicial model category.

Proof. The proof is exercise. A map p : G→H is a
fibration (respectively trivial fibration) if and only
if it has the RLP wrt all maps G(Λn

k)→G(∆n) (re-
spectively with respect to all G(∂∆n)→G(∆n), so
a standard small object argument proves the fac-
torization axiom, subject to proving Lemma 14.9
below.

(We need the Lemma to show that the maps G(A)→
G(B) induced by trivial cofibrations A→ B push
out to trivial cofibrations).

The axiom SM7 reduces to the assertion that if
p : G→ H is a fibration and i : K → L is an in-
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clusion of simplicial sets, then the induced homo-
morphism

GL→ GK×HK HL

is a fibration which is trivial if either i or p is triv-
ial. For this, one uses the natural isomorphism

G(X)⊗K ∼= G(X×K)

and the simplicial model axiom for simplicial sets.

Lemma 14.9. Suppose i : A→ B is a trivial cofi-
bration of simplicial sets. Then the induced map
i∗ : G(A)→ G(B) is a strong deformation retrac-
tion of simplicial groups.

Proof. All simplicial groups are fibrant, so the lift
σ exists in the diagram

G(A) 1 //

i∗
��

G(A)

��
G(B) //

σ
::

e

The lift h also exists in the diagram

G(A) si∗ //

i∗
��

G(B)∆1

(p0,p1)
��

G(B)
(i∗σ ,1)

//

h
66

G(B)×G(B)

and h is the required homotopy.
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Corollary 14.10. The free group functor G : sSet→
sGr preserves weak equivalences.

The proof of Corollary 14.10 uses the mapping
cylinder construction. Let f : X → Y be a map of
simplicial sets, and form the diagram

X f
//

i0 ��

Y
i0∗��

X i1
//X×∆1

f∗
// (X×∆1)∪X Y

Let j = f∗i1, and observe that this map is a cofibra-
tion since X is cofibrant. The map pr : X×∆1→X
induces a map pr∗ : (X ×∆1)∪X Y → Y such that
pr∗i0∗ = 1Y and one sees that the diagram

X j
//

f
''

(X×∆1)∪X Y
pr∗
��

Y

(2)

commutes. In other words, any simplicial set map
f : X → Y has a (natural) factorization as above
such that j is a cofibration and pr∗ has a section
which is a trivial cofibration.

Remark: A functor sSet→M taking values in
a model category which takes trivial cofibrations
to weak equivalences must preserve weak equiva-
lences.
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A similar statement holds for functors defined on
any category of cofibrant objects and taking values
in M .

Remark: The construction of (2) is an abstraction
of the classical replacement of the map f by a cofi-
bration. It is dual to the replacement of a map by a
fibration in a category of fibrant objects displayed
in (1 — see p. 21) of Section 13.

Remark: We have used the forgetful-free group
functor adjunction to induce a model structure on
sGr from that on simplicial sets, in such a way that
the functors

G : sSet � sGr : U

form a Quillen adjunction.

15 Simplicial modules

s(R−Mod) is the category of simplicial R-modules,
where R is some unitary ring.

The forgetful functor U : s(R−Mod)→ sSet has
a left adjoint

R : sSet→ s(R−Mod).
R(X)n is the free R-module on the set Xn for n≥ 0.
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s(R−Mod) has a closed model structure which is
induced from simplicial sets by the forgetful-free
abelian group functor adjoint pair, in the same way
that the category sGr of simplicial groups acquires
its model structure.

A morphism f : A→ B of simplicial R-modules is
a weak equivalence (respectively fibration) if the
underlying morphism of simplicial sets is a weak
equivalence (respectively fibration).

A cofibration of simplicial R-modules is a map
which has the LLP wrt all trivial fibrations.

Examples of cofibrations of s(R−Mod) include
all maps R(A)→ R(B) induced by cofibrations of
simplicial sets.

Suppose A and B are simplicial groups and that
K is a simplicial set. Then there is a simplicial
abelian group A⊗K with

(A⊗K)n =
⊕
x∈Kn

An
∼= An⊗R(K)n.

The function complex hom(A,B) for simplicial
abelian groups A,B is defined by

hom(A,B)n = {A⊗∆
n→ B}.

15



Then there is a natural bijection

hom(A⊗K,B)∼= hom(K,hom(A,B)).

There is a simplicial module BK defined as a sim-
plicial set by

BK = hom(K,B),

with R-module structure induced from B.

There is an exponential law

hom(A⊗K,B)∼= hom(A,BK).

Proposition 15.1. With the definitions of fibration,
weak equivalence and cofibration given above the
category s(R−Mod) satisfies the axioms for a closed
simplicial model category.

Proof. The proof is by analogy with the correspond-
ing result for simplicial groups (Prop. 14.8).

The proof of Proposition 15.1 also uses the fol-
lowing analog of Lemma 14.9, in the same way:

Lemma 15.2. Suppose i : A→ B is a trivial cofi-
bration of simplicial sets. Then the induced map
i∗ : R(A)→ R(B) is a strong deformation retrac-
tion of simplicial R-modules.

16



Corollary 15.3. The free R-module functor

R : sSet→ s(R−Mod)

preserves weak equivalences.

Once again, the adjoint functors

R : sSet � s(R−Mod) : U

form a Quillen adjunction.

Example: R = Z: The category s(Z−Mod) is the
category of simplicial abelian groups, also denoted
by sAb.

The adjunction homomorphism η : X → UZ(X)

for this case is usually written as

h : X → Z(X)

and is called the Hurewicz homomorphism. More
on this later.

Simplicial R-modules are simplicial groups, so we
know a few things:

• For a simplicial R-module A the modules NnA=

∩i<n ker(di) and the morphisms

NnA
(−1)ndn−−−−→ Nn−1A

form an ordinary chain complex, called the nor-
malized chain complex of A. The assignment

17



A 7→ NA defines a functor

N : s(R−Mod)→Ch+(R).

• There is a natural isomorphism

πn(A,0)∼= Hn(NA),

and a map f : A→ B is a weak equivalence if
and only if the induced chain map NA→ NB
is a homology isomorphism (Corollary 14.4).

• A map p : A→ B is a fibration of s(R−mod)
if and only if the induced map p∗ : NA→ NB
is a fibration of Ch+(R) (Lemma 14.7).

This precise relationship between simplicial mod-
ules and chain complexes is not an accident.

The Moore complex M(A) for a simplicial mod-
ule A has n-chains given by M(A)n =An and bound-
ary

∂ =
n

∑
i=0

(−1)idi : An→ An−1.

The fact that ∂ 2 = 0 is an exercise involving the
simplicial identities did j = d j−1di, i < j.

The construction is functorial:

M : s(R−Mod)→Ch+(R).

18



The Moore chains functor is not the normalized
chains functor, but the inclusions NnA⊂ An deter-
mine a natural chain map

N(A)⊂M(A).

Example: If Y is a space, the nth singular homol-
ogy module Hn(Y,R) with coefficients in R is de-
fined by

Hn(Y,R) = HnM(R(S(Y ))).

If N is any R-module, then

Hn(Y,N) = Hn(M(R(S(Y ))⊗R N))

defines the nth singular homology module of Y
with coefficients in N.

The subobject D(A)n ⊂M(A)n is defined by

D(A)n = 〈s j(y) | 0≤ j ≤ n−1,y ∈ An−1 〉.

D(A)n is the submodule generated by degenerate
simplices.

The Moore chains boundary ∂ restricts to a bound-
ary map ∂ : D(A)n→DAn−1 (exercise), and the in-
clusions D(A)n ⊂ An form a natural chain map

D(A)⊂M(A).

Here’s what you need to know:
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Theorem 15.4. 1) The composite chain map

N(A)⊂M(A)→M(A)/D(A)

is a natural isomorphism.

2) The inclusion N(A)⊂M(A) is a natural chain
homotopy equivalence.

Proof. There is a subcomplex N j(A)⊂M(A) with
N jAn = NAn if n≤ j+1 and

N jAn = ∩ j
i=0 ker(d j) if n≥ j+2.

D j(An) := the submodule of An generated by all
si(x) with i≤ j.

1) We show that the composite

φ : N j(An)→ An→ An/D j(An)

is an isomorphism for all j < n, by induction on j.

There is a commmutative diagram

N j−1An−1
s j //

φ∼=
��

N j−1An

φ∼=
��

N jAn
ioo

φ
��

0 //An−1/D j−1An−1 s j
//An/D j−1An //An/D jAn // 0

in which the bottom sequence is exact and i is the
obvious inclusion.
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If [x] ∈ An/D jAn for x ∈ N j−1An, then [x− s jd jx] =
[x] and x− s jd jx ∈ N jAn, so φ : N jAn→ An/d jAn is
surjective.

If φ(x) = 0 for x ∈ N jAn then x = s j(y) for some
y ∈ N j−1An−1. But d jx = 0 so 0 = d js jy = y.

For 2), we have N j+1A⊂ N jA and

NA = ∩ j≥0N jA

in finitely many stages in each degree.

We show that i : N j+1A ⊂ N jA is a chain homo-
topy equivalence (this is cheating a bit, but is eas-
ily fixed — see [2, p.149]).

There are chain maps f : N jA→ N j+1A defined by

f (x) =

{
x− s j+1d j+1(x) if n≥ j+2,

x if n≤ j+1.

Write t = (−1) js j+1 : N jAn→ N jAn+1 if n≥ j+1
and set t = 0 otherwise. Then f (i(x)) = x and

1− i · f = ∂ t + t∂ .

Suppose A is a simplicial R-module. Every monomor-
phism d : m→ n induces a homomorphism d∗ :
NAn→ NAm, and d∗ = 0 unless d = dn.
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Suppose C is a chain complex. Associate the mod-
ule Cn to the ordinal number n, and associate to
each ordinal number monomorphism d the mor-
phism d∗ : Cn→Cm, where

d∗ =

{
0 if d 6= dn,

(−1)n∂ : Cn→Cn−1 if d = dn.

Define
Γ(C)n =

⊕
s:n�k

Ck.

The ordinal number map θ : m→ n induces an
R-module homomorphism

θ
∗ : Γ(C)n→ Γ(C)m

which is defined on the summand corresponding
to the epi s : n � k by the composite

Ck
d∗−→Cr

int−→
⊕
m�r

Cr,

where the ordinal number maps

m
t
� r

d
� k

give the epi-monic factorization of the composite

m θ−→ n
s
� k.

and d∗ is induced by d according to the prescrip-
tion above.
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The assignment C 7→ Γ(C) is defines a functor

Γ : Ch+(R)→ s(R−Mod).

Theorem 15.5 (Dold-Kan). The functor Γ is an in-
verse up to natural isomorphism for the normal-
ized chains functor N.

The equivalence of categories defined by the func-
tors N and Γ is the Dold-Kan correspondence.

Proof. One can show that

D(Γ(C))n =
⊕

s:n�k,k≤n−1

Ck,

so there is a natural isomorphism

C ∼= M(Γ(C))/D(Γ(C))∼= N(Γ(C))

There is a natural homomorphism of simplicial
modules

Ψ : Γ(NA)→ A,

which in degree n is the homomorphism⊕
s:n�k

NAk→ An

defined on the summand corresponding to s : n �
k by the composite

NAk ⊂ Ak
s∗−→ An.
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Collapsing Ψ by degeneracies gives the canonical
isomorphism NA∼= A/D(A), so the map

N(Ψ) : N(Γ(NA))→ NA

is an isomorphism of chain complexes.

It follows from Lemma 14.6 that the natural map
Ψ is surjective in all degrees.

The functor A 7→ NA is exact: it is left exact from
the definition, and it preserves epimorphisms by
Lemma 14.7.

It follows that the normalized chains functor re-
flects isomorphisms.

To see this, suppose f : A→ B is a simplicial mod-
ule map and that the sequence

0→ K→ A
f−→ B→C→ 0

is exact. Suppose also that N f is an isomorphism.
Then the sequence of chain complex maps

0→ NK→ NA
N f−→ NB→ NC→ 0

is exact, so that NK =NC = 0. But then K =C = 0
since Ψ is a natural epimorphism, so that f is an
isomorphism.

Finally, NΨ is an isomorphism, so that Ψ is an
isomorphism.
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16 Eilenberg-Mac Lane spaces

Under the Dold-Kan correspondence

Γ : Ch+(R)� s(R−Mod) : N

a map f : A→ B of simplicial modules is a weak
equivalence (respectively fibration, cofibration) if
and only if the induced map f∗ : NA→ NB is a
weak equivalence (resp. fibration,cofibration) of
Ch+(R).

There are natural isomorphisms

πn(|A|,0)∼= π
s
n(A,0)∼= Hn(N(A))∼= Hn(M(A)).

for simplicial modules A.

Suppose that C is a chain complex.

Take n ≥ 0. Write C[−n] for the shifted chain
complex with

C[−n]k =

{
Ck−n k ≥ n,

0 k < n.

There is a natural short exact sequence of chain
complexes

0→C→ C̃[−1]→C[−1]→ 0.
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In general (see Section 6), D̃ is the acyclic com-
plex with D̃n = Dn⊕Dn+1 for n > 0,

D̃0 = {(x,z) ∈ D0⊕D1 | x+∂ (z) = 0},

and with boundary map defined by

∂ (x,z) = (∂ (x),(−1)nx+∂ (z))

for (x,z) ∈ D̃n.

For a simplicial module A, the objects Γ(NA[−1])
and Γ(ÑA[−1]) have special names, due to Eilen-
berg and Mac Lane:

W (A) := Γ(NA[−1]),

and
W (A) := Γ(ÑA[−1]).

There is a natural short exact (hence fibre) sequence
of simplicial modules

0→ A→W (A)→W (A)→ 0,

(exercise) and there are isomorphisms

πn(A)∼= πn+1(W (A)).

The object W (A) is a natural delooping of the sim-
plicial module A, usually thought of as either a
suspension or a classifying space for A.
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Suppose B is an R-module, and write B(0) for the
chain complex concentrated in degree 0, which
consists of B in that degree and 0 elsewhere.

Then B(n) = B(0)[−n] is the chain complex with
B in degree n. Write

K(B,n) = Γ(B(n)).

There are natural isomorphisms

π jK(B,n)∼= H j(B(n))∼=

{
B j = n

0 j 6= n.

The object K(B,n) (or |K(B,n)|) is an Eilenberg-
Mac Lane space of type (B,n).

This is a standard method of constructing these
spaces, together with the natural fibre sequences

K(B,n)→W (K(B,n))→ K(B,n+1)

for modules (or abelian groups) B. These fibre
sequences are short exact sequences of simplicial
modules.

Non-abelian groups
The non-abelian world is different. Here’s an ex-
ercise:

Exercise: Show that a functor f : G→H between
groupoids induces a fibration BG → BH if and
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only if f has the path lifting property in the sense
that all lifting problems

∗ //

0
��

G
f
��

1 //

??

H
can be solved.

Suppose G is a group, identified with a groupoid
with one object ∗, and recall that the slice cate-
gory ∗/G has as objects all group elements (mor-
phisms) ∗ g−→∗, and as morphisms all commutative
diagrams

∗
k
��

∗
g 99

h %% ∗
The canonical functor π : ∗/G→G sends the mor-
phism above to the morphism k of G.

The functor π has the path lifting property, and the
fibre over the vertex ∗ of the fibration π : B(∗/G)→
BG is a copy of K(G,0).

One usually writes

EG = B(∗/G).

This is a contractible space, since it has an initial
object e and the unique maps γg : e→ g define a
contracting homotopy ∗/G×1→∗/G.

28



The Kan complex BG is connected, since it has
only one vertex. The long exact sequence in ho-
motopy groups associated to the fibre sequence

K(G,0)→ EG π−→ BG

can be used to show that πs
n(BG) is trivial for n 6=

1, and that the boundary map

π
s
1(BG)

∂−→ G = π0(K(G,0))

is a bijection.

For this, there is a surjective homomorphism

G→ π
s
1(BG),

defined by taking g to the homotopy group ele-
ment [g] represented by the simplex ∗ g−→ ∗. One
shows that the composite

G→ π
s
1(BG)

∂−→ G (3)

is the identity on G, so that the homomorphism
G→ πs

1(BG) is a bijection.

To see that the composite (3) is the identity, ob-
serve that there is a commutative diagram

Λ1
0

e //

��

EG
π
��

∆1
g
//

γg
>>

BG
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Then ∂ ([g]) = d0(γg) = g.

The classifying space BG for a group G is an Eilenberg-
Mac lane space K(G,1). This is a standard model.

Some facts about groupoids
Suppose that H is a connected groupoid. This
means that, for any two objects x,y ∈ H there is
a morphism (isomorphism) ω : x→ y.

Fix an object x of H and chose isomorphisms γy :
y→ x for all objects of H, such that γx = 1x. There
is an inclusion functor

i : Hx = H(x,x)⊂ H.

We define a functor r : H → Hx by conjugation
with the maps γy: if α : y→ z is a morphism of
H, then r(α) = γ−1

z αγx, so that the diagrams

x
γy //

r(α)
��

y
α
��

x
γz
// z

commute.

The functor r is uniquely determined by the iso-
morphisms γy, and the composite

Hx
i
⊂ H r−→ Hx
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is the identity.

The maps γy define a natural transformation

γ : i · r→ 1H.

We have shown that the inclusion BHx→ BH is a
homotopy equivalence, even a strong deformation
retraction.

It follows that, for arbitrary small groupoids H,
there is a homotopy equivalence

BH '
⊔

[x]∈π0(H)

BH(x,x). (4)

Thus, a groupoid H has no higher homotopy groups
in the sense that πk(BH,x)= 0 for k≥ 2 and all ob-
jects x, since the same is true of classifying spaces
of groups.

Example: Group actions
Suppose that G×F → F is the action of a group
G on a set F .

Recall that the corresponding translation groupoid
EGF has objects x ∈ F and morphisms x→ g · x.

The space B(EGF) = EG×G F is the Borel con-
struction for the action of G on F .

The group of automorphisms x→ x in EGF can be
identified with the subgroup Gx⊂G that stabilizes
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x. If α : x→ y is a morphism of EGF , then Gx is
conjugate to Gy as subgroups of G (exercise).

There is a bijection

π0(EG×G F)∼= F/G,

and the identification (4) translates to a homotopy
equivalence

EG×G F '
⊔

[x]∈F/G

BGx. (5)

Then EG×G F is contractible if and only if

1) G acts transitively on F , ie. F/G∼= ∗, and

2) the stabilizer subgroups Gx (fundamental groups)
are trivial for all x ∈ F .

One usually summarizes conditions 1) and 2) by
saying that G acts simply transitively on F , or that
G acts principally on F .

In ordinary set theory, this means precisely that
there is a G-equivariant isomorphism G

∼=−→ F .

In the topos world, where G×F→ F is the action
of a sheaf of groups G on a sheaf F , the assertion
that the Borel construction EG×G F is (locally)
contractible is equivalent to the assertion that F is
a G-torsor.
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The canonical groupoid morphism EGF → G has
the path lifting property, and hence induces a Kan
fibration

π : EG×G F → BG
with fibre F .

The use of this fibration π , in number theory, ge-
ometry and topology, is to derive calculations of
homology invariants of BG from calculations of
the corresponding invariants of the spaces BGx as-
sociated to stabilizers, usually via spectral sequence
calcluations.

The Borel construction made its first appearance
in the Borel seminar on transformation groups at
IAS in 1958-59 [1].

If the action G×F→ F is simple in the sense that
all stabilizer groups Gx are trivial, then all orbits
are copies of G up to equivariant isomorphism,
and the canonical map

EG×G F → F/G

is a weak equivalence.

It is a consequence of Quillen’s Theorem 23.4 be-
low that if G×X → G is an action of G on a sim-
plicial set X , then X is the homotopy fibre of the
canonical map EG×G X → BG.
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It follows that, if the action G×X→X is simple in
all degrees and the simplicial set X is contractible,
then the maps

EG×G X ' //

π '
��

X/G

BG

are weak equivalences, so that BG is weakly equiv-
alent to X/G. This is a well known classical result.
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17 Proper model structures

M is a fixed closed model category, for a while.
Here’s a basic principle:

Lemma 17.1. Suppose f : X → Y is a morphism
of M, with both X and Y cofibrant.

Then f has a factorization

X i //

f ��

Z
u
��

Y
such that i is a cofibration, and u is a weak equiv-
alence which is left inverse to a trivial cofibration
j : Y → Z.

Proof. The construction is an abstraction of the clas-
sical mapping cylinder. It is dual to the replace-
ment of a map between fibrant objects by a fibra-
tion (Section 13).
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Lemma 17.2. Suppose given a pushout diagram

A u //

i
��

B

��

C u∗
//D

in M with all objects cofibrant, i a cofibration and
u a weak equivalence.

Then u∗ is a weak equivalence.

To put it a different way, in the category of cofi-
brant objects in a model category M, the class of
weak equivalences is closed under pushout along
cofibrations.

Proof. By Lemma 17.1, and since trivial cofibra-
tions are closed under pushout, it suffices to as-
sume that there is a trivial cofibration j : B→ A
with u j = 1B.

Form the diagram

B j
//

j
��

A u //

j∗

��
i

��

B

��

��

A
i
��

C j̃
//

1C ))

D̃ ũ //

f

&&

B∗
f∗

&&C u∗
//D
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in which the two back squares are pushouts.

j is a trivial cofibration so j̃ is a trivial cofibration,
and so ũ is a weak equivalence (since ũ j̃ is an iso-
morphism). f is a weak equivalence, so it suffices
to show that the map f∗ is a weak equivalence.

f∗ is a map between cofibrant objects of the model
category B/M which is obtained by pushing out
the map j∗

f−→ i of A/M along u.

The pushout functor takes trivial cofibrations of
slice categories to trivial cofibrations, thus preserves
weak equivalences between cofibrant objects.

Remark: For the last proof, you need to know (ex-
ercise) that if M is a model category and A is an
object of M, then the slice category A/M has a
model structure for which a morphism

A

�� ��

B f
//C

is a weak equivalence (respectively cofibration, fi-
bration) if and only if the map f : B→C is a weak
equivalence (respectively cofibration, fibration) of
M.
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The dual structure on the slice category M/A has
a similar description.

Here is the dual of Lemma 17.2:

Lemma 17.3. Suppose given a pullback diagram

W u∗ //

��

X
p
��

Z u
//Y

in M, with all objects fibrant, p a fibration and u
a weak equivalence.

Then u∗ is a weak equivalence.

Thus, in the category of fibrant objects in M the
class of weak equivalences is closed under pull-
back along fibrations.

Definition 17.4. A model category M is

1) right proper if the class of weak equivalences
is closed under pullback along fibrations,

2) left proper if the class of weak equivalences is
closed under pushout along cofibrations,

3) proper if it is both right and left proper.
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Examples: 1) The category sSet is proper.

All simplicial sets are cofibrant, so sSet is left proper.
Given a pullback

W u∗ //

��

X
p
��

Z u
//Y

in sSet with p a fibration and u a weak equiva-
lence, the induced diagram

|W | |u∗| //

��

|X |
|p|
��

|Z| |u|
// |Y |

of spaces is a pullback (realization is exact) in which
|p| is a Serre fibration (Quillen’s theorem: The-
orem 13.1) and |u| is a weak equivalence. All
spaces are fibrant, so |u∗| is a weak equivalence
by Lemma 17.3, and so u∗ is a weak equivalence
of sSet.
2) All spaces are fibrant, so CGWH is right proper
by Lemma 17.3. This category is also left proper
by (non-abelian) excision, and the fact that sSet is
left proper.
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The excision statement is the following:

Lemma 17.5. Suppose the open subsets U1,U2 cover
a space Y .

Then the induced map

S(U1)∪S(U1∩U2) S(U2)→ S(Y )

is a weak equivalence of simplicial sets.

Lemma 17.5 can be proved with simplicial approx-
imation techniques [3].

3) The categories of simplicial groups and simpli-
cial modules are right proper. The category of sim-
plicial modules is also left proper (exercise).

4) There is a model structure on sSet for which
the cofibrations are the monomorphisms, and the
weak equivalences are those maps X → Y which
induce rational homology isomorphisms

H∗(X ,Q)∼= H∗(Y,Q)

(this is the rational homology local model struc-
ture — it is one of the objects of study of rational
homotopy theory).
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There is a pullback square

K(Q/Z,0) u∗ //

��

P
p
��

K(Z,1) u
//K(Q,1)

where p is a fibration, P is contractible, and u is
induced by the inclusion Z ⊂ Q. The map u is a
rational homology isomorphism since Q/Z con-
sists of torsion groups, while u∗ is not.

Here’s the glueing lemma:

Lemma 17.6. Suppose given a commutative cube

A1
j1 //

fA

��

i1
##

B1

fB
��

##
C1

fC

��

//D1

fD

��

A2 j2
//

i2 ##

B2

##
C2 //D2

in which all objects are cofibrant, i1 and i2 are
cofibrations, the top and bottom faces are pushouts,
and the maps fA, fB and fC are weak equivalences.

Then fD is a weak equivalence.

Proof. By Lemma 17.2, it suffices to assume that
the maps j1 and j2 are cofibrations.
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Form the diagram

A1
j1 //

fA

��

i1
%%

B1

fA∗��

%%
C1

fC

��

j1∗ //D1

fC∗
��

B′

ηB

��

i2∗
%%
D′

ηD

��

A2
j2 //

i2 %%

99

B2
%%

C2 //

99

D2

in which fA∗ is the pushout of fA along j1 and fC∗
is the pushout of fC along j1∗.

All squares in the prism are pushouts, i2∗ is a cofi-
bration, and ηB is a weak equivalence. It follows
from Lemma 17.2 that ηD is a weak equivalence.

fC∗ is also a weak equivalence, so fD is a weak
equivalence.

Remarks:

1) Lemma 17.6 has a dual, which is usually called
the coglueing lemma.

2) The statement of Lemma 17.6 holds in any left
proper model category, by the same argument, while
its dual holds in any right proper model category.
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18 Homotopy cartesian diagrams

Here’s the cogluing lemma for right proper model
categories:

Lemma 18.1. Suppose M is right proper model.
Suppose given a diagram

X1 //

'
��

Y1
'
��

Z1
p1oo

'
��

X2 //Y2 Z2p2
oo

for which the vertical maps are weak equivalences
and the maps p1, p2 are fibrations.

Then the map

X1×Y1 Z1→ X2×Y2 Z2

is a weak equivalence.

The model category M will be right proper through-
out this section.

A commutative diagram

W //

��

X
f
��

Z g
//Y

(1)

in M is homotopy cartesian if f has a factoriza-
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tion
X θ //

f   

U
p
��

Y

(2)

such that p is a fibration and θ is a weak equiva-
lence, and such that the induced map

W θ∗−→ Z×Y U

is a weak equivalence.

Slogan 1: The choice of factorization of f doesn’t
matter.

Lemma 18.2. Suppose given a second factoriza-
tion

X θ ′ //

f   

U ′

p′
��

Y
of the map f in the commutative square (1). with
θ ′ a weak equivalence and p′ a fibration. Then the
map

W θ∗−→ Z×Y U

is a weak equivalence if and only if the map

W
θ ′∗−→ Z×Y U ′

is a weak equivalence.
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Proof. It suffices to assume that the maps θ and θ ′

are trivial cofibrations. To see this, factorize θ as

X i //

θ ��

V
π
��

U
where π is a trivial fibration and i is a trivial cofi-
bration. Then in the diagram

W i∗ //

θ∗ $$

Z×Y V
π∗
��

Z×Y U

the map π∗ is a trivial fibration, so θ∗ is a weak
equivalence if and only if i∗ is a weak equivalence.

Now suppose θ and θ ′ are trivial cofibrations. Then
the lifting s exists in the diagram

X θ //

θ ′ ��

U
p
��

U ′
p′
//

s
>>

Y

and the induced map s∗ in the diagram

W θ ′∗ //

θ∗ $$

Z×Y U ′

s∗
��

Z×Y U
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is a weak equivalence by Lemma 18.1. Thus, θ∗
is a weak equivalence if and only if θ ′∗ is a weak
equivalence.

Slogan 2: It doesn’t matter whether you factorize
f or g.

Lemma 18.3. Suppose

Z γ
//

g ��

V
q
��

Y

is a factorization of the map g in the diagram (1)
with q a fibration and γ a weak equivalence, and
f = p ·θ with p a fibration and θ a weak equiva-
lence as in (2). Then the map θ∗ : W → Z×Y U is a
weak equivalence if and only if the map γ∗ : W →
V ×Y X is a weak equivalence.

Proof. There is a commutative square

W θ∗ //

γ∗
��

Z×Y U
γ∗'
��

V ×Y X
θ∗
' //V ×Y U

The indicated maps are weak equivalences since
they are pull backs of weak equivalences along fi-
brations.
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The following is a rephrasing of the homotopy coglue-
ing lemma for a right proper model category M:

Lemma 18.4. Suppose given a commutative cube

W1 //

fW

��

##

X1

fX
��

##
Z1

fZ

��

//Y1

fY

��

W2 //

##

X2

##
Z2 //Y2

in a right proper model category M such that the
top and bottom faces are homotopy cartesian, and
the vertical maps fZ, fX and fY are weak equiva-
lences.

Then fW is a weak equivalence.

This result follows from the dual of Lemma 17.6.

Homotopy cartesian diagrams behave much like
pullback diagrams:

Lemma 18.5. Suppose M is right proper.

1) Suppose given a commutative diagram

X1
α //

��

X2

��

Y1
β

//Y2

13



in M such that the maps α and β are weak
equivalences. Then this diagram is homotopy
cartesian.

2) Suppose given a commutative diagram

X1 //

��
I

X2 //

��
II

X3

��

Y1 //Y2 //Y3

Then

a) if the squares I and II are homotopy carte-
sian, then the composite square I+II is ho-
motopy cartesian,

b) if I+ II and II is homotopy cartesian then
I is homotopy cartesian.

Proof. The proof is an (important) exercise.

A homotopy fibre sequence (or just fibre sequence)
is a homotopy cartesian diagram

F //

��

X
f
��

P //Y
in which P is contractible (ie. weakly equivalent
to the terminal object). F is a homotopy fibre of
the map f .
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Remark: All concepts and results of this section
have duals in left proper model categories, where
one has homotopy cocartesian diagrams, homo-
topy cofibre sequences, and homotopy cofibres.

19 Diagrams of spaces

Suppose I is a small category. sSetI denotes the
category of functors I → sSet and their natural
transformations. sSetI is a diagram category.

Some people say that it is the category of simpli-
cial presheaves on the category I.

sSetI is the category of simplicial sheaves for the
chaotic topology on I (which means no topology
at all).

A map (natural transformation) f : X → Y of I-
diagrams is a weak equivalence (sometimes called
a sectionwise weak equivalence or pointwise weak
equivalence) if all maps f : X(i)→ Y (i), i ∈ I, are
weak equivalences of simplicial sets.

There are many model structures on the diagram
category sSetI for which the weak equivalences
are as described, but I will single out two of them:

15



• The projective structure: The fibrations are
defined sectionwise: a projective fibration is
a map p : X → Y for which consists of Kan
fibrations f : X(i)→ Y (i), i ∈ I, in sections. A
projective cofibration is a map which has the
left lifting property with respect to all trivial
projective fibrations.

• The injective structure: The cofibrations are
defined sectionwise. A cofibration of I-diagrams
is a monomorphism of sSetI, and an injective
fibration is a map which has the right lifting
property with respect to all trivial cofibrations.

The projective structure was introduced by Bous-
field and Kan [1], and is easy to construct.

The i-sections functor X 7→ X(i) has a left adjoint
Li with

Li(K) = hom(i, )×K

for simplicial sets K.

A map p : X → Y of sSetI is a projective fibra-
tion (respectively projective trivial fibration) if and
only if it has the right lifting property with respect
to the set of all maps Li(Λ

n
k)→ Li(∆

n) (repectively
with respect to the set of maps Li(∂∆m)→ Li(∆

m).
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The factorization axiom is proved by standard small
object arguments, CM4 is proved by the usual tricks,
and the rest of the axioms are easily verified.

Note that we have specified generating sets for
the trivial projective cofibrations and the projec-
tive cofibrations.

To summarize:

Lemma 19.1. The sectionwise weak equivalences,
projective fibrations and projective cofibrations give
the diagram category sSetI the structure of a proper
closed simplicial model category. This model struc-
ture is cofibrantly generated.

Heller [2] is credited with the introduction of the
injective structure on sSetI. It is also a special
case of the model structure for simplicial sheaves
which first appeared in Joyal’s seminal letter to
Grothendieck [4].

The injective structure is a little trickier to derive.
Pick an infinite cardinal α > |Mor(I)|. Then one
must prove a bounded cofibration condition:

Lemma 19.2. Given a trivial cofibration X → Y
and an α-bounded subobject A⊂Y there is an α-
bounded B with A⊂ B⊂Y such that B∩X → B is
a trivial cofibration.
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An I-diagram A is α-bounded if |A(i)|< α for all
i ∈ I, and a cofibration A→ B is α-bounded if B is
α-bounded.

It follows (see the proof of Lemma 11.5 (Lecture
04)) that a map p : X → Y of sSet is an injective
fibration (respectively trivial injective fibration) if
and only if it has the right lifting property with re-
spect to all α-bounded trivial cofibrations (respec-
tively with respect to all α-bounded cofibrations).

The factorization axiom CM5 for the injective struc-
ture follows from a transfinite small object argu-
ment — see the proof of Lemma 11.4. The lifting
axiom CM4 also follows, while the remaining ax-
ioms CM1 — CM3 are easy to show.

We have “proved”:

Theorem 19.3. The sectionwise weak equivalences,
cofibrations and injective fibrations give the cate-
gory sSetI the structure of a proper closed simpli-
cial model category. This model structure is cofi-
brantly generated.

For I-diagrams X and Y , write hom(X ,Y ) for the
simplicial set whose set of n-simplices is the col-
lection of maps X ×∆n→ Y (here ∆n is identified

18



with a constant I-diagram). For a simplicial set K
and I-diagram X , the I-diagram XK is specified at
objects i ∈ I by

XK(i) = hom(K,X(i)).

There is also an I-diagram X ⊗K := X ×K given
by

(X×K)(i) = X(i)×K.

If i : A→ B is a cofibration (respectively projec-
tive cofibration) and j : K → L is a cofibration of
simplicial sets, then the map

(i, j) : (B×K)∪ (A×L)⊂ B×L

is a cofibration (respectively projective cofibration)
which is trivial if either i or j is trivial. The only
issue with this is in showing that (i, j) is projec-
tive if i is projective, but it’s true for generators
Lk(A′)→ Lk(B′), so it’s true.

Finally, every projective cofibration is a cofibra-
tion, and every injective fibration is a projective
fibration.

It follows that weak equivalences are stable un-
der pullback along injective fibrations, and weak
equivalences are stable under pushout along pro-
jective cofibrations, by properness for simplicial
sets.
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A model category M is cofibrantly generated if
there is a set I of trivial cofibrations and a set J of
cofibrations such that a map p is a fibration (rep-
sectively trivial fibration) if and only if it has the
right lifting property with respect to all members
of I (respectively J).

Exercise: Fill in the blanks in the proofs of Lemma
19.1 and Theorem 19.3.

20 Homotopy limits and colimits

The constant functor Γ : sSet→ sSetI has both a
right and left adjoint, given by limit and colimit,
respectively.

Specifically,
Γ(X)(i) = X .

and all maps i→ j of I are sent to 1X .

Γ preserves weak equivalences and cofibrations,
and takes fibrations to projective fibrations.

The colimit functor

lim−→ : sSetI→ sSet

therefore takes projective cofibrations to cofibra-
tions and takes trivial projective cofibrations to triv-
ial cofibrations.
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Homotopy colimits
The adjunction

lim−→ : sSetI � sSet : Γ

forms a Quillen adjunction for the projective struc-
ture on sSetI.

The homotopy left derived functor L lim−→ is de-
fined by

L lim−→(X) = lim−→ Y,

where Y → X is a weak equivalence with Y pro-
jective cofibrant.

Y is a projective cofibrant replacement (or pro-
jective cofibrant resolution, or projective cofibrant
model) of X .

The functor X 7→ lim−→X takes trivial projective cofi-
brations to trivial cofibrations, hence takes weak
equivalences between projective cofibrant objects
to weak equivalences.

The homotopy type of L lim−→(X) is independent of
the choice of projective cofibrant resolution for X .

The object L lim−→(X) has another name: it’s called
the homotopy colimit for the diagram X , and one
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writes

holim−−−→X = L lim−→(X) = lim−→Y,

where Y → X is a projective cofibrant model.

Examples:

1) Consider all diagrams

B← A→C

of simplicial sets. This diagram is projective cofi-
brant if and only if all displayed morphisms are
cofibrations (exercise). Every diagram

Z
f←− X

g−→ Y

has a resolution by a diagram of cofibrations.

Thus, to form the homotopy pushout of f and g,
replace f and g by cofibrations i and j, as in

B
' ��

C
'��

Z X g
//

f
oo

jdd i ::

Y

and then the homotopy pushout is B∪X C.

By (left) properness, you only need to replace one
of f or g: there are weak equivalences

B∪X Y '←− B∪X C '−→ Z∪X C.

Thus, any homotopy co-cartesian diagram constructs
the homotopy pushout.
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2) All discrete diagrams are projective cofibrant,
so homotopy coproducts and coproducts coincide.

3) Consider all countable diagrams

X : X1
α1−→ X2

α2−→ X3
α3−→ . . .

Such a diagram is projective cofibrant if and only
if all αi are cofibrations.

If the comparison

A1 //

'
��

A2 //

'
��

A3 //

'
��

. . .

X1 //X2 //X3 // . . .

is a projective cofibrant resolution of X , then the
induced map

lim−→
n

An→ lim−→
n

Xn

is a weak equivalence by comparing homotopy groups.
It follows that the canonical map

holim−−−→ X = lim−→A→ lim−→X

is a weak equivalence.
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Homotopy limits
The inverse limit functor

lim←− : sSetI→ sSet

takes injective fibrations to fibrations and takes triv-
ial injective fibrations to trivial fibrations.

The adjunction

Γ : sSet � sSetI : lim←−
forms a Quillen adjunction for the injective struc-
ture on sSetI.

The homotopy right derived functor R lim←− is de-
fined by

R lim←−(X) = lim←−Z

where α : X → Z is an injective fibrant model for
X (ie. α is a sectionwise weak equivalence with Z
injective fibrant).

The functor Z 7→ lim←−Z takes trivial injective fibra-
tions to weak equivalences, and therefore takes
weak equivalences between injective fibrant ob-
jects Z to weak equivalences.

The homotopy type of R lim←−(X) is independent the
choice of injective fibrant model for X .
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The object R lim←−(X) is the homotopy inverse limit
of the diagram X , and one writes

holim←−−−X = R lim←−(X) = lim←− Z

where X → Z is an injective fibrant model for X .

Examples:

1) A diagram
X

p−→ Y
q←− Z

of simplicial sets is injective fibrant if and only if
Y is fibrant and p and q are fibrations.

Suppose given a diagram

X1
f−→ X2

g←− X3

and form an injective fibrant model

X1
j1
��

f
//X2

j2
��

X3
j3
��

g
oo

Z1 p
// Z2 Z3q

oo

by choosing a fibrant model j2 and then factoriz-
ing both j2 f and j2g as a trivial cofibration fol-
lowed by a fibration.
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Factorize g as g = π · j where j is a trivial cofibra-
tion and π is a fibration. There is a lifting

X3
j3 //

j
��

Z3
q
��

X ′3 j2π
//

??

Z2

There is a comparison diagram

X1

j1
��

f
//X2

j2
��

X ′3

��

πoo

Z1 p
// Z2 Z3q

oo

in which the vertical maps are weak equivalence
and π and q are fibrations. The induced map

X1×X2 X ′3→ Z1×Z2 Z3

is a weak equivalence by coglueing (Lemma 18.4).

Every homotopy cartesian diagram of simplicial
sets computes the homotopy pullback.

2) A discrete diagram {Xi} in sSet is injective fi-
brant if and only if all objects Xi are fibrant. The
homotopy product of a diagram {Yi} is constructed
by taking fibrant replacements Yi→Xi for all i, and
then forming the product ∏i Xi.
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This construction is serious: consider the simpli-
cial sets An, n ≥ 1, where An is the string of n
copies of ∆1

0→ 1→ 2→ ··· → n

glued end to end.

Each An is weakly equivalent to a point so their
homotopy product is contractible, but ∏n≥1 An is
not path connected.

3) A countable diagram (aka. a “tower”)

X : X1← X2← X3← . . .

is injective fibrant if and only if X1 is fibrant and
all morphisms in the tower are fibrations.

The long exact sequences associated to the fibra-
tions in the tower entangle to define a spectral se-
quence (the Bousfield-Kan spectral sequence [1])
which computes the homotopy groups of lim←−Xn, at
least in good cases.
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Lecture 08: Bisimplicial sets, homotopy limits
and colimits
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21 Bisimplicial sets

A bisimplicial set X is a simplicial object

X : ∆
op→ sSet

in simplicial sets, or equivalently a functor

X : ∆
op×∆

op→ Set.

I write
Xm,n = X(m,n)

for the set of bisimplices in bidgree (m,n) and

Xm = Xm,∗

for the vertical simplicial set in horiz. degree m.

Morphisms X → Y of bisimplicial sets are natural
transformations.

s2Set is the category of bisimplicial sets.
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Examples:

1) ∆p,q is the contravariant representable functor

∆
p,q = hom( ,(p,q))

on ∆×∆.

∆
p,q
m =

⊔
m→p

∆
q.

The maps ∆p,q→ X classify bisimplices in Xp,q.

The bisimplex category (∆×∆)/X has the bisim-
plices of X as objects, with morphisms the inci-
dence relations

∆p,q

''

��
X

∆r,s

77

2) Suppose K and L are simplicial sets.

The bisimplicial set K×̃L has bisimplices

(K×̃L)p,q = Kp×Lq.

The object K×̃L is the external product of K and
L.

There is a natural isomorphism

∆
p,q ∼= ∆

p×̃∆
q.
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3) Suppose I is a small category and that X : I→
sSet is an I-diagram in simplicial sets.

Recall (Lecture 04) that there is a bisimplicial set
holim−−−→ IX (“the” homotopy colimit) with vertical sim-
plicial sets ⊔

i0→···→in

X(i0)

in horizontal degrees n.

The transformation X → ∗ induces a bisimplicial
set map

π :
⊔

i0→···→in

X(i0)→
⊔

i0→···→in

∗= BIn,

where the set BIn has been identified with the dis-
crete simplicial set K(BIn,0) in each horizontal de-
gree.

Example: Suppose that G is a group, and that X is
a simplicial set with a G-action G×X→ X . If G is
identified with a one-object groupoid, then the G-
action defines a functor X : G→ sSet which sends
the single object of G to X .

The corresponding bisimplicial set has vertical sim-
plicial sets of the form⊔

∗
g1−→∗ g2−→∗... gn−→∗

X ∼= G×n×X ,
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which is a model in bisimplicial sets for the Borel
construction EG×G X .

Applying the diagonal functor (see below) gives
the Borel construction in simplicial sets.

Every simplicial set X determines bisimplicial sets
which are constant in each vertical degree or each
horizontal degree. We write X for the constant
bisimplicial set determined by X either horizon-
tally or vertically.

From this point of view, the canonical map π is a
map of bisimplicial sets

π : holim−−−→ IX → BI.

The diagonal simplicial set d(X) for bisimplicial
set X has simplices

d(X)n = Xn,n

with simplicial structure maps

(θ ,θ)∗ : Xn,n→ Xm,m

for ordinal number maps θ : m→ n.

This construction defines a functor

d : s2Set→ sSet.

4



Recall that Xn denotes the vertical simplicial set in
horizontal degree n for a bisimplicial set X . The
maps

Xn×∆m 1×θ //

θ∗×1
��

Xn×∆n

Xm×∆m

associated to the ordinal number maps θ : m→ n
determine morphisms⊔

θ :m→n
Xn×∆

m ⇒
⊔
n≥0

Xn×∆
n. (1)

There are simplicial set maps

γn : Xn×∆
n→ d(X)

defined on r-simplices by

γn(x,τ : r→ n) = τ
∗(x) ∈ Xr,r.

The maps in (1) above and the morphisms γn, n≥ 0
together determine a diagram⊔

θ :m→n
Xn×∆

m ⇒
⊔
n≥0

Xn×∆
n γ−→ d(X). (2)

Exercise: Show that the diagram (2) is a coequal-
izer in simplicial sets.

Example: There are natural isomorphisms

d(K×̃L)∼= K×L.
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In particular, there are isomorphisms

d(∆p,q)∼= ∆
p×∆

q.

The diagonal simplicial set d(X) has a filtration by
subobjects d(X)(n), n≥ 0, where

d(X)(n) = image of
⊔
p≤n

Xp×∆
p in d(X).

The (horizontal) degenerate part of the vertical sim-
plicial set Xn+1 is filtered by subobjects

s[r]Xn =
⋃

0≤i≤r

si(Xn)⊂ Xn+1

where r ≤ n. There are natural pushout diagrams
of cofibrations

s[r]Xn−1
sr+1 //

��

s[r]Xn

��

Xn sr+1
// s[r+1]Xn

(3)

and

(s[n]Xn×∆n+1)∪ (Xn+1×∂∆n+1) //

��

d(X)(n)

��

Xn+1×∆n+1 // d(X)(n+1)

(4)
in which all vertical maps are cofibrations.
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The natural filtration {d(X)(n)} of d(X) and the
natural pushout diagrams (3) and (4) are used with
glueing lemma arguments to show the following:

Lemma 21.1. Suppose f : X→Y is a map of bisim-
plicial sets such that all maps Xn→ Yn, n ≥ 0, of
vertical simplicial sets are weak equivalences.

Then the induced map d(X) → d(Y ) is a weak
equivalence of diagonal simplicial sets.

Example: Suppose that G×X→ X is an action of
a group G on a simplicial set X . The bisimplicial
set ⊔

∗
g1−→∗ g2−→∗... gn−→∗

X ∼= G×n×X

has horizontal path components X/G, and the map
to path components defines a simplicial set map

π : EG×G X → X/G,

which is natural in G-sets X .

If the action G× X → X is free, then the path
components the simplicial sets EG×G Xn are iso-
morphic to copies of the contractible space EG =

EG×G G. It follows that the map π is a weak
equivalence in this case.
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If the action G× X → X is free and X is con-
tractible, then we have weak equivalences

EG×G X '
π //

p '
��

X/G

BG
Model structures
There are multiple closed model structures for bisim-
plicial sets. Here are three of them:

1) The projective structure, for which a map X→
Y of bisimplicial sets is a weak equivalence (re-
spectively projective fibration) if all maps Xn→Yn

are weak equivalences (respectively fibrations) of
simplicial sets. The cofibrations for this structure
are called the projective cofibrations.

2) The injective structure, for which X → Y is a
weak equivalence (respectively cofibration) if all
maps Xn→Yn are weak equivalences (respectively
cofibrations) of simplicial sets. The fibrations for
this theory are called the injective fibrations.

3) There is a diagonal model structure on s2Set
for which a map X → Y is a weak equivalence if
it is a diagonal weak equivalence ie. that the map
d(X)→ d(Y ) of simplicial sets is a weak equiva-
lence, and the cofibrations are the monomorphisms
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of bisimplicial sets as in 2).

The existence of the diagonal structure is origi-
nally due to Joyal and Tierney, but they did not
publish the result. A proof appears in [3].

The projective structure is a special case of the
projective structure for I-diagrams of simplicial
sets of Lemma 19.1 (Lecture 07) — it is called
the Bousfield-Kan structure in [2, IV.3.1].

The injective structure is similarly a special case
of the injective structure for I-diagrams, of Theo-
rem 19.3.

The injective structure is also an instance of the
Reedy structure for simplicial objects in a model
category [2, IV.3.2,VII.2].

The weak equivalences for both the projective and
injective structures are called level equivalences.

Lemma 21.1 says that every level equivalence is a
diagonal equivalence.

The diagonal functor X 7→ d(X) is left adjoint to a
“singular functor” X 7→ d∗(X), where

d∗(X)p,q = hom(∆p×∆
q,X).

One can show, by verifying a (countable) bounded
cofibration condition, that a bisimplicial set map
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p : X → Y is a fibration for the diagonal model
structure if and only if it has the right lifting prop-
erty with respect to all trivial cofibrations A→ B
which are countable in the sense that all sets of
bisimplices Bp,q are countable.

The bounded cofibration condition is a somewhat
tough exercise to prove — one uses the fact that
the diagonal functor has a left adjoint as well as a
right adjoint.

22 Homotopy colimits and limits (revisited)

Suppose X : I→ sSet is an I-diagram which takes
values in Kan complexes.

Following [1], one writes

holim←−−− IX = hom(B(I/?),X),

where the function complex is standard, and B(I/?)
is the functor i 7→ B(I/i).

Suppose Y is a simplicial set, and X is still our
prototypical I-diagram.

Homotopy colimits
The assignment i 7→ hom(X(i),Y ) defines an Iop-
diagram

hom(X ,Y ) : Iop→ sSet.
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There is a natural isomorphism of function spaces

hom(holim−−−→ IX ,Y )∼= holim←−−− Iophom(X ,Y ),

where holim−−−→ IX is defined by the coequalizer⊔
α:i→ j in I

B( j/I)×X(i)⇒
⊔

i∈Ob(I)

B(i/I)×X(i)→ holim−−−→ IX .

By looking at maps

holim−−−→ IX → Y,

one shows (exercise) that holim−−−→ IX is the diagonal
of the bisimplicial set, with vertical n-simplices⊔

i0→···→in

X(i0),

up to isomorphism.

This is the (standard) description of the homotopy
colimit of X that was introduced in Section 9.

This definition of homotopy colimit coincides up
to equivalence with the “colimit of projective cofi-
brant model” description of Section 20.

Here is the key to comparing the two:

Lemma 22.1. Suppose X : I→ sSet is a projective
cofibrant I-diagram. Then the canonical map

holim−−−→ IX → lim−→
I

X

is a weak equivalence.
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Proof. lim−→I
Xm is the set of path components of the

simplicial set ⊔
i0→···→in

X(i0)m,

so lim−→I
X can be identified with the simplicial set

of horizontal path components of the bisimplicial
set holim−−−→ I X .

The space B(i/I) is contractible since the category
i/I has an initial object. Thus, every projection

B(i/I)×K→ K

is a weak equivalence.

The simplicial set B(i/I)×K is the homotopy col-
imit of the I diagram hom(i, )×K and the projec-
tion is isomorphic to the map

holim−−−→ I(hom(i, )×K)→ lim−→
I
(hom(i, )×K)

Thus, all diagrams hom(i, )×K are members of
the class of I-diagrams X for which the map

holim−−−→ IX → lim−→
I

X (5)

is a weak equivalence.
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Suppose given a pushout diagram

hom(i, )×K //

1× j
��

X

��

hom(i, )×L //Y

of I-diagrams, where j is a cofibration. Suppose
also that the map (5) is a weak equivalence. Then
the induced map

holim−−−→ IY → lim−→
I

Y

is a weak equivalence.

For this, the induced diagram

lim−→I
(hom(i, )×K) //

��

lim−→I
X

��

lim−→I
(hom(i, )×L) // lim−→I

Y

is a pushout, and one uses the glueing lemma to
see the desired weak equivalence.

Suppose given a diagram of cofibrations of I-diagrams

X0→ X1→ . . .

such that all maps

holim−−−→ IXs→ lim−→
I

Xs

13



are weak equivalences. Then the map

holim−−−→ I(lim−→
s

Xs)→ lim−→
I
(lim−→

s
Xs)

is a weak equivalence.

In effect, the colimit and homotopy colimit func-
tors commute, and filtered colimits preserve weak
equivalences in sSet.
A small object argument shows that, for every I-
diagram Y , there is a trivial projective fibration p :
X → Y such that X is projective cofibrant and the
map (5) is a weak equivalence.

If Y is projective cofibrant, then Y is a retract of
the covering X , so the map

holim−−−→ IY → lim−→
I

Y

is a weak equivalence.

Corollary 22.2. Suppose X : I→ sSet is an I-diagram
of simplicial sets, and let π : U → X be a projec-
tive cofibrant model of X. Then there are weak
equivalences

holim−−−→ IX
'←−
π∗

holim−−−→ IU
'−→ lim−→

I
U.

14



Proof. Generally, if f : X → Y is a weak equiva-
lence of I-diagrams, then the induced maps⊔

i0→···→in

X(i0)→
⊔

i0→···→in

Y (i0)

is a weak equivalence of simplicial sets for each
vertical degree n, and it follows from Lemma 21.1
that the induced map

holim−−−→ IX → holim−−−→ IY

is a weak equivalence.

It follows that the map

holim−−−→ IX
π∗←− holim−−−→ IU

is a weak equivalence, and Lemma 22.1 shows that

holim−−−→ IU → lim−→
I

U

is a weak equivalence.

Homotopy limits
Each slice category I/i has a terminal object, so
B(I/i) is contractible, and the map

B(I/?)→∗

of I-diagrams is a weak equivalence.
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If Z is an injective fibrant I-diagram, then the in-
duced map

lim←−
I

Z∼=hom(∗,Z)→hom(B(I/?),Z)=: holim←−−− I Z

is a weak equivalence.

Here’s the interesting thing to prove:

Proposition 22.3. Suppose p : X → Y is a projec-
tive fibration (resp. trivial projective fibration).
Then

p∗ : holim←−−− IX → holim←−−− IY

is a fibration (resp. trivial fibration) of sSet.

There are a few concepts involved in the proof of
Proposition 22.3.

1) Every I-diagram Y has an associated cosimpli-
cial space (aka. ∆-diagram in simplicial sets) ∏

∗Y
with

∏
nY = ∏

∗Y (n) = ∏
i0→···→in

Y (in),

and with cosimplicial structure map θ∗ : ∏
mY →

∏
nY defined for an ordinal number map θ : m→ n

16



defined by the picture

∏γ: j0→···→ jm Y ( jm)
θ∗ //

prθ∗(σ)
��

∏σ :i0→···→in Y (in)
prσ

��

Y (iθ(m)) //Y (in)

in which the bottom horizontal map is induced by
the morphism iθ(m)→ in of I.

2) There is a cosimplicial space ∆ consisting of the
standard n-simplices and the maps between them,
and there is a natural bijection

hom(∆,∏
∗Y )∼= hom(B(I/?),Y )

This bijection induces a natural isomorphism of
simplicial sets

hom(∆,∏
∗Y )∼= hom(B(I/?),Y ) = holim←−−− IY.

Bousfield and Kan call this isomorphism “cosim-
plicial replacement of diagrams” in [1].

3) We also use the “matching spaces” MnZ for a
cosimplicial space Z. Explicitly,

MnZ ⊂
n

∏
i=0

Zn

is the set of (n + 1)-tuples (z0, . . . ,zn) such that
s jzi = siz j+1 for i≤ j.

17



There is a natural simplicial set map

s : Zn+1→MnZ

defined by s(z) = (s0z,s1z, . . . ,snz).

Lemma 22.4. Suppose X is an I-diagram of sets.
Then the map

s : ∏
n+1X = ∏

σ :i0→···→in+1

X(in+1)→Mn
∏
∗X

factors through a bijection

∏
σ :i0→···→in+1∈D(BI)n+1

X(in+1)
∼=−→Mn

∏
∗X ,

where D(BI)n+1 is the set of degenerate simplices
in BIn+1.

Proof. Write X =
⊔

i∈Ob(I)X(i), and let π : X →
Ob(I) be the canonical map.

An element α of ∏
mX is a commutative diagram

BIm
α //

vm ##

X

π||

Ob(I)

where vm is induced by the inclusion {m} ⊂m of
the vertex m.

If s : m→ n is an ordinal number epimorphism

18



then the diagram

BIn
s∗(α)

//

s∗

$$

vn

��

X

π

��

BIm

α

;;

vm
��

Ob(I)

commutes.

The degeneracies si : BIn → BIn+1 take values in
DBIn+1 and the simplicial identities sis j = s j+1si,
i≤ j determine a coequalizer⊔

i≤ j

BIn−1 ⇒
n⊔

i=0

BIn→ DBIn+1.

Write p1, p2 for the maps defining the coequalizer.

An element of Mn ∏
∗X is a map⊔n

i=0 BIn
f

//

(vn) %%

X

π||

Ob(I)

fibred over Ob(I), such that f · p1 = f · p2. It fol-
lows that f factors uniquely through a function
DBIn+1→ X , fibred over Ob(I).
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Proof of Proposition 22.3. By an adjointness argu-
ment and cosimplicial replacement of diagrams,
showing that the map holim←−−− IX→ holim←−−− IY has the
RLP wrt an inclusion i : K ⊂ L of simplicial sets
amounts to solving a lifting problem

∆×K //

1×i
��

∏
∗X

��

∆×L //

::

∏
∗Y

in cosimplicial spaces.

One solves such lifting problems inductively in
cosimplicial degrees by solving lifting problems

(L×∂∆n+1)∪ (K×∆n+1) //

��

∏
n+1X
(p,s)
��

L×∆n+1 //

33

∏
n+1Y ×Mn ∏∗Y Mn

∏
∗X

By Lemma 22.4, solving this lifting problem amounts
to solving lifting problems

(L×∂∆n+1)∪ (K×∆n+1) //

��

X(in+1)
p
��

L×∆n+1 //

44

Y (in+1)

one for each non-degenerate simplex σ : i0→···→
in+1 of BIn+1. This can be done if either K ⊂ L is
anodyne or if p is trivial, since p is a projective
fibration.
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Corollary 22.5. Suppose X is a projective fibrant
I-diagram and that X → Z is an injective fibrant
model of X. Then there are weak equivalences

holim←−−− IX
'−→ holim←−−− IZ

'←− lim←−
I

Z.

Example: Every bisimplicial set X is a functor

X : ∆
op→ sSet.

The homotopy colimit holim−−−→∆opX is defined by the
coend (ie. colimit of all diagrams)

B(m/∆op)×Xn
1×θ∗//

θ∗×1
��

B(m/∆op)×Xm

B(n/∆op)×Xn

and therefore by the coend

B(∆/m)×Xn
1×θ∗//

θ×1
��

B(∆/m)×Xm

B(∆/n)×Xn

There is a natural map of cosimplicial categories

h : ∆/n→ n

(the “last vertex map”) which takes an object α :
k→ n to α(k) ∈ n.

This map induces a morphism of coends

B(∆/n)×Xn
h×1−−→ ∆

n×Xn,
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and therefore induces a natural map

h∗ : holim−−−→∆opX → d(X).

Claim: This map h∗ is a weak equivalence.

Both functors involved in h preserve levelwise weak
equivalences in X , so we can assume that X is pro-
jective cofibrant. If Y is a Kan complex, then the
induced map

hom(d(X),Y )→ hom(holim−−−→∆opX ,Y )

can be identified up to isomorphism with the map

hom(X ,hom(∆,Y ))→hom(X ,hom(B(∆/?),Y )).
(6)

The map

hom(∆,Y )→ hom(B(∆/?),Y )

is a weak equivalence of projective fibrant simpli-
cial spaces, so the map in (6) is a weak equivalence
since X is projective cofibrant.

This is true for all Kan complexes Y , so h∗ is a
weak equivalence as claimed.

Example: Suppose Y is an injective fibrant cosim-
plicial space. Then the weak equivalence h in-
duces a weak equivalence

hom(∆,Y ) h∗−→ hom(B(∆/?),Y ) = holim←−−−∆Y.
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This is also true if the cosimplicial space Y is Bousfield-
Kan fibrant [1] in the sense that all maps

s : Y n+1→MnY

are fibrations — see [1, X.4] or [2]. Every in-
jective fibrant cosimplicial space is fibrant in this
sense.

Following [1], the space hom(∆,Y ) is usually de-
noted by Tot(Y ).

23 Applications, Quillen’s Theorem B

Suppose p : X→Y is a map of simplicial sets, and
choose pullbacks

p−1(σ) //

��

X
p
��

∆n
σ

//Y

for all simplices σ : ∆n→ Y of the base Y .

A morphism α : σ→ τ in ∆/Y of Y induces a sim-
plicial set map p−1(σ)→ p−1(τ), and we have a
functor

p−1 : ∆/Y → sSet.
The maps p−1(σ)→ X induce maps of simplicial
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sets
ω :

⊔
σ0→···→σn

p−1(σ0)→ X

or rather a morphism of bisimplicial sets

ω : holim−−−→
σ :∆n→Y

p−1(σ)→ X .

Lemma 23.1. The bisimplicial set map

ω : holim−−−→
σ :∆n→Y

p−1(σ)→ X

is a diagonal weak equivalence.

Proof. The simplicial set Y is a colimit of its sim-
plices in the sense that the canonical map

lim−→
∆n→Y

∆
n→ Y

is an isomorphism. The pullback functor is exact,
so the canonical map

lim−→
∆n→Y

p−1(σ)→ X

is an isomorphism.

Take τ ∈ Xm. Then fibre ω−1(τ) over τ for the
simplicial set map

ω :
⊔

σ0→···→σn

p−1(σ0)m→ Xm
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is the nerve of a category Cτ whose objects consist
of pairs (σ ,y), where σ : ∆n→ Y is a simplex of
Y and y ∈ p−1(σ)m such that y 7→ τ under the map
p−1(σ)→ X .

A morphism (σ ,y)→ (γ,z) of Cτ is a map σ → γ

of the simplex category ∆/Y such that y 7→ z under
the map p−1(σ)→ p−1(γ).

There is an element xτ ∈ p−1(p(τ)) such that xτ 7→
τ ∈ X and xτ 7→ ιm ∈ ∆m. The element (p(τ),xτ)

is initial in Cτ (exercise), and this is true for all
τ ∈ Xm, so the map ω is a weak equivalence in
each vertical degree m.

Finish the proof by using Lemma 21.1.

Here’s a first consequence, originally due to Kan
and Thurston [4]:

Corollary 23.2. There are natural weak equiva-
lences

B(∆/X)
'←− holim−−−→

∆n→X
∆

n '−→ X

for each simplicial set X.

Proof. The map

holim−−−→∆n→X ∆
n→ B(∆/X)

is induced by the weak equivalence of diagrams
∆n→∗ on the simplex category.
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The other map is a weak equivalence, by Lemma
23.1 applied to the identity map X → X .

Suppose f : C→D is a functor between small cat-
egories, and consider the pullback squares of func-
tors

f/d //

��

C

��

D/d //D

for d ∈ Ob(D).

Here, f/d is the category whose objects are pairs
(c,α) where c∈Ob(C) and α : f (c)→ d is a mor-
phism of D.

A morphism γ : (c,α)→ (c′,β ) is a morphism γ :
c→ c′ of C such that the diagram

f (c)
α

&&
f (γ)

��
d

f (c′) β

88

commutes in D.

Any morphism d→ d′ of D induces a functor f/d→
f/d′, and there is a D-diagram in simplicial sets
d 7→ B( f/d).
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The forgetful functors f/d → C (with (c,α) 7→ c
define a map of bisimplicial sets

ω :
⊔

d0→···→dn

B( f/d0)→ BC.

Then we have the following categorical analogue
of Lemma 23.1:

Lemma 23.3 (Quillen [5]). The map ω induces a
weak equivalence of diagonal simplicial sets.

Proof. The homotopy colimit in the statement of
the Lemma is the bisimplicial set with (n,m)-bisimplices
consisting of pairs

(c0→ ··· → cm, f (cm)→ d0→ ··· → dn)

of strings of arrows in C and D, respectively.

The fibre of ω over the m-simplex c0→ ··· → cm)

is the nerve B( f (cm)/D), which is contractible.

This is true for all elements of BCm so ω is a weak
equivalence in each vertical degree m, and is there-
fore a diagonal weak equivalence.
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Now here’s what we’re really after:

Theorem 23.4 (Quillen). Suppose X : I→ sSet is
a diagram such that each map i→ j of I induces
a weak equivalence X(i)→ X( j).

Then all pullback diagrams

X(i) //

��

holim−−−→ IX
π
��

∆0
i

//BI

are homotopy cartesian.

Functors X : I → sSet which take all morphisms
of I to weak equivalences of simplicial sets are di-
agrams of equivalences.

If f : I→ J is a functor between small categories
and X : J→ sSet is a J-diagram of simplicial sets,
then the diagram

holim−−−→ I X f //

π
��

holim−−−→ J X
π
��

BI f∗
//BJ

is a pullback (exercise).

In particular, the diagram in the statement of the
Theorem is a pullback.
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Proof. There are two tricks in this proof:

• Factor the map i : ∆0→ BI as the composite

∆0 i //

j %%

BI

U p
99

such that p is a fibration and j is a trivial cofi-
bration, and show that the induced map X(i)→
U×BI holim−−−→ I X is a weak equivalence.

• Use the fact that pullback along a simplicial set
map is exact (so it preserves all colimits and
monomorphisms), to reduce to showing that
every composite Λn

k ⊂ ∆n→ BI induces a weak
equivalence

Λ
n
k×BI holim−−−→ I X → ∆

n×BI holim−−−→ I X .

To finish off, the map ∆n → BI is induced by a
functor σ : n→ I, so there is an isomorphism

holim−−−→n Xσ ∼= ∆
n×BI holim−−−→ I X .

The composite functor Xσ is a diagram of equiv-
alences, and so the initial object 0 ∈ n determines
a natural transformation

Xσ(0)→ Xσ

of n-diagrams defined on a constant diagram which
is a weak equivalence of diagrams.
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The induced weak equivalence

Bn×X(σ(0))∼= holim−−−→n X(σ(0))→ holim−−−→n Xσ

pulls back to a weak equivalence

Λ
n
k×X(σ(0))∼=Λ

n
k×Bn holim−−−→n X(σ(0))→Λ

n
k×Bn holim−−−→ Xσ .

It follows that there is a commutative diagram

Λn
k×X(σ(0)) ' //

'
��

∆n×X(σ(0))
'
��

Λn
k×BI holim−−−→ I X //∆n×BI holim−−−→ I X .

so the bottom horizontal map is a weak equiva-
lence.

It’s hard to overstate the importance of Theorem
23.4.

The conditions for the Theorem are always satis-
fied, for example, by diagrams defined on groupoids.
In particular, if G is a group and X is a space car-
rying a G-action, then there is a fibre sequence

X → EG×G X → BG

defined by the Borel construction, aka. the homo-
topy colimit for the action of G on X .

Theorem 23.4 first appeared as a lemma in the
proof of Quillen’s “Theorem B” in [5].
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Theorem B is the homotopy-theoretic starting point
for Quillen’s description of higher algebraic K-
theory:

Theorem 23.5 (Quillen). Suppose f : C → D is
a functor between small categories such that all
morphisms d→ d′ of D induce weak equivalences
B( f/d)→ B( f/d′).

Then all diagrams

B( f/d) //

��

BC
f∗
��

B(D/d) //BD

of simplicial set maps are homotopy cartesian.

Proof. Form the diagram

B( f/d) //

��

I

holim−−−→
d∈D

B( f/d) ' //

��

II

BC

��

B(D/d) //

'
��

III

holim−−−→
d∈D

B(D/d) ' //

'
��

BD

∆0
d

//BD

The indicated horizontal maps are weak equiva-
lences by Lemma 23.3, while the indicated verti-
cal maps are weak equivalences since the spaces
B(D/d) are contractible.
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Theorem 23.4 says that the composite diagram I+
III is homotopy cartesian, so Lemma 18.5 (Lec-
ture 07) implies that I is homotopy cartesian. It
follows, again from Lemma 18.5, that the com-
posite I+ II is homotopy cartesian.

32



References
[1] A. K. Bousfield and D. M. Kan. Homotopy limits, completions and localizations.

Springer-Verlag, Berlin, 1972. Lecture Notes in Mathematics, Vol. 304.

[2] P. G. Goerss and J. F. Jardine. Simplicial Homotopy Theory, volume 174 of
Progress in Mathematics. Birkhäuser Verlag, Basel, 1999.
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24 Derived functors

Homology
Suppose A : I→Ab is a diagram of abelian groups,
defined on a small category I.

There is a simplicial abelian group EIA, with

EIAn =
⊕

σ :i0→···→in

A(i0)

and with simplicial structure maps θ ∗ defined for
θ : m→ n by the commutative diagrams

A(i0)
α∗ //

inσ
��

A(iθ(0))
inθ∗(σ)
��⊕

σ :i0→···→in A(i0)
θ∗
//
⊕

γ: j0→···→ jm A( j0)

where α : i0→ iθ(0) is the morphism of I defined
by θ .
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The simplicial abelian group EIA defines the ho-
motopy colimit within simplicial abelian groups.

Specifically, every diagram B : I→ sAb of simpli-
cial abelian groups determines a bisimplicial abelian
group EIB with horizontal objects

EIBn =
⊕

σ :i0→···→in

B(i0).

There is a projective model structure on sAbI,
for which f : A→B is a weak equivalence (respec-
tively fibration) if and only if each map f : Ai→ Bi

is a weak equivalence (respectively fibration) of
simplicial abelian groups (exercise).

Lemma 24.1. The canonical map

EIB→ lim−→
I

B,

induces a weak equivalence of simplicial abelian
groups

π : d(EIB)→ lim−→
I

B

if B is projective cofibrant.

Proof. The generating projective cofibrations are
induced from the generating projective cofibrations

j×1 : K×hom(i, )→ L×hom(i, )
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of I-diagrams of simplicial sets by applying the
free abelian group functor.

There is an isomorphism

EIZ(X)∼= Z(holim−−−→ IX)

for all I-diagrams of simplicial sets X .

The map

EIZ(hom(i, )×K)→ lim−→
I
Z(hom(i, )×K)

is the result of applying the free abelian group func-
tor to a diagonal weak equivalence of bisimplicial
sets.

Every pointwise weak equivalence of I-diagrams
A→ B induces a diagonal weak equivalence

d(EIA)→ d(EIB).

This is a consequence of Lemma 24.2.

Lemma 24.2. Every level weak equivalence A→
B of bisimplicial abelian groups induces a weak
equivalence d(A)→ d(B).

Lemma 24.2 follows from Lemma 21.1 (the bisim-
plicial sets result).

Corollary 24.3. Suppose the level weak equiva-
lence p : A→ B is a projective cofibrant replace-
ment of an I-diagram B.
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Then there are weak equivalences

d(EIB)
'←− d(EIA)

'−→ lim−→ IA.

Example: Suppose A : I → Ab is a diagram of
abelian groups. Write AbI for the category of such
I-diagrams and natural transformations.

AbI has a set of projective generators, ie. all func-
tors Z(hom(i, )) obtained by applying the free abelian
group functor to the functors hom(i, ), i ∈Ob(I).

It follows that every I-diagram A : I→Ab of abelian
groups has a projective resolution

· · · → P1→ P0→ A→ 0.

The I-diagram Γ(P∗) of simplicial abelian groups
is projective cofibrant (exercise), so there are weak
equivalences of simplicial abelian groups

EIA= d(EIA)
'←− d(EIΓ(P∗))

'−→ lim−→ IΓ(P∗)∼=Γ(lim−→ IP∗).

Thus, there are isomorphisms

πk(EIA)∼= πk(Γ(lim−→ IP∗))∼= Hk(lim−→ IP∗).

We have proved the following:

Lemma 24.4. There are natural isomorphisms

πk(EIA)∼= L(lim−→ I)k(A)

for all I-diagrams of abelian groups A.
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In other words, the homotopy (or homology) groups
of EIA coincide with the left derived functors of
the colimit functor in abelian groups.

Remark: Exactly the same script works for dia-
grams of simplicial modules over an arbitrary com-
mutative unitary ring R.

Example: Suppose G is a group, and let R(G)

be the corresponding group-algebra over R. An
R(G)-module, or simply a G-module in R−Mod,
is a diagram

M : G→ R−Mod,
and the higher derived functors of lim−→G

for M are
the group homology groups Hn(G,M), as defined
classically.

In effect, one can show that there is an isomor-
phism of simplicial R-modules

L(lim−→
G

)k(M) = Hk(EGM)

∼= Hk(R(EG)⊗G M) = Hk(G,M).

Here, EG = B(∗/G) is the standard contractible
cover of BG so R(EG)→ R is a free G-resolution
of the trivial G-module R.

R(EG)⊗G M is the Borel construction for the G-
module M.
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The R-module lim−→G
M is the module of coinvari-

ants of the G-module M, and it is common to write

M/G = lim−→GM.

Example: Suppose that A : ∆op→ sAb is a bisim-
plicial abelian group.

The colimit lim−→n An is the coequalizer

A1 ⇒ A0→ π0A = lim−→
n

An

of the face maps d0,d1 : A1→ A0.

The bisimplicial set ∆n×̃K has (horizontal) colimit

π0∆
n×K ∼= K.

It follows that the map

Z(∆n×̃K)→ lim−→
p

Z(∆n
p×K)

is a levelwise equivalence (in vertical degrees) of
bisimplicial abelian groups. This implies that the
bisimplicial abelian group map

A→ π0A = lim−→
n

An

is a weak equivalence in all vertical degrees for
all projective cofibrant objects A, and therefore in-
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duces a diagonal weak equivalence

d(A) '−→ lim−→
n

An

for all such objects A.

It follows that if A→ B is a projective cofibrant
resolution of a bisimplicial abelian group B, then
there are weak equivalences

d(B) '←− d(A) '−→ lim−→
n

An,

and so the diagonal d(B) is naturally equivalent to
the homotopy colimit of the simplicial object A.

Cohomology
There is a cohomological version of the theory
presented so far in this section. A little more tech-
nology is involved.

1) The category AbI of I-diagrams of abelian groups
has enough injectives.

2) If A is an I-diagram of abelian groups, then
there is an isomorphism of cochain complexes

hom(B(I/?),A)∼= ∏
∗A.

3) The functor hom( ,J) is exact if J is injective
(exercise), and thus takes weak equivalences X →
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Y of I-diagrams of simplicial sets to cohomology
isomorphisms hom(Y,J)→ hom(X ,J).

The canonical map B(I/?)→ ∗ is a weak equiva-
lence of I-diagrams, so the morphism

hom(∗,J)→ hom(B(I/?),J)

is a cohomology isomorphism if J is injective. Thus,
there are isomorphisms

Hk
∏
∗J ∼=

{
lim←−I

J if k = 0, and

0 if k > 0.

4) More generally, there are isomorphisms

Hk
∏
∗A∼= R(lim←− I)

kA =: lim←−
k
I A

for k ≥ 0 and for all I-diagrams A.

In effect, A has an injective resolution A→ J∗ and
both (cohomological) spectral sequences for the
bicomplex ∏

∗J∗ collapse.

5) If A is an I-diagram of abelian groups, then
there is an isomorphism

[∗,K(A,n)]∼= lim←−
n
I (A), (1)

where [ , ] denotes morphisms in the homotopy
category of I-diagrams of simplicial sets.

The best argument that I know of for the isomor-
phism (1) appears in [4] (also [5]).

8



The theory of higher right derived functors of in-
verse limit is a type of sheaf cohomology theory.

6) There are isomorphisms

π0 holim←−−− IK(A,n)∼= π0 holim←−−− IZ
∼= π0 lim←− IZ
∼= [∗,Z]
∼= [∗,K(A,n)]
∼= lim←−

n
I A,

where K(A,n)→ Z is an injective fibrant model of
K(A,n).

The object K(A,n) is a de-looping of K(A,n−1),
so there are isomorphisms

πk holim←−−− IK(A,n)∼=

{
lim←−

n−k
I A if 0≤ k ≤ n, and

0 if k > n

25 Spectral sequences for a bicomplex

This section contains a very basic introduction to
spectral sequences.

We shall only explicitly discuss the spectral se-
quences in homology which are associated to a bi-
complex.
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These spectral sequences, their cohomological analogs
(used at the end of Section 24), and the Bousfield-
Kan spectral sequence for a tower of fibrations [1],
are the most common prototypes for spectral se-
quences that one meets in nature.

Most of the material of this section in Mac Lane’s
“Homology” [6]. There are many other sources.

A bicomplex C consists of an array of abelian
groups Cp,q, p,q≥ 0 and morphisms

∂v : Cp,q→Cp,q−1 and ∂h : Cp,q→Cp−1,q,

such that
∂

2
v = ∂

2
h = 0 and

∂v∂h+∂h∂v = 0.
A morphism f : C→ D of bicomplexes consists
of morphisms f : Cp,q→ Dp,q that respect the dif-
ferentials.

Write Ch2
+ for the corresponding category.

There is a functor

Tot : Ch2
+→Ch+

taking values in ordinary chain complexes with

Tot(C)n =
⊕

p+q=n

Cp,q

10



and with differential ∂ : Tot(C)n→ Tot(C)n−1 de-
fined on the summand Cp,q by

∂ (x) = ∂v(x)+∂h(x).

Every bicomplex C has two filtrations, horizontal
and vertical.

The pth stage FpC of the horizontal filtration has

FpCr,s =

{
Cr,s if r ≤ p, and

0 if r > p.

Then
0 = F−1C ⊂ F0C ⊂ F1C ⊂ . . .

and ⋃
p

Fp(C) =C

The functor C 7→ Tot(C) is exact, so this filtration
on C induces a filtration on Tot(C).

One filters Tot(C)n in finitely many stages:

0=F1 Tot(C)n⊂F0 Tot(C)n⊂ ·· ·⊂Fn Tot(C)n =Tot(C)n.

Generally, the long exact seqences in homology
associated to the exact sequences

0→ Fp−1C
i−→ FpC

p−→ FpC/Fp−1C→ 0

11



arising from a filtration {FpC} on a chain complex
C fit together to define a spectral sequence for the
filtered complex.

This spectral sequence arises from the “ladder di-
agram”

...

��

...

��
Hp+q(Fp−2)

i∗
��

Hp+q−1(Fp−3)

i∗
��

Hp+q(Fp−1)

i∗
��

Hp+q−1(Fp−2)

i∗
��

// Hp+q−1(Fp−2/Fp−3)

Hp+q(Fp)
p∗ //

i∗
��

Hp+q(Fp/Fp−1)
∂ // Hp+q−1(Fp−1)

i∗
��

Hp+q(Fp+1)

i∗ ��

Hp+q−1(Fp)

i∗��

p∗ // Hp+q−1(Fp/Fp−1)

...

��

...

��
Hp+q(C) Hp+q−1(C)

Set

Zp,q
r = {x ∈ Hp+q(Fp/Fp−1) | ∂ (x) ∈ im(ir−1

∗ )}

and
Bp,q

r = p∗(ker(ir−1
∗ )),
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and then define

E p,q
r =

Zp,q
r

Bp,q
r

.

for r ≥ 1. Here, we adopt the convention that i0∗ =
1, so that

E p,q
1 = Hp+q(Fp/Fp−1)

This is cheating slightly (this only works for bi-
complexes), but set

E p,q
∞ =

ker(∂ )
p∗(ker(Hp+q(Fp)→ Hp+q(C)))

.

Finally, define

FpHp+q(C) = im(Hp+q(Fp)→ Hp+q(C)).

Given [x] ∈ E p,q
r represented by x ∈ Zp,q

r choose
y ∈Hp+q(Fp−r) such that ir−1

∗ (y) = ∂ (x). Then the
assignment [x] 7→ [p∗(y)] defines a homomorphism

dr : E p,q
r → E p−r,q+r−1

r ,

and this homomorphism is natural in filtered com-
plexes.
Then we have the following:

13



Lemma 25.1. 1) We have the relation d2
r = 0, and

there is an isomorphism

E p,q
r+1
∼=

ker(dr : E p,q
r → E p−r,q+r−1

r )

im(dr : E p+r,q−r+1
r → E p,q

r )
.

2) There are isomorphisms

E p,q
r
∼= E p,q

∞

for r > p,q+2.

3) There are short exact sequences

0→ Fp−1Hp+q(C)→ FpHp+q(C)→ E p,q
∞ → 0.

The proof is an exercise — chase some elements.

In general (ie. for general filtered complexes),

E p,q
1 = Hp+q(Fp/Fp−1),

and E p,q
2 is the homology of the complex with dif-

ferentials E p,q
1 → E p−1,q

1 given by the composites

Hp+q(Fp/Fp−1)
∂−→Hp+q−1(Fp−1)

p∗−→Hp+q−1(Fp−1/Fp−2)

In the case of the horizontal filtration Fp Tot(C) for
a bicomplex C, there is a natural isomorphism

Fp Tot(C)/Fp−1 Tot(C)∼=Cp,∗[p],

14



so there is an isomorphism

E p,q
1
∼= Hq(Cp,∗)

The differential d1 is the homomorphism

Hq(Cp,∗)
∂h∗−→ Hq(Cp−1,∗)

which is induced by the horizontal differential.

It follows, that for the horizontal filtration on the
total complex Tot(C) of a bicomplex C, there is a
spectral sequence with

E p,q
2 = Hh

p(H
v
qC)⇒ Hp+q(Tot(C)).

In particular, the spectral sequence converges to
H∗(Tot(C)) in the sense that the filtration quotients
E p,q

∞ determine H∗(Tot(C)).

Here’s an example of how it all works:

Lemma 25.2. Suppose f : C→D is a morphism of
bicomplexes such that for some r ≥ 1 the induced
morphisms E p,q

r (C)→ E p,q
r (D) are isomorphisms

for all p,q≥ 0.

Then the induced map Tot(C)→ Tot(D) is a ho-
mology isomorphism.

Lemma 25.2 is sometimes called the Zeeman com-
parison theorem.
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Proof. The map f induces isomorphisms

E p,q
s (C)

∼=−→ E p,q
s (D)

for all s ≥ r (because all such Es-terms are com-
puted by taking homology groups, inductively in
s≥ r+1. It follows that all induced maps

E p,q
∞ (C)→ E p,q

∞ (D)

are isomorphisms. But then, starting with the mor-
phism

E0,p+q
∞ (C)
∼= ��

∼= //E0,p+q
∞ (D)

∼=��
F0Hp+q(Tot(C)) //F0Hp+q(Tot(D))

and using the fact that the induced maps on suc-
cessive filtration quotients are the isomorphisms

Er,p+q−r
∞ (C)

∼=−→ Er,p+q−r
∞ (D),

one shows inductively that all maps

FrHp+q(Tot(C))→ FrHp+q(Tot(D))

are isomorphisms, including the case r = p + q
which is the map

Hp+q(Tot(C))→ Hp+q(Tot(D)).

This is true for all total degrees p+q, so the map
Tot(C)→ Tot(D) is a quasi-isomorphism.
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Example: Suppose A is a bisimplicial abelian group.
Then the Generalized Eilenberg-Zilber Theorem
(Theorem 26.1) asserts that there is a natural chain
homotopy equivalence of chain complexes

d(A)' Tot(A)

where Tot(A) is the total complex of the associated
(Moore) bicomplex. Filtering A in the horizontal
direction therefore gives a spectral sequence with

E p,q
2 = π

h
p(π

v
q(A))⇒ πp+qd(A). (2)

This spectral sequence is natural in bisimplicial
abelian groups A.

This spectral sequence can be used to give an al-
ternate proof of Lemma 24.4. If A→ B is a level
equivalence of bisimplicial abelian groups, then
there is an E1-level isomophism

πq(Ap,∗)
∼=−→ πq(Bp,∗)

for all p,q≥ 0.

Use Lemma 25.2 for the spectral sequence (2) to
show that the map d(A)→ d(B) is a weak equiva-
lence.
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Application: The Lyndon-Hochschild-Serre spec-
tral sequence

Suppose f : C→D is a functor between small cat-
egories, and recall the bisimplicial set map⊔

d0→···→dn

B( f/d0)→ BC

of Section 23. Lemma 23.3 says that this map is a
diagonal weak equivalence.

The free abelian group functor preserves diagonal
weak equivalences, so there is a spectral sequence

E p,q
2 = L(lim−→)pHq(B( f/?),Z)⇒ Hp+q(BC,Z).

(3)
The derived colimit functors are computed over
the base category D.

In the special case where f is a surjective group
homomorphism G→ H with kernel K, this is a
form of the Lyndon-Hochschild-Serre spectral se-
quence

E p,q
2 = Hp(H,Hq(BK,Z))⇒ Hp+q(BG,Z). (4)

We can put in other coefficients if we want.

To see that the E2-term of (4) has the indicated
form, take a set-theoretic section σ : H→G of the
group homomorphism f such that σ(e) = e.
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Conjugation x 7→ σ(h)xσ(h)−1, defines a group
isomorphism cσ(h) : K→ K and hence an isomor-
phism

h∗ : H∗(BK,Z)→ H∗(BK,Z)

in homology. The map h∗ is independent of the
choice of section σ because any two pre-images of
h determine homotopic maps K→ K (ie. the two
isomorphisms differ by conjugation by an element
of K).

This action of H on H∗(BK,Z) is the one appear-
ing in the description of the E2-term of (4).

The objects of f/∗ are the elements of H, and a
morphism g : h→ h′ in f/∗ is an element g ∈ G
such that h′ f (g) = h.

There is a functor K → f/∗ defined by sending
k ∈ K to the morphism k : e→ e.

There is a functor f/∗ → K which is defined by
sending the morphism g : h→ h′ to the element
σ(h′)gσ(h)−1.

σ(e) = e, so the composite functor

K→ f/∗→ K

is the identity, while the elements σ(h), h ∈H de-
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fine a homotopy from the composite

f/∗→ K→ f/∗
to the identity on f/∗.
Finally, composition with α ∈H defines the func-
tor α∗ : f/∗ → f/∗ in the decription of the bisim-
plicial set for f : G→ H, and there is a homotopy
commutative diagram

K //

cσ(α)
��

f/∗
α∗
��

K // f/∗
Thus, the action of α on H∗(B( f/∗),Z) coincides
with the morphism α∗ : H∗(BK,Z)→ H∗(BK,Z)
displayed above, up to isomorphism.

Example: Consider the short exact sequence

0→ Z→Q→Q/Z→ 0.

All three groups are abelian, so all conjugation ac-
tions are trivial and there is a spectral sequence
with

E p,q
2 = Hp(B(Q/Z),Hq(BZ,Q))⇒ Hp+q(BQ,Q).

S1 ' BZ, so there are isomorphisms

Hq(BZ,Q)∼=

{
Q if q = 0,1, and

0 if q > 1.
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The group Q/Z is all torsion, so that

Hq(B(Q/Z),Q) = 0

for q≥ 1.

The E2-term for the spectral sequence therefore
collapses, so the “edge homomorphism”

H∗(BZ,Q)→ H∗(BQ,Q)

is an isomorphism.

To see the claim about torsion groups, observe that
torsion abelian groups are filtered colimits of finitely
generated torsion abelian groups, and a finitely gen-
erated torsion abelian group is a finite direct sum
of cyclic groups.

It therefore suffices, by a Künneth formula argu-
ment (see (11) below) to show that

Hp(Z/n,Q) = Hp(B(Z/n),Q) = 0

for p > 0.

The abelian group Z, as a trivial Z/n-module, has
a free resolution by Z/n-modules

. . .
N−→ Z(Z/n) 1−t−−→ Z(Z/n)→ Z→ 0 (5)

where 1− t is multiplication by group-ring ele-
ment 1− t and t is the generator of the group Z/n.
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The map N is multiplication by the “norm ele-
ment”

N = 1+ t + t2+ · · ·+ tn−1.

Tensoring the resolution with the trivial Z/n-module
Z gives the chain complex

. . .
0−→ Z n−→ Z 0−→ Z n−→ Z 0−→ Z,

and it follows that

Hp(BZ/n,Z)∼=


Z p = 0,

0 if p = 2n, n > 0, and

Z/n if p = 2n+1, n≥ 0.
(6)

Tensoring with Q (which is exact) therefore shows
that Hp(BZ/n,Q) = 0 for p > 0.

We could equally well tensor the resolution (5)
with the trivial Z/n-module Q and get the same
answer, because Q is uniquely n-divisible.
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26 The Eilenberg-Zilber Theorem

Every bisimplicial abelian group A has a naturally
associated bicomplex M(A) with

M(A)m,n = Am,n,

and with horizontal boundaries

∂h =
m

∑
i=0

(−1)idi : Am,n→ Am−1,n

and vertical boundaries

∂v =
n

∑
i=0

(−1)m+idi : Am,n→ Am,n−1.

One checks that

∂h∂v+∂v∂h = 0

in all bidegrees — the signs were put in to achieve
this formula.

Here is the Generalized Eilenberg-Zilber Theorem
of Dold-Puppe [2], [3, IV.2.2]:

Theorem 26.1 (Dold-Puppe). Suppose that A is a
bisimplicial abelian group.

Then the chain complexes d(A) and Tot(A) are
naturally chain homotopy equivalent.
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Proof. The standard Eilenberg-Zilber Theorem says
that there are natural chain maps

f : Z(K×L)→ Tot(Z(K)⊗Z(L))

(Moore complexes) and

g : Tot(Z(K)⊗Z(L))→ Z(K×L),

and there are natural chain homotopies f g' 1 and
g f ' 1 for simplicial sets K and L.

The Eilenberg-Zilber Theorem specializes to (is
equivalent to — exercise) the existence of chain
maps

d(Z(∆p,q))=Z(∆p×∆
q)

f−→Tot(Z(∆p)⊗Z(∆q))=Tot(Z(∆p,q))

and
g : Tot(Z(∆p,q))→ d(Z(∆p,q))

and chain homotopies f g ' 1 and g f ' 1 which
are natural in bisimplices ∆p,q.

Every bisimplicial abelian group A is a natural col-
imit of the diagrams

Ap,q⊗Z(∆r,s)
1⊗(γ,θ)

//

(γ,θ)∗⊗1
��

Ap,q⊗Z(∆p,q)

Ar,s⊗Z(∆r,s)
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where (γ,θ) : (r,s)→ (p,q) varies over the mor-
phisms of ∆×∆, and the maps

γp,q : Ap,q⊗Z(∆p,q)→ A

given by (a,(γ,θ)) 7→ (γ,θ)∗(a) define the col-
imit.

There are isomorphisms

d(B⊗A)∼= B⊗d(A),
Tot(B⊗A)∼= B⊗Tot(A)

for bisimplicial abelian groups A and abelian groups
B, and these isomorphisms are natural in both A
and B. The functors Tot and d are also right exact.

It follows that f and g induce natural chain maps

f∗ : d(A)→ Tot(A), g∗ : Tot(A)→ d(A)

for all simplicial abelian groups A.

The chain homotopies f g ' 1 and g f ' 1 induce
natural chain homotopies

f∗g∗ ' 1 : Tot(A)→ Tot(A),
g∗ f∗ ' 1 : d(A)→ d(A)

for all bisimplicial abelian groups A.
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Remarks: 1) The proof of Theorem 26.1 which
appears in [3, p.205] contains an error: the se-
quence⊕

τ→σ

Z(∆r,s)→
⊕

∆p,q→A

Z(∆p,q)→ A→ 0

is not exact, which means that A is not a colimit
of its bisimplices in general. The problem is fixed
by using the co-end description of A that you see
above.

2) The maps f and g have classical explicit mod-
els, namely the Alexander-Whitney map and shuf-
fle map, respectively. See [6, VIII.8] for a full dis-
cussion.

Recall that M(A) denotes the Moore chain com-
plex of a simplicial abelian group A.

The Alexander-Whitney map

f : M(A⊗B)→ Tot(M(A)⊗M(B)) (7)

is defined, for simplicial abelian groups A and B
by

f (a⊗b) = ∑
0≤p≤n

a|[0,...,p]⊗b|[p,...,n].

Here, a ∈ An and b ∈ Bn are n-simplices. The
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“front p-face” a|[0,...,p] is defined by

∆
p [0,...,p]−−−→ ∆

n a−→ A.

The “back (n− p)-face” b|[p,...,n] is defined by

∆
n−p [p,...,n]−−−→ ∆

n b−→ B.

The Eilenberg-Zilber Theorem follows from

Lemma 26.2. 1) The object

(p,q) 7→ Z(∆p×∆
q)

is a projective cofibrant (∆× ∆)-diagram of
simplicial abelian groups.

2) The object

(p,q) 7→ Tot(NZ(∆p)⊗NZ(∆q))

is a projective cofibrant (∆× ∆)-diagram of
chain complexes.

To see that Lemma 26.2 implies the Eilenberg-
Zilber Theorem, observe that there is a natural chain
homotopy equivalence

Tot(NZ(∆p)⊗NZ(∆q))'Tot(MZ(∆p)⊗MZ(∆q))
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of bicosimplicial chain complexes which is induced
by the natural chain homotopy equivalence of The-
orem 15.4 (Lecture 06) between normalized and
Moore chain complexes.

There is a similar natural chain homotopy equiva-
lence

MZ(∆p×∆
q)' NZ(∆p×∆

q).

Finally, there is a natural chain homotopy equiva-
lence

NZ(∆p×∆
q)' Tot(NZ(∆p)⊗NZ(∆q)),

since both objects are projective cofibrant resolu-
tions of the constant diagram of chain complexes
Z(0) on ∆×∆ by Lemma 26.2.

We use the following result to prove Lemma 26.2:

Lemma 26.3. Suppose p : A→ B is a trivial pro-
jective fibration of cosimplicial simplicial abelian
groups. Then all induced maps

(p,s) : An+1→ Bn+1×MnB MnA

are trivial fibrations of simplicial abelian groups.

Proof. The map s : Bn+1 → MnB is surjective for
all cosimplicial abelian groups B. In effect, if x =
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(0, . . . ,0,xi, . . . ,xn) ∈MnB then

s(di+1xi) = (0, . . . ,0,xi,yi+1, . . . ,yn),

and x− s(di+1xi) is of the form

x− s(di+1xi) = (0, . . . ,0,zi+1, . . . ,zn) =: z.

Thus, inductively, if z = s(v) for some v ∈ An+1

then x = s(di+1xi+ v).

Write

Mn
(0,i)A= {(x0, . . . ,xi) | xi∈An,six j = s j−1xifor i < j }.

Then MnA = Mn
(0,n)A, and there are pullback dia-

grams
Mn

(0,i+1)
//

��

An

s
��

Mn
(0,i) si

//Mn−1
(0,i)A

in which the two unnamed arrows are projections.

Suppose K is a cosimplicial object in sAb such
that all objects Kn are acyclic.

Then under the inductive assumption that s : Kn→
Mn−1

(0,i)K is a trivial fibration we see that the projec-
tion Mn

(0,i+1)K→Kn is a trivial fibration, and so the
map s : Kn+1→Mn

(0,i+1)K is a weak equivalence.
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This is true for all i < n, and it follows that the
map s : Kn+1→MnK is a trivial fibration.

If K is the kernel of the projective trivial fibration
p : A→ B, then there is an induced comparison of
short exact sequences

O //Kn+1 //

s
��

An+1 //

(p,s)
��

Bn+1 //

1
��

0

0 //MnK //Bn+1×MnB MnA //Bn+1 // 0

so the map (p,s) is a weak equivalence.

Corollary 26.4. The cosimplicial simplicial abel-
ian group n 7→ Z(∆n) is projective cofibrant.

Proof. Suppose p : A→ B is a projective trivial fi-
bration. Solving a lifting problem

A
p
��

Z(∆) //

<<

B

amounts to inductively solving lifting problems

∂∆n+1 //

��

An+1

(p,s)
��

∆n+1 //

66

Bn+1×MnB MnA

and this can be done by the previous Lemma.
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Proof of Lemma 26.2. Suppose q : C→D is a pro-
jective trivial fibration of (∆×∆)-diagrams of sim-
plicial abelian groups. Then all maps

(q,s) : Cn+1→ Dn+1×MnD MnC

are projective trivial fibrations of cosimplicial sim-
plicial abelian groups, by Lemma 26.3.

Write ∆×∆ for the bicosimplicial diagram

(p,q) 7→ ∆
p×∆

q

of simplicial sets.

Then lifting problems

C
q
��

∆×∆ //

;;

D

can be solved by inductively solving the lifting
problems

Z(∆×∂∆n+1) //

��

Cn+1

(q,s)
��

Z(∆×∆n+1) //

55

Dn+1×MnD MnC

in cosimplicial simplicial abelian groups.

For that, it suffices to show that the map

Z(∆×∂∆
n+1)→ Z(∆×∆

n+1)
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is a projective cofibration, but this follows from
the observation that the maps

Z(∂∆
m×∆

n+1)∪Z(∆m×∂∆
m+1)→Z(∆m×∆

n+1)

are cofibrations of simplicial abelian groups xfor
m≥ 0, with Lemma 26.3.

We have proved statement 1) of Lemma 26.2.

The second statement of Lemma 26.2 has a very
similar proof. If q : C→ D is a projective trivial
fibration of bicosimplicial chain complexes, then
all maps

(p,s) : Cn+1→ Dn+1×MnD MnC

are projective trivial fibrations of cosimplicial chain
complexes, by Lemma 26.3. Write

Tot(NZ(∆)⊗NZ(∆))

for the bicosimplicial chain complex

(p,q) 7→ Tot(NZ(∆p)⊗NZ(∆q)).

Then solving lifting problems

C
q
��

Tot(NZ(∆)⊗NZ(∆)) //

55

D
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amounts to inductively solving lifting problems

Tot(NZ(∆)⊗NZ(∂∆n+1)) //

i
��

Cn+1

(q,s)
��

Tot(NZ(∆)⊗NZ(∆n+1)) //

33

Dn+1×MnD MnC

For this, we show that all maps i are projective
cofibrations of cosimplicial chain complexes, but
this reduces to showing that each of the maps

Tot(NZ(∆m)⊗NZ(∂∆
n+1))∪Tot(NZ(∂∆

m)⊗NZ(∆n+1))

→ Tot(NZ(∆m)⊗NZ(∆n+1))

are cofibrations of chain complexes.

This last morphism is defined by freely adjoining
the chain ιm⊗ ιn, so it is a cofibration.

Remark: The proof of the Eilenberg-Zilber Theo-
rem that one finds in old textbooks uses the method
of acyclic models.
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27 Universal coefficients, Künneth formula

Suppose X is a simplicial set, and that A is an
abelian group.

Recall that the nth homology group Hn(X ,A) of X
with coefficients in A is defined by

Hn(X ,A) = Hn(Z(X)⊗Z A),

where Z(X) denotes both a free simplicial abelian
group and its associated Moore complex.

The ring Z is a principal ideal domain, so A (a Z-
module) has a free resolution

0→ F2
i−→ F1

p−→ A→ 0.

All abelian groups Z(Xn) are free, and tensoring
with a free abelian group is exact, so there is a
short exact sequence of chain complexes

0→Z(X)⊗F2
1⊗i−−→Z(X)⊗F1

1⊗p−−→Z(X)⊗A→ 0.

The long exact sequence in H∗ has the form

. . .
∂−→Hn(X ,F2)

(1⊗i)∗−−−→Hn(X ,F1)
(1⊗p)∗−−−−→Hn(X ,A) ∂−→ . . .

There are commutative diagrams

Hn(X ,F2)
(1⊗i)∗ //

∼=
��

Hn(X ,F1)
∼=
��

Hn(X ,Z)⊗F2 1⊗i
//Hn(X ,Z)⊗F1
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It follows that there are short exact sequences

0→Hn(X ,Z)⊗A→Hn(X ,A)→Tor(Hn−1(X ,Z),A)→ 0.
(8)

These are the universal coefficients exact sequences.

Both Zn (n-cycles) and Bn (n-boundaries) are free
abelian groups, and so there is a map φn : Bn →
Z(X)n+1 such that the diagram of abelian group
homomorphisms

Bn
φn //

j
��

Z(X)n+1

��

Zn i
//Z(X)n

(9)

commutes, where i and j are canonical inclusions.

Write Z̃n for the chain complex which is concen-
trated in degrees n and n+ 1 and with boundary
morphism given by the inclusion j.

The diagram (9) defines a chain map

φn : Z̃n→ Z(X),

which induces an isomorphism

Hn(Z̃n)∼= Hn(Z(X)),
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while Hk(Z̃n) = 0 for k 6= n.

Adding up the maps φn therefore determines a (non-
natural) weak equivalence

φ :
⊕
n≥0

Z̃n→ Z(X).

The two complexes are cofibrant, so φ is a chain
homotopy equivalence and in particular there is a
chain homotopy inverse

ψ : Z(X)→
⊕
n≥0

Z̃n.

The map ψ and projection onto the complex Z̃n

therefore determine a chain map

Z(X)⊗A→ Z̃n⊗A

Comparing universal coefficients sequences gives
a commutative diagram

Hn(X)⊗A //

∼=
��

Hn(X ,A)

��

Hn(X)⊗A ∼=
//Hn(Z̃n⊗A)

It follows that the natural map

Hn(X)⊗A→ Hn(X ,A)

from the universal coefficients sequence (8) is non-
naturally split.
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We have proved

Theorem 27.1 (Universal Coefficients Theorem).
Suppose X is a simplicial set and A is an abelian
group.

There is a short exact sequence

0→Hn(X ,Z)⊗A→ Hn(X ,A)
→ Tor(Hn−1(X ,Z),A)→ 0.

for each n≥ 1. This sequence is natural in X, and
has a non-natural splitting.

Here’s a different take on universal coefficients:

The chain complex Z̃n⊗A has homology

Hk(Z̃n⊗A)∼=


Tor(Hn(X),A) if k = n+1,

Hn(X)⊗A if k = n,

0 if k 6= n,n+1,

and the chain homotopy equivalence φ induces iso-
morphisms

Hn(X ,A)∼= Hn(
⊕
n≥0

Z̃n⊗A)

∼= (Hn(X)⊗A)⊕Tor(Hn−1(X),A).
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Remark: The simplicial set underlying a simpli-
cial abelian group has the homotopy type (non-
naturally) of a product of Eilenberg-Mac Lane spaces
— see [3, III.2.20].

Suppose C is a chain complex.

Then the chain homotopy equivalence φ induces a
homology isomorphism

Tot((
⊕
n≥0

Z̃n)⊗C)
'−→ Tot(Z(X)⊗C).

We can assume that C is cofibrant, even free in
each degree.

Form cofibrant chain complexes FkC and maps FkC→
C such that the maps HkFkC → HkC are isomor-
phisms, and such that Hp(FkC) = 0 for p 6= k.

It follows that there is a chain homotopy equiva-
lence ⊕

k≥0

FkC
'−→C.

There are isomorphisms

Hp(Z̃n⊗FkC)∼=


Hn(X)⊗Hk(C) if p = n+ k,

Tor(Hn(X),Hk(C)) if p = n+ k+1,

0 otherwise
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Exercise: Do you need a spectral sequence?
Hint: Filter FkC.

Adding up these isomorphisms gives split short
exact sequences

0→Hn(X)⊗Hk(C)→ Hn+k Tot(Z̃n⊗C)

→ Tor(Hn(X),Hk−1(C))→ 0
(10)

for k ≥ 0, and Hk Tot(Z̃n⊗C) = 0 for k < 0.

Taking a direct sum of the sequences (10) (and
reindexing) gives short exact sequences

0→
⊕

0≤p≤n

Hn−p(X)⊗Hp(C)→ Hn Tot(Z(X)⊗C))

→
⊕

0≤q≤n−1

Tor(Hn−1−q(X),Hq(C))→ 0

(11)
The sequence (11) and the Eilenberg-Zilber Theo-
rem (Theorem 26.1) together imply the following:

Theorem 27.2 (Künneth Theorem). Suppose X and
Y are simplicial sets. Then there is a natural short
exact sequence

0→
⊕

0≤p≤n

Hn−p(X)⊗Hp(Y )→ Hn(X×Y )

→
⊕

0≤q≤n−1

Tor(Hn−1−q(X),Hq(Y ))→ 0.

This sequence splits, but not naturally.
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The coefficient ring Z in the statement of Theorem
27.2 can be replaced by a principal ideal domain
R. The same theorem holds for H∗(X×Y,R), with
the same proof.

If R = F is a field, all F-modules are free and the
Tor terms in the Theorem vanish, so

Hn(X×Y,F)∼=
⊕

0≤p≤n

Hn−p(X ,F)⊗F Hp(Y,F).

(12)
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28 The fundamental groupoid, revisited

The path category PX for a simplicial set X is
the category generated by the graph X1 ⇒ X0 of 1-
simplices x : d1(x)→ d0(x), subject to the relations

d1(σ) = d0(σ) ·d2(σ)

given by the 2-simplices σ of X .

There is a natural bijection

hom(PX ,C)∼= hom(X ,BC),

so the functor P : sSet→ cat is left adjoint to the
nerve functor.

Write GPX for the groupoid freely associated to
the path category. The functor X 7→ GP(X) is left
adjoint to the nerve functor

B : Gpd→ sSet.
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Say that a functor f : G→H between groupoids is
a weak equivalence if the induced map f : BG→
BH is a weak equivalence of simplicial sets.

Observe that sk2(X)⊂ X induces an isomorphism
P(sk2(X))∼= P(X), and hence an isomorphism

GP(sk2(X))∼= GP(X).

Nerves of groupoids are Kan complexes, so f :
G→ H is a weak equivalence if and only if

1) f induces bijections

f : hom(a,b)→ hom( f (a), f (b))

for all objects a,b of G, (ie. f is full and faith-
ful) and

2) for every object c of H there is a morphism
c→ f (a) in H for some object a of G ( f is
surjective on π0).

Thus, f is a weak equivalence of groupoids if and
only if it is a categorical equivalence (exercise).

Lemma 28.1. The functor X 7→GP(X) takes weak
equivalences of simplicial sets to weak equivalences
of groupoids.

Proof. 1) Claim: The inclusion Λn
k ⊂∆n induces an

isomorphism GP(Λn
k)
∼= GP(∆n) if n≥ 2.
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This is obvious if n≥ 3, for then sk2(Λ
n
k)= sk2(∆

n).

If n = 2, then GP(Λ2
k) has a contracting homo-

topy onto the vertex k (exercise). It follows that
GP(Λ2

k)→ GP(∆2) is an isomorphism.

If n = 1, then Λ1
k is a point, and GPΛ1

k is a strong
deformation retraction of GP(∆1).

2) In all cases, GP(Λn
k) is a strong deformation re-

traction of GP(∆n).

Strong deformation retractions are closed under
pushout in the groupoid category (exercise).

Thus, every trivial cofibration i : A→ B induces a
weak equivalence GP(A)→GP(B), so every weak
equivalence X → Y induces a weak equivalence
GP(X)→ GP(Y ).

Suppose Y is a Kan complex, and recall that the
fundamental groupoid π(Y ) for Y has objects given
by the vertices of Y , morphisms given by homo-
topy classes of paths (1-simplices) x→ y rel end
points, and composition law defined by extending
maps

(β , ,α) : Λ
2
1→ Y

to maps σ : ∆2→ Y : [d1(σ)] = [β ] · [α].
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There is a natural functor

GP(Y )→ π(Y )

which is the identity on vertices and takes a sim-
plex ∆1→Y to the corresponding homotopy class.
This functor is an isomorphism of groupoids (ex-
ercise).

If X is a topological space then the combinato-
rial fundamental groupoid π(S(X)) coincides up
to isomorphism with the usual fundamental groupoid
π(X) of X .

Corollary 28.2. Suppose i : X→Z is a weak equiv-
alence, such that Z is a Kan complex.

Then i induces a weak equivalence of groupoids

GP(X)
i∗−→ GP(Z)

∼=−→ π(Z).

There is a functor

uX : GP(X)→ G(∆/X)

that takes a 1-simplex ω : d1(ω)→ d0(ω) to the
morphism (d0)−1(d1) in G(∆/X) defined by the
diagram

∆0 d1
//

d1(ω)   

∆1

ω
��

∆0d0
oo

d0(ω)~~
X
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This assignment takes 2-simplices to composition
laws of G(∆/X) [1, p.141].

There is a functor

vX : G(∆/X)→ GP(X)

which associates to each object σ : ∆n→ X its last
vertex

∆
0 n−→ ∆

n σ−→ X .

Then any map between simplices of ∆/X is mapped
to a canonically defined path between last vertices,
and compositions of ∆/X determine 2-simplices
relating last vertices.

Then vXuX is the identity on GP(X) and the maps

∆0
σ ·n
%%

n
��

X
∆n σ

88

determine a natural isomorphism (aka. homotopy)

uXvX
∼= 1G(∆/X).

We have proved

Lemma 28.3. There is an equivalence of groupoids

uX : GP(X)� G(∆/X) : νX ,

which is natural in simplicial sets X.
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Here’s a summary. Suppose X is a simplicial set
with fibrant model i : X → Z. Then there is a pic-
ture of natural equivalences

GP(X)
i∗
'
//

uX '
��

GP(Z)
∼= // π(Z)

G(∆/X) π(S|Z|)
ε∗'
OO

∼=
// π(|Z|)

You need the Milnor theorem (Theorem 13.2) to
show that ε∗ is an equivalence.

I refer to any of the three equivalent models π(Z),
GP(X) or G(∆/X) as the fundamental groupoid
of X , and write π(X) to denote any of these ob-
jects.

The adjunction map X→ BGP(X) is often written

η : X → Bπ(X).

Lemma 28.4. Suppose C is a small category.

Then there is an isomorphism

GP(BC)∼= G(C),

which is natural in C.

Proof. The adjunction functor ε : P(BC)→C is an
isomorphism (exercise).
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Remark: This result leads to a fast existence proof
for the isomorphism

π1(BQM,0)∼= K0(M)

(due to Quillen [3]) for an exact category M, in
algebraic K-theory.

It also follows that the adjunction functor

ε : GP(BG)→ G

is an isomorphism for all groupoids G.

Lemma 28.5. Suppose X is a Kan complex.

Then the adjunction map η : X→BGP(X) induces
a bijection π0(X)∼= π0(BGP(X)) and isomorphisms

π1(X ,x)
∼=−→ π1(BGP(X),x)

for each vertex x of X.

Proof. This result is another corollary of Lemma
28.4.

There is a commutative diagram

π(X)
π(η)

// π(BGP(X))

GP(X)
GP(η)

//

1 ))

∼=
OO

GPBGP(X)

ε∼=
��

∼=
OO

GP(X)
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It follows that η induces an isomorphism

π(η) : π(X)
∼=−→ π(BGPX).

Finish by comparing path components and auto-
morphism groups, respectively.

Say that a morphism p : G→ H of groupoids is a
fibration if the induced map BG→ BH is a fibra-
tion of simplicial sets.

Exercise: Show that a functor p is a fibration if
and only if it has the path lifting property in the
sense that all lifting problems

0 //

��

G
p
��

1 //

??

H
(involving functors) can be solved.

Cofibrations of groupoids are defined by a left
lifting property in the usual way.

There is a function complex construction hom(G,H)

for groupoids, with

hom(G,H) := hom(BG,BH).

Lemma 28.6. 1) With these definitions, the cate-
gory Gpd satisfies the axioms for a closed simpli-
cial model category. This model structure is cofi-
brantly generated and right proper.
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2) The functors

GP : sSet � Gpd : B

form a Quillen adjunction.

Proof. Use Lemma 28.1 and its proof.

29 The Serre spectral sequence

Suppose f : X→Y is a map of simplicial sets, and
consider all pullback diagrams

f−1(σ) //

��

X

��

∆n
σ

//Y

defined by the simplices of Y .

We know (Lemma 23.1) that the bisimplicial set
map ⊔

σ0→···→σn

f−1(σ0)→ X

defines a (diagonal) weak equivalence

holim−−−→σ :∆n→Y f−1(σ)→ X

where the homotopy colimit defined on the sim-
plex category ∆/Y .
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The induced bisimplicial abelian group map⊕
σ0→···→σn

Z( f−1(σ0))→ Z(X)

is also a diagonal weak equivalence.

It follows (see Lemma 24.4) that there is a spectral
sequence with

E p,q
2 = L( lim−→

σ :∆n→Y

)pHq( f−1(σ))⇒ Hp+q(X ,Z),

(1)
often called the Grothendieck spectral sequence.

Making sense of the spectral sequence (1) usually
requires more assumptions on the map f .

A) Suppose f : X → Y is a fibration and that Y is
connected.

By properness, the maps

θ∗ : f−1(σ)→ f−1(τ)

induced by simplex morphisms θ : σ→ τ are weak
equivalences, and the maps

θ∗ : Hk( f−1(σ),Z)→ Hk( f−1(τ),Z)
are isomorphisms.

It follows that the functors Hk : ∆/Y → Ab which
are defined by

σ 7→ Hk( f−1(σ),Z)
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factor through an action of the fundamental groupoid
of Y , in the sense that these functors extend uniquely
to functors

Hk : G(∆/Y )→ Ab.

Suppose x is a vertex of Y , and write F = p−1(x)
for the fibre of f over x.

Since Y is connected there is a morphism ωσ : x→
σ in G(∆/Y ) for each object σ of the simplex cat-
egory. The maps ωσ , induce isomorphisms

ωσ∗ : Hk(F,Z)→ Hk( f−1(σ),Z),

and hence define a functor

Hk(F,Z) : G(∆/Y )→ Ab

which is naturally isomorphic to the functor Hk.

It follows that the spectral sequence (1) is isomor-
phic to

E p,q
2 = L(lim−→

∆/Y

)pHq(F,Z))⇒ Hp+q(X ,Z) (2)

under the assumption that f : X → Y is a fibration
and Y is connected.

This is the general form of the Serre spectral se-
quence.
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This form of the Serre spectral sequence is used,
but calculations often involve more assumptions.

B) The fundamental groupoid G(∆/Y ) acts triv-
ially on the homology fibres Hk( f−1(σ),Z) of f
if any two morphisms α,β : σ → τ in G(∆/Y ) in-
duce the same map

α∗ = β∗ : Hk( f−1(σ),Z)→ Hk( f−1(τ),Z)

for all k ≥ 0.

This happens, for example, if the fundamental group
(or groupoid) of Y is trivial.

In that case, all maps x→ x in G(∆/Y ) induce the
identity

Hk(F,Z)→ Hk(F,Z)
for all k ≥ 0, and there are isomorphisms (exer-
cise)

L(lim−→)pHq(F,Z)∼= Hp(B(∆/Y ),Hq(F,Z))
∼= Hp(Y,Hq(F,Z)).
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Thus, we have the following:

Theorem 29.1. Suppose f : X → Y is a fibration
with Y connected, and let F be the fibre of f over a
vertex x of Y . Suppose the fundamental groupoid
G(∆/Y ) of Y acts trivially on the homology fibres
of f .

Then there is a spectral sequence with

E p,q
2 = Hp(Y,Hq(F,Z))⇒ Hp+q(X ,Z). (3)

This spectral sequence is natural in all such fibre
sequences.

The spectral sequence given by Theorem 29.1 is
the standard form of the homology Serre spectral
sequence for a fibration.

Integral coefficients were used in the statement of
Theorem 29.1 for display purposes — Z can be
replaced by an arbitrary abelian group of coeffi-
cients.

Examples: Eilenberg-Mac Lanes spaces

Say that X is n-connected (n≥ 0) if π0X = ∗, and
πk(X ,x) = 0 for all k ≤ n and all vertices x.

One often says that X is simply connected if it is
1-connected.
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X is simply connected if and only if it has a trivial
fundamental groupoid π(X) (exercise).

Here’s a general fact:

Lemma 29.2. Suppose X is a Kan complex, n≥ 0,
and that X is n-connected. Pick a vertex x ∈ X.

Then X has a subcomplex Y such that Yk = {x} for
k ≤ n, and Y is a strong deformation retract of X.

The proof is an exercise.

Corollary 29.3. Suppose X is n-connected. Then
there are isomorphisms

Hk(X ,Z)∼=

{
Z if k = 0,

0 if 0 < k ≤ n.

Example: There is a fibre sequence

K(Z,1)→WK(Z,1)→ K(Z,2) (4)

such that WK(Z,1)' ∗.
K(Z,2) is simply connected, so the Serre spectral
sequence for (4) has the form

Hp(K(Z,2),Hq(K(Z,1),Z))⇒ Hp+q(∗,Z).

1) H1(K(Z,2),A)= 0 by Corollary 29.3, so E1,q
2 =

0 for all q.
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2) K(Z,1)' S1, so E p,q
2 = 0 for q > 1.

The quotient of the differential

d2 : E2,0
2 → E0,1

2
∼= Z

survives to E0,1
∞ ⊂ H1(∗) = 0, so d2 is surjective.

The kernel of d2 survives to E2,0
∞ = 0, so d2 is an

isomorphism and

H2(K(Z,2),Z)∼= Z.
Inductively, we find isomorphisms

Hn(K(Z,2),Z)∼=

{
Z if n = 2k, k ≥ 0, and

0 if n = 2k+1, k ≥ 0.

Example: There is a fibre sequence

K(Z/n,1)→WK(Z/n,1)→ K(Z/n,2) (5)

such that WK(Z/n,1)' ∗.
K(Z/n,2) is simply connected, so the Serre spec-
tral sequence for (5) has the form

Hp(K(Z/n,2),Hq(K(Z/n,1),Z))⇒ Hp+q(∗,Z).
We showed (see (6) of Section 25) that there are
isomorphisms

Hp(BZ/n,Z)∼=


Z p = 0,

0 if p = 2n, n > 0, and

Z/n if p = 2n+1, n≥ 0.
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There are isomorphisms

E1,q
2
∼= 0

for q≥ 0 and

H2(K(Z/n,2),Z) d2−→∼= H1(K(Z/n,1),Z)∼= Z/n.

E0,2
2 = H2(K(Z/n,1),Z) = 0, so all differentials

on E3,0
2 are trivial. Thus, E3,0

2 = E3,0
∞ = 0 because

H3(∗) = 0, and

H3(K(Z/n,2),Z) = E3,0
2 = 0.

We shall need the following later:

Lemma 29.4. Suppose A is an abelian group. Then
there is an isomorphism

H3(K(A,2),Z)∼= 0.

Proof. Suppose X and Y are connected spaces such
that

Hi(X ,Z)∼= 0∼= Hi(Y,Z)
for i = 1,3. Then a Künneth formula argument
(exercise — use Theorem 27.2) shows that X ×Y
has the same property.

The spaces K(Z,2) and K(Z/n,2) are connected
and have vanishing integral H1 and H3, so the same
holds for all K(A,2) if A is finitely generated.
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Every abelian group is a filtered colimit of its finitely
generated subgroups, and the functors H∗( ,Z) pre-
serve filtered colimits.

Lemma 29.5. Suppose A is an abelian group and
that n≥ 2. Then there is an isomorphism

Hn+1(K(A,n),Z)∼= 0.

Proof. The proof is by induction on n. The case
n = 2 follows from Lemma 29.4.

Consider the fibre sequence

K(A,n)→WK(A,n)→ K(A,n+1),

with contractible total space WK(A,n).

E p,n+1−p
2 = 0 for p < n+ 1 (the case p = 0 is the

inductive assumption). All differentials defined on
En+2,0

2 are therefore 0 maps, so

Hn+2(K(A,n+1),Z)∼= En+2,0
2

∼= En+2,0
∞ = 0,

since En+2,0
∞ is a quotient of Hn+2(∗) = 0.
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30 The transgression

Suppose p : X → Y is a fibration with connected
base space Y , and let F = p−1(∗) be the fibre of p
over some vertex ∗ of Y . Suppose that F is con-
nected.

Consider the bicomplex⊕
σ0→···→σn

Z(p−1(σ0))

defining the Serre spectral sequence for H∗(X ,Z),
and write Fp for its horizontal filtration stages.

Z(F) is a subobject of F0.

The differential dn : En,0
n → E0,n−1

n is called the
transgresssion, and is represented by the picture

Hn−1F0
∼= //

i∗
��

Hn−1(F0/F−1) //E0,n−1
n

Hn(Fn/Fn−1)
∂

//Hn−1Fn−1

Here,
En,0

n = ∂
−1(im(i∗))/ im(ker(i∗)),

E0,n−1
n = Hn−1(F0)/ker(i∗),

and dn([x]) = [y] where i∗(y) = ∂ (x).

One says (in old language) that [x] transgresses to
[y] if dn([x]) = [y].
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Note that

E0,n−1
n

∼= Hn−1(F0)/ker(i∗).

Given [x] ∈ En,0
n and z ∈ E0,n−1

n , then dn([x]) = z if
and only if there is an element y ∈ Hn−1(F0) such
that i∗(y) = ∂ (x) and y 7→ z under the composite

Hn−1(F0)
∼=−→ Hn−1(F0/F−1)→ E0,n−1

n .

The inclusion j : Z(F) ⊂ F0 induces a composite
map

j′ : Hn−1(F)→ lim−→
σ

Hn−1(Fσ) = E0,n−1
2 � E0,n−1

n ,

and j′ is surjective since Y is connected (exercise).

Suppose x∈Hn(Fn/Fn−1) represents an element of
En,0

n . Then ∂ (x) = i∗(y) for some y ∈ Hn−1(F0).
Write z for the image of y in E0,n−1

n .

Choose v ∈ Hn−1(F) such that j′(v) = z. Then
j∗(v) and y have the same image in E0,n−1

n so i∗ j∗(z)=
i∗(y) in Hn−1(Fn−1). This means that ∂ (x) is in the
image of the map Hn−1(F)→ Hn−1(Fn−1).

It follows from the comparison of exact sequences

Hn(Fn) //

=
��

Hn(Fn/F) ∂ //

��

Hn−1(F) //

��

Hn−1(Fn)
=
��

Hn(Fn) //Hn(Fn/Fn−1)
∂

//Hn−1(Fn−1) //Hn−1(Fn)
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that x is in the image of the map

Hn(Fn/F)→ Hn(Fn/Fn−1).

In particular, the induced map

Hn(Fn/F)→ En,0
n

is surjective.

Thus, dn(x) = y if and only if there is an element w
of Hn(Fn/F) such that w maps to x and y, respec-
tively, under the maps

En,0
n ← Hn(Fn/F)

∂−→ Hn−1(F)
j′−→ E0,n−1

n .

Hn(Fn)→Hn(X) is surjective, and Hn−1(Fn)→Hn−1(X)

is an isomorphism, so a comparison of long exact
sequences also shows that the map

Hn(Fn/F)→ Hn(X/F)

is surjective.

In summary, there is a commutative diagram

En,0
2 En,0

n
? _oo Hn(Fn/F)oooo

����

∂ //Hn−1(F)
j′
//E0,n−1

n

Hn(Fn)

88

zz ����

En,0
∞

?�

OO

Hn(X)oooo //Hn(X/F)

∂

@@

(6)
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This diagram is natural in fibrations p.

There is a comparison of Serre spectral sequences
arising from the diagram

X p
//

p
��

Y
1
��

Y 1
//Y

(7)

All fibres of p are connected, so it follows that the
map

p∗ : En,0
2 → Hn(Y )

is an isomorphism.

Write Fn(Y ) and E p,q
r (Y ) for the filtration and spec-

tral sequences, respectively, for the total complex
associated to the map 1 : Y → Y .

There is a commutative diagram

En,0
2
∼=
��

En,0
n

p∗
��

oooo

En,0
2 (Y ) En,0

n (Y )∼=
oo

that is induced by the comparison (7).

It follows that p∗ : En,0
n → En,0

n (Y ) injective, and
that En,0

n is identified with a subobject of Hn(Y/∗)
via the composite

En,0
n

p∗
⊂ En,0

n (Y )
∼=←− En,0

∞ (Y )
∼=←− Hn(Y )

∼=−→ Hn(Y/∗).
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Lemma 30.1. Suppose p : X → Y is a fibration
with connected base Y and connected fibre F over
∗ ∈ Y0. Suppose x ∈ En,0

n ⊂ Hn(Y/∗), n ≥ 1, and
that y ∈ E0,n−1

n .

Then dn(x) = y if and only if there is an element
z ∈ Hn(X/F) such that p∗(z) = x ∈ Hn(Y/∗) and
z 7→ y under the composite

Hn(X/F)
∂−→ Hn−1(F)

j′−→ E0,n−1
n .

Proof. Use the fact that the map

Hn(Fn/F)→ Hn(X/F)

is surjective, and chase elements through the com-
parison induced by (7) of the diagram (6) with the
diagram

En,0
n (Y ) Hn(Fn(Y )/∗)oooo

����

Hn(Fn(Y ))

∼=
66

ww ����

En,0
∞ (Y )

∼=

OO

Hn(Y )∼=
oo ∼=

//Hn(Y/∗)

to prove the result.
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31 The path-loop fibre sequence

We will use the model structure for the category
s∗Set of pointed simplicial sets (aka. pointed spaces).

This model structure is easily constructed, since
s∗Set = ∗/sSet is a slice category: a pointed sim-
plicial set is a simplicial set map ∗ → X , and a
pointed map is a diagram

X
g
��

∗
x 99

y %%Y

(8)

In general, if M is a closed model category, with
object A, then the slice category A/M has a closed
model structure, for which a morphism

X

f
��

A
::

$$Y
is a weak equivalence (resp. fibration, cofibration)
if the map f : X → Y is a weak equivalence (resp.
fibration, cofibration).

Exercise: 1) Verify the existence of the model struc-
ture for the slice category A/M .
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2) The dual assertion is the existence of a model
structure for the category M /B for all objects B ∈
M . Formulate the result.

Warning: A map g : X → Y of pointed simplicial
sets is a weak equivalence if and only if it induces
a bijection π0(X)∼= π0(Y ) and isomorphisms

πn(X ,z)∼= πn(Y,g(z))

for all base points z ∈ X0.

The model structure for s∗Set is a closed simplicial
model structure, with function complex hom∗(X ,Y )
defined by

hom∗(X ,Y )n = hom(X ∧∆
n
+,Y ),

where
∆

n
+ = ∆

nt{∗}
is the simplex ∆n with a disjoint base point.

The smash product of pointed spaces X , Y is de-
fined by

X ∧Y =
X×Y
X ∨Y

,

where the wedge X ∨Y or one-point union of X
and Y is the coproduct of X and Y in the pointed
category.

24



The loop space ΩX of a pointed Kan complex X
is the pointed function complex

ΩX = hom∗(S1,X),

where S1 =∆1/∂∆1 is the simplicial circle with the
obvious choice of base point.

Write ∆1
∗ for the simplex ∆1, pointed by the vertex

1, and let
S0 = ∂∆

1 = {0,1},
pointed by 1. Then the cofibre sequence

S0 ⊂ ∆
1
∗

π−→ S1 (9)

of pointed spaces induces a fibre sequence

ΩX =hom∗(S1,X)→hom∗(∆1
∗,X)

p−→ hom∗(S0,X)∼=X
(10)

provided X is fibrant.

The pointed inclusion {1} ⊂ ∆1
∗ is a weak equiva-

lence, so the space

PX = hom∗(∆1
∗,X)

is contractible if X is fibrant.

The simplicial set PX is the pointed path space
for X , and the fibre sequence (10) is the path-loop
fibre sequence for X .
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It follows that, if X is fibrant and ∗ denotes the
base point for all spaces in the fibre sequence (10),
then there are isomorphisms

πn(X ,∗)∼= πn−1(ΩX ,∗)

for n≥ 2 and a bijection

π1(X ,∗)∼= π0(ΩX).

Dually, one can take a pointed space Y and smash
with the cofibre sequence (9) to form a natural
cofibre sequence

Y ∼= S0∧Y → ∆
1
∗∧Y → S1∧Y.

The space ∆1
∗∧Y is contractible (exercise) — it is

the pointed cone for Y , and one writes

CX = X ∧∆
1
∗.

One often writes

ΣX = X ∧S1.

This object is called the suspension of X , although
saying this is a bit dangerous because there’s more
than one suspension construction for simplicial sets
— see [1, III.5], [2, 4.4].

The suspension functor is left adjoint to the loop
functor. More generally, there is a natural isomor-
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phism

hom∗(X ∧K,Y )∼= hom∗(K,hom∗(X ,Y ))

of pointed simplicial sets (exercise).

Lemma 31.1. Suppose f : X → ΩY is a pointed
map, and let f ′ : ΣX → Y denote its adjoint. Then
there is a commutative diagram

X //

f
��

CX //

h( f )
��

ΣX
f ′
��

ΩY //PY p
//Y

Proof. We’ll say how h( f ) is defined. Checking
that the diagram commutes is an exercise.

The pointed map (contracting homotopy)

h : ∆
1
∗∧∆

1
∗→ ∆

1
∗

is defined by the relations

0 //

��

1

��

1 // 1
Then the map

h( f ) : X ∧∆
1
∗→ hom∗(∆1

∗,Y )

is adjoint to the composite

X∧∆
1
∗∧∆

1
∗

1∧h−−→ X ∧∆
1
∗

f∧1−−→ hom∗(S1,Y )∧∆
1
∗

1∧π−−→ hom∗(S1,Y )∧S1 ev−→ Y.
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Lemma 31.2. Suppose Y is a pointed Kan complex
which is n-connected for n≥ 1.

Then the transgression di induces isomorphisms

Hi(Y )∼= Hi−1(ΩY )

for 2≤ i≤ 2n.

Proof. Y is at least simply connected, and the ho-
motopy groups πi(Y,∗) vanish for i≤ n.

The Serre spectral sequence for the path-loop fi-
bration for Y has the form

E p,q
2 = Hp(Y,Hq(ΩY ))⇒ Hp+q(PY ).

The space ΩY is (n− 1)-connected, so E p,q
2 = 0

for 0 < q≤ n−1 or 0 < p≤ n.

Thus, the first possible non-trivial group off the
edges in the E2-term is in bidegree (n+1,n).

All differentials reduce total degree by 1 so

• the differentials dr : E i,0
r → E i−r,r−1

r vanish for
i≤ 2n and r < i,

• the differentials dr : Er,i−r
r → E0,i−1

r vanish for
r < i and i≤ 2n.
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It follows that there is an exact sequence

0→ E i,0
∞ → E i,0

i
di−→ E0,i−1

i → E0,i−1
∞ → 0

for 0 < i≤ 2n, and

E i,0
i
∼= E i,0

2
∼= Hi(Y ), and

E0,i−1
i
∼= E0,i−1

2
∼= Hi−1(ΩY )

for 0 < i≤ 2n.

All groups E p,q
∞ vanish for (p,q) 6= (0,0).
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Lemma 31.3. Suppose f : X → ΩY is a map of
pointed simplicial sets, where Y is fibrant. Sup-
pose Y is n-connected, where n≥ 1.

Then for 2 ≤ i ≤ 2n there is a commutative dia-
gram

Hi(ΣX) ∂
∼=
//

f ′∗
��

Hi−1(X)

f∗
��

Hi(Y ) di

∼= //Hi−1(ΩY )

(11)

where f ′ : ΣX → Y is the adjoint of f .

Proof. From the diagram of Lemma 31.1, there is
a commutative diagram

Hi(ΣX/∗)
f ′∗
��

Hi(CX/X)
∼=oo ∂ //

h( f ′)∗
��

Hi−1(X)

f∗
��

Hi(Y/∗) Hi(PY/ΩY )
∂

//
p∗

oo Hi−1(ΩY )

(12)

After the standard identifications

E i,0
i
∼= Hi(Y/∗), and

E0,i−1
i
∼= Hi−1(ΩY ).

and given x ∈Hi(Y/∗) and y ∈Hi−1(ΩY ), Lemma
30.1 implies that di(x)= y if there is a z∈Hi(PY/ΩY )
such that p∗(z) = x and ∂ (z) = y.

This is true for f ′∗(v) and f∗(∂ (v)) for v ∈Hi(ΣX),
given the isomorphism in the diagram (12).
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The map di is an isomorphism for 2 ≤ i ≤ 2n by
Lemma 31.2. ∂ is always an isomorphism.

Corollary 31.4. Suppose Y is an n-connected pointed
Kan complex with n≥ 1.

Then there is a commutative diagram

Hi(ΣΩY ) ∂
∼=
//

ε∗
��

Hi−1(ΩY )

Hi(Y )
di

∼=
77

for 2≤ i≤ 2n.

The adjunction map ε : ΣΩY → Y induces an iso-
morphism Hi(ΣΩY )∼= Hi(Y ) for 2≤ i≤ 2n.

Proof. This is the case f = 1ΩY of Lemma 31.3.

If Y is a 1-connected pointed Kan complex, then
ΩY is connected.

We can say more about the map ε∗. The following
result implies that ΣΩY is simply connected, so
the adjunction map ε in the statement of Corollary
31.4 induces isomorphisms

ε∗ : Hi(ΣΩY )
∼=−→ Hi(Y )

for 0≤ i≤ 2n.
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Lemma 31.5. Suppose X is a connected pointed
simplicial set.

Then the fundamental groupoid π(ΣX) is a trivial
groupoid.

Proof. The proof is an exercise.

Use the assumption that X is connected to show
that the functor π(CX)→ π(ΣX) is full.
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Lecture 11: Postnikov towers, some applications
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32 Postnikov towers

Suppose X is a simplicial set, and that x,y : ∆n→X
are n-simplices of X .

Say that x is k-equivalent to y and write x ∼k y if
there is a commutative diagram

skk ∆n i //

i
��

∆n

y
��

∆n
x

//X

or if
x|skk ∆n = y|skk∆n.

Write X(k)n for the set of equivalence classes of
n-simplices of Xn mod k-equivalence.

Every morphism ∆m → ∆n induces a morphism
skk ∆m → skk ∆n. Thus, if x ∼k y then θ ∗(x) ∼k

θ ∗(y).
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The sets X(k)m, m ≥ 0, therefore assemble into a
simplicial set X(k).
The map

πk : X → X(k)

is the canonical surjection. It is natural in simpli-
cial sets X , and is defined for k ≥ 0.

X(k) is the kth Postnikov section of X .

If x ∼k+1 y then x ∼k y. It follows that there are
natural commutative diagrams

X
πk+1 //

πk $$

X(k+1)
p
��

X(k)

The system of simplicial set maps

X(0)
p←− X(1)

p←− X(2)
p←− . . .

is called the Postnikov tower of X .

The map πk : Xn → X(k)n of n-simplices is a bi-
jection for n ≤ k, since skk ∆n = ∆n in that case.

It follows that the induced map

X → lim←−
k

X(k)

is an isomorphism of simplicial sets.
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Lemma 32.1. Suppose X is a Kan complex. Then

1) πk : X → X(k) is a fibration and X(k) is a Kan
complex for k ≥ 0.

2) πk : X→X(k) induces a bijection π0(X)∼= π0X(k)
and isomorphisms

πi(X ,x)
∼=−→ πi(X(k),x)

for 1≤ i≤ k.

3) πi(X(k),x) = 0 for i > k.

Proof. Suppose given a commutative diagram

Λn
r

(x0,...,x̂r,...,xn) //

��

X
πk
��

∆n
[y]

//X(k)

If n≤ k the lift y : ∆n→ X exists because πk is an
isomorphism in degrees ≤ k.

If n = k+ 1 then di(y) = di([y]) = xi for i 6= r, so
that the representative y is again a suitable lift.

If n > k + 1 there is a simplex x ∈ Xn such that
dix = xi for i 6= r, since X is a Kan complex.

There is an identity skk(Λ
n
r) = skk(∆

n) for since
n≥ k+2, and it follows that [x] = [y].

We have proved that πk is a Kan fibration.
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Generally, if p : X→Y is a surjective fibration and
X is a Kan complex, then Y is a Kan complex (ex-
ercise).

It follows that all Postnikov sections X(k) are Kan
complexes.

If n > k, x ∈ X0 = X(k)0 and the picture

∂∆n

��

x
##

∆n
[α]
//X(k)

defines an element of πn(X(k),x), then all faces of
the representative α : ∆n→ X and all faces of the
element x : ∆n → X have the same k-skeleton, α

and x have the same k-skeleton, and so [α] = [x].

We have proved statements 1) and 3). Statement
2) is an exercise.

The fibration trick used in the proof of Lemma
32.1 is a special case of the following:

Lemma 32.2. Suppose given a commutative dia-
gram of simplicial set maps

X p
//

q ��

Y
π
��

Z
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such that p and q are fibrations and p is surjective
in all degrees.

Then π is a fibration.

Proof. The proof is an exercise.

Remarks:

1) If X is a Kan complex, it follows from Lemma
32.1 and Lemma 32.2 that all maps

p : X(k+1)→ X(k)

in the Postnikov tower for X are fibrations.

2) There is a natural commutative diagram

X η
//

π1
��

Bπ(X)
π1∗'
��

X(1)
η

' //Bπ(X(1))

for Kan complexes X , in which the indicated maps
η and π1∗ are weak equivalences by Lemma 28.5

3) Suppose that X is a connected Kan complex.
The fibre Fn(X) of the fibration πn : X → X(n) is
the n-connected cover of X . The space Fn(X) is
n-connected, and the maps

πk(Fn(X),z)→ πk(X ,z)

are isomorphisms for k ≥ n+1, by Lemma 32.1.
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The homotopy fibres of the map π1 : X → X(1),
equivalently of the map X→ B(π(X)) are the uni-
versal covers of X .

All universal covers of X are simply connected,
and are weakly equivalent because X is connected.

More is true. Replace η : X → Bπ(X) by a fibra-
tion p : Z→ B(π(X)), and form the pullbacks

p−1(x) //

��

Z
p
��

B(π(X)/x) //Bπ(X)

All spaces p−1(x) are universal covers, and there
are weak equivalences

holim−−−→ x∈π(X) p−1(x) '−→ Z '←− X .

Thus, every space X is a homotopy colimit of uni-
versal covers, indexed over its fundamental groupoid
π(X).
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33 The Hurewicz Theorem

Suppose X is a pointed space.

The Hurewicz map for X is the composite

X
η−→ Z(X)→ Z(X)/Z(∗)

where ∗ denotes the base point of X .

The homology groups of the quotient

Z̃(X) := Z(X)/Z(∗)

are the reduced homology groups of X , and one
writes

H̃n(X) = Hn(Z̃(X)).

The reduced homology groups H̃n(X ,A) are de-
fined by

H̃n(X ,A) = Hn(Z̃(X)⊗A)

for any abelian group A.

The Hurewicz map is denoted by h. We have

h : X → Z̃(X).
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Lemma 33.1. Suppose that π is a group.

The homomorphism

h∗ : π1(Bπ)→ H̃1(Bπ)

is isomorphic to the homomorphism

π → π/[π,π].

Proof. From the Moore chain complex Z(Bπ), the
group H1(Bπ) = H̃1(Bπ) is the free abelian group
Z(π) on the elements of π modulo the relations
g1g2−g1−g2 and e = 0.

The composite

π
∼=−→ π1(Bπ)

h∗−→ H1(Bπ)

is the canonical map.

Consequence: If A is an abelian group, the map

h∗ : π1(BA)→ H̃1(BA)

is an isomorphism.

Lemma 33.2. Suppose X is a connected pointed
space.

Then η : X → Bπ(X) induces an isomorphism

H1(X)
∼=−→ H1(Bπ(X)).
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Proof. The homotopy fibre F of η is simply con-
nected, so H1(F) = 0 by Lemma 33.1 (or other-
wise — exercise).

It follows that E0,1
2 = 0 in the (general) Serre spec-

tral sequence for the fibre sequence

F → X → Bπ(X)

Thus, E0,1
∞ = 0, while E1,0

2 = E1,0
∞ = H1(Bπ(X)).

The edge homomorphism

H1(X)→ H1(Bπ(X)) = E1,0
∞

is therefore an isomorphism.

The proof of the following result is an exercise:

Corollary 33.3. Suppose X is a connected pointed
Kan complex.

The Hurewicz homomorphism

h∗ : π1(X)→ H̃1(X)

is an isomorphism if π1(X) is abelian.

The following result gives the relation between the
path-loop fibre sequence and the Hurewicz map.
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Lemma 33.4. Suppose Y is an n-connected pointed
Kan complex, with n≥ 1.

For 2≤ i≤ 2n there is a commutative diagram

πi(Y ) ∂
∼=
//

h∗
��

πi−1(ΩY )
h∗
��

H̃i(Y ) di

∼= // H̃i−1(ΩY )

Proof. Form the diagram

Z̃(ΩY )

��

Z̃(ΩY )

��

ΩYhoo

��

Z̃(CΩY ) //

��

Z̃(PY )
p∗
��

PYhoo

p
��

Z̃(ΣΩY )
ε∗

// Z̃(Y ) Yh
oo

By replacing p∗ by a fibration one finds a com-
parison diagram of fibre sequences and there is an
induced diagram

πi(Y ) ∂ //

h∗
��

πi−1(ΩY )
h∗
��

H̃i(Y ) H̃i(ΣΩY )
ε∗

∼=oo
∂

∼= // H̃i−1(ΩY )

The bottom composite is the transgression di by
Corollary 31.4.
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Theorem 33.5 (Hurewicz Theorem). Suppose X
is an n-connected pointed Kan complex, and that
n≥ 1.

Then the Hurewicz homomorphism

h∗ : πi(X)→ H̃i(X)

is an isomorphism if i = n+ 1 and is an epimor-
phism if i = n+2.

The proof of the Hurewicz Theorem requires some
preliminary observations about Eilenberg-Mac Lane
spaces:

The good truncation TmC for a chain complex C
is the chain complex

C0
∂←− . . .

∂←−Cm−1
∂∗←−Cm/∂ (Cm+1)← 0 . . .

The canonical map

C→ Tm(C)

induces isomorphisms Hi(C) ∼= Hi(Tm(C)) for i ≤
m, while Hi(Tm(C)) = 0 for i > m.

The isomorphism Hm(C)∼=Hm(Tm(C)) is the “good-
ness”. It means that the functor C 7→ Tm(C) pre-
serves homology isomorphisms.

It follows that the composite

Y h∗−→ Z̃(Y )∼= ΓNZ̃(Y )→ ΓTmNZ̃(Y )
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is a weak equivalence for a space Y of type K(A,m),
if A is abelian.

For this, we need to show that h∗ induces an iso-
morphism πm(Y )→ H̃m(Y ).

This seems like a special case of the Hurewicz the-
orem, but it is true for m = 1 by Corollary 33.3,
and then true for all m ≥ 1 by an inductive argu-
ment that uses Lemma 33.4.

We have shown that there is a weak equivalence
Y → B where B is a simplicial abelian group of
type K(A,m).

It is an exercise to show that B is weakly equiva-
lent as a simplicial abelian group to the simplicial
abelian group

K(A,m) = Γ(A(m)).

Proof of Theorem 33.5. The space X(n+ 1) is an
Eilenberg-Mac Lane space of type K(A,n+1), where
A = πn+1(X).

The Hurewicz map

h∗ : πm(Y )→ H̃m(Y )

is an isomorphism for all spaces Y of type K(A,m),
for all m≥ 1.
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We know from Lemma 29.5 and the remarks above
that there is an isomorphism

Hm+1(Y ) = 0

for all spaces Y of type K(A,m), for all m≥ 2.

It follows that

Hn+2(X(n+1)) = 0.

Now suppose that F is the homotopy fibre of the
map πn+1 : X → X(n+1).

There are diagrams

πn+1(X)
∼= //

h∗
��

πn+1(X(n+1))
h∗∼=
��

H̃n+1(X) // H̃n+1(X(n+1))

πn+2(F)
∼= //

h∗
��

πn+2(X)

h∗
��

H̃n+2(F) // H̃n+2(X)

The Serre spectral sequence for the fibre sequence

F → X → X(n+1)

is used to show that

1) the map Hn+1(X)→ Hn+1(X(n+1)) is an iso-
morphism since F is (n+1)-connected, and

2) the map Hn+2(F)→Hn+2(X) is surjective, since
Hn+2(X(n+1)) = 0.

The isomorphism statement in the Theorem is a
consequence of statement 1).
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It follows that the map h∗ : πn+2(F)→ H̃n+2(F) is
an isomorphism since F is (n+1)-connected.

The surjectivity statement of the Theorem is then
a consequence of statement 2).

34 Freudenthal Suspension Theorem

Here’s a first consequence of the Hurewicz Theo-
rem (Theorem 33.5):

Corollary 34.1. Suppose X is an n-connected space
where n≥ 0.

Then the suspension Σ(X) is (n+1)-connected.

Proof. The case n = 0 has already been done, as
an exercise. Suppose that n≥ 1.

Then ΣX is at least simply connected since X is
connected, and H̃k(ΣX) = 0 for k ≤ n+1.

Thus, the first non-vanishing homotopy group πr(ΣX)

is in degree at least n+2.
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Theorem 34.2. [Freudenthal Suspension Theorem]
Suppose X is an n-connected pointed Kan complex
where n≥ 0.

The homotopy fibre F of the canonical map

η : X →ΩΣX

is 2n-connected.

Remark: “The canonical map” in the statement of
the Theorem is actually the “derived” map, mean-
ing the composite

X →Ω(ΣX)
j∗−→Ω(ΣX f ),

where j : ΣX → ΣX f is a fibrant model, ie. a weak
equivalence such that ΣX f is fibrant.

Proof. In the triangle identity

ΣX Ση
//

1 %%

ΣΩΣ(X)
ε
��

ΣX

the space ΣX is (n+1)-connected (Corollary 34.1)
so that the map ε induces isomorphisms

H̃i(ΣΩΣX)
∼=−→ H̃i(ΣX)

for i≤ 2n+2, by Corollary 31.4.
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It follows that η induces isomorphisms

H̃i(X)
∼=−→ H̃i(ΩΣX) (1)

for i≤ 2n+1.

In the diagram

πn+1(X)
η∗ //

h
��

πn+1(ΩΣX)

h∼=
��

Hn+1(X)
η∗

∼= //Hn+1(ΩΣX)

the indicated Hurewicz map is an isomorphism for
n > 0 since π1(ΩΣX) is abelian (Corollary 33.3),
while the map h : π1(X)→ H1(X) is surjective by
Lemma 33.1 and Lemma 33.2. It follows that η∗ :
πn+1(X) → πn+1(ΩΣX) is surjective, so F is n-
connected.

A Serre spectral sequence argument for the fibre
sequence

F → X
η−→ΩΣX

shows that that H̃i(F)= 0 for i≤ 2n, so the Hurewicz
Theorem implies that F is 2n-connected.

In effect, E i,0
2
∼= E i,0

∞ for i≤ 2n+1 and E p,q
∞ = 0 for

q > 0 and p+q≤ 2n+1, all by the isomorphisms
in (1).

It follows that the first non-vanishing Hk(F) is in
degree greater than 2n.
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Example: The suspension homomorphism

Σ : πi(Sn)→ πi(Ω(Sn+1))∼= πi+1(Sn+1)

is an isomorphism if i≤ 2(n−1) and is an epimor-
phism if i = 2n−1.

In effect, the homotopy fibre of Sn → ΩSn+1 is
(2n−1)-connected.

In particular, the maps Σ : πn+k(Sn)→ πn+1+k(Sn+1)

are isomorphisms (ie. the groups stabilize) for
n≥ k+2, ie. n+ k ≤ 2n−2.

References
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35 Cohomology

Suppose that C ∈ Ch+ is an ordinary chain com-
plex, and that A is an abelian group.

There is a cochain complex hom(C,A) with

hom(C,A)n = hom(Cn,A)

and coboundary

δ : hom(Cn,A)→ hom(Cn+1,A)

defined by precomposition with ∂ : Cn+1→Cn.

Generally, a cochain complex is an unbounded
complex which is concentrated in negative degrees.
See Section 1.

We use classical notation for hom(C,A): the cor-
responding complex in negative degrees is speci-
fied by

hom(C,A)−n = hom(Cn,A).
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The cohomology group Hn hom(C,A) is specified
by

Hn hom(C,A) :=
ker(δ : hom(Cn,A)→ hom(Cn+1,A)
im(δ : hom(Cn−1,A)→ hom(Cn,A)

.

This group coincides with the group H−n hom(C,A)
for the complex in negative degrees.

Exercise: Show that there is a natural isomorphism

Hn hom(C,A)∼= π(C,A(n))

where A(n) is the chain complex consisting of the
group A concentrated in degree n, and π(C,A(n))
is chain homotopy classes of maps.

Example: If X is a space, then the cohomology
group Hn(X ,A) is defined by

Hn(X ,A) = Hn hom(Z(X),A)∼= π(Z(X),A(n)),

where Z(X) is the Moore complex for the free
simplicial abelian group Z(X) on X .

Here is why the classical definition of Hn(X ,A) is
not silly: all ordinary chain complexes are fibrant,
and the Moore complex Z(X) is free in each de-
gree, hence cofibrant, and so there is an isomor-
phism

π(Z(X),A(n))∼= [Z(X),A(n)],
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where the square brackets determine morphisms
in the homotopy category for the standard model
structure on Ch+ (Theorem 3.1).

The normalized chain complex NZ(X) is naturally
weakly equivalent to the Moore complex Z(X),
and there are natural isomorphisms

[Z(X),A(n)]∼= [NZ(X),A(n)]
∼= [Z(X),K(A,n)] (Dold-Kan correspondence)
∼= [X ,K(A,n)] (Quillen adjunction)

Here, [X ,K(A,n)] is morphisms in the homotopy
category for simplicial sets. We have proved the
following:

Theorem 35.1. There is a natural isomorphism

Hn(X ,A)∼= [X ,K(A,n)]

for all simplicial sets X and abelian groups A.

In other words, Hn(X ,A) is representable by the
Eilenberg-Mac Lane space K(A,n) in the homo-
topy category.

Suppose that C is a chain complex and A is an
abelian group. Define the cohomology groups (or
hypercohomology groups) Hn(C,A) of C with co-
efficients in A by

Hn(C,A) = [C,A(n)].
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This is the derived functor definition of cohomol-
ogy.

Example: Suppose that A and B are abelian groups.
We compute the groups Hn(A(0),B)= [A(0),B(n)].
This is done by replacing A(0) by a cofibrant model.
There is a short exact sequence

0→ F1→ F0→ A→ 0

with Fi free abelian. The chain complex F∗ given
by

· · · → 0→ 0→ F1→ F0

is cofibrant, and the chain map F∗ → A(0) is a
weak equivalence, hence a cofibrant replacement
for the complex A(0).

It follows that there are isomorphisms

[A(0),B(n)]∼= [F∗,B(n)]∼= π(F∗,B(n))=Hn hom(F∗,A),

and there is an exact sequence

0→ H0 hom(F∗,B)→hom(F0,B)→ hom(F1,B)
→ H1 hom(F∗,B)→ 0.

It follows that

[A(0),B(n)]=Hn hom(F∗,B)=


hom(A,B) if n = 0,

Ext1(A,B) if n = 1,

0 if n > 1.
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Similarly, there are isomorphisms

[A(p),B(n)]=


hom(A,B) if n = p,

Ext1(A,B) if n = p+1,

0 if n > p+1 or n < p.

Most generally, for ordinary chain complexes, we
have the following:

Theorem 35.2. Suppose that C is a chain complex,
and B is an abelian group.

There is a short exact sequence

0→Ext1(Hn−1(C),B)→Hn(C,B)
p−→ hom(Hn(C),B)→ 0.

(1)
The map p is natural in C and B. This sequence is
split, with a non-natural splitting.

Theorem 35.2 is the universal coefficients theo-
rem for cohomology.

Proof. Let Zp = ker(∂ : Cp→Cp−1). Pick a surjec-
tive homomorphism, F p

0 → Zp with F p
0 free, and

F p
1 be the kernel of the (surjective) composite

F p
0 → Zp→ Hp(C).

Then F p
1 is free, and there is a map F p

1 → Cp+1
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such that the diagram

F p
1

//

��

Cp+1

∂
��

F p
0

// Zp //Cp

commutes. Write φp for the resulting chain map
F p
∗ [−p]→C. Then the sum

φ :
⊕
p≥0

F p
∗ [−p]→C

(φn on the nth summand) is a cofibrant replacement
for the complex C.

At the same time, we have cofibrant resolutions
F p
∗ [−p]→ Hp(C)(p), for p≥ 0.

It follows that there are isomorphisms

[C,B(n)]∼= [
⊕
p≥0

Hp(C)(p),B(n)]

∼= ∏
p≥0

[Hp(C)(p),B(n)]

∼= hom(Hn(C),B)⊕Ext1(Hn−1(C),B).

The induced map p : [C,B(n)]→ hom(Hp(C),B)
is defined by restricting a chain map F → B(n) to
the group homomorphism Zn(F)⊂ Fn→ B, where
F →C is a cofibrant model of C.
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Recall that there are various models for the space
K(A,n) in simplicial abelian groups. These in-
clude the object ΓA(n) arising from the Dold-Kan
correspondence, and the space

A⊗Sn ∼= A⊗ (S1)⊗n

where

Sn = (S1)∧n = S1∧·· ·∧S1 (n smash factors).

In general, if K is a pointed simplicial set and A is
a simplicial abelian group, we write

A⊗K = A⊗ Z̃(K),

where Z̃(K) is the reduced Moore complex for K.

Suppose given a short exact sequence

0→ A i−→ B
p−→C→ 0 (2)

of simplicial abelian groups.

The diagram
A //

��

A⊗∆1
∗

0
��

B p
//C

is homotopy cocartesian, so there is a natural map
δ : C → A⊗ S1 in the homotopy category. Pro-
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ceeding inductively gives the Puppe sequence

0→A i−→B
p−→C δ−→A⊗S1 i⊗1−−→B⊗S1 p⊗1−−→ . . . (3)

and a long exact sequence

[E,A]→ [E,B]→ [E,C]
δ−→ [E,A⊗S1]→ [E,B⊗S1]→ . . .

or equivalently

H0(E,A)→H0(E,B)→H0(E,C)
δ−→H1(E,A)→H1(E,B)→ . . .

(4)
in cohomology, for arbitrary simplicial abelian groups
(or chain complexes) E.

The morphisms δ is the long exact sequence (4)
are called boundary maps.

Specializing to E =Z(X) for a space X and a short
exact sequence of groups (2) gives the standard
long exact sequence

H0(X ,A)→H0(X ,B)→H0(X ,C)
δ−→H1(X ,A)→H1(X ,B)→ . . .

(5)
in cohomology for the space X .

There are other ways of constructing the long ex-
act sequence (5) — exercise.
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36 Cup products

Lemma 36.1. The twist automorphism

τ : S1∧S1 ∼=−→ S1∧S1, x∧ y 7→ y∧ x.

induces

τ∗ =×(−1) : H2(S1∧S1,Z)→ H2(S1∧S1,Z).
Proof. There are two non-degenerate 2-simplices
σ1,σ2 in S1 ∧ S1 and a single non-degenerate 1-
simplex γ = d1σ1 = d1σ2.

It follows that the normalized chain complex NZ(S1∧
S1) has the form

· · · → 0→ Z⊕Z ∇−→ Z 0−→ Z
where ∇(m,n) = m+n. Thus, H2(S1∧S1,Z)∼= Z,
generated by σ1−σ2.

The twist τ satisfies τ(σ1) = σ2 and fixes their
common face γ .

Thus, τ∗(σ1−σ2) = σ2−σ1.

Corollary 36.2. Suppose that σ ∈Σn acts on (S1)∧n

by shuffling smash factors.

Then the induced automorphism

σ∗ : Hn((S1)∧n,Z)→ Hn((S1)∧n,Z)∼= Z
is multiplication by the sign of σ .
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Explicitly, the action of σ on (S1)∧n is specified by

σ(x1∧·· ·∧ xn) = xσ(1)∧·· ·∧ xσ(n).

Suppose that A and B are abelian groups. There
are natural isomorphisms of simplicial abelian groups

K(A,n)⊗K(B,m)
∼=−→A⊗B⊗(S1)⊗(n+m)=K(A⊗B,n+m)

where the displayed isomorphism

(S1)⊗n⊗A⊗(S1)⊗m⊗B
∼=−→ (S1)⊗n⊗(S1)⊗m⊗A⊗B

is defined by permuting the middle tensor factors.

Suppose that X and Y are simplicial sets, and sup-
pose that f : X→ K(A,n) and g : Y → K(B,m) are
simplicial set maps.

There is a natural map

X×Y
η−→ Z(X)⊗Z(Y ),

which is defined by (x,y) 7→ x⊗ y.

The composite

X×Y
η−→Z(X)⊗Z(Y ) f∗⊗g∗−−−→K(A,n)⊗K(B,m)∼=K(A⊗B,n+m)

represents an element of Hn+m(X×Y,A⊗B).

10



Warning: The isomorphism above has the form

a⊗ (x1∧·· ·∧ xn)⊗b⊗ (y1∧·· ·∧ ym)

7→ a⊗b⊗ (x1∧·· ·∧ xn∧ y1∧·· ·∧ ym).

Do not shuffle smash factors.

We have defined a pairing

∪ : Hn(X ,A)⊗Hm(Y,B)→ Hn+m(X×Y,A⊗B),

called the external cup product.
If R is a unitary ring, then the ring multiplication
m : R⊗R→ R and the diagonal ∆ : X → X ×X
together induce a composite

Hn(X ,R)⊗Hm(X ,R) ∪−→Hn+m(X×X ,R⊗R) ∆∗·m∗−−−→Hn+m(X ,R)

which is the cup product

∪ : Hn(X ,R)⊗Hm(X ,R)→ Hn+m(X ,R)

for H∗(X ,R).

Exercise: Show that the cup product gives the co-
homology H∗(X ,R) the structure of a graded com-
mutative ring with identity. This ring structure is
natural in spaces X and rings R.

The graded commutativity follows from Corollary
36.2.

11



Suppose that we have a short exact sequence of
simplicial abelian groups

0→ A→ B→C→ 0

and that D is a flat simplicial abelian group in the
sense that the functor ?⊗D is exact. The sequence

0→ A⊗D i⊗1−−→B⊗D
p⊗1−−→C⊗D δ⊗1−−→ A⊗S1⊗D

i⊗1−−→ B⊗S1⊗D
p⊗1−−→ . . .

is equivalent to the Puppe sequence for the short
exact sequence

0→ A⊗D→ B⊗D→C⊗D→ 0

It follows that there is a commutative diagram

[E,C]⊗ [F,D] ∪ //

δ⊗1
��

[E⊗F,C⊗D]

δ
��

[E,A⊗S1]⊗ [F,D] ∪
// [E⊗F,A⊗D⊗S1]

In particular, if 0→ A→ B→C→ 0 is a short ex-
act sequence of R-modules and X is a space, then
there is a commutative diagram

H p(X ,C)⊗Hq(X ,R) ∪ //

δ⊗1
��

H p+q(X ,C)

δ
��

H p+1(X ,A)⊗Hq(X ,R) ∪
//H p+q+1(X ,A)

(6)

12



It an exercise to show that the diagram

Hq(X ,R)⊗H p(X ,C) ∪ //

1⊗δ
��

Hq+p(X ,C)

(−1)qδ
��

Hq(X ,R)⊗H p+1(X ,A) ∪
//Hq+p+1(X ,A)

(7)

commutes.

The diagrams (6) and (7) are cup product formulas
for the boundary homomorphism.

37 Cohomology of cyclic groups

Suppose that ` is a prime 6= 2. What follows is
directly applicable to cyclic groups of `-primary
roots of unity in fields.

We shall sketch the proof of the following:

Theorem 37.1. There is a ring isomorphism

H∗(BZ/`n,Z/`)∼= Z/`[x]⊗Λ(y)

where |x|= 2 and |y|= 1.

We write |z|= n for z∈Hn(X ,A). |z| is the degree
of z.

In the statement of Theorem 37.1, x∈H2(BZ/`n,Z/`)
and y ∈ H1(BZ/`n,Z/`).
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Z/`[x] is a graded polynomial ring with generator
x in degree 2, and Λ(y) is an exterior algebra with
generator y in degree 1.

Fact: If z ∈ H2k+1(X ,Z/`) and ` 6= 2, then

z · z = (−1)(2k+1)(2k+1)z · z = (−1)z · z,
so that 2(z · z) = 0, and z · z = 0.

We know, from the Example at the end of Section
25, that there are isomorphisms

Hp(BZ/`n,Z) =


Z if p = 0,

Z/`n if p = 2k+1, k ≥ 0,

0 if p = 2k, k > 0.

It follows (exercise) that there are isomorphisms

Hp(BZ/`n,Z/`)∼= Z/`, for p≥ 0.

There is an isomorphism

H p(BZ/`n,Z/`)∼= hom(Hp(BZ/`n,Z/`),Z/`)∼=Z/`
for p≥ 0 (Theorem 35.2).

1) x ∈ H2(BZ/`n,Z/`) is dual to the generator of
the `-torsion subgroup of

Z/`n = H1(BZ/`n,Z).
2) y ∈ H1(BZ/`n,Z/`) is dual to the generator of

Z/`∼= Z/`n⊗Z/`= H1(BZ/`n,Z/`).
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Here’s an integral coefficients calculation:

Theorem 37.2. There is a ring isomorphism

H∗(BZ/`n,Z)∼= Z[x]/(`n · x)

where |x|= 2.

This result appears in a book of Snaith, [1]. The
argument uses explicit cocycles, with the Alexander-
Whitney map ((7) of Section 26).

We can verify the underlying additive statement,
namely that

H p(BZ/`n,Z)∼=


Z if p = 0,

Z/`n if p = 2k, k > 0,

0 if p odd

Apply hom( ,Z) to the exact sequence

0→ Z `n
−→ Z→ Z/`n→ 0

to get the exact sequence

0→ hom(Z/`n,Z)→Z `n
−→Z→Ext1(Z/`n,Z)→ 0

to show that hom(Z/`n,Z) = 0 (we knew this) and
Ext1(Z/`n,Z)∼= Z/`n.

Then

H2k(BZ/`n,Z)∼=Ext1(H2k−1(BZ/`n,Z),Z)∼=Z/`n
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for k > 0 and

H2k+1(BZ/`n,Z)∼= hom(H2k+1(BZ/`n,Z),Z) = 0

for k ≥ 0.

Proof of Theorem 37.1. The exact sequence

0→ Z ×`−→ Z→ Z/`→ 0

is an exact sequence of Z-modules, so that the
Puppe sequence

0→K(Z,0) ×`−→K(Z,0)→K(Z/`,0) δ−→K(Z,1) ×`−→K(Z,1)→ . . .

has an action by K(Z,2).
It follows that there are commutative diagrams

H p(BZ/`n,Z) ×` //

·x ∼=
��

H p(BZ/`n,Z) //

·x∼=
��

H p(BZ/`n,Z/`)
·x
��

H p+2(BZ/`n,Z) ×` //H
p+2(BZ/`n,Z) //H p+2(BZ/`n,Z/`)

and

H p(BZ/`n,Z/`) δ //

·x
��

H p+1(BZ/`n,Z) ×` //
·x ∼=
��

H p+1(BZ/`n,Z)
·x∼=
��

H p+2(BZ/`n,Z/`)
δ

//H p+3(BZ/`n,Z) ×` //H
p+3(BZ/`n,Z)

for p > 0.

Thus, the cup product map

·x : H p(BZ/`n,Z)→ H p+2(BZ/`n,Z/`)

16



is an isomorphism for all p.

Finally, the map

H2(BZ/`n,Z)→ H2(BZ/`n,Z/`)

is surjective, so the generator x ∈ H2(BZ/`n,Z)
maps to a generator x of H2(BZ/`n,Z/`).
The ring homomorphism

Z/`[x]⊗Λ(y)→ H∗(BZ/`n,Z/`)

defined by x∈H2(BZ/`n,Z/`) and a generator y∈
H1(BZ/`n,Z/`) is then an isomorphism of Z/`-
vector spaces in all degrees.
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38 Spectra

The approach to stable homotopy that follows was
introduced in a seminal paper of Bousfield and
Friedlander [2], which appeared in 1978.

A spectrum X consists of pointed (level) simpli-
cial sets Xn, n≥ 0, together with bonding maps

σ : S1∧Xn→ Xn+1.

A map of spectra f : X → Y consists of pointed
maps f : Xn→ Y n which respect structure, in that
the diagrams

S1∧Xn σ //

S1∧ f ��

Xn+1

f
��

S1∧Y n
σ
//Y n+1

commute.
The category of spectra is denoted by Spt. This
category is complete and cocomplete.

1



Examples:
1) Suppose Y is a pointed simplicial set. The sus-
pension spectrum Σ∞Y consists of the pointed sim-
plicial sets

Y, S1∧Y, S1∧S1∧Y, . . . ,Sn∧Y, . . .

where
Sn = S1∧·· ·∧S1

(n-fold smash power).

The bonding maps of Σ∞Y are the canonical iso-
morphisms

S1∧Sn∧Y ∼= Sn+1∧Y.

There is a natural bijection

hom(Σ∞Y,X)∼= hom(X ,Y 0).

The suspension spectrum functor is left adjoint to
the “level 0” functor X 7→ X0.

2) S = Σ∞S0 is the sphere spectrum.

3) Suppose X is a spectrum and K is a pointed
simplicial set.

The spectrum X ∧K has level spaces

(X ∧K)n = Xn∧K,
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and bonding maps

σ ∧K : S1∧Xn∧K→ Xn+1∧K.

There is a natural isomorphism

Σ
∞K ∼= S∧K.

3) X ∧S1 is the suspension of a spectrum X .

The fake suspension ΣX of X has level spaces
S1∧Xn and bonding maps

S1∧σ : S1∧S1∧Xn→ S1∧Xn+1.

Remark: There is a commutative diagram

S1∧S1∧Xn S1∧σ //

τ∧Xn
��

S1∧Xn+1

τ∼=

��

S1∧S1∧Xn

S1∧τ
∼=��

55

S1∧Xn∧S1
σ∧S1

//Xn+1∧S1

where τ flips adjacent smash factors:

τ(x∧ y) = y∧ x.

The dotted arrow (bonding map induced by σ∧S1)
differs from S1∧σ by precomposition by τ ∧Xn.

The flip τ : S1 ∧ S1 → S1 ∧ S1 is non-trivial: it is
multiplication by −1 in H2(S2) (Lemma 36.1).
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We recall some definitions and results from Sec-
tion 15:

Suppose that X is a simplicial set, and write Z̃(X)

for the kernel of the map Z(X)→ Z(∗).
Then Hn(X ,Z) = πn(Z(X),0) (see Theorem 15.4),
and H̃n(X ,Z) = πn(Z̃(X),0) (reduced homology).

If X is pointed there is a natural isomorphism

Z̃(X)∼= Z(X)/Z(∗),

and there is a natural pointed map

h : X
η−→ Z(X)→ Z̃(X)

(the Hurewicz map).

If A is a simplicial abelian group, there is a natural
simplicial map

γ : S1∧A→ Z̃(S1)⊗A =: S1⊗A,

defined by x∧a 7→ x⊗a.

4) The Eilenberg-Mac Lane spectrum H(A) as-
sociated to a simplicial abelian group A consists of
the spaces

A, S1⊗A, S2⊗A, . . .
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with bonding maps

S1∧ (Sn⊗A)
γ−→ S1⊗ (Sn⊗A)∼= Sn+1⊗A.

5) Suppose X is a spectrum and K is a pointed
simplicial set.

The spectrum hom∗(K,X) has

hom∗(K,X)n = hom∗(K,Xn),

with bonding map

S1∧hom∗(K,Xn)→ hom∗(K,Xn+1)

adjoint to the composite

S1∧hom∗(K,Xn)∧K S1∧ev−−−→ S1∧Xn σ−→ Xn+1.

There is a natural bijection

hom(X ∧K,Y )∼= hom(X ,hom∗(K,Y )).

Suppose X is a spectrum and n ∈ Z.

The shifted spectrum X [n] has

X [n]m =

{
∗ m+n < 0

Xm+n m+n≥ 0

Examples: X [−1]0 = ∗ and X [−1]n = Xn−1 for
n≥ 1.
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X [1]n = Xn+1 for all n≥ 0.

Remarks: 1) The bonding maps define a natural
map

ΣX → X [1].

We’ll see later that this map is a stable equiva-
lence, and that there is a stable equivalence

ΣX ' X ∧S1.

2) There is a natural bijection

hom(X [n],Y )∼= hom(X ,Y [−n])

and a stable equivalence X [n][−n]→ X , so that all
shift operators are invertible in the stable category.

3) There is a natural bijection

hom(Σ∞K[−n],Y )∼= hom(K,Y n)

for n≥ 0, so that the nth level functor Y 7→ Y n has
a left adjoint.

4) The nth layer LnX of a spectrum X consists of
the spaces

X0, . . . ,Xn, S1∧Xn, S2∧Xn, . . .

There are obvious maps

LnX → Ln+1X → X

6



and a natural isomorphism

lim−→
n

LnX ∼= X .

The functor X 7→ LnX is left adjoint to truncation
up to level n.

The system of maps

Σ
∞X0 = L0X → L1X → . . .

is called the layer filtration of X .

Here’s an exercise: show that there are natural
pushout diagrams

Σ∞(S1∧Xn)[−n−1] //

σ∗
��

LnX

��

Σ∞Xn+1[−n−1] // Ln+1X
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39 Strict model structure

A map f : X → Y is a strict (levelwise) weak
equivalence (resp. strict (levelwise) fibration) if
all maps f : Xn→Y n are weak equivalences (resp.
fibrations) of pointed simplicial sets.

A cofibration is a map i : A→ B such that

1) i : A0→ B0 is a cofibration of (pointed) simpli-
cial sets, and

2) all maps

(S1∧Bn)∪(S1∧An) An+1→ Bn+1

are cofibrations.

Exercise: Show that all cofibrations are levelwise
cofibrations.

Given spectra X ,Y , the function complex hom(X ,Y )
is a simplicial set with

hom(X ,Y )n = hom(X ∧∆
n
+,Y ).

Recall that ∆n
+ = ∆n t {∗} is the simplex with a

disjoint base point attached.

Proposition 39.1. With these definitions, the cate-
gory Spt of spectra satisfies the axioms for a proper
closed simplicial model category.
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This model structure is also cofibrantly generated.

Proof. Suppose given a lifting problem

A α //

i
��

X
p
��

B
β

//

??

Y

where i is a cofibration and p is a strict fibration
and strict weak equivalence.

The lifting θ 0 exists in the diagram

A0 α //

i ��

X0

p
��

B0
β

//

θ 0
>>

Y 0

and then θ 1 exists in the diagram

(S1∧B0)∪(S1∧A0) A1 (θ 0
∗ ,α)

//

co f
��

X1

p
��

B1
β

//

θ 1
55

Y 1

Proceed inductively to show that the lifting prob-
lem can be solved.

The lifting problem is solved in a similar way if
i is a trivial cofibration and p is a strict fibration.
We have proved the lifting axiom CM4.
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Suppose that f : X → Y is a map of spectra, and
find a factorization

X0 i0 //

f   

Z0

p0
��

Y 0

in level 0, where i0 is a cofibration and p0 is a fi-
bration.

Form the diagram

S1∧X0 //

S1∧i0 ��

X1

f

��

i∗
ww

S1∧Z0 //

S1∧p0
��

(S1∧Z0)∪X1

f∗ ''
S1∧Y 0 //Y 1

and find a factorization

(S1∧Z0)∪X1 j
//

f∗ &&

Z1

p1
��

Y 1

where j is a cofibration and p1 is a trivial fibration.
Write i1 = j · i∗.
We have factorized f as a cofibration followed by
a trivial fibration up to level 1. Proceed inductively
to show that f = p · i where p is a trivial strict fi-
bration and i is a cofibration.
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The other factorization statement has the same proof,
giving CM5.

The simplicial model structure is inherited from
pointed simplicial sets, as is properness (exercise).

The generating sets for the cofibrations and trivial
cofibrations, respectively are the maps

Σ
∞(Λn

k)+[−m]→ Σ
∞

∆
n
+[−m]

and
Σ

∞(∂∆
n)+[−m]→ Σ

∞
∆

n
+[−m]

respectively.
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40 Stable equivalences

Suppose X is a pointed simplicial set, and recall
that the loop space ΩX is defined by

ΩX = hom∗(S1,X).

The construction only makes homotopy theoretic
sense (ie. preserves weak equivalences) if X is fi-
brant — in that case there are isomorphisms

πi+1(X ,∗)∼= πi(ΩX ,∗), i≥ 0,

of simplicial homotopy groups (∗ is the base point
for X), by a standard long exact sequence argu-
ment (see Section 31).

If X is not fibrant, then ΩX is most properly a de-
rived functor:

ΩX := ΩX f

where j : X → X f is a fibrant model for X in the
sense that j is a weak equivalence and X f is fibrant.

This construction can be made functorial, since
the category sSet∗ of pointed simplicial sets has
functorial fibrant replacements.

There is a natural bijection

hom(Z∧S1,X)∼= hom(Z,ΩX).
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so that every morphism f : Z∧S1→X has a uniquely
determined adjoint f∗ : Z→ΩX .

We can say that a spectrum X consists of pointed
simplicial sets Xn,n≥ 0, and adjoint bonding maps
σ∗ : Xn→ΩXn+1

Here are two constructions::

1) There is a natural (levelwise) fibrant model j :
Y → FY in the strict model structure for Spt.
2) Suppose X is a spectrum. Set

Ω
∞Xn = lim−→ (Xn σ∗−→ΩXn+1 Ωσ∗−−→Ω

2Xn+2→ . . . ).

The comparison diagram

Xn σ∗ //

σ∗ ��

ΩXn+1 Ωσ∗ //

Ωσ∗��

Ω2Xn+2 //

Ω2σ∗��

· · ·

ΩXn+1
Ωσ∗

//Ω2Xn+2
Ω2σ∗

//Ω3Xn+3 // · · ·

determines a spectrum structure Ω∞X and a natu-
ral map ω : X →Ω∞X .

The adjoint bonding map

Ω
∞Xn σ∗−→Ω(Ω∞Xn+1)

is an isomorphism (exercise).
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Write QY = Ω∞FY and let η : Y → QY be the
composite

Y
j−→ FY ω−→Ω

∞FY = QY.

The spectrum QY is the stabilization of Y .

Say that a map f : X → Y is a stable equivalence
if the map f∗ : QX → QY is a strict equivalence.

Remarks:
1) All spaces QY n are fibrant (NB: this is a special
property of “ordinary” spectra), and the map σ∗ :
QY n→ΩQY n+1 is an isomorphism.

2) All QY n are H-spaces with groups π0QY n of
path components. All induced maps f∗ : QXn →
QY n are H-maps.

It follows that the maps f∗ : QXn→ QY n are weak
equivalences (or that f is a stable equivalence) if
and only if all maps

πi(QXn,∗)→ πi(QY n,∗)

based at the distinguished base point are isomor-
phisms.
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Define the stable homotopy groups πs
kY , k ∈ Z

by

π
s
kY = lim−→

n+k≥0

(· · ·→ πn+kFY n→ πn+k+1FY n+1→ . . . ),

where the maps of homotopy groups are induced
by the maps σ∗ : FY n→ΩFY n+1.

There are isomorphisms

πk(QY n,∗)∼= π
s
k−nY,

so f : X → Y is a stable equivalence if and only if
f induces an isomorphism in all stable homotopy
groups.

The strict model structure on the category of spec-
tra Spt and the stablization functor Q fits into a
general framework.

Suppose M is a right proper closed model category
with a functor Q : M→M, and suppose there is a
natural map ηX : X → QX .

Say that a map f : X→Y of M is a Q-equivalence
if the induced map Q f : QX→QY is a weak equiv-
alence of M.

Q-cofibrations are cofibrations of M.

A Q-fibration is a map which has the RLP wrt all
maps which are cofibrations and Q-equivalences.
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Here are some conditions:

A4 The functor Q preserves weak equivalences of
M.

A5 The maps ηQX ,Q(ηX) : QX → QQX are weak
equivalences of M.

A6′ Q-equivalences are stable under pullback along
Q-fibrations.

Theorem 40.1 (Bousfield-Friedlander). Suppose
that M is a right proper closed model category.
Suppose that we have a functor Q : M→M, and
natural map η : X → QX. Suppose that the Q-
equivalences, cofibrations and Q-fibrations satisfy
the axioms A4, A5 and A6′.
Then M, together with these three classes of maps,
has the structure of a right proper closed model
category.

Proposition 40.2. The category Spt of spectra and
the stabilization functor Q satisfy the axioms A4,
A5 and A6′.

For the proof of Proposition 40.2, the condition
A4 is a consequence of the following:
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Lemma 40.3. Suppose I is a filtered category, and
suppose given a natural transformation f : X→Y
of functors X ,Y : I→ sSet such that each compo-
nent map fi : Xi→ Yi is a weak equivalence.

Then the map f∗ : lim−→i
Xi→ lim−→i

Yi is a weak equiv-
alence.

Proof. Exercise.

To verify condition A5 for the category of spectra,
consider the diagram

X j
//

j
��

FX ω //

j'
��

Ω∞FX
j'
��

FX F j
'

//

ω
��

FFX Fω //

ω
��

FΩ∞FX
ω
��

Ω∞FX
Ω∞F j
' //Ω∞FFX

Ω∞Fω

//Ω∞FΩ∞FX

The indicated maps are strict weak equivalences,
so it suffices to show that Ω∞Fω and

ω : FΩ
∞FX →Ω

∞FΩ
∞FX

are strict weak equivalences.
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Here’s another picture:

FX ω //

ω

&&
j

��

Ω∞FX
ω
∼= ((j '

��

Ω∞FX
Ω∞ j '

��

Ω∞ω

∼= //Ω∞Ω∞FX

Ω∞ j'

��

FFX Fω //

ω &&

FΩ∞FX
ω

((

Ω∞FFX
Ω∞Fω

//Ω∞FΩ∞FX

It’s an exercise to show that Ω∞ω is an isomor-
phism: actually

ω = Ω
∞

ω : Ω
∞FX →Ω

∞
Ω

∞FX .

Then the required maps are strict equivalences.

To verify A6′, use the fact that every strict fibre se-
quence F→ X→Y induces a long exact sequence

· · · → π
s
kF → π

s
kX → π

s
kY

∂−→ π
s
k−1F → ···

(exercise). “Right properness” follows from an
exact sequence comparison.

This completes the proof of Proposition 40.2

The model structure on Spt arising from the Bousfield-
Friedlander Theorem via Proposition 40.2 and The-
orem 40.1 is called the stable model structure for
the category of spectra.
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The homotopy category Ho(Spt) is the stable cat-
egory.

This is traditional usage, but also a misnomer, be-
cause there are many stable categories.

The proof of Theorem 40.1 is accomplished with
a series of lemmas.

Recall that M is a right proper closed model cate-
gory with functor Q : M→M and natural transfor-
mation η : X → QX such that the following con-
ditions hold:

A4 The functor Q preserves weak equivalences of
M.

A5 The maps ηQX ,Q(ηX) : QX → QQX are weak
equivalences of M.

A6′ Q-equivalences are stable under pullback along
Q-fibrations.

Lemma 40.4. A map p : X → Y is a Q-fibration
and a Q-equivalence if and only if it is a trivial
fibration of M.

Proof. Every trivial fibration p has the RLP wrt all
cofibrations, and is therefore a Q-fibration. p is
also a Q-equivalence, by A4.
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Suppose that p : X → Y is a Q-fibration and a Q-
equivalence.

There is a factorization

X j
//

p ��

Z
π
��

Y
where j is a cofibration and π is a trivial fibration
of M.

π is a Q-equivalence by A4, so j is a Q-equivalence.

There is a diagram

X 1 //

j
��

X
p
��

Z
π
//

??

Y

since j is a cofibration and a Q-equivalence and p
is a Q-fibration.

Then p is a retract of π and is therefore a trivial
fibration of M.

Lemma 40.5. Suppose p : X → Y is a fibration of
M and the maps η : X → QX, η : Y → QY are
weak equivalences of M.

Then p is a Q-fibration.
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Proof. Consider the lifting problem

A α //

i
��

X
p
��

B
β

//

??

Y

There is a diagram

QA Qα //

jα &&
Qi
��

QX
Qp
��

Z pα

88

π

��
QB //

jβ &&

QY

W pβ

88

where jα , jβ are trivial cofibrations of M and pα , pβ

are fibrations.

There is an induced diagram

A //

i
��

Z×QX X //

π∗
��

X
p
��

B //W ×QY Y //Y

and the lifting problem is solved if we can show
that π∗ is a weak equivalence.

But there is finally a diagram

QA jα //

Qi
��

Z
π
��

Z×QX Xpr
oo

π∗
��

QB jβ
//W W ×QY Ypr

oo
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The maps Qi, jα and jβ are weak equivalences of
M so that π is a weak equivalence.

The maps pr are weak equivalences by right proper-
ness of M and the assumptions on p.

It follows that π∗ is a weak equivalence of M.

Lemma 40.6. Every map f : QX →QY has a fac-
torization f = q · j, where j is a cofibration and
Q-equivalence and q is a Q-fibration.

Proof. f has a factorization f = q · j where j is a
trivial cofibration and q is a fibration of M.

j is a Q-equivalence by A4, and q is a Q-fibration
by Lemma 40.5.

In effect, there is a diagram

QX j
'

//

η '
��

Z p
//

η
��

QY
η'
��

QQX Q j
' //QZ Qp

//QQY

so η : Z→ QZ is a weak equivalence of M.

Lemma 40.7. Every map f : X → Y has a factor-
ization f = q · j, where j is a cofibration and Q-
equivalence and q is a Q-fibration.
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Proof. The map f∗ : QX → QY has a factorization

QX f∗ //

i &&

QY

X p
88

where p is a Q-fibration and i is a cofibration and
a Q-equivalence, by Lemma 40.6.

Form the diagram

X i∗ //

η
��

Z×QY Y p∗ //

η∗
��

Y
η
��

QX i
// Z p

//QY

The maps η are Q-equivalence by A5, so η∗ is a
Q-equivalence by A6′. It follows that i∗ is a Q-
equivalence.

The map i∗ has a factorization

X i∗ //

j %%

Z×QY Y

W π
66

where j is a cofibration and π is a trivial strict fi-
bration.

Then π is a Q-equivalence and a Q-fibration by
Lemma 40.4, so j is a Q-equivalence, and the com-
posite p∗ ·π is a Q-fibration.
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Proof of Theorem 40.1. The non-trivial closed model
statements are the lifting axiom CM4 and the fac-
torization axiom CM5.

CM5 is a consequence of Lemma 40.4 and Lemma
40.7. CM4 follows from Lemma 40.4.

The right properness of the model structure is the
statement A6′.

Say that the model structure on M given by Theo-
rem 40.1 is the Q-structure.

Lemma 40.8. Suppose that, in addition to the as-
sumptions of Theorem 40.1, that the model struc-
ture M is left proper.

Then the Q-structure on M is left proper.

Proof. Suppose given a pushout diagram

A f
//

i
��

C

��

B f∗
//B∪A C

where f is a Q-equivalence and i is a cofibration.
We must show that f∗ is a Q-equivalence (see Def-
inition 17.4).
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Find a factorization

A j
//

f ��

D
π
��

C

where j is a cofibration and π is a trivial fibration
of M.

The map π∗ : B∪A D→ B∪A C is a weak equiv-
alence of M by left properness for M, so π∗ is a
Q-equivalence by A4.

j is a Q-equivalence as well as a cofibration, so
that j∗ : B→B∪A D is a cofibration and a Q-equiva-
lence.

Then the composite f∗= π∗ · j∗ is a Q-equivalence.

Here’s the other major abstract result in this game,
again from [2]:

Theorem 40.9. Suppose the model category M and
the functor Q satisfy the conditions for Theorem
40.1

Then a map p : X →Y of M is a stable fibration if
and only if the following conditions hold:

1) p is a fibration of M, and
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2) the diagram
X η

//

p
��

QX
Qp
��

Y
η
//QY

is homotopy cartesian in M.

Corollary 40.10. 1) An object X of M is Q-fibrant
if and only if it is fibrant and the map η : X →
QX is a weak equivalence of M.

2) A spectrum X is stably fibrant if and only if it
is strictly fibrant and all adjoint bonding maps
σ∗ : Xn→ΩXn+1 are weak equivalences of pointed
simplicial sets.

Fibrant spectra are often called Ω-spectra.

Corollary 40.11. Suppose given a diagram

X ' //

p
��

X ′

p′
��

Y '
//Y ′

in which p, p′ are fibrations and the horizontal maps
are weak equivalences of M.

Then p is a Q-fibration if and only if p′ is a Q-
fibration.
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Proof of Theorem 40.9. Suppose p : X →Y is a fi-
bration of M, and that the diagram

X η
//

p
��

QX
Qp
��

Y
η
//QY

is homotopy cartesian in M.

Then Qp has a factorization

QX i //

Qp ""

Z
q
��

QY

where i is a trivial cofibration and q is a fibration.
Then q is a Q-fibration by Lemma 40.5.

Factorize the weak equivalence θ : X → Y ×QY Z
(the square is homotopy cartesian) as

X i //

θ $$

W
π
��

Y ×QY Z

where π is a trivial fibration of M and i is a trivial
cofibration.

Then q∗ ·π is a Q-fibration (Lemma 40.4), and the
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lifting exists in the diagram

X 1 //

i
��

X
p
��

W q∗π
//

>>

Y

Thus, p is a retract of a Q-fibration, and is there-
fore a Q-fibration.

Conversely, suppose that p : X→Y is a Q-fibration,
and factorize Qp = q · i as above.

The map η∗ : Y ×QY Z→ Z is a Q-equivalence by
A6′, so θ is a Q-equivalence.

The picture
X θ //

p
��

Y ×QY Z
q∗~~

Y
is a weak equivalence of fibrant objects in the cat-
egory M/Y of objects fibred over Y , for the Q-
structure on M.

The usual category of fibrant objects trick (see Sec-
tion 13) implies that θ has a factorization

X i //

θ $$

V
π
��

Y ×QY Z
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in Spt/Y , where π is a Q-fibration and a Q-equivalence,
and i is a section of a map V → X which is a Q-
fibration and a Q-equivalence.

Thus, π and i are weak equivalences of M by Lemma
40.4, so that θ is a weak equivalence of M.

Write
A⊗K = A∧K+,

for a spectrum A and a simplicial set K.

Lemma 40.12. Suppose i : A→B is a stably trivial
cofibration of spectra.

Then all induced maps

(B⊗∂∆
n)∪ (A⊗∆

n)→ B⊗∆
n

are stably trivial cofibrations.

Quillen’s axiom SM7 for the stable model struc-
ture on Spt follows easily: if j : K→ L is a cofibra-
tion of simplicial sets and i : A→ B is a cofibration
of spectra, then the induced map

(B⊗K)∪ (A⊗L)⊂ B⊗L

is a cofibration which is a stable equivalence if ei-
ther i is a stable equivalence (Lemma 40.12) or j
is a weak equivalence of simplicial sets (use the
simplicial model axiom for the strict structure).
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Proof of Lemma 40.12. It suffices to show that

i⊗∂∆
n : A⊗∂∆

n→ B⊗∂∆
n

is a stable equivalence.

There is a pushout diagram

A⊗∂∆n−1 //

��

A⊗Λn
k

��

A⊗∆n−1 //A⊗∂∆n

There is also a corresponding diagram for B and
an obvious comparison.

The simplicial sets Λn
k and ∆n−1 are both weakly

equivalent to a point, so it suffices to show that the
comparison

i⊗∂∆
n−1 : A⊗∂∆

n−1→ B⊗∂∆
n−1

is a stable equivalence.

This is the inductive step in an argument that starts
with the case

i⊗∂∆
1 : A⊗∂∆

1→ B⊗∂∆
1

and this map is isomorphic to the map

i∧ i : A∧A→ B∧B.

Finally, a wedge (coproduct) of stably trivial cofi-
brations is stably trivial.
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Note: Bousfield gives a different proof of the Lemma
40.12 in [1]. The result is also mentioned in Re-
mark X.4.7 (on p.496) of [3], without proof.

Remark: The Bousfield-Friedlander Theorem (The-
orem 40.1) is a admits a localization style of proof
for the category of spectra. The result itself is
sometimes called the “Bousfield-Friedlander Lo-
calization Theorem”.

For this, one uses Lemma 40.4 (which is a formal-
ity), together with a “bounded monomorphism”
statement given by Lemma 44.1 below. It follows
(Lemma 44.2) that the class of stably trivial cofi-
brations has a set of generators given by countable
stably trivial cofibrations.

The factorization axiom for the stable model struc-
ture on Spt follows from the cofibrant generation
statement and Lemma 40.4, and the lifting axiom
is a formal consequence.

See Chapter 10 of [4] for more detail.
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41 Suspensions and shift

The suspension X ∧S1 and the fake suspension ΣX
of a spectrum X were defined in Section 38 — the
constructions differ by a non-trivial twist of bond-
ing maps.

The loop spectrum for X is the function complex
object

hom∗(S1,X).

There is a natural bijection

hom(X ∧S1,Y )∼= hom(X ,hom∗(S1,Y ))

so that the suspension and loop functors are ad-
joint.

The fake loop spectrum ΩY for a spectrum Y con-
sists of the pointed spaces ΩY n, n≥ 0, with adjoint
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bonding maps

Ωσ∗ : ΩY n→Ω
2Y n+1.

There is a natural bijection

hom(ΣX ,Y )∼= hom(X ,ΩY ),

so the fake suspension functor is left adjoint to
fake loops.

The adjoint bonding maps σ∗ : Y n→ΩY n+1 define
a natural map

γ : Y →ΩY [1].

for spectra Y .

The map ω : Y →Ω∞Y of Section 40 is the filtered
colimit of the maps

Y
γ−→ΩY [1]

Ωγ[1]−−−→Ω
2Y [2]

Ω2γ[2]−−−→ . . .

Recall the statement of the Freudenthal suspen-
sion theorem (Theorem 34.2):

Theorem 41.1. Suppose that a pointed space X is
n-connected, where n≥ 0.

Then the homotopy fibre F of the canonical map
η : X →Ω(X ∧S1) is 2n-connected.
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In particular, the suspension homomorphism

πiX → πi(Ω(X ∧S1))∼= πi+1(X ∧S1)

is an isomorphism for i ≤ 2n and is an epimor-
phism for i= 2n+1, provided that X is n-connected.

In general (ie. with no connectivity assumptions
on Y ), the space Sn ∧Y is (n− 1)-connected, by
Lemma 31.5 and Corollary 34.1.

Thus, the suspension homomorphism

πi+k(Sn+k∧Y )→ πi+k+1(Sn+k+1∧Y )

is an isomorphism if i≤ 2n−2+ k, and it follows
that the map

πi(Sn∧Y )→ π
s
i−n(Σ

∞Y )

is an isomorphism for i≤ 2(n−1).

Here’s an easy observation:

Lemma 41.2. The natural map γ : X → ΩX [1] is
a stable equivalence if X is strictly fibrant.

Proof. This is a cofinality argument, which uses
the fact that Ω∞X is the filtered colimit of the sys-
tem

X →ΩX [1]→Ω
2X [2]→ . . .
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Lemma 41.3. Suppose that Y is a pointed space.

Then the canonical map

η : Σ
∞Y →ΩΣ(Σ∞Y )

is a stable homotopy equivalence.

Proof. The map

πk(Sn∧Y )→ π
s
k−n(Σ

∞Y )

is an isomorphism for k ≤ 2(n−1).

Similarly (exercise), the map

πk(Ω(Sn+1∧X))→ π
s
k−n(ΩΣ(Σ∞X))

is an isomorphism for k+1≤ 2n or k ≤ 2n−1.
There is a commutative diagram

πk(Sn∧Y )
∼= //

∼=
��

πs
k−n(Σ

∞Y )

��

πk(Ω(Sn+1∧Y )) ∼=
// πs

k−n(ΩΣ(Σ∞Y ))

in which the indicated maps are isomorphisms for
k ≤ 2(n−1).

It follows that the map

π
s
p(Σ

∞Y )→ π
s
p(ΩΣ(Σ∞Y ))

is an isomorphism for p≤ n−2.

Finish by letting n vary.
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Remark: What we’ve really shown in Lemma 41.3
is that the composite

Σ
∞X

η−→ΩΣ(Σ∞X)
Ω j−→ΩF(Σ(Σ∞X))

is a natural stable equivalence.

Lemma 41.4. Suppose that Y is a spectrum. Then
the composite

Y
η−→ΩΣY

Ω j−→ΩF(ΣY )

is a stable equivalence.

Proof. We show that the maps

LnY
η−→ΩΣLnY

Ω j−→ΩF(ΣLnY )

arising from the layer filtration for Y are stable
equivalences.
In the layer filtration

LnY : Y 0, . . . ,Y n,S1∧Y n,S2∧Y n, . . .

the maps
(Σ∞Y n[−n])r→ LnY r

are isomorphisms for r ≥ n.

Thus, the maps

(ΩF(Σ(Σ∞Y n[−n])))r→ΩF(Σ(LnY ))r

5



are weak equivalences for r ≥ n, so that

ΩF(Σ(Σ∞Y n[−n]))→ΩF(Σ(LnY ))

is a stable equivalence.

The map η : X →ΩΣX respects shifts, so Lemma
41.3 implies that the composite

Σ
∞Y n[−n]→ΩΣ(Σ∞Y n[−n])→ΩF(Σ(Σ∞Y n[−n]))

is a stable equivalence.

Theorem 41.5. Suppose that X is a spectrum.

Then the canonical map

σ : ΣX → X [1]

is a stable equivalence.

Proof. The map σ is adjoint to the map σ∗ : X →
ΩX [1], so that there is a commutative diagram

X η
//

σ∗ ""

ΩΣX
Ωσ
��

Ω j
//ΩF(ΣX)

ΩFσ
��

ΩX [1]
Ω j
//ΩF(X [1])

where j : ΣX → F(ΣX) is a strictly fibrant model.

The composite

X σ∗−→ΩX [1]
Ω j[1]−−−→Ω(FX)[1]

6



is a stable equivalence by Lemma 41.2, and the
shifted map j[1] : X [1]→ (FX)[1] is a strictly fi-
brant model of X [1].

It follows that the composite

X σ∗−→ΩX [1]
Ω j−→ΩF(X [1])

is a stable equivalence.

The composite

X
η−→ΩΣX

Ω j−→ΩF(ΣX)

is a stable equivalence by Lemma 41.4.

The map ΩFσ is therefore a stable equivalence,
so Lemma 41.2 implies that

Fσ : F(ΣX)→ F(X [1])

is a stable equivalence.

Here’s another, still elementary but fussier result:

Theorem 41.6. The functors X 7→ X ∧S1 and X 7→
ΣX are naturally stably equivalent.

Sketch Proof: ([1], Lemma 1.9, p.7) The isomor-
phisms τ : S1∧Xn→Xn∧S1 and the bonding maps
σ ∧ S1 together define a spectrum with the space

7



S1∧Xn in level n, and with bonding maps σ̃ de-
fined by the diagrams

S1∧S1∧Xn σ̃ //

S1∧τ
∼=��

S1∧Xn+1

τ∼= ��
S1∧Xn∧S1

σ∧S1
//Xn+1∧S1

There are commutative diagrams

S1∧S1∧Xn
S1∧σ

++

τ∧Xn

��
S1∧Xn+1

S1∧S1∧Xn σ̃

33

Composing then gives a diagram

S1∧S1∧S1∧Xn

(S1∧σ)(S1∧S1∧σ)

**

(3,2,1)∧Xn

��

S1∧Xn+2

S1∧S1∧S1∧Xn σ̃ ·(S1∧σ̃)

44

where (3,2,1) is induced on the smash factors mak-
ing up S3 by the corresponding cyclic permutation
of order 3.

The spaces S1∧X0,S1∧X2, . . . and the respective
composite bonding maps (S1∧σ)(S1∧S1∧σ) and
σ̃ · (S1 ∧ σ̃) define “partial” spectrum structures
from which the stable homotopy types of the orig-
inal spectra can be recovered.
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The self map (3,2,1) of the 3-sphere S3 has degree
1 and is therefore homotopic to the identity.

This homotopy can be used to describe a telescope
construction (see [1], p.11-15, and the next sec-
tion) which is stably equivalent to both of these
partial spectra.

Remark: The proof of Theorem 41.6 that is sketched
here is essentially classical. See Prop. 10.53 of [2]
for an alternative.

Corollary 41.7. 1) The functors X 7→ X [1], X 7→
ΣX and X 7→ X ∧ S1 are naturally stably equiva-
lent.

2) The functors X 7→ X [−1], X 7→ ΩX and X 7→
hom∗(S1,X) are naturally stably equivalent.

Proof. Lemma 41.2 implies that the composite

X σ∗−→ΩX [1]
Ω j[1]−−−→ΩFX [1]

is a stable equivalence for all spectra X , where j :
X → FX is a strictly fibrant model.

Shift preserves stable equivalences, so the induced
composite

X [−1]
σ∗[−1]−−−→ΩX

Ω j−→ΩFX

9



is a stable equivalence.

The natural stable equivalence ΣY 'Y ∧S1 induces
a natural stable equivalence

ΩX ' hom∗(S1,X)

for all strictly fibrant spectra X .

In other words, the suspension and loop functors
(real or fake) are equivalent to shift functors, and
define equivalences Ho(Spt)→Ho(Spt) of the sta-
ble category.

42 The telescope construction

Observe that a spectrum Y is cofibrant if and only
if all bonding maps σ : S1 ∧Y n → Y n+1 are cofi-
brations.

The telescope T X for a spectrum X is a natural
cofibrant replacement, equipped with a natural strict
equivalence s : T X → X .

The construction is an iterated mapping cylinder.
We find natural trivial cofibrations

X k jk−→CX k αk−→ T X k, k ≤ n,
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and tk : T X k→ X k such that tk ·(αk · jk) = 1 and the
maps tk define a strict weak equivalence of spectra
t : T X → X .

• X0 =CX0 = T X0 and j0 and α0 are identities,

• CXn is the mapping cylinder for σ : S1∧Xn→
Xn+1, meaning that there is a pushout diagram

S1∧Xn σ //

d0
��

Xn+1

jn+1
��

(S1∧Xn)∧∆1
+ ζn+1

//CXn+1

for each n.

Write σ∗ for the composite

S1∧Xn d1
−→ (S1∧Xn)∧∆

1
+

ζn+1−−→CXn+1

and observe that σ∗ is a cofibration.

The projection map

s : (S1∧Xn)∧∆
1
+→ S1∧Xn

satisfies s · d0 = 1 and induces a map sn+1 :
CXn+1→ Xn+1 such that sn+1 · jn+1 = 1. Fur-
ther sn+1 ·σ∗ = σ .

11



• Form the pushout diagram

S1∧Xn σ∗ //

S1∧ jn ��

CXn+1

αn+1

��

S1∧CXn

S1∧αn ��

S1∧T Xn
σ̃

// T Xn+1

Then σ̃ is a cofibration, and the maps jn+1, αn+1

are trivial cofibrations.

The maps S1 ∧ tn and sn+1 together induce tn+1 :
T Xn+1 → Xn+1 such that tn+1 · (αn+1 · jn+1) = 1,
and the tk : T X k→ X k define a map of spectra up
to level n+1.

The projection maps s can be replaced with homo-
topies h : (S1∧Xn)∧∆1

+→ Zn in the construction
above, giving the following:

Lemma 42.1. Suppose X is a spectrum with bond-
ing maps σ : S1 ∧ Xn → Xn+1. Suppose X ′ is a
spectrum with the same objects as X, with bond-
ing maps σ ′ : S1∧Xn→ Xn+1. Suppose j : X ′→ Z

12



is a map of spectra such that there are homotopies

S1∧Xn

d1
��

jσ ′

''

(S1∧Xn)∧∆1
+

h // Zn+1

S1∧Xn
d0
OO

jσ

77

Then the homotopies h define a map h∗ : T X → Z,
giving a morphism

X t←−
'

T X h∗−→ Z

from X to Z in the stable category.

If j : X ′→ Z is a strict weak equivalence then the
map h∗ is a strict weak equivalence.

Remarks:

1) The construction of Lemma 42.1 is natural, and
hence applies to diagrams of spectra.

Suppose that i 7→ Xi and i 7→ X ′i are spectrum val-
ued functors defined on an index category I such
that Xn

i = X ′ni for all i ∈ I. Let j : X ′ → Z be a
natural choice of strict fibrant model for the dia-
gram X ′ and suppose finally that there are natural

13



homotopies

S1∧Xn
i

d1
��

jσ ′

&&
(S1∧Xn

i )∧∆1
+

h // Zn
i

S1∧Xn
i

jσ

88

d0
OO

where σ and σ ′ are the bonding maps for X and
X ′ respectively.

Then the homotopies h canonically determine a
natural strict equivalence h∗ : T X → Z, and there
are natural strict equivalences

X ← T X h∗−→ Z
j←− X ′.

2) Suppose given S2-spectra X(1) and X(2) having
objects S1∧X2n and bonding maps

σ1,σ2 : S2∧S1∧X2n = S3∧X2n→ S1∧X2n+2

respectively, such that the diagram

S3∧X2n
σ1
**

c∧1
��

S1∧X2n+2

S3∧X2n σ2

44

14



commutes, where c is induced by the cyclic per-
mutation (3,2,1).

The map c has degree 1 and is therefore the iden-
tity in the homotopy category.

Choose a strict fibrant model j : X(2)→ FX(2) in
S2-spectra for X(2). Then

j ·σ1 ' j ·σ2 : S3∧X2n→ F(S1∧X2n+2),

and it follows that there are strict equivalences

X(1) t←− T X(1) h∗−→ FX(2)
j←− X(2).

If X(1) and X(2) are the outputs of functors de-
fined on spectra (eg. the comparison of fake and
real suspension in Theorem 41.6), then these equiv-
alences are natural.

43 Fibrations and cofibrations

Suppose i : A → X is a levelwise cofibration of
spectra with cofibre π : X → X/A.

Suppose α : Sr → Xn represents a homotopy ele-
ment such that the composite

Sr α−→ Xn π−→ Xn/An

represents 0 ∈ πr(X/A)n.

15



Comparing cofibre sequences gives a diagram

Sr //

α
��

CSr //

��

S1∧Sr ' //

��

S1∧Sr

S1∧α��

Xn
π
// (X/A)n // S1∧An S1∧i //

σ
��

S1∧Xn

σ
��

An+1
i

//Xn+1

where CSr ' ∗ is the cone on Sr.

It follows that the image of [α] under the suspen-
sion map

πrXn→ πr+1Xn+1

is in the image of the map πr+1An+1→ πr+1Xn+1.

We have proved the following:

Lemma 43.1. Suppose A→ X → X/A is a level
cofibre sequence of spectra.

Then the sequence

π
s
kA→ π

s
kX → π

s
k(X/A)

is exact.

Corollary 43.2. Any levelwise cofibre sequence

A→ X → X/A

induces a long exact sequence

. . .
∂−→ π

s
kA→ π

s
kX → π

s
k(X/A) ∂−→ π

s
k−1A→ . . .

(1)

16



The sequence (1) is the long exact sequence in
stable homotopy groups for a level cofibre sequence
of spectra.

Proof. The map X/A→ A∧ S1 in the Puppe se-
quence induces the boundary map

π
s
k(X/A)→ π

s
k(A∧S1)∼= π

s
k(A[1])∼= π

s
k−1A,

since A∧ S1 is naturally stably equivalent to the
shifted spectrum A[1] by Corollary 41.7.

Corollary 43.3. Suppose that X and Y are spectra.
Then the inclusion

X ∨Y → X×Y

is a natural stable equivalence.

Proof. The sequence

0→ π
s
kX → π

s
k(X ∨Y )→ π

s
kY → 0

arising from the level cofibration X ⊂X∨Y is split
exact, as is the sequence

0→ π
s
kX → π

s
k(X×Y )→ π

s
kY → 0

arising from the fibre sequence X → X×Y → Y .

It follows that the map X ∨Y → X ×Y induces an
isomorphism in all stable homotopy groups.
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Corollary 43.4. The stable homotopy category Ho(Spt)
is additive.

Proof. The sum of two maps f ,g : X→Y is repre-
sented by the composite

X ∆−→ X×X
f×g−−→ Y ×Y '←− Y ∨Y ∇−→ Y.

Corollary 43.5. Suppose that

A i //

α
��

B
β
��

C j
//D

is a pushout in Spt where i is a levelwise cofibra-
tion. Then there is a long exact sequence in stable
homotopy groups

. . .
∂−→ π

s
kA

(i,α)−−→ π
s
kC⊕π

s
kB

j−β−−→ π
s
kD ∂−→ π

s
k−1A→ . . .

(2)

The sequence (2) is the Mayer-Vietoris sequence
for the cofibre square.

The boundary map ∂ : πs
kD→ πs

k−1A is the com-
posite

π
s
kD→ π

s
k(D/C) = π

s
k(B/A) ∂−→ π

s
k−1A.
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Lemma 43.6. Suppose

A i−→ X π−→ X/A

is a level cofibre sequence in Spt, and let F be the
strict homotopy fibre of the map π .

Then the map i∗ : A→ F is a stable equivalence.

Proof. Choose a strict fibration p : Z→ X/A such
that Z→∗ is a strict weak equivalence.

Form the pullback

X̃ π∗ //

p∗
��

Z
p
��

X
π
//X/A

Then X̃ is the homotopy fibre of π and the maps
i : A→ X and ∗ : A→ Z together determine a map
i∗ : A→ X̃ . We show that i∗ is a stable equivalence.

Pull back the cofibre square

A //

i
��

∗
��

X
π
//X/A

along the fibration p to find a (levelwise) cofibre
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square
Ã //

ĩ ��

U

��

X̃ // Z
A Mayer-Vietoris sequence argument (Corollary
43.5) implies that the map Ã→ X̃ ×U is a stable
equivalence.

From the fibre square

Ã //

��

U

��
A // ∗

we see that the map Ã→ A×U is a stable equiva-
lence.

The map i∗ : A→ X̃ induces a section θ : A→ Ã
of the map Ã→ A which composes with the pro-
jection Ã→U to give the trivial map ∗ : A→U .

Thus, there is a commutative diagram

A i∗ //

(1A,∗)
||

θ��

X̃
(1X̃ ,∗)��

A×U

pr
##

Ã'oo ' //

��

X̃×U

{{
U
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and it follows that A is the stable fibre of the map
Ã→U , so i∗ is a stable equivalence.

Lemma 43.7. Suppose that

F i−→ E
p−→ B

is a strict fibre sequence, where i is a level cofibra-
tion.

Then the map E/F → B is a stable equivalence.

Proof. There is a diagram

F i //

=

��

j′∗
��

E π //

=

��

j′

��

E/F
γ

��

=

##

F ′

θ∗��

i′ //U

θ��

p′
//E/F

γ
zzF i

//E p
//B

where p′ is a strict fibration, j′ is a cofibration and
a strict equivalence, and θ exists by a lifting prop-
erty:

E = //

j′
��

E
p
��

U
γ p′

//

θ
??

B

The map j′∗ is a stable equivalence by Lemma 43.6,
so θ∗ is a stable equivalence.
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The map θ is a strict equivalence, and a compari-
son of long exact sequences shows that γ is a stable
equivalence.

Remark: Lemma 43.6 and Lemma 43.7 together
say that fibre and cofibre sequences coincide in the
stable category.

44 Cofibrant generation

We will show that the stable model structure on the
category Spt of spectra is cofibrantly generated.

This means that there are sets I and J of stably triv-
ial cofibrations and cofibrations, such that p : X→
Y is a stable fibration (resp. stably trivial fibration)
if and only if it has the RLP wrt all members of the
set I (resp. all members of J).

Recall that a map p : X → Y is a stably trivial fi-
bration if and only if it is a strict fibration and a
strict weak equivalence.

Thus p is a stably trivial fibration if and only if it
has the RLP wrt all maps

Σ
∞

∂∆
n
+[m]→ Σ

∞
∆

n
+[m].

We have found our set of maps J.
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It remains to find a set of stably trivial cofibrations
I which generates the full class of stably trivial
cofibrations. We do this in a sequence of lemmas.

Say that a spectrum A is countable if all consituent
simplicial sets An are countable in the sense that
they have countably many simplices in each de-
gree — see Section 11.

It follows from Lemma 11.2 that a countable spec-
trum A has countable stable homotopy groups.

The following “bounded cofibration lemma” is the
analogue of Lemma 11.3 for the category of spec-
tra.

Lemma 44.1. Suppose given level cofibrations of
spectra

X
j
��

A i
//Y

such that A is countable and j is a stable equiva-
lence.

Then there is a countable subobject B ⊂ Y such
that A⊂ B⊂Y and the map B∩X → B is a stable
equivalence.
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Proof. The map B∩X → B is a stable equivalence
if and only if all stable homotopy groups

π
s
n(B/(B∩X))

vanish, by Corollary 43.2.

Write A0 = A. Y is a filtered colimit of its count-
able subobjects, and the countable set of elements
of the homotopy groups πs

n(A0/(A0 ∩ X)) vanish
in πs

n(A1/(A1∩X)) for some countable subobject
A1 ⊂ X with A0 ⊂ A1.

Repeat the construction inductively to find count-
able subcomplexes

A = A0 ⊂ A1 ⊂ A2 ⊂ . . .

of Y such that all induced maps

π
s
n(Ai/(Ai∩X))→ π

s
n(Ai+1/(Ai+1∩X))

are 0. Set B = ∪iAi. Then B is countable and all
groups πs

n(B/(B∩X)) vanish.

Consider the set of all stably trivial level cofibra-
tions j : C→ D with D countable, and find a fac-
torization

C
in j //

j ��

E j
p j
��

D
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for each such j such that in j is a stably trivial cofi-
bration and p j is a stably trivial fibration.

Make fixed choices of the factorizations j = p j ·
in j, and let I be the set of all stably trivial cofibra-
tions in j.

Lemma 44.2. The set I generates the class of sta-
bly trivial cofibrations.

Proof. Suppose given a diagram

A //

j
��

X
f
��

B //Y
where j is a cofibration, f is a stable equivalence
and B is countable.

Then f has a factorization f = q · i where i is a
stably trivial cofibration and q is a stably trivial
fibration.

There is a diagram

A //

j

��

X
i��

Z
q��

B //

θ
;;

Y
where the lift θ exists since j is a cofibration and
q is a stably trivial fibration.
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The image θ(B) of B is a countable subobject of Z,
so Lemma 44.1 says that there is a subobject D⊂
Z such that D is countable and the level cofibration
j : D∩X → D is a stable equivalence.

What we have, then, is a factorization

A //

j
��

D∩X
j
��

//X
f
��

B //D //Y
of the original diagram, such that j is a countable,
stably trivial level countable.

We can further assume (by lifting to E j) that the
original diagram has a factorization

A //

j
��

D∩X
in j
��

//X
f
��

B //E j //Y

where the map in j is a member of the set I.

Now suppose that i : U→V is a stably trivial cofi-
bration. Then i has a factorization

U α //

i   

W
q
��

V
where α is a member of the saturation of I and q
has the RLP wrt all members of I.
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But then q has the RLP wrt all countable cofibra-
tions by the construction above, so that q has the
RLP wrt all cofibrations.

In particular, there is a diagram

U j
//

i
��

W
q
��

V 1
//

>>

V

so that i is a retract of j.

Remark: Compare the proof of Lemma 44.2 with
the proof of Lemma 11.5 — they are the same.
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Lecture 15: Spectrum objects
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45 Spectra in simplicial modules

Suppose A is a simplicial R-module and K is a
pointed simplicial set.

The simplicial R-module A⊗K is defined by

A⊗K = A⊗R R̃(K),

where R̃(K) =R(K)/R(∗) defines the reduced free
R-module functor

R̃ : s∗Set→ s(R−Mod).

(Compare with Section 15.)

There are natural isomorphisms

R̃(K∧L)∼= R̃(K)⊗ R̃(L) = K⊗ R̃(L),

and there is a natural map

γ : u(A)∧K→ u(A⊗K).
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Here,
u : s(R−Mod)→ s∗Set

is the forgetful functor, where u(A) is the simpli-
cial set underlying A, pointed by 0.

The functor u is right adjoint to R̃.

We frequently write A for both a simplicial R-module
A and its underlying pointed simplicial set.

Lemma 45.1. Suppose A is a simplicial abelian
group.

Then the canonical map

η : A→ hom∗(S1,A⊗S1)

is a weak equivalence.

Proof. ∆1
∗ is the simplicial set ∆1, pointed by the

vertex 0.

There is a contracting homotopy h : ∆1
∗∧∆1

∗→ ∆1
∗

given by the picture

0 //

��

0

��

0 // 1

and this map h determines a contracting homotopy

h∗ : hom∗(∆1
∗,B)⊗∆

1
∗→ hom∗(∆1

∗,B).
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for all simplicial abelian groups B.

B⊗∆1
∗ is a model for the cone on B, and there is a

natural short exact sequence

0→ B→ B⊗∆
1
∗→ B⊗S1→ 0.

The homotopy h∗ induces a composite morphism

A⊗∆1
∗

η⊗1
//

γ

%%

hom∗(S1,A⊗S1)⊗∆1
∗

��

hom∗(∆1
∗,A⊗S1)⊗∆1

∗
h∗
��

hom∗(∆1
∗,A⊗S1)

and there is a commutative diagram

A η
//

��

hom∗(S1,A⊗S1)

��

A⊗∆1
∗
'
γ
//

��

hom∗(∆1
∗,A⊗S1)

��

A⊗S1
1

//A⊗S1

This is a comparison of fibre sequences, so the
map η is a weak equivalence.

Compare with the proof of Lemma 31.1.
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Corollary 45.2. The natural map

εA : hom∗(S1,A)⊗S1→ A

induces isomorphisms in πk for k ≥ 1.

Write ΩA = hom∗(S1,A).

Proof. There is a diagram

ΩA η

'
//

1 &&

Ω(ΩA⊗S1)

Ωε
��

ΩA
Thus, ΩεA is a weak equivalence, so that εA has
the claimed effect in homotopy groups.

A spectrum (or spectrum object) A in simplicial
R-modules consists of simplicial R-modules An,
n≥ 0, together with bonding maps

σ : S1⊗An→ An+1, n≥ 0.

A morphism f : A→ B of spectrum objects con-
sists of simplicial R-module maps An→ Bn, n≥ 0,
which respect the bonding homomorphisms.

Spt(R) is the corresponding category. This cate-
gory is complete and cocomplete.

The maps

γ : S1∧u(An)→ u(S1⊗An)
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give the pointed simplicial sets u(An) the structure
of a spectrum, and define a forgetful functor

u : Spt(R)→ Spt.

The reduced free R-module functor R̃ determines
a left adjoint to u. Explictly,

(R̃X)n = R̃(Xn),

and the bonding morphisms are the composites

S1⊗ R̃(Xn)∼= R̃(S1∧Xn)
σ∗−→ R̃(Xn+1).

A map f : A→ B of spectrum objects is a stable
equivalence (respectively stable fibration) if the
underlying map u( f ) : uA→ uB of spectra is a sta-
ble equivalence (respectively stable fibration).

A cofibration in Spt(R) is a map which has the
LLP wrt all morphisms which are stable fibrations
and stable equivalences.

By adjointness, if A→ B is a cofibration of spec-
tra, then the induced map R̃(A)→ R̃(B) is a cofi-
bration of spectrum objects.

Lemma 45.3. The functor R̃ : Spt→ Spt(R) pre-
serves stable equivalences.

Proof. The functor R̃ preserves level equivalences,
so it suffices to show that if A→B is a stably trivial
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cofibration of spectra, then R̃(A/B)→ 0 is a stable
equivalence.

We show that R̃(X)→ 0 is a stable equivalence if
X→∗ is a stable equivalence. We can assume that
X is level fibrant.

Since X is level fibrant, the assumption that X →
∗ is a stable equivalence implies that all spaces
Ω∞Xn are contractible. Thus, if K ⊂ Xn is a fi-
nite subcomplex of Xn, there is a k ≥ 0 such that
the composite

Sk∧K→ Sk∧Xn σk
−→ Xn+k

is homotopically trivial. This means that the in-
duced map

Sk⊗ R̃(K)→ Sk⊗ R̃(Xn)→ R̃(Xn+k)

is also homotopically trivial, and so the morphism

Σ
∞R̃(K)[−n]→ R̃(X)

induces 0 in all stable homotopy groups. Every
element in πs

k(R̃(X)) is in the image of such a map,
so all stable homotopy groups of R̃(X) are 0.

Suppose that i : A→B is a level monomorphism in
Spt(R) (as are all level cofibrations). Then there
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is a short exact sequence

0→ A i−→ B π−→ B/A→ 0

and the map π is a level surjection, hence a level
fibration. In particular, the sequence is a level fibre
sequence, and so there is a long exact sequence

. . .πs
k+1(B/A) ∂−→ π

s
kA i∗−→ π

s
k(B)

π∗−→ π
s
k(B/A)→ . . .

Theorem 45.4. With these definitions, the cate-
gory Spt(R) of spectrum objects in simplicial R-
modules has the structure of a proper closed sim-
plicial model category.

Proof. The category Spt is cofibrantly generated
(Lemma 41.2). Thus, a map p : A→ B is a sta-
ble fibration if and only if it has the right lifting
property with respect to the maps

R̃(U)→ R̃(V )

induced by a set J of stably trivial cofibrations
U →V .

All induced maps R̃(U)→ R̃(V ) are stable equiv-
alences by Lemma 45.3.

The class of level inclusions which are stable equiv-
alences is closed under pushout, by a long exact
sequence argument.
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It follows from a (transfinite) small object argu-
ment that every map f : A→ B in Spt(R) has a
factorization

A j
//

f ��

C
p
��

D
where j is a stably trivial cofibration which has the
LLP wrt all fibrations and p is a fibration.

The proof of the other statement of the factoriza-
tion axiom CM5 uses the fact (Lemma 40.4) that
a map p : A→ B is a stable fibration and a stable
equivalence if and only if it has the right lifting
property with respect to all morphisms

R̃(Σ∞
∂∆

n
+[k])→ R̃(Σ∞

∆
n
+[k]).

If i : A→ B is a stably trivial cofibration, then i
is a retract of a map which has the LLP wrt all
fibrations, on account of a factorization for i in the
style displayed above. Thus, every stably trivial
cofibration has the LLP wrt all fibrations, proving
CM4.

The function complex hom(A,B) is the simplicial
R-module with n-simplices

hom(A,B)n = {A⊗∆
n→ B}.
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There is a natural isomorphism

hom(R̃(K),A)∼= hom(K,u(A)),

so that Quillen’s axiom SM7 follows from the cor-
responding statement for spectra. Thus, Spt(R)
has a simplicial model structure.

Right properness follows from right properness for
Spt, and left properness is proved by comparing
long exact sequences.

Here are some things to notice:

0) Every spectrum object in simplicial R-modules
is level fibrant.

1) The forgetful functor u and its left adjoint R̃
determine a Quillen adjunction

R̃ : Spt � Spt(R) : u

If R = Z the canonical map X → u(Z̃(X)) is the
Hurewicz homomorphism for spectra.

2) There is a Quillen adjunction

Σ
∞ : s(R−Mod)� Spt(R) : 0-level

where
(Σ∞A)n = Sn⊗A

(suspension spectrum) and the “0-level” functor is
defined by B 7→ B0.
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We also write H(A)=Σ∞A, and call it an Eilenberg-
Mac Lane spectrum.

3) Suppose that A is a simplicial R-module, and
consider the suspension spectrum object Σ∞A.

The bonding maps S1⊗Sn⊗A→ Sn+1⊗A are canon-
ical isomorphisms, with adjoints

Sn⊗A→ hom(S1,S1⊗Sn⊗A)

given by adjunction maps η .

All of these maps η are weak equivalences by Lemma
45.1, and so Σ∞A is stably fibrant, ie. u(Σ∞A)is an
Ω-spectrum. It also follows that there are isomor-
phisms

π
s
n(A) =

{
πn(A) if n≥ 0, and

0 if n < 0.

In particular,

π
s
n(R̃(Σ

∞(X)))∼= π
s
n(Σ

∞R̃(X))

coincides with the reduced homology group H̃n(X ,R)
for n≥ 0 and is 0 otherwise.

Recall that there is a natural map

γ : u(A)∧K→ u(A⊗K)
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for pointed simplicial sets K and simplicial R-modules
R. In simplicial degree n it is the obvious function∨

Kn−∗
An→

⊕
Kn−∗

An.

The construction can be iterated, meaning that there
are commutative diagrams

L∧u(A)∧K 1∧γ
//

γ∧1
��

L∧u(A⊗K)
γ
��

u(L⊗A)∧K
γ
// u(L⊗A⊗K)

The map γ may therefore promoted to the spec-
trum level, so there is a natural map

γ : u(B)∧K→ u(B⊗K)

for spectrum objects B and pointed simplicial sets
K.

Theorem 45.5. The map

γ : u(B)∧K→ u(B⊗K)

is a stable equivalence for all spectrum objects B
and pointed simplicial sets K.

Proof. The simplicial set K has a (pointed) skeletal
decomposition skn K ⊂ K, and there are pushout
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diagrams ∨
x∈NKn ∂∆n

+
//

��

skn−1 K

��∨
x∈NKn ∆n

+
// skn K

of pointed simplicial sets.

Smashing with u(B) gives a homotopy cocartesian
diagram, which can be compared to the diagram of
spectra underlying the pushout diagram⊕

x∈NKn(B⊗∂∆n
+) //

��

B⊗ skn−1 B

��⊕
x∈NKn(B⊗∆n

+) //B⊗ skn K

in Spt(R) via the map γ . The underlying diagram
of spectra is homotopy cocartesian since both ver-
tical maps have the same cofibres.

Inductively, one assumes that

u(B)∧ skn−1 K→ u(B⊗ skn−1 K)

is a stable equivalence for all K. The statement for
0-skeleta is a consequence of additivity (Corollary
43.3), with a filtered colimit argument.

It therefore suffices to show that the map

γ : u(B)∧ (
∨
NKn

∆
n
+)→ u(B⊗ (

∨
NKn

∆
n
+)).
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is a stable equivalence. By additivity, this reduces
to the statement that

γ : u(B)∧∆
n
+→ u(B⊗∆

n
+)

is a stable equivalence.

Both displayed functors preserve homotopy equiv-
alences, so this particular instance of γ is equiva-
lent to

γ : u(B)∧S0→ u(B⊗S0),

which is an isomorphism.

Example: There is a natural isomorphism

Hn(X ,R)∼= π
s
n(H(R)∧X).

Here H(R) is the Eilenberg-Mac Lane spectrum
R̃(S) = Σ∞R(S0); it’s also the sphere spectrum for
Spt(R).
More generally, the groups

E∗(X) = π
s
∗(E ∧X)

are the E-homology groups of the space X , for a
spectrum E.
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46 Chain complexes

Given a chain complex D in Ch+, define the shifted
complex D[k] by

D[k]p =

{
Dk+p if p > 0,

ker(∂ : Dk→ Dk−1) if p = 0.

For n ≥ 0, D[−n] shifts up (“suspends”) n times
while D[n] is the good truncation of a shift down.

There are two suspension constructions for simpli-
cial R-modules:

• the standard suspension S1⊗A = R̃(S1)⊗A,

• the Eilenberg-Mac Lane (or Kan) suspension
WA = Γ(NA[−1]).

There is an alternative construction for WA, as fol-
lows.

Every simplicial abelian group can be written as a
coequalizer⊕

θ :m→n
An⊗∆

m
+ ⇒

⊕
n≥0

An⊗∆
n
+→ A

There is a pointed cosimplicial set n 7→∆n+1
∗ , where

∆n+1
∗ is ∆n+1 pointed by 0, and θ : m→ n induces
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θ∗ : m+1→ n+1 which is defined by

θ∗( j) =

{
0 j = 0,

θ( j−1)+1 j > 0.

The simplicial set maps d0 : ∆n→ ∆n+1 determine
a map of cosimplicial spaces, and a pointwise monomor-
phism of cosimplicial simplicial modules

R̃(∆n
+)→ R̃(∆n+1

∗ )

One checks that there is an isomorphism of cosim-
plicial chain complexes

N(R̃∆
n+1
∗ /NR̃∆

n
+)
∼= NR̃∆

n
+[−1]

that is natural in ordinal numbers n (exercise).

Thus, ΓNA[−1] is defined by the coequalizer⊕
θ :m→n

An⊗NR̃∆
m
+[−1]⇒

⊕
n≥0

An⊗NR̃∆
n
+[−1]→ΓNA[−1]

There is a natural short exact sequence

0→ A d0
−→CA→WA→ 0

where the “cone” CA is defined by the coequalizer⊕
θ :m→n

An⊗∆
m+1
∗ ⇒

⊕
n≥0

An⊗∆
n+1
∗ →CA
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The inclusion d0 : ∆n→ ∆n+1 contracts to the ver-
tex 0 ∈ n+1, via the homotopy

h : ∆
n
+∧∆

1
∗→ ∆

n+1
∗

(∆1 is pointed by 0) which is given by the picture

0 //

��

0 //

��

. . . // 0

��

1 // 2 // . . . // n+1

The homotopies h form a map of cosimplicial spaces,
and hence determine a natural map

A⊗∆
1
∗→CA,

which in turn induces a natural map

h : S1⊗A→WA.

This map h is a natural equivalence, since A⊗∆1
∗

and CA are both contractible.

The map h is even a natural homotopy equiva-
lence, since the cosimplicial objects S1⊗ R̃(∆+)

and WR̃(∆+) are projective cofibrant.

For this last claim, we use Corollary 26.4, and its
proof to show that the cosimplicial map

R̃(∆n
+)→ R̃(∆n+1

∗ )

is a projective cofibration.
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Write g for the natural homotopy inverse for f .

Every spectrum object σ : S1⊗An→ An+1 in sim-
plicial R-modules determines a “Kan” spectrum
object

WAn g−→ S1⊗An σ−→ An+1

and hence a spectrum object

σ̃ : NAn[−1]∼= N(WAn)→ NAn+1

in chain complexes.

Let σ∗ : An→ΩAn+1 be the adjoint of σ .

Corollary 45.2 says that the evaluation map

ev : ΩAn+1⊗S1→ An+1

is a homology isomorphism above degree 0, and
further that there is an induced equivalence

ev∗[1] : NΩAn+1→ NAn+1[1]

(as Z-graded chain complexes), on account of the
diagram

N(S1⊗ΩAn+1) Nev //NAn+1

N(WΩAn+1)

Ng
OO

∼=
//N(ΩAn+1)[−1]

ev∗

OO

There is, finally, a natural commutative diagram of
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chain complex maps

NAn Nσ∗ //

σ %%

NΩAn+1

ev∗[1]'
��

NAn+1[1]

which defines the map σ .

Identify all chain complexes NAn with Z-graded
chain complexes, and let QNA be the colimit of
the diagram

NA0 σ−→ NA1[1]
σ [1]−−→ NA2[2]

σ [2]−−→ . . .

Then one can show the following:

Proposition 46.1. A map f : A → B is a stable
equivalence of spectrum objects in simplicial R-
modules if and only if the induced map f∗ : QNA→
QNB is a quasi-isomorphism of Z-graded chain
complexes.

One can go further [1], to show that the Dold-Kan
equivalence induces a Quillen equivalence

N : Spt(R)�Ch(R) : Γ

of the stable model structure on Spt(R), with the
model structure on the category Ch(R) of Z-graded
chain complexes of R-modules of Section 3, from
the beginning of the course.
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The weak equivalences in Ch(R) are the quasi-
isomorphisms, and the fibrations are the surjective
homomorphisms of chain complexes.

This equivalence further induces an equivalence of
the stable homotopy category for Spt(R) with the
full derived category Ho(Ch(R)) for chain com-
plexes of R-modules.

This is the start of a long story — see also [1], [2].
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