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A LEISURELY STROLL THROUGH THE LAND OF SPHERES
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This is a collection of notes on stable homotopy theory. They came about after Tom
Gannon, a fellow grad student at UT, asked me to write him an email to tell him a little
about the sphere spectrum. As one email grew into many, the recipient list expended as
well, and finally I was convinced to make these notes available publically.

The key thing these notes strive for is a friendly, informal, and conversational style. We
do not strive to be exhaustive, nor do we strive to be concise. If more words allow us to
shed more light on something, we will rarely pass down the opportunity to do so.

What follows contains hardly any proofs, but hopefully ample motivation behind every
idea. The hope is that, given the birds-eye-view for orientation and layout of the land, the
proofs and details will be easy(er) to pick up if and when needed. Essentially everything
we mention, especially in Part 1, is elaborated on in full rigorous glory in a measure 0
subset of Jacob Lurie’s treatise Higher Algebra.

On the use of ∞-categories. The perspective we take is unapologetically ∞-categorical.
That partially betrays the author’s personal preferences and beliefs, but is also a conse-
quence of how these notes came to be. This is because Tom Gannon, the original email’s
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recepient and target audience, works in the Gaitsgorian denomination of the Geometric
Langlands Program, where ∞-categorical technology is an all-pervasive state religion.

However, we believe this should not be an obstacle for other interested readers either.
Our use of ∞-category theory is exclusively to enable abstract nonsense arguments for
homotopical objects. In particular, we will never need to “look under the hood” into
the finer points of the simplicial nitty-gritty that oils the machine of ∞-categories from
the quasi-categorical approach. We merely assume it is there and runs as smoothly as it
should, and direct any suspicious reader to drown their doubts in the depths of Lurie’s
Higher Topos Theory.

In conclusion we hope that our decision to use ∞-categories will not throw other inter-
ested readers off too much. But as stated, we refuse to apologize for it.

Warning. These notes are little more than a transcription of some emails between friends
on fun math, and as such should not be taken too seriously. In particular, we can not vouch
that everything contained in them is correct, nor even that the mistakes are restricted to
the few typos and small fixable gaffs that permiate every mathematical text. Use with
caution and at your own risk!
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Part 1. Spectra among stable ∞-categories

One aspect of stable homotopy theory that can be perceived either as annoying or as
amazing is that there exist a number of different perspectives on spectra, and all are worth
juggling simultaneously for the different insights they bring.

1.1. Stable ∞-categories

Recall the notion of a stable ∞-category - a good place to do homological algebra. There
are several different versions on which things to give as definitions and which to derive as
consequences, but here is one:

Definition 1. An ∞-category C is stable if it satisfies the following conditions:

(1) It contains finite limits and colimits.
(2) It has a zero object 0 ∈ C.

2



(3) Fiber sequences and cofiber sequences in C coincide.

In particular, the suspension and loops functors ΣX = 0∐X 0 and ΩX = 0 ×X 0, which
always form an adjunction Σ ⊣ Ω, is an adjoint equivalence of C. In the homological
grading (which is the common-sense one in homotopy theory when disusing homotopy
groups) there correspond to shifts Σ = [1] and Ω = [−1].

The condition 3. above could be replaced with requiring that either Σ or Ω is an
equivalence of ∞-categories C → C. Unlike the above definition, which emphasizes the
analogy with abelian categories, this way of defining a sthetable ∞-category would put
front and center that everything is stable under suspension (or loops) - hence the name!

This alternative definition of stability will be useful in the next subsection, as it is
somewhat less to check (is certain functor an equivalence) than the above definition (are
all fiber and cofiber sequences the same).

1.1.1. Triangulated categories. Recall that any ∞-category C gives rise to an ordinary
category, denoted either hC or Ho(C), and called the homotopy category of C. It is obtained
by keeping the same set of objects, but by quotienting out all the homotopy equivalences,
which is to say that we set

HomhC(X,Y ) = π0MapC(X,Y ).
When you were first studying the derived category, e.g. in a course or textbook on

homological algebra, there were probably attempts to indoctrinate you into the language
of triangulated categories. The notion of a triangulated category is as old as that of the
derived category. Both are due to Verdier, from his study of what we now call Verdier
duality. He encountered the derived category, noticed in dismay that it was not an abelian
category, and as such scrambled to find a good notion which would include the derived
category as its example. He came up with triangulated categories, and since that notion
pleased Grothendieck, everyone was pleased.

But triangulated categories aren’t all that they’re made out to be: there are some
issues with the functoriality of cones and cocones, and also the definition itself includes
the infamous octahedral axiom, while just being a version of the Second Isomorphism
Theorem, is still far from the most obvious thing ever. Contrast this with the definition
of a stable ∞-category, which is genuinely one of the most natural things ever.

Well, the point is that whenever C is a stable ∞-category, its homotopy category hC
carries a natural triangulated category structure. The shifts [1] are defined to be the
suspension functors Σ, the distinguished triangles are defined to be cofiber (or fiber; they
agree) sequences, and everything else comes for free. Furthermore, just about every tri-
angulated category that we have ever encountered actually extends in a canonical way to
a stable ∞-category, the homotopy category of which it is. Thus perhaps a philosophy
on stable ∞-categories might be that they, and not triangulated categories as Verdier
thought, are the actual correct generalization of the notion of an abelian category.

1.2. Stabilization of the ∞-category S

Most ∞-categories are not stable. Perhaps they might be missing some finite limits of
colimits. But even if they do have them, such as the ∞-category S of spaces (or, if you
want, ∞-groupoids), they might not have a zero object.

1.2.1. Instability due to the Hopf fibration. Passing to the ∞-category S∗ of pointed
spaces solves this issue, but it still isn’t stable. Indeed, the functors Σ and Ω are not
equivalences of pointed spaces - for instance, while there exist no non-trivial maps S1 → S0,
suspending twice leads us to consider maps S3 → S2. Here we have a famous example of a
homotopically non-trivial map, the Hopf fibration, which may be constructed for instance
as

S3 ⊂ C2 − {0}→ (C2 − {0})/C× = CP1 ≃ S2,
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where the inclusion identifies the 3-sphere as the unit sphere of R4 = C2.

1.2.2. Brute force inverting the functor Ω. But now that we know what the issue is,
it isn’t hard to fix it. We want Ω ∶ S∗ → S∗ to be an equivalence? Fine, we can make it
be, by passing to

Sp = lim←Ð(⋯ ΩÐ→ S∗
ΩÐ→ S∗

ΩÐ→ ⋯)
and this is the famous ∞-category of spectra. This is precisely analogous to how one forms
localizations of rings in commutative algebra, i.e. how we invert some elements in a ring.

1.2.3. Classical interpretation I: Ω-spectra. Unwinding the definition, a spectrum X
may thus (up to an appropriate notion of homotopy equivalence of spectra) be presented
as a sequence {Xi}i of pointed spaces together with homotopy equivalences Xi ≃ ΩXi+1

for all i. This is one of the classical definitions of spectra, called Ω-spectra in the older
literature.

Note also that the structure maps give rise by adjunction to pointed maps ΣXi →Xi+1,
conjuring to mind an even more classical definition of spectra and likely the first definition
you’ve ever seen. Let us call those sort of objects sequential spectra. The issue with
sequential spectra is that it is quite hard to make sense of what the correct notion of
homotopy equivalence is in that case to present the same objects (or even to obtain a
notion of a map of spectra). Of course, given a sequential spectrum, which is to say a
sequence of spaces {Xi} with structure maps ΣXi → Xi+1, we may obtain a homotopy
equivalent Ω-spectrum {X ′

i} by setting

X ′
i = limÐ→

k

ΩkXi+k,

with the sequential colimit on the right coming from the structure maps of the sequential
spectrum by the adjunction Σ ⊣ Ω.

1.2.4. Classical interpretation II: infinite loop spaces. Another perspective on spec-
tra that the above definition might suggest to us is that of infinite loop spaces. Indeed,
what should that be? Well, likely a (pointed) space X0, such that there exists another
space X1 for which X0 ≃ ΩX1, and for which there exists another space X2 for which
X1 ≃ ΩX2, etc. Surely we’re collecting precisely the data of an Ω-spectrum.

But there is a slight difference: in an Ω-spectrum there is no natural space X0 to begin
with. In effect, there exists also further deloopings X−1,X−2, . . . ofX0. Indeed, there are
more spectra than there are infinite loop spaces, and the latter account only (but precisely)
for the connective ones.

1.2.5. The functors Ω∞ and Σ∞. In light of the previous subsection, for any spectrum
X, the component space X0 is an infinite loop space. This might explain why we denote
the functor X ↦X0 by Ω∞ ∶ Sp→ S∗ and call it the underlying infinite loop space functor.
Often times, one skips the “infinite loop” part.

Another justification for the notation Ω∞ is that this functor admits a left adjoint Σ∞ ∶
S∗ → Sp. The latter functor is most easily described as a sequential spectrum, associating
to a pointed space X the sequence {ΣiX}i with structure maps Σ(ΣiX) ≃ Σi+1X (and then
passing via the procedure desribed in 1.2.3 to the associated Ω-spectrum). The spectrum
Σ∞X so-obtained is called the suspension spectrum of the pointed space X, and its key
example is S ∶= Σ∞S0, the sphere spectrum. That’s a good name, since its constituent
spaces are ΣiS0 ≃ Si, the spheres.

Some (a non-overwhelming majority of) people use S to denote the sphere spectrum,
in analogy to using Z to denote the integers. But since I prefer Z for the latter, and also
because I prefer to agree with the majority in writing the sphere spaces as Si instead of
Si, I will follow Lurie and the current trends in just using S (but this is one of those things
where I don’t really have any issues with either side).
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Another, slightly less exciting example of a suspension spectrum, is that of a point.
Since Σ∞ preserves colimits, it preserves the zero objects, and so Σ∞(∗) ≃ 0, the zero
spectrum.

1.2.6. A small variation on the theme of Σ∞. Instead of considering the adjunction
between Σ∞ ∶ S∗ → Sp and Ω∞ ∶ Sp → S∗, we can pass to unpointed spaces along the
forgetful functor S∗ → S. This forgetful functor obviously admits a left adjoint X ↦ X+ =
X∐∗ of adjoining a disjoint base-point. Combining the two adjunctions into one, we
get that the composite functor Ω∞ ∶ Sp → S (forgetting the base-point of Ω∞X) has a
left adjoint Σ∞

+ ∶ S → Sp. It sends a (non-pointed) space X to its suspension spectrum
Σ∞
+ X = Σ∞(X+).
In various contexts, a more evocative notation for Σ∞

+ X is S[X] (we will freely switch
betwern both). This is supposed to evoke the idea of group algebras. Indeed, jumping
ahead a little, if X possesses a homotopy group structure (more precisely, is a E1-group),
this equips S[X] with the structure of a E1-ring, literally being the group algebra over S.

The functor S[−] ∶ S → Sp also admits a more explicit description. This comes about
since S is the free ∞-category generated by a single object under colimits (this may be
seen an incarnation of all spaces admiting CW complex representatives, and the latter
begin gluings of spheres along discs, since S0 = ∗∐∗ and Sn ≃ ΣnS0 are all just colimits of
points, and gluing is also a colimit). Since the suspension spectrum Σ∞

+ ∶ S→ Sp commutes
with colimits, it is therefore essentially uniquely determined by where it sends the point.
As Σ∞

+ (∗) ≃ Σ∞S0 ≃ S, the suspension spectrum of a general space X may be identified
with the colimit

S[X] ≃ limÐ→
X

S

of the trivial diagram X → Sp (where we view X as an ∞-groupoid) with constant value
S.

1.2.7. How about inverting Σ? The question in the title of this subsection seems very
sensible. We know that stability can be characterized by either of Σ or Ω being an
equivalence (as the other, being its adjoint, will become one also automatically). In 1.2.3
we constructed the ∞-category of spectra from spaces by inverting Ω. Could we have
analogously inverted suspension?

The problem is that imitating 1.2.3 with Σ in place of Ω (and revering arrows) will
result in an ∞-category missing some limits. Nonetheless, there is a way around this,
but it requires us to be a little more clever. As insane as it seems, this was actually the
historically first way of constructing spectra (modulo the ∞-business).

Let Sω∗ denote the ∞-category of compact objects in spaces. Then S ≃ Ind(Sω) (i.e.
spaces are compactly generated - this is roughly what presentability technically boils down
to), and we plan to imitate this in the stable world. We define the Spanier-Whitehead ∞-
category of finite spectra as

SW = limÐ→(⋯ ΣÐ→ Sω∗
ΣÐ→ Sω∗

ΣÐ→ ⋯).
This evidently achieves the dream of “inverting suspension”, though only at the level of
compact spaces. Then the ∞-category of spectra may be recovered as Sp ≃ Ind(SW).

1.3. Stabilization of a general ∞-category

The stabilization procedure applied in section 1.2.2 to S to obtain Sp applies to other
∞-categories as well.
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1.3.1. Stabilization by inverting Ω. Indeed, let C be an ∞-category with all finite
limits. In particular, it has a terminal object ∗ ∈ C, so we may pass to its pointification
C∗ ∶= C∗/, i.e. consider pointed objects. The ∞-category C∗ has ∗ as a zero object, and
since C has finite limits, so does C∗. It in particular has based loops ΩX = ∗×X ∗, allowing
us to form the stabilization of C as

Sp(C) = lim←Ð(⋯ ΩÐ→ C∗
ΩÐ→ C∗

ΩÐ→ ⋯).
As in the case of spaces, which obviously recovers spectra as Sp(S) ≃ Sp, the ∞-category

Sp(C) is stable. Furthermore it supports a limit-preserving functor Ω∞ ∶ Sp(C) → C by
projecting on a fixed factor C∗ in the sequential colimit, entirely analogously to section
1.2.5 above. This functor expresses the universal property of stabilization.

Definition 2. Let C be an ∞-category with all finite limits. The stabilization of C is an
initial object among limit-preserving functors D→ C into stable ∞-categories D.

More precisely, if Ω∞ ∶ Sp(C) → C is the stabilization and F ∶ D → C is any limit-
preserving functor from a stable ∞-category, then there exists an essentially unique exact
functor F̂ ∶D→ Sp(C) with a coherent homotopy F̂ ○Ω∞ ≃ F.

This should make sense: the stabilization is the closest stable ∞-category to the one
you are starting with. The above construction of Sp(C) may be viewed as constructing
an explicit model for constructing a stabilization Ω∞ ∶ Sp(C) → C satisfying the universal
property in the definition. We will mention two other approaches to construct stabiliza-
tions in the following sections.

An obvious observation based on the definition is that the process of stabilization leaves
those ∞-categories which are already stable unchanged. More precisely, if C is stable, then
the identity functor exhibits it as its own stabilization.

1.3.2. So that’s Ω∞, but where is Σ∞
+ ? In analogy with the case of spaces in subsection

1.2.5 above, you might wonder whether the functor Ω∞ admits an adjoint, which we would
be tempted to denote Σ∞.

Well, the functor Ω∞ commutes with all limits by construction, so the answer will surely
be affirmative by the Adjoint Functor Theorem, provided we add the assumption that the
∞-category C is presentable. In that case, its stabilization Sp(C) will also be presentable.

In that case, the functor Σ∞
+ ∶ Sp(C) → C (defined as the left adjoint to Ω∞) may be

used to characterize stabilization via a universal property, just like Ω∞ was in 1.3.2. The
only difference is that now we are mapping stable ∞-categories into C, and the functors
preserve colimits instead of limits.

1.3.3. The presentable case. As suggested in the previous paragraph, having all limits
and colimits at one’s disposal is useful. Thus it’s convenient to consider the ∞-categories
PrL and PrLst of presentable and presentable stable ∞-categories respectively, with colimit-
preserving morphisms between them (i.e. with left adjoints as morphisms - hence the
superscript L). If we analogously took limit-preserving morphisms (i.e. right adjoints), we
would get PrR and PrRst.

Now stabilization of presentable ∞-categories may be expressed neatly as a right adjoint
to the inclusion PrLst → PrL or equivalently, the left adjoint to the inclusion PrRst → PrR.
The unit and counit of these two indicated adjunctions are garnered by the functors Σ∞

+

and Ω∞. This should come as no shock - it is a general truth that working with presentable
∞-categories makes “large scale” category-theoretic nonsense easier.

Also, since any presentable ∞-category is compactly generated (and that is essentially
the definition of presentability), we can play a game analogous to subsection 1.2.7 to obtain
an alternative description of stabilization as

Sp(C) ≃ Ind( limÐ→(⋯ ΣÐ→ Cω
ΣÐ→ Cω

ΣÐ→ ⋯),
analogous to the Spanier-Whitehead approach to defining spectra.
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1.4. Weren’t spectra supposed to be cohomology theories?

So far we’ve been doing little more in this section 1.3 than observing what in the
previous section 1.2 works for general ∞-categories. But though we have offered a few
different perspectives on spectra (and stabilization more generally) already, we are missing
an important one. Possibly the first one that one gets to hear: “spectra are cohomology
theories”. Let’s see how this works.

1.4.1. What even is a (co)homology theory. It is more convenient to work with
homology than cohomology theories, so let us do that. Traditionally (see below the ax-
iomatization of Eilenberg-Steenrod, for the purposes of enabling the statement of which
the whole field of category theory was created!!!) these consist of a functor from certain
kinds of topological spaces into chain complexes, satisfying certain properties such as ho-
motopy invariance and excision (a fancy, albeit more descriptive name for what amounts
essentially to Mayer-Vietoris). The precise choice of details varies a little depending on
whether we are asking for a homology theory on all topological spaces or only say finite
CW complexes, whether we are looking at reduced, non-reduced theories, theories on pairs,
etc.

Let us commit ourselves to the reduced setting and where we are trying to evaluate
homology theories on finite CW complexes.

Definition 3 (Eilenberg-Steenrod axioms). An (reduced extraordinary) homology theory

is a sequence of functors Ei ∶ CWfin
∗ → Ab that satisfies the following properties:

(1) (Homotopy invariance) A homotopy equivalence of pointed finite CW complexes
f ∶X ≃ Y induces an isomorphism Ei(f) ∶ Ei(X) ≅ Ei(Y ) for all i.

(2) (Additivity) For any two finite CW complexes X and Y , the canonical map exhibits
the isomorphism Ei(X ∨ Y ) ≅ Ei(X)⊕Ei(Y ) for all i.

(3) (Suspension) For any pointed finite CW complex X there is a natural isomorphism
Ei+1(ΣX) ≅ Ei(X) for all i.

(4) (Exactness) For any map of pointed finite CW complexes f ∶ X → Y, let cofib(f)
denote its homotopy cofiber (classically called the mapping cone). Then the se-
quence

Ei(X)→ Ei(Y )→ Ei(cofib(f))
is exact for all i.

Here in the additivity axiom the “wedge” of pointed spaces X∨Y is obtained by pinching
together the spaces X and Y at the basepoints, and is the coproduct in CWfin

∗ . You may
be used to a “long exact sequence of a pair” axiom there, but it is not hard to derive it
from the combination of Axioms 3. and 4.

In the next few subsections, we embark on an journey to find an ∞-categorical refine-
ment of the above definition, which will ultimately yield another approach to stabilization.
Firstly, since a homology theory is supposed to be homotopy invariant (Axiom 1. above),
we should take the domain to be an appropriate ∞-category of finite spaces.

1.4.2. Finite spaces vs compact spaces. You might half-expect that we should take
finite spaces here to mean Sω, the compact spaces. Alas, this is incorrect. Unlike what
you might expect, finite spaces, which is to say spaces homotopy equivalent to a finite
CW-complex, do not coincide with the categorically compact spaces. There are, as it
turns out, more of the latter. The failure of compact space to be finite is measured by
Wall’s finiteness obstruction, a topic of deep and surprising connection to manifold theory,
that we will say nothing more about.

So let Sfin
∗ denote the ∞-category of finite spaces. Technically speaking, just as S is the

free ∞-category spanned by colimits from one object ∗, so we get Sfin by using only finite
colimits (surely you can formulate this as a universal property for yourself, if you want).
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Further let Sfin
∗ denote the pointed objects in Sfin, an instance of pointification as discussed

in subsection 1.3.1. This is going to be the domain ∞-category for our homology theories.

1.4.3. Upgrading to taking values in chain complexes. Traditionally homology
theories take values in abelian groups, but we can demand instead that there exists a
chain complex C∗(X;E) from which the homology groups will be obtained as Ei(X) =
Hi(C∗(X;E)), where Hi on the right denotes ordinary chain complex homology. Of course
the chain complex C∗(X;E) satisfying this will not be unique, but it will be unique up to
quasi-isomorphism (almost by definition: we’re specifying its homology groups!). Trying
to work ∞-categorically, that’s all we can either expect or want anyway.

In light of “chains for the homology theory” perspective, the suspension axiom (Axiom
3. above) amounts to requiring that C∗(ΣX;E)[−1] ≃ C∗(X;E) (homological indexing on
shifts), and the additivity axiom (Axiom 2. above) to C∗(X∨Y ;E) ≃ C∗(X;E)⊕C∗(Y ;E).
1.4.4. Dold-Kan says spaces of chains are fine too. By the Dold-Kan philosophy,
equating chain complexes and simplicial abelian groups, we could just as well work with
chains valued in spaces instead.

So we will want associate to every finite space X a “space of chains” E(X), corre-
sponding by Dold-Kan (this is more of an analogy than an actual theorem) to C∗(X;E).
In particular, since Hi corresponds to πi through Dold-Kan, the homology groups should
be expressible as Ei(X) ≃ πiE(X).

This will technically only work for i ≥ 0, but the next subsection shows that by passing
to a high enough suspension, we will be able to make sense of E−N(X) too for arbitrarily
big N .

1.4.5. Suspension axiom rephrased. The key thing is that, since using the Σ ⊣ Ω
adjunction and the fact that ΣSi ≃ Si+1 gives the isomorphism

πi(ΩY ) = π0MapS∗(Si,ΩY ) ≅ π0MapS∗(ΣSi, Y ) = πi+1(Y ),
the suspension axiom (Axiom 3. above) will from the perspective of “spaces of chains”
amount to requiring that

Definition 4 (Suspension Axiom). For any pointed finite space X the canonical map
exihbits an equivalence

ΩE(ΣX) ≃ E(X).
Equivalently, Dold-Kan exchanges the shift [−1] of chain complexes with loops of based

spaces, and then this becomes this becomes the chain complex formulation of the axiom
that we saw in subsection 1.4.3.

BTW, this is why we could get away with only taking spaces of chains, instead of
having to take simplicial abelian groups. Because for any X ∈ Sfin

∗ , the equivalence E(X) ≃
ΩiE(ΣiX) equips the space of chains with a Ei-structure for all i. These structures are
compatible with each other, making E(X) ultimately into a E∞-space. Thus its homotopy
groups are all abelian groups, and we are good.

1.4.6. Additivity axioms rephrased. So far we have decided that ∞-categorical ho-
mology theories should be functors E ∶ Sfin

∗ → S (this already subsumes the homotopy
invariance axiom) that satisfy certain properties, and we have identified the suspension
axiom. It remains to identify the additivity and exactness axioms (Axioms 2. and 4.
above), and we do so in this section and the next.

The additivity axiom, as remarked in subsection 1.4.3, translates on the level of chain
complexes to the claim that X ↦ C∗(X;E) takes ∨ to ⊕. But the direct product ⊕ is both
a product and a coproduct in abelian groups, so it might be unclear in which role it is
appearing here. The Dold-Kan shift of gears is once again useful: now we are talking about
spaces, and we need to decide whether E(X∨Y ) should be E(X)×E(Y ) or E(X)∐E(Y ).
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Note that homotopy groups of spaces satisfy πi(Y ×Y ′) = πi(Y )⊕πi(Y ′), so the first choice
will surely do.

On the other hand, coproducts would backfire something nasty. Indeed, a homotopy
group always implicitly involves a base-point, so it only knows (excluding i = 0, of course)
only about the connected component of the base-point. Not only that, even supposing
you chose to work in the based setting (which we are not in the codomain of E!) and
could take the wedge ∨ to fix the issue, it would still not be good. To see that, remember
from your basic alg top class that the most trivial corrolary of Van Kampen’s theorem
computes the fundamental group of S1 ∨ S1 as the free group on two generators - quite
far from the friendly Z⊕Z!

This all leads us to state the additivity axiom as:

Definition 5 (Additivity axiom). For any two pointed finite spaces X and Y , the canon-
ical map exhibits a homotopy equivalence E(X ∨ Y ) ≃ E(X) ×E(Y ).

There is technically a wee bit more encoded in the version of Additivity encoded in
Axiom 2. above. That is, choosing one of the spaces to be a point, it allows us to conclude
that Ei(X) ≃ Ei(X)⊕Ei(∗) for all i and all X, and as such that Ei(∗) = 0. This is indeed
the defining property of a reduced homology theory. The space-of-chains level Additivity
statement fails to take this into account, so we will need to impose it additionally at the
end in 1.4.8.

1.4.7. Exactness axiom rephrased. To phrase exactness, we need to decide if we are
viewing the exactness of the sequence appearing in Axiom 4. above as a statement about
kernels or as a statement about cokernels. In the former case, the spaces-of-chains-level
statement will involve the (homotopy) fiber, in the latter a the (homotopy) cofiber.

For this, note that Y ↦ π0MapS∗(Si, Y ) exibits homotopy groups as a glorified Hom
functor. Since the second factor of Hom takes limits to limits (in the ∞-categorical sense
here, but then π0 returns their un-derived ordinary analogues), we find that πi(fib(f)) ≅
Ker(πi(f)). So choosing the fiber will surely work.

Conversely, picking the cofiber would not work, as the covariant Hom does not preserve
colimits (it does preserve filtered ones because Si is compact, but not cofibers). Combining
what we have figured out, the exactness axiom may be phrased as:

Definition 6 (Exactness axiom). For any map of pointed finite spaces f ∶ X → Y the
canonical map

E(X)→ fib(E(Y )→ E(cofib(f)))
induced by f is a homotopy equivalence.

1.4.8. Combining the Axioms 2. – 4. into one. One nice thing is that all three of
the suspension, additivity, and exactness axioms can be elegantly stated simultaneously
in this “space of chains” context. Note that, since ∨ is the coproduct in Sfin

∗ , all three
statements are about evaluating E on colimits and obtaining limits. In fact, here is a
common way to generalize all three of them:

Definition 7. A functor F ∶ C→D is excisive if for every diagram of the form Y ←X → Z
in C, the canonical map F (X) → F (Y ) ×F (Y ∐X Z) F (Z) is an equivalence in D. That is
to say, F sends pushout squares in C to pullback squares in D.

An excisive functor E ∶ Sfin
∗ → S is now almost the same as the above properties, only

with, one difference: we have no control over the space E(∗), and if it is not contractible,
we will get different things. So let us suppose that indeed (as follows from the Eilenberg-
MacLane axioms anyway) that the functor E is pointed, in the sense that it sends to zero
object ∗ ∈ Sfin

∗ to the terminal object ∗ ∈ S.
To show that a pointed excisive functor E ∶ Sfin

∗ → S satisfies the above-stated Additivity
axiom, consider the diagram X ← ∗ → Y in Sfin

∗ , to show the Exactness axioms, consider
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∗ ← X
fÐ→ Y, and finally for Suspension, consider the diagram ∗ ← X → ∗. It is also quite

clear that, if the conclusion of excision holds for these three types of diagrams, they will
hold for all - this is roughly due to pointedness giving us access to ∗, the third diagram
giving us access to suspension, and so now we can build any Si, and finally the first two
diagrams give us access to coproducts and pushouts, which together generate all finite
colimits. Since any space in Sfin

∗ is built out of finite colimits of spheres, we are golden.

1.4.9. Stabilization as excisive functors. In summary, a good ∞-categorical notion
of a homology theory is a pointed excisive functor E ∶ Sfin

∗ → S. If we denote the full
subcategory that the latter span in Fun(Sfin

∗ ,S) by Exc∗(S), then there is a canonical
equivalence of ∞-categories Exc∗(S) ≃ Sp. Its inverse is given by sending a spectrum E
into the functor X ↦ E[X] ∶= E ⊗ S[X], where ⊗ stands for the as-of-yet-unmentioned
smash product of spectra. Alternatively, in line with subsection 1.2.6, we could have also
directly defined E[X] ≃ limÐ→X E, the colimit of the constant diagram from the ∞-groupoid

X into spectra with constant value E.
Of course there was nothing special about the ∞-category S here. If C is an ∞-category

with all finite colimits, letting Exc∗(C) denote the ∞-category of pointed excisive functors
Sfin
∗ → C, there is an identification Exc∗(C) ≃ Sp(C). Thus the stabilization of an ∞-

category always amounts to considering homology theories on pointed finite spaces with
values in said ∞-category.

In fact, the equivalence Exc∗(C) ≃ Sp(C) may be proved without insane difficulty by
checking that the functor Exc∗(C) → C, sending E ↦ E(S0), satisfies the universal prop-
erty for the stabilization functor Ω∞ ∶ Sp(C) → C. From the perspective of homology
theories and spaces of chains, the underlying infinite loop space of a spectrum E is ex-
pressed as Ω∞E ≃ E(S0).

While the excisive functor description of stabilization may seem like the most arcane
among the several approaches we have so far seen, it can in fact be the most useful one
for proving various fun abstract things about stabilization - see Higher Algebra for a
spectacular demonstration.

1.4.10. Recovering an Ω-spetrum from an excisive functor. Let us say a few words
about how to recover an Ω-spectrum from an excisive functor E. Since an excisive func-
tor satisfies the rephrased Suspension Axiom that we gave in subsection 1.4.6, we have
ΩE(ΣX) ≃ E(X) for any X. Choosing X ≃ S0 and iterating, we find that E(Si) ≃
ΩiE(S0). Thus we obtain an Ω-spectrum by setting Ei ∶= E(Si), and this is the Ω-
spectrum that represents the same spectrum as the excisive functor E.

It might at first sight seem highly implausible that the collection of spaces E(Si) to-
gether with the equivalences ΩiE(Sj) ≃ E(Sj−i) for all j ≥ i should determine the values
E(X) for any finite pointed space X, let alone the functoriality of the whole excisive
functor E. Alas, excisiveness is a strong condition.

The point is that any space may be obtained by gluing together dijsoint unions of spheres
and filling them in by discs (that is to say, any space may be presented as a CW complex),
and since Si ≃ ΣiS0 is a colimit, and taking disjoint unions and gluing are also colimits,
this means that any pointed space may be built from S0 by (homotopy) colimits. Indeed,
we defined finite spaces as those whih may be obtained by finite colimits! Now, any finite
colimit may be obtained as a sequence of pushouts, and the excisiveness coniditon tells
us how to evaluate E on pushouts. Hopefully this makes the claim that the Ω-spectrum
Ei ≃ E(Si) determines the whole excisive functor E less surprising.

1.4.11. Brown’s Representability Theorem. We saw that spectra (or more general
stabilization of an ∞-catgory) may be expressed in terms of excisive functors. We encoun-
tered the latter by discussing a way to rephrase the notion of a homology theory in an
∞-categorically-friendly way. By taking homotopy groups of an excisive functor, it is not
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too hard to make a homology theory out of one. In fact, there is an essentially unique
way of doing that - this is the content of the following celebrated Brown Representability
Theorem.

Theorem 8 (Brown). Let Ei ∶ CWfin
∗ → Ab be a homology theory, i.e. let it satisfy the

Eilenberg-Steenrod axioms. Then there exists an Ω-spectrum {Ei}i∈Z such that

Ei(X) ≃ limÐ→
k

πi+k(Ek ∧X)

for any finite pointed CW complex X.

Here Ek∧X denotes the smash product of the pointed spaces Ek and X - see subsection
1.5.1 for a review of that basic operation on pointed spaces. The colimit, which ranges as
k →∞ and makes sense at least for k ≥ −i, is taken along homomorphisms

πi+k(Ek ∧X) ≃ πi+k(ΩEk+1 ∧X)→ πi+k(Ω(Ek+1 ∧X)) ≃ πi+k+1(Ek+1 ∧X),
where the first equivalence comes from the structure maps of the Ω-spectrum, the second
map is induced by the smash product as

ΩY ∧X ≃ MapS∗(S1, Y ) ∧MapS∗(S0,X)→MapS∗(S1 ∧ S0,X ∧ Y ) ≃ Ω(Y ∧X),
and the final map takes into account that πn(ΩY ) ≃ πn+1(Y ).

The Ω-spectrum {Ei} in the statement of the Theorem turns out to be unique up to
homotopy equivalence. Conversely given any Ω-spectrum {Ei}i∈Z, we may define Ei(X) ∶=
π0(Ei ∧X) just as in the Theorem statement to obtain a homology theory.

Thus spectra and homology theoreories are in bijection up to homotopy equivalence,
perhaps leading one to wonder why we consider the more complicated spectra in the first
place. The answer is that while they have the same objects, the category of homology
theories is allegedly1 a mess, while the category of spectra hSp (and even more so the
associated ∞-category Sp) is terrifically well-behaved - the whole field of stable homotopy
theory is a justification of this claim.

In fact, Brown’s Representability Theorem is a little stronger than the statement we
gave above. It shows that some light conditions on a functor F ∶ CWfin

∗ → Set guarantee
that there exists a space Y such that F (X) ≃ π0(Y ∧ X) for all finite pointed CW-
complexes X. When F is a component functor of a homology theory, these spaces Y
together assemble into an Ω-spectrum. The dual statement is where the theorem gets its
name: under some light conditions on a functor F ∶ (CWfin

∗ )op → Set, there exists a space
Y such that F (X) ≃ π0MapS∗(X,Y ). Since we have π0MapS∗(X,Y ) = HomCW∗(X,Y ),
this is a representability result.

This contravariant version of Brown’s Representability specializes to give representabil-
ity of any cohomology theory by spectra as well. We will not define cohomology theories
fully, instead remarking that they are contravariant functors required to satisfy a similar
set of Eilenberg-Steenrod axioms as we listed in 1.4.1 for their covariant homology theory
cousins.

Theorem 9 (Brown). Let Ei ∶ (CWfin
∗ )op → Ab be a cohomology theory. Then there

exists an Ω-spectrum {Ei}i∈Z such that Ei(X) ≃ π0MapS∗(X,Ei) for any finite pointed
CW complex X.

We mentioned this cohomological version of Brown’s Representability because we will
use it extensively in our discussion of topological K-theory in section 2.2.

In the language of the ∞-category of spectra, the conclusion of Brown’s Representability
Theorem may be rephrased as saying that there exists a spectrum E ∈ Sp such that in the

1This is an oft-repeated claim that is rarely substantiated. In an interesting MathOverflow post, Peter
May claims that this was already a classical folklore fact the time he was in grad school.

11



cohomological case

Ei(X) ≃ π0 MapSp(Σ∞X,ΣiE) ≃ π−iMap
S
(Σ∞X,E)

where Map
S

denotes the internal mapping spectrum, and in the homological case that

Ei(X) ≃ πi(Σ∞X ⊗E),
where ⊗ denotes the smash product of spectra, to be discussed next.

1.5. Smash product of spectra

One of the key structures that spectra should come equipped with is the smash product.

1.5.1. Smash product of spaces. The smash product of spectra should be compatible
(and extend) the smash product of pointed spaces, where recall that it is defined as
X ∧ Y = (X × Y )/(X ∨ Y ) - take the product, and then pinch everything that has either
X or Y ’s base-point on either coordinate together into a single base-point.

An important thing to note is that, while equipping the ∞-category S∗ with a symmetric
monoidal structure, the smash product is not actually the categorical product in it. It
nonetheless is a categorically meaningful construction: for any X,Y,Z ∈ S∗, there is a
natural equivalence

MapS∗(X ∧ Y,Z) ≃ MapS∗(X,MapS∗(Y,Z)),
where the mapping space MapS∗(Y,Z) is pointed with the constant map to the base-point
of Z as the base-point. This is the sense in which ∧ is the”correct” sort of product to
consider in the based setting.

1.5.2. Yet another approach to spectra. One reason to care about the smash product
is that suspension may be expressed through it as ΣX = S1 ∧X. In that sense, passing
from spaces to spectra is all about inverting the object S1 with respect to the symmetric
monoidal structure ∧ on S∗.

Suppose for a moment that we already have a well-developed theory of the smash
product of spectra, making Sp into a symmetric monoidal ı-category Sp⊗. Then the idea
that spectra are all about inverting S1 with respect to ∧ is in fact a theorem:

Theorem 10 (Hovey). The left adjoint functor Σ∞
+ ∶ S∗ → Sp exhibits the ∞-category

of spectra as a localization Sp ≃ (S∗)∧[(S1)−1] of the presentably symmetric monoidal
category S∗ with respect to the smash product at the object S1.

More formally, that is to say that for every presentably symmetric monoidal ∞-category
C⊗ and symmetric monoidal left adjoint functor F ∶ S∧∗ → C⊗ for which the object F (S1)
is invertible (admits an inverse with respect to ⊗), there exists an essentially unique sym-

metric monoidal left adjoint functor F̂ ∶ Sp⊗ → C⊗ for which F ≃ F̂ ○Σ∞
+ .

Note that working in the setting of presentably symmetric monoidal ∞-categories is
essential for this to work, i.e. the theorem is false in bigger categories. Also allow me to
explain that “presentably symmetric monoidal” means that we are dealing with a pre-
sentable symmetric monoidal ∞-category equipped with a symmetric monoidal operation
(X,Y ) ↦ X ⊗ Y , which preserves colimits separately in each variable. This is a very
common assumption to make on a symmetric monoidal ∞-category - presentably sym-
metric monoidal ones are to symmetric monoidal ones as presentable ∞-categories are to
all ∞-categories.

I credit Hovey with the theorem, because he was the first one to make a similar statement
work in a model categorical setting, and proposed an analogous procedure as a form of
stabilization (though it often disagrees with “real” stabilization as we know it!). That said,
there were additional difficulties in making this work in the ∞-categorical setting, where
the result is due to Barthel and friends. They were also the ones to formalize how a similar
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procedure yields various analogues of spectra which are “richer” than just stabilization,
such as motivic spectra and genuine equivariant spectra.

1.5.3. A quick peak at the genuine world. Since we’re already here, let’s just sketch
roughly how this works in the genuine equivariant world, i.e. how the technique of the
previous subsection gives rise to a good ∞-category of G-spectra. Nothing in this subsec-
tion will have any bearing on the subsequent ones, and it can (and maybe should) safely
be skipped.

1.5.3.1. Genuine equivariant spaces. You start off with a finite group G (some of it goes
through for a compact Lie group too, but let’s not go there). The game we’re playing
is that we wish to keep track not just of G-equivariance, but of H-equivariance with
respect to all subgroups H ⊆ G at once. Slightly more formally, G-spaces can be made
by gluing together G-equivariant cells of the form Σi(G/H). Contrast this with just the
Σi(∗) ≃ Si-shaped cells that we use when setting up usual homotopy theory. A theorem
due to Elmendorf gives a slightly neater description of the ∞-category SG of G-spaces as

SG ≃ Fun(Oop
G ,S)

where OG is the orbit category of G, i.e. the full subcategory of Setfin
G (the ordinary

category of usual finite G-sets, i.e. finite sets with a G-action) spanned by “orbits” G/H
for all subgroups H ⊆ G. The point to take away is mostly just that G-spaces make
perfectly good sense as a nice presentable ∞-category.

1.5.3.2. Pointed equivariant spaces and representation spheres. Pointed G-spaces are easy:
the ∞-category SG∗ is obtained simply as the pointification of G-spaces, i.e. SG∗ ≃ (SG)∗/.
They even carry a symmetric monoidal smash product ∧ defined in an analogous way to
the one in ordinary based spaces.

A key family of examples of based G-spaces is: take any finite-dimensional (real, or if
you insist, orthogonal) representation V of G, and let SV denote the one-point compact-
ification of V . This is the representation sphere associated to the rep V , with the added
compactifying point-at-infinty as the base-point. When V = Ri is the trivial G-rep, this
recovers the ordinary sphere Si, and just as usual spheres satisfy Si ∧ Sj ≃ Si+j , we have
SV ∧ SW ≃ SV ⊕W in the G-world.

Is the fact that we have two different sorts of spheres running around, ones built from
orbits and the others built from representations, bother you? Welcome to equivariant
homotopty theory.

1.5.3.3. Genuine equivariant spectra. As part of the welcome package, please enjoy your
complimentary definition of G-equivariant spectra:

Definition 11. The ∞-category of (genuine) G-spectra as a localization

SpG ≃ (SG∗)∧[{(SV )}−1
V ∈Rep(G)]

of the presentably symmetric monoidal category SG∗ with respect to the smash product
at the “multiplicative subset” of representation spheres.

Of course it would suffice to just invert all irreps (since rep spheres are as observed
additive in the rep). And all irreps can be found as subreps of the one rep to rule them
all, one rep to find them, one rep to bring them all, and in the darkness bind them:
the regular representation R[G]. In that sense, the regular representation sphere SR[G]

contains all the “possible shapes” (distinct irreps) that representation spheres can take.
So if it tickles your pickle to only invert one representation sphere, then perhaps you will
enjoy the description SpG ≃ (SG∗)∧[(SR[G])−1].
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1.5.3.4. Spectral Mackey functors. Btw, just before we depart from these unwelcoming G-
lands, let’s mention another way of defining the ∞-category of G-spectra. For motivation,
recall Elmendorf’s theorem for the unstable G-spaces from above. We can rephrase it as
SG ≃ FunΣ((Setfin

G )op,S), identifying G-spaces with finite coproduct preserving functors
from finite G-sets to spaces. To get G-spectra, we make two changes: values should be
taken in spectra instead of in spaces, and secondly we wish to keep track of more equivari-
ance. The latter is encoded by replacing our domain ∞-category with the correspondence
∞-category Corr(Setfin

G ), which is in the local parlance known as the Burnside category of
G. Then G-spectra amount to

SpG ≃ FunΣ(Corr(Setfin
G ),Sp),

where coproduct preservation works the same before, with ∐ giving a symmetric monoidal
structure to Corr(Setfin

G ) (this sort of a game should be well familiar to you if you’ve ever
looked into the “meat” of Gaitsgory-Rozenblyum, vol 1). This description of G-spectra is
known in the field as “spectral Mackey functors”, for what that’s worth.

Honsetly, I don’t really know why you would care about anything in this section. Maybe
you like to see how some rep theoretic notions get (ab)used in random other fields? Maybe
for mathematical culture? In any case, let us linger in this equivariant realm no longer -
we have already stayed past our welcome!

1.5.4. Desiderata for the smash product. Back to sanity! While pointed spaces have
a smash product, constructing a good smash product on spectra turned out to be quite a
hurdle in the development of stable homotopy. In retrospect, this is tied to the classical
workers in the field emphasizing the importance of “strict models”, where all the homotopy
coherence was (in various different highly intelligent ways) eliminated, and set-theoretic
models could be employed. That is surely an approach to facilitate computations, but
for abstract things such as have to do with homotopy coherence (homotopy limits and
colimits, etc) it can be quite inconvenient.

Anyway, what should we demand of the smash product of spectra? It should be a
symmetric monoidal structure ⊗ on the ∞-category Sp, for which the suspension spectrum
functor Σ∞ ∶ S∗ → Sp will be symmetric monoidal. That is to say, we want that Σ∞(X ∧
Y ) ≃ Σ∞X ⊗Σ∞Y , and that the sphere spectrum S is the unit for ⊗. In fact, we imagine
the smash product as an analogue of the tensor product of modules, but where modules
are over the sphere spectrum.

Furthermore we want the smash product to commute with colimits - the smash product
should more accurately be an analogue of the derived tensor products, just as the ∞-
category of spectra, being an ∞-category, will be the derived (DG-)category of S-modules.

1.5.5. Out of thin air. One of the most amazing things about the ∞-categorical ap-
proaches to stable homotopy theory (and its subsection that used to be known as “brave
new algebra”) as developed in Higher Algebra, is that the smash product comes almost
entirely for free. This is in great contrast to previous approaches to spectra, where ob-
taining it was a major technical achievement. To get the smash product however, we need
to consider some rather abstract nonsense, to which we dedicate the next few subsections.

1.5.6. The Lurie tensor product. The ∞-category of stable presentable ∞-categories
PrLst, just as well as the bigger PrL of not-necessarily stable ones, carries a particularly
nice symmetric monoidal structure: the Lurie tensor product, given by

C⊗D ∶= FunR(Cop,D).
Of course the Lurie tensor product is very natural. It fulfills in the context of PrLst or

PrL respectively, the analogous universal property that the usual tensor product does in
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modules. More precisely, for any triple of (stable) presentable ∞-categories C,D, and E

there is a canonical equivalence of ∞-categories

FunL(C⊗D,E) ≃ FunL(C,FunL(D,E)).
This is nothing but a version of the venerated tensor-Hom adjunction. If you wish,

you can further identify the functor ∞-category of functors with the full subcategory of
Fun(C ×D,E) spanned by all the functors F ∶ C ×D → E which preserve colimits in each
variable separately. In this sense, the Lurie tensor product, like the tensor product of
modules, encodes “bilinear” maps in term of “linear” ones (where linearity in this context
stands for colimit preservation). This makes among other things rather obvious the fact
that ⊗ is symmetric.

1.5.7. Stabilization as tensoring with spectra. The magic of the Lurie tensor product
is this: the ∞-category Sp is its unit in PrLst. This, or actually something a bit more general,
actually isn’t hard to show either. In fact, let’s do it!

Let C be an arbitrary presentable ∞-category. Now let us split things into “steps”:

● Step 1: Let’s actually spell out some details of the already-mentioned observa-
tion that the ∞-category S is freely generated under colimits from a single ob-
ject. Indeed, we have S ≃ P(∗) where P denotes the presheaf functor P(C) ∶=
Fun(Cop,S), and the presheaf functor has the universal property that Fun(C,D) ≃
FunL(P(C),D) for any ∞-category C and any ∞-category with all colimits D. That
is to say, P(C) is the freely generated by colimits from C, the universal arrow of
this universal property of course being given by the Yoneda embedding.

● Step 2: Note that, via passing to opposite categories which switches left and right
adjoints, we have

C⊗ S ≃ FunR(Sop,C) ≃ FunL(S,Cop)op ≃ (Cop)op ≃ C,

where the second-to-last equivalence follows from Step 1. We conclude that the
∞-category S is the unit for ⊗ in PrL.

● Step 3: For any ∞-category D the pointification procedure as described in sub-

section 1.3.1 easily satisfies the property that Fun(Cop,D)∗ ≃ Fun(Cop,D∗). The
same holds if we adorn the functor ∞-categories with R (all these things are simple
exercises in category theory). Applying this to D ≃ S, we find that

C⊗ S∗ ≃ FunR(Cop,S∗) ≃ FunR(Cop,S)∗ ≃ (S⊗ C)∗ ≃ C∗,

where the last equivalence is where we used Step 2. Thus tensoring with S∗
amounts to pointification of a presentable ∞-category.

● Step 4: Remember that Sp ≃ lim←ÐS∗, the limit of sequential diagram with all the

maps Ω. Since the Hom preserves limits in its second factor (and the subscript R
means we are looking at limit preserving functors too), this implies that for every
presentable ∞-category we have

C⊗ Sp ≃ FunR(Cop, lim←ÐS∗) ≃ lim←ÐFunR(Cop,S∗) ≃ lim←ÐC∗ ≃ Sp(C)
where in the second-to-last term the limit is taken over suspension functors in
the ∞-category Cop. The last equivalence is of course just the construction of
stabilization from subsection 1.3.1.

Since we know that Sp(C) ≃ C for any stable ∞-category C, it follows that
C ⊗ Sp ≃ C for all C ∈ PrLst. We conclude, as promised that the ∞-category of
spectra is the unit for the Lurie tensor product on PrLst.

Btw, just note that Step 4. offers us yet another different contruction of stabilization for
a presentable ∞-category. We have so many of those now, so many different perspectives,
yay! :)
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1.5.8. Unveiling the smash product. OK, now we know that Sp is the ⊗-unit in PrLst.
“Then what?!” I hear you say. “You promised me a smash product of spectra!”. Alas, we
have already obtained it, we just don’t know yet!

Indeed, here is an obvious fact: if C is a symmetric monoidal ∞-category and 1 ∈ C is
a unit object, then there exists an essentially unique commutative algebra structure on
1. That is to say, we may view the symmetric monoidal unit as 1 ∈ CAlg(C). Duh: a
commutative algebra structure on 1 is about multiplication maps 1⊗⋯⊗1→ 1, but these
objects are canonically equivalent, and this canonical equivalence may be chosen as the
multiplication.

This is the most trivial and un-interesting category-theoretic observation, but here is
shines: apply it to the unit Sp in the ∞-category PrLst with respect to the Lurie tensor
product. Thus there is a canonical way in which Sp ∈ CAlg(PrLst), and the objects of the
latter ∞-category may be canonically identified with the stable presentably symmetric
monoidal ∞-categories (recall the latter notion from subsection 1.5.2). That is to say,
Sp carries a canonical symmetric monoidal structure, which preserves colimits in each
variable. We denote the symmetric monoidal operation by ⊗ and call it the smash product
of spectra.

1.5.9. Checking the desiderata. The smash product constructed in this abstract way
automatically preserves colimits in each variable. That is one of the desired properties
for it, that we listed in subsection 1.5.4. The other one is that the supsnesion spectrum
functor Σ∞ ∶ S∗ → Sp be symmetric monoidal with respect to the smash product on both
sides. To verify this, we must delve yet a little more deeper into the abstract nonsense.

Note that, as we applied the argument in subsection 1.5.8 to the unit object Sp ∈ PrLst
with respect to the Lurie tensor product, so could we apply it entirely analogously to
the S and S∗, the Lurie-tensor-product-unit objects (according to Steps 2. and 3. in
subsection 1.5.7) of PrL and PrL∗ respectively. This equips S with its usual Cartesian
product structure (that’s easy enough to check). Now the symmetric monoidal structures
on S∗ and Sp are all of the same form, arising from the Lurie tensor product, which
implies that the canonical functors between them in PrL will preserve it, i.e. be symmetric
monoidal. By “canonical functors” here we mean the left adjoints (since we’re working in
PrL and not in PrR) of the reverse “forgetful functors”, i.e. the the pointification functor
S→ S∗ given by X ↦X+ and the suspension spectrum functor Σ∞ ∶ S∗ → Sp.

To recognize the symmetric monoidal structure on pointed spaces, note that the smash
product of spaces indeed satisfies the condition that (X × Y )+ ≃ X+ ∧ Y+ for any two un-
based spaces X and Y (go ahead, draw a picture to convince yourself! Feel glorious for
being able to draw a picture for a proof, as if you were some kind of a real topologist and
not actually neck-deep down this ∞-categorical mess.). Since all spaces in S∗ are built
out of colimits from S0 ≃ ∗+, e.g. the spheres are obtainable as Sn ≃ ΣnS0, a colimit if
ever there was one, the condition that the symmetric monoidal structure on S∗ preserves
colimits in each variable (automatic due to working in the presentable setting, as explained
in subsection 1.5.8) implies that what happens to X+ for all spaces X ∈ S (and furthermore
sufficiently just for X ≃ ∗) entirely deterimes the symmetric monoidal structure. Thus it
follows that the symmetric monoidal structure obtained on S∗ is just the usual smash
product of pointed spaces.

This means that the suspension spectrum construction is Σ∞ ∶ S∗ → Sp is symmetric
monoidal with respect to smash product on both sides. That amounts to the claim that
Σ∞(X ∧ Y ) ≃ Σ∞X ⊗Σ∞Y for all pointed spaces X and Y , as well as the claim that the
sphere spectrum S ≃ Σ∞S0 is the unit for the smash product of spectra. Thus we have
fulfilled all the desired conditions of subsection 1.5.4.
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1.6. Why did people ever come up with spectra?

These days, the study of spectra and stable ∞-categories more generally might be
seen (and is so seen by many of the practitioners) as its own end. Spectra are rich and
interesting objects with deep and fundamental connections to homological algebra, the
study of manifolds, number theory, and algebraic geometry all in one - what’s not to love!

1.6.1. Stable homotopy groups. The first and most decisive development that led to
spectra was Freudenthal’s Suspension Theorem. It goes something like this: given a
pointed space X, the counit of the adjunction Σk ⊣ Ωk between k-fold iterated suspensions
and based loops is a canonical map of the form X → ΩkΣkX. Furthermore observe that
for k ≤ l, these maps factor through ΩkΣkX → ΩlΣlX and give rise to a tower of based
maps

X → ΩΣX → Ω2Σ2X → Ω3Σ3X → ⋯.
Recalling the canonical isomorphism πi(ΩkY ) ≅ πi+k(Y ) (which we have already en-

countered at the start of subsection 1.4.5), we obtain by applying πi to the above tower a
tower of abelian groups

πi(X)→ πi+1(ΣX)→ πi+2(Σ2X)→ πi+3(Σ3X)→ ⋯.
Freudenthal’s Theorem now guarantees that (at least for X a finite space, or if you

want, finite CW complex) this tower stabilizes, i.e. all the maps from a certain one onward
are isomorphisms.

Therefore it makes sense to consider the i-th stable homotopy group of X defined as
πsi (X) = limÐ→k πi+k(Σ

kX). Freudenthal’s theorem just says that this is the same as dropping

the limit if you take a big enough value of k. The reason for people’s interest in stable
homotopy groups was simple: often times, whey were much simpler to compute than the
famously computationally-inaccessible higher homotopy groups, and certain information
about the latter could be derived from knowledge of the former.

1.6.2. Homotopy groups of spectra. Of course these days, we rarely speak about
stable homotopy groups. Instead we usually talk about homotopy groups of spectra,
which encapsulate the latter because πi(Σ∞X) ≃ πsi (X). In analogy with the above,
if a spectrum X is given by a sequence of spaces {Xk} equipped with structure maps
ΣXk →Xk+1, its homotopy groups may be defined as πi(X) ∶= limÐ→k πi+kXk.

If we wish to be a little less anachronistic, we may simply define in complete analogy
with spaces πi(X) = π0MapSp(ΣiS,X).

Note thus that for all i ≥ 0, this gives πi(X) ≃ πi(Ω∞X) with πi on the left standing
for homotopy groups of spectra and on the right for ordinary homotopy groups of spaces.
This shows that the “underlying infinite loop space” Ω∞X of a spectrum X is usually a
rather complicated space even for very simple spectra X. For example, Ω∞S is the free
loop space on one generator, a space whose homotopy groups are the stable homotopy
groups of spheres. The latter not being known, it is clear that it has to be one wild space.

1.6.3. Spectra also have to do with other things. Freudenthal suspension was the
seminal phenomenon which made homotopy theorists consider studying phenomena stable
under suspension, inching in light of subsection 1.5.2 towards spectra. A number of other
things homotopy theoriests were interested turned out to also be related to spectra:

● Extraordinary cohomology theories were proved by Brown to all be representable
by spectra. Viewing them as spectra also solved a peering problem that the cat-
egory of cohomology theories themselves was rather well-behaved, and so a poor
place to try to use universal properties.

● Infinite loop spaces are best studied as spectra. We touched upon this in 1.2.4,
but it is worthwhile pointing out, because the intuition of infinite loop spaces is
and was quite different from that of cohomology theories.
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Really I would say that the first of these two point is the key: people cared (and still do -
ask Arun for example) about cohomology theories, and we’ve now known for a while that
having good categories of things we want to study makes life easier. So spectra were just
the convenient place to do it.

But none the less, let us remark a little about the second of the two points above,
namely the connection to loop space theory, in the following 3 subsections.

1.6.4. Recognition theorem for iterated loop spaces. These days, Peter May is most
famous for his textbook on algebraic topology. But there was a time when he was a mighty
force of nature in the field. He was one of the staunchest proponents of spectra, and spent
a great deal of his career looking for ever-better models for them. In particular, the great
EKMM paper (book, really), whose great success it was to give the first good category of
spectra with a smash product (a really big deal at the time, the early 90s, and culmination
of more than two decades of difficulties) has May as the last and decisive M.

But what I want to mention here isn’t the EKMM construction (which is very artistic
and esoteric, indexing spectra on vector spaces with inner products, and relying crucially
on the properties of the linear isometries operad for the construction of the smash product),
but instead another landmark result of May, which greatly clarified and cemented the role
of spectra (though we will get to that only in 1.6.6).

Theorem 12 (Boardman-Vogt; May). For any k ≥ 0, the k-fold iterated loop spaces
coincide with groups-up-to-homotopy which are commutative up to k-th order homotopy
coherences.

More formally: the k-fold iterated based loops functor Ωk ∶ S∗ → S∗ extends to an
equivalence of ∞-categories

S≥k∗ ≃ Mongp
Ek

between k-connective based spaces on the left (first non-trivial homotopy group is in degree
k) and grouplike Ek-spaces on the right. Here an Ek-space X is said to be grouplike if
π0(X), with the monoid structure that the Ek-space structure on X induces, is actually a
group.

The slightly technical notion of a grouplike Ek-space in the formal statement is the
rigorous meaning behind the heuristic “groups-up-to-homotopy which are commutative
up to k-th order homotopy coherences” appearing in the informal statement.

The take-away is that any group operation arises up to homotopy from concatenation
of loops, and that homotopy analogues of commutativity (Ek-ness) correspond to how
many-fold the loop space in question is.

1.6.5. What are Ek-spaces anyway. The notion of Ek-structure is the standard homo-
topy business: commutativity from classical algebra can be required on several levels. Not
at all: that is E1 - that is to say, E1 only means that we have a homotopy-associative
operation, and we can say E1 ≃ A∞ where An are homotopy-notions of associativity (we
won’t be encountering these associativity fellows from here on). Commutativity can be
demanded on just the level of π0 - that is E2. Next E3 amounts to commutativity up to
first-level homotopy coherence, e.g. the choice of how to pass between the permutations of
the different three-factor products should be contractible. But that doesn’t say anything
about four-factor product, as the contractibility of the space of those would amount to E4.
In general an Ek structure means that we have a monoid operation and the products of
up to k elements can be put in whatever order up to a contractible choice (e.g. switching
between them can not create non-trivial isomorphisms).

In classical algebra we of course only have two possibilities form monoids, groups, rings
and the like: either E1, which means associative, or E2 = E3 = ⋯ = E∞, which means
commutative. In retrospect, that is a consequence of working in Set,Ab or the likes,
which are all 1-categories.
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When one works in a 2-category setting, there are three possibilities: either E1 meaning
associativity, or E2 which is partial commutativity, or E3 = E4 = ⋯ = E∞ which is full
commutativity. This too is familiar: applied to the case of the 2-category Cat of categories,
these three notions of a monoid structure correspond to monoidal categories, braided
monoidal categories, and symmetric monoidal categories respectively.

Since we are working in a genuine ∞-categorical setting in homotopy theory, there are
infinitely many distinct possibilities for homotopy monoids

E1 ⊊ E2 ⊊ E3 ⊊ ⋯ ⊊ E∞ ∶= ⋃
k≥1

Ek.

In particular, E∞, which means homotopy commutativity up to all orders of homotopy
coherence, is the “real”, or better most complete, analogue of commutativity.

BTW, just to have some intuition on what En means, let me mention the Dunn Addi-
tivity Theorem. It says that Ek ≃ E⊗k1 , or informally that a Ek-structure is equivalent to a
set of k-many compatible E1-structures (of course to make this rigorous, the language of
∞-operads is needed). Applying this for k = 2 in the classical context of sets say, we recover
the classical Eckmann-Hilton argument; indeed, Dunn Additivity is merely a far-reaching
refinement thereof.

1.6.6. Recognition theorem for infinite loop spaces. Of course the Recognition the-
orem of subsection 1.6.4 didn’t really say anything about spectra, only about iterated
loop spaces. But recall that spectra, at least the connective ones, may be identified with
infinite loop spaces. This amounts to passing to the limit k →∞ in the above statement,
and gives May’s theorem:

Theorem 13 (May). Infinite loop spaces coincide with groups-up-to-homotopy which are
commutative up to all orders of homotopy coherences. More formally: the underlying
infinite loop space functor Ω∞ ∶ Sp→ S∗ extends to an equivalence of ∞-categories

Spcn ≃ Mongp
E∞ = CMongp

between connective spectra on the left (no negative homotopy groups) and grouplike E∞-
spaces on the right.

This version of the recognition theorem can be derived from the previous one with some

∞-categorical dexterity, using the fact that Sp ≃ lim←Ð(⋯ ΩÐ→ S∗
ΩÐ→ S∗

ΩÐ→ ⋯). In fact, this

limit definition of spectra may well be motivated from the perspective of this theorem
as the analogue of pointed spaces which makes the theorem, analogue of the Recognition
Theorem of subsection 1.6.4, work for E∞-groups.

If the take-away of the iterated loop space Recognition Theorem in 1.6.4 was that the
operation in any Ek-group comes from k-fold composition of loops, then the take-away here
is that the operation in any E∞-group comes from addition in a (connective) spectrum.

May’s Theorem may be seen as giving justification to the claim that spectra play the
analogous role with respect to spaces, or in homotopical mathematics, as abelian groups
do with respect to sets, or in ordinary mathematics. So indeed at this point, homotopy
theorists could do little else but acknowledge that spectra were a key notion and here to
stay.

This theorem is also the first strong indication of the claim that stable homotopy theory
is in fact all about algebra (albeit algebra in a certain homotopy-invariant setting). We
will discuss this in much more detail in the next section.

1.7. Brave New Algebra

The term “Brave New Algebra” was given to stable homotopy theory (or at least to a
certain subfield there-of) half-mockingly by Waldhousen, one of its leading practitioners.
The point was something like this: stable homotopy theory developed out of the study
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of spaces (see the previous section), but by that point in time (the early 90s I think) it
had “degenerated” into what was just-about pure algebra. Whatever algebraists could do
with modules, stable homotopy theorists were able to do with spectra, albeit usually with
considerably more effort. The name “brave new algebra” was supposed to acknowledge
this aspect of the field, encapsulated in the motto: Stable homotopy theory is about
algebra over the spehere spectrum.

These days this is not merely a motto, but a perfectly rigorous fact, though it is only
when “thinking with ∞-categories” that it really becomes useful.

1.7.1. Literary allusion. Before we get to explaining this in more detail, let us acknowl-
edge that the name “brave new algebra” in intentionally evocative of Huxley’s landmark
novel “Brave New World”. This novel is considered a dystopia, and as such the implied
suggestion was that perhaps we shouldn’t be too quick to leave behind the algebraic topol-
ogy that birthed the subject in favor of pure abstract algebra.

Fair, as the complaint may be, it is my humble hope that the warning proved to not
have much substance. Connections to algebraic toplogy have since failed to yield many
significant new insights, while analogies with algebra, algebraic geometry, etc. have. This
goes so far that some albeit rare people these days (Sam being an example) take it to the
extreme and claim that thinking about spaces through topology is useless and misplaced,
and that instead thinking of them only as ∞-groupoids is the way to go.

I don’t personally endorse such a perspective, partially because I find it silly to try to
forget the myriad of intuitions and ideas that went into where the subject is today, but
also because the interplay between category theory, algebra, and toplogical ideas, is one of
the aspects of the subject that I most appreciate and find most surprising and fascinating!
Why discard something so rich?

1.7.2. Abelian groups are discrete spectra. Here is a fact: discrete spectra, i.e. spec-
tra which satisfy πi(X) ≃ 0 for all i ≠ 0, are uniquely determined by the abelian group
π0(X). In fact, the functor X ↦ π0(X) from the subcategory Sp♡ ⊂ Sp spanned by all
such spectra to Ab is an equivalence of categories. Switching the perspective, the inverse
functor of this equivalence allow us to identify abelian groups with a full subcategory of
the ∞-category of spectra.

In the future we will make use of this fully and not distinguish the abelian group A from
the discrete spectrum whose π0 is A. In this and the next paragraph alone, to ease you
into it, we abide by the more classical tradition of denoting the corresponding spectrum
by HA and calling it the Eilenberg-MacLane spectrum of A.

There are several different perspectives on what this identification of abelian groups is
about. Here is a non-exhaustive list:

● Viewing spectra as homology theories (section 1.1.4), the Eilenberg-MacLane spec-
trum HA corresponds to ordinary homology with values in A, sending a space X
to H∗(X;A).

● Recall that stable ∞-categories are an analogue of abelian categories. The equiv-
alences Sp ≃ Sp(S) (section 1.1.1) and S♡ ≃ Set, the latter being the identification
of discrete spaces with sets, then leads us to expect the promised identification
Sp♡ ≃ Ab(Set) ≃ Ab, where the middle term denotes the abelianization.

● Under the equivalence Ω∞ ∶ Spcn ≃ CMon∞ discussed in subsection 1.6.6, passing
to discrete objects (i.e. such that all non-zero homotopy groups vanish) on both
sides gives precisely the desired equivalence Sp♡ ≃ Ab again.

As remarked, the notation HA for the Eilenberg-MacLane spectrum is supposed to indicate
that this is the spectrum representing ordinary homology. But we prefer to think about it
in parallel with the third of the above perspectives, in which case the name A seems more
appropriate for both the spectrum and the abelian group.
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1.7.3. Smash product vs tensor product of abelian groups. The embedding Ab→
Sp is fully faithful, but not monoidal. Indeed, if ⊗ denotes as before the smash product
of spectra, and ⊗♡ denotes the ordinary tensor product of abelian groups, then we have
π0(A⊗B) ≃ A⊗♡ B for all A,B ∈ Sp♡ ≃ Ab, but A⊗B might not be discrete anymore.

Example. for A = B = F2, the graded commutative algebra π∗(F2 ⊗F2) is isomorphic to
F2[ξ1, ξ2, . . .] for generators ξi of degree 2i − 1. This is the famous dual Steenrod algebra,
often denoted A∨ or A∗. It is of great computational importance in homotopy theory - if
it were all concentrated in degree 0, homotopy theory would a significantly less rich and
more boring subject!

Nonetheless, the canonical map A ⊗B → π0(A ⊗B) ≃ A ⊗♡ B exhibits the embedding
Ab→ Sp as lax symmetric monoidal (lax vs strict: there exists such a map vs it must also
be an equivalence). Lax symmetric monoidal structure is enough to preserve commutative
algebra objects (we will pay a debt and discuss those in some detail in the next subsection),
so this induces a map

CAlg♡ ∶= CAlg(Ab)→ CAlg ∶= CAlg(Sp).
Here CAlg♡ is the category of commutative rings, while CAlg is the ∞-category of E∞-

rings (originally known as “highly commutative ring spectra”). The latter is the notion
of a commutative ring native to Sp, when spectra are viewed as the correct ∞-categorical
analogue of abelian groups. In particular, commutative rings may be viewed as special
cases of E∞-rings.

How to see for a fact that the embedding Ab ≃ Sp♡ ↪ Sp is lax symmetric monoidal?
Well, here’s a general fact, easy to prove by abstract nonsense: the right adjoint of a
symmetric monoidal functor is always lax symmetric monoidal. Now the left adjoint
to the inclusion functor in question is given by π0 ∶ Sp → Ab, and since π0(X ⊗ Y ) ≃
π0(X)⊗♡ π0(Y ) for all spectra X and Y , this functor is indeed symmetric monoidal.

1.7.4. Digression: commutative algebra objects. We’ve used the notation CAlg(C)
in the previous section, and at certain times much earlier (e.g. subsection 1.5.8), waiving
it around like any sane person should instinctively know precisely what that is. Perhaps
it’s time to settle the debt and spell out what this is about.

Given a symmetric monoidal ∞-category C⊗, which is to say an ∞-category C with
a symmetric monoidal operation ⊗ on C, a commutative algebra in C informally, this
consists of an object A ∈ C together with a “multiplication” map A ⊗ A → A, which is
unital, associative, and commutative, all up to arbitrarily high homotopy coherence.

A bit more formally, there is a monad Sym∗ on C given by X ↦ Sym∗(X) =∐n(X⊗n)Σn ,
and CAlg(C) is the ∞-categories of modules (or in the more traditional categorical par-
lance: algebras) for this monad Sym∗.

In any case, the commutativity here is understood in the ∞-categorical sense, or equiv-
alentnly homotopical E∞-sense, so another name could be an E∞-algebra object in C.
But since this just is the organic notion of commutativity that we get by working ∞-
categorically, we prefer to stick to the simpler language.

Some examples of commutative algebra objects:

(1) Let R be a commutative ring and Mod♡R the category of (ordinary) R-modules,
made symmetric monoidal through the (non-derived) tensor product ⊗♡R. Then

CAlg(Mod♡R) ≃ CAlg♡R

is the category of (ordinary) commutative R-algebras.
(2) A noteworthy special case of the above with R = Z, we have CAlg(Ab) ≃ CAlg♡,

the category of commutative rings.
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(3) Viewing the ∞-category of spectra Sp as symmetric monoidal with the smash
product ⊗, the commutative algebras are

CAlg(Sp) ≃ CAlg,

the E∞-rings (of more traditionally: E∞-ring spectra). This is of course more of
a definition than a theorem though. Make the ∞-category of spaces S symmetric
monoidal by equipping it with the Cartesian symmetric monoidal structure, which
is to say X ⊗ Y ∶=X × Y. Then we have

CAlg(S) ≃ CMon,

the ∞-category of E∞-spaces. Commutative algebras for a Cartesian structure are
often called commutative monoids, which explains the notation used in subsection
1.6.6.

(4) In the 1-categorical analogue of the previous example, considering Set with its
Cartesian symmetric monoidal structure, we get

CAlg(Set) ≃ CMon♡,

by which we have denoted the category of (ordinary) commutative monoids.
(5) Equipping the category of categories Cat or ∞-category of ∞-categories Cat∞

respectively with the Cartesian symmetric monoidal structure, the commutative
algebra objects CAlg(Cat) and CAlg(Cat∞) are symmetric monoidal categories
and symmetric monoidal ∞-categories respectively.

(6) As mentioned in section 1.1.5, the commutative algebras CAlg(PrL) in the Carte-
sian symmetric monoidal ∞-category of presentable symmetric monoidal ∞-categories
PrL amounts to a stably symmetric monoidal presentable ∞-category. That is to
say, a presentable ∞-category together with a symmetric monoidal structure which
factor-wise preserves colimits.

The third of the examples on this list, E∞-rings, will feature prominently, playing the
role of homotopical commutative rings, from here on.

Surely the utility of the notion of commutative algebra objects is now clear beyond any
doubt, but hopefully it also seems like a rather natural concept.

1.7.5. In higher algebra, like in the alphabet, S comes before Z. Enough digres-
sion, back to our regularly scheduled business!

At the end of subsection 1.7.4, we saw that the functor π0 ∶ Sp → Ab is symmetric
monoidal. In particular, it sends the unit S for the smash product of spectra to the unit Z
for the tensor product of abelian groups. That is to say, we have a canonical isomorphism
π0(S) ≃ Z.

This might look wrong at first glance, since we have π0(S0) = Z/2, but note that it’s
actually OK, since π1(S1) = Z and similarly π2(S2) = π3(S3) = ⋅ ⋅ ⋅ = πs0(S0) = π0(S), where
we have recalled stable homotopy groups from 1.6.1 and their replationship to homotopy
groups of spectra from 1.6.2.

In particular, there is a canonical map of E∞-rings S → π0(S) ≃ Z, witnessing that
the sphere spectrum “quotients down” to the integers. To interpret this, recal that the
ring Z is the initial object in the category of commutative rings. Well, enlarging from
ordinary rings to E∞-rings, their homotopy analogues, the initial object becomes S. From
the POV of algebraic geometry, this means that the point SpecZ is no longer the “smallest
possible” point (i.e. terminal for everything), as there is a point “beneath” it: SpecS. This
is a perspective on SAG (spectral algebraic geometry) championed in particular in a paper
by Toen titled “Under SpecZ” (though, of course, in French).

But note that it is a little different from another slightly-more-conjectural version of AG
“under” SpecZ, the geometry over F1, the fictional field with 1 element. In particular,
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we are not claiming that S is a model for F1, just that both are certain analogues of
commutative rings which map homomorphically onto Z.

1.7.6. Modules and tensor products over an E∞-ring. We saw in subsection 1.7.3
that the embedding Ab ↪ Sp yields an equally fully faithful embedding CAlg♡ ↪ CAlg,
identifying ordinary commutative ring with discrete E∞-rings. Thus things we can do with
ordinary rings, we might as well try do with an arbitrary E∞-rings R.

For isntance, we can speak of R-modules (since we are in the commutative setting,
differentiating left and right modules is unnecessary): that consists of an underlying spec-
trum M together with a multiplication map R ⊗M → M, which satisfies the module
axioms with respect to the E∞-structure on M , of course up to coherent homotopy. The
R-modules (more classically called R-module spectra) form an ∞-category ModR, where
morphisms are spectrum maps M → N which make the appropriate diagrams including
module multiplications on M and N commute up to coherent homotopy.

The smash product of spectra also gives rise to a relative tensor product on ModR. For
any two R-modules M and N , we define

M ⊗R N ∶= limÐ→ (⋯M ⊗R⊗R⊗N ⇛M ⊗R⊗N ⇒M ⊗N)
where ⇒ denotes two parallel arrows, ⇛ denotes three parallel arrows, and we are signi-
fying a simplicial diagram. The morphisms in this simplicial diagram all come from the
R-module structure on M and N , and the multiplication on R itself (the above-undenoted

opposite-direction-going degenericies come from the “unit element inclusion” map S
1Ð→ R).

This definition might look a little hardcore or even batshit insane, but it really just
generalizes the fact that for an ordinary commutative ring R and two ordinary R-modules
M and N , their relative tensor product M ⊗♡RM (denoted in analogy with our conven-
tion that ⊗♡ denotes the tensor product of abelian groups) may be constructed as the
coequalizer

M ⊗♡R N = Coeq(M ⊗♡ R⊗♡ N ⇒M ⊗♡ N)
of the maps x ⊗ a ⊗ y ↦ ax ⊗ y and x ⊗ a ⊗ y ↦ x ⊗ ay for all x ∈M,y ∈ N and a ∈ R. In
this 1-categorical case, it sufficed to only consider the first level, but in the ∞-categorical
setting of the previous paragraph, we needed to consider higher levels too. That’s yet
another incarnation of the already-encountered fact that in ordinary algebra, if you have
a(bc) = (ab)c, then associativity will hold for any number of factors, while homotopically,
where such equivalence need to be specified and are data instead of structure, this is no
longer so (compare to analogous situation for commutativity we discussed in subsection
1.6.5).

The relative tensor product makes ModR into a stable presentably symmetric monoidal
∞-category. So it’s a nice category to do commutative algebra in, and we obtained it
essentially by saying the word “R-modules” and interpreted it in the ∞-categorical setting.
Abelian groups became replaced with spectra, commutative rings with E∞-rings, and that
was it.

1.7.7. Derived category of modules inside spectra. Let us restrict the ∞-categorical
notion discussed for an arbitrary E∞-ring R to the case where R belongs to the full
subcategory CAlg♡ ⊂ CAlg of ordinary commutative rings.

You might (based on notation) perhaps first guess that ModR will reproduce the cat-
egory Mod♡R of ordinary R-modules. It indeed shares some of its properties, such as
containing 0,R,R⊕n, kernels and cokernels (which in homotopy-land we might prefer to
call fibers and cofibers), etc. Alas, being a stable ∞-category, it also possesses certain
things that Mod♡R doesn’t: for instance, shifts ΣnR. The relative tensor product ⊗R is
also a little different than its usual cousin ⊗♡R, because while the latter is only right-exact,
the former is fully exact (in fact, it commutes with all colimits in each variable, almost by
definition).
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The resolution of this apparent mystery is to recall that we also know an upgraded ana-
logue of Mod♡R in “classical algebra” (by which I mean, non-∞-categorical nonsense): the
(unbounded) derived category of R-modules D(R). Objects therein are chain complexes
of ordinary R-modules, up to quasi-isomorphisms, shifting complexes to the right gives a
functor [1], and the ordinary tensor product ⊗♡R on Mod♡R lifts to a derived tensor product

⊗LR on D(R) which is exact.
One slightly subtle point is that D(R) is often viewed as an ordinary category in basic

treatments of homological algebra, i.e. the equivalence relation of quasi-isomorphisms is
quotiented out set-theoretically. If on the other hand we view it as the same sort of
defined-up-to-equivalence as we have in homotopy theory all the time (a “space” is really
only defined up to homotopy equivalence, etc.), then we get D(R) as an ∞-category. One
approach to this is to go through dg-categories (which are themselves models for linear
presentable ∞-categories), another by working directly in ∞-cat-land as done in Higher
Algebra, but in whichever way, when we say D(R), we mean the derived ∞-category of
R-modules. This changes little-to-nothing: it’s still the same construction as always of
the derived category, just the POV is slightly shifted.

Theorem 14 (Shipley). For an ordinary commutative ring R, there is a canonical equiv-

alence of symmetric monoidal ∞-categories Mod⊗R
R ≃D(R)⊗L

R .

Thus instead of imagining an element of D(R) as a chain complex of ordinary R-
modules, defined only up to quasi-isomorphism, we may via the forgetful functor ModR →
Sp think of it as a spectrum (an object inherently defined ∞-categorically and thus only up
to an appropriate notion of homotopy equivalence) together with an additional structure,
namely that of an R-module, with respect to the smash product ⊗.

In general, the above result (which was first proved by Shipley, but becomes essentially
tautological with modern ∞-categorical tools) may be interpreted as saying that stable
homotopy theory contains and subsumes all ordinary homological algebra.

1.7.8. Modules over the sphere. Now that we’ve seen what modules over a discrete
E∞-ring are, and recognized it as the derived category, let us turn our attention to the
mother of all non-discrete E∞-rings: the sphere spectrum S.

The result is in some way super boring: given a spectrum M , an S-module structure on
it would consist of a multiplication map S ⊗M →M satisfying various properties. But of
course, since S is the monoidal unit for the smash product, there is a canonical equivalence
of spectra S⊗M ≃M for anyM ∈ Sp, and taking these to be the module structure maps will
surely satisfy all the requirements. Furthermore, all S-module structures are of this form,
which is to say that the forgetful functor ModS → Sp is an equivalence of ∞-categories.

It is furthermore easy to see that ⊗S ≃ ⊗, i.e. that the relative tensor product over the
sphere is just the smash product. Indeed, in the colimit definition of ⊗S in subsection
1.7.6, we see that all the terms in the simplicial diagram are equivalent and all the maps
between them these canonical equivalences. As such, Mod⊗S

S ≃ Sp⊗ is an equivalence of
symmetric monoidal ∞-categories.

1.7.9. List of analogies. The content of the previous section gives us the last new (and
in my mind, the most useful) perspective on spectra: they are modules over the sphere S.
Or we can be slightly more precise and think of Sp as analogous to D(R) for any ordinary
commutative ring R. Thus we imagine in decreasing order of correctness the heuristic

Sp ≈D(R) ≈ Mod♡R

and as already mentioned, this leads to a long list of analogies, some making sense only
for D(R) or just Mod♡R, and some for both. Here are a few:

● the sphere spectrum S is like the base ring R
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● the smahs product ⊗ is like the derived tensor product ⊗LR is like the ordinary
tensor product ⊗♡R

● fib and cofib are like hKer and hCoker (in certain UT faculty member’s notation,
more classically cone and cocone) are like Ker and Coker respectively

● ΣnM and ΩnM are like shifts M[n] and M[−n]
● πn ∶ Sp → Ab is like H−n ∶ D(R) → Mod♡R (the minus is there due to homological

vs cohomological grading)
● (co)fiber sequences are like distinguished triangles are like short exact sequences
● the functor Ω∞ ∶ Sp→ S is like the forgetful functor Ab→ Set
● the functor Σ∞

+ ∶ S→ Sp is like the free R-module functor X ↦ R⊕X

Of these only the last two probably require some additional justification. Recall from
section 1.2.5 the adjunction Σ∞

+ ⊣ Ω∞, which together with the fact that S ≃ Σ∞
+ (∗)

implies that

MapSp(S,X) ≃ MapS(∗,Ω∞X) ≃ Ω∞X

for any spectrum X (since obviously MapS(∗, Y ) ≃ Y for any space Y ). That gives a
very explicit understanding of the functor Ω∞ as the functor corepresented by the sphere
spectrum. But in terms of the analogy Sp ≃ Mod♡R it exhibits Ω∞ ∶ Sp → S as analogous
to the functor Mod♡R → Set given by

M ↦ HomMod♡R(R,M) =M,

sending the ordinary R-module M to its underlying set M . That settles the pentultimate
point on the above list. The ultimate one is just the observation that the free functor
Set → Mod♡R is the left adjoint to the forgetful functor Mod♡R → Set, just like Σ∞

+ is the
left adjoint to Ω∞.

Part 2. Some examples of spectra

So far the impression of stable homotopy theory you may have acquired from Part 1
may very well be that it is all about categorical nonsense, abstract universal properties,
etc. And while that is certainly true to some extent, the field is also highly computational.
In fact, much of our knowledge and understanding of spectra comes from trying to make
sense of tons of ingenious but puzzling computations.

In order to do computations, one of course needs some objects to work with. This is
why in this section we will collect some examples of spectra that people often care most
about. That said, I make no promise of this being an exhaustive list! It is just some of
the coolest and most traditional examples.

2.1. Examples stemming from what we know so far

We have seen a rich number of perspectives on what the ∞-category of spectra is,
but have seen little actual different examples of spectra. So far we have two families of
examples:

● Suspension spectra Σ∞X for pointed spaces X, most prominently S ≃ Σ∞S0, the
sphere spectrum. Their homotopy groups are stable homotopy groups of spaces,
i.e.

πi(Σ∞X) = πsi (X),
recall subsection 1.6.1 for that. In particular, note that πi(Σ∞(X)) = 0 for all i ≤ 0
- suspension spectra are always connective.

● Abelian groups as discrete spectra (or Eilenberg-MacLane spectra, if you prefer).
Their homotopy groups are π0(A) = A and πi(A) = 0 for all i ≠ 0.
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● For any commutative ring R and any chain complex up to quasiisomorphism M ∈
D(R), we know thatM can also be viewed as anR-module spectrum. Its homotopy
groups give (opposite-graded) chain-complex cohomology, which is to say that

πi(M) ≃H−i(M).
● The spectrum M will thus be connective if and only if the chain complex M is

concentrated in negative degrees.

In many ways, this is a very rich set of examples, but our goal here is to mention a few
more archetypal examples.

2.1.1. Algebraic constructions. The thesis of the previous email was that Sp ≃ ModS ,
or in words, that spectra behave much like nice algebraic modules. As such, there are a
bunch of algebraic constructions that we can perform with spectra already at our disposal
to produce new ones. We explore a few of them in the next few subsections.

2.1.2. The symmetric algebra. One of the most basic operations in algebra is the for-
mation of polynomial algebras. This can be done in the land of spectra too. Indeed, there is
a symmetric algebra functor Sym∗ ∶ Sp→ CAlg, given explicitly by Sym∗(M) =⊕n≥0M

⊗n
Σn
.

Here the action of the symmetric group Σn on the n-fold smash power M⊗n is through
permuting the factors. This is precisely analogous to the corresponding construction of
the symmetric algebra in usual algebra, only that everything in sight carries its natural
∞-categorical meaning.

Imitating usual algebra further, we may define an analogue of polynomial ring over
the sphere spectrum as the free E∞-ring S{t} ∶= Sym∗(S). On the level of homotopy we
get π0(S{t}) ≃ π0(S)[t] = Z[t] with the generator t in degree 0. To put the generator t
into any degree d ∈ Z, we may form S{td} = Sym∗(ΣdS), and to consider multi-variable
analogues, we coud take S{t1, . . . , tn} = Sym∗(S⊕n).

The symmetric algebra functor Sym∗ ∶ Sp→ CAlg satisfies the expected universal prop-
erty, which is to say that it is left adjoint to the forgetful functor CAlg → Sp. In fact,
since all the ∞-categories in sight are presentable and the Adjoint Functor Theorem is
therefore available, a relatively easy way of showing the existence and functoriality of the
symmetric algebra functor is to show that the forgetful functor preserves limits.

A useful upshot is that limits of E∞-rings can therefore be computed in spectra. The
analogous claim for colimits fails epically. For instance, just as the ordinary relative tensor
product A ⊗♡R B is computes pushouts of span A ← R → B in the ordinary category of
commutative rings CAlg♡, so does the relative smash product A⊗RB compute the pushout
of an eponymous span in the ∞-category of E∞-rings CAlg.

Of course everything that we said in this subsection for Sp ≃ ModS works just as well
in the context of ModR for any E∞-ring R. But that is enough said about symmetric
algebras; let us move on to analogues of other algebraic constructions.

2.1.3. Fibers and cofibers. Taking kernels and cokernels is replaced by taking fibers
and cofibers of morphisms of spectra. In particular, if you have a map f ∶ M → N of
spectra, which you may wish to think of as an inclusion, then you can form the “quotient”
as M/N = cofib(f).

That said, people will rarely denote cofibers by quotient notation, as the notion of taking
quotients is always a little dicey in homotopy theory. Our usual intuition on quotients
usually requires us to quotient by a submodule or something like that, and that becomes
problematic in spectra-land.

Indeed, if you want to actualize the idea that f might be an inclusion by requiring that
fib(f) ≃ 0, then you will not be in a very exciting place. Indeed, 0 → M → N will be a
cofiber sequence, so it will induce a long exact sequence with

0 = πi(0)→ πi(M)→ πi(M)→ πi+1(0) = 0,
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showing that f induces an equivalence on all homotopy groups and is as such an equivalence
of spectra. Thus the condition fib(f) ≃ 0 is equivalent to f being an equivalence, and much
stronger than we might hope the correct analogue of monomorphisms should be.

This has some interesting consequences: maps you knew in algebra to be monomor-
phisms suddenly have kernels, albeit concentrated in higher degrees (and as the preceding
paragraph shows, they have to have such “higher kernels” else they be isomorphisms).
For instance, the fiber of the map Z → Q, viewed as a map of (discrete, i.e. Eilenberg-
MacLane) spectra, is Σ−1(Q/Z), where Q/Z ⊆ R/Z = S1 is the torsion subgroup of the
circle.

Even slightly more shockingly, for any prime p the fiber of the map Zp →Qp is equivalent

to Σ−1Qp/Zp ≃ Σ−1Z[1
p]/Z. (In the literature the notation Z/p∞ is not uncommon for the

Pruffer group Z[1
p]/Z, since the latter is the colimit limÐ→Z/pn, but a certain P. Scholze

is especially vehement about that being bad notation, so we try our best not to use
it.) This example is behind an often unintuitive equivalence between p-localization and
p-completion in homotopy theory, that we may or may not talk more about at some point.

2.1.4. Mod p Moore spectrum. One popular example where a quotient notation similar
to the one discussed in the previous subsection is actually used in practice is the mod p
Moore spectrum S/p. This spectrum is defined as the cofiber in Sp of the multiplication-
by-p-map p ∶ S → S. To get hold of this map, note that we may identify by all the things
we know so far

p ∈ Z ≃ π0(S) ≃ π0(Ω∞S) ≃ π0MapSp(S,S),
sending up with a homotopy class of a spectrum map p ∶ S → S as promised. Of course
we only get a homotopy class of such maps, but more than that is unfeasible to expect -
the “points” of the space MapSp(S,S) do not have any good meaning in the ∞-category
land, as all is defined and considered only up to homotopy.

2.1.5. Universal property of the Moore spectrum. The mod p Moore spectrum S/p
satisfies a universal property. Indeed, let M ∈ Sp be arbitrary. Since Map takes colimits

in its first factor out to be limits, and S/p ≃ cofib(S pÐ→ S) is a particular kind of colimit,
we find canonical homotopy equivalences

MapSp(S/p,M) ≃ fib(MapSp(S,M) p∗Ð→MapSp(S,M)) ≃ fib(Ω∞M
pÐ→ Ω∞M).

Thus, if we view the infinite loop space Ω∞M as a grouplike E∞-space (recall this as
the May Recognition Principle, that we talked about way back in subsection 1.6.6), thus
a homotopy-coherently analogue of a commutative monoid, spectrum maps S/p → M
correspond to the p-torsion in Ω∞M.

But that doesn’t just mean “points which vanish upon multiplication by p” (ignoring for
the moment that “points” are not really what we should be discussing anyway), but instead
a specified homotopy p ≃ 0 between the multiplication by p map and the multiplication
by 0 map. This is an instance of a general feature of life in ∞-category land: properties
often become extra structure.

Before you go thinking that the mod p Moore spectrum S/p is very much like Z/p ≃ Fp

though, allow me to dash your dreams: I believe that S/p does not admit an E∞-ring
structure2. This is a prime example of the general fact that quotienting in stable homotopy
land is dicey business!

2There is actually a bit of a mindmelting story here. We may form the versal quotient S//Enp to be
the universal En-ring with an En-ring map from S and a nillhomotopy p ≃ 0. In fact, versal quotients may
be constructed using Thom spectrum techniques that we will discuss in a subsequent section. The crazy
thing now is that while the E1-versal quotient produces the Moore spectrum S//E1p ≃ S/p, the E2-versal
quotient is S//E2p ≃ Fp, the usual Eilenberg-MacLane spectrum we would expect. But En-versal quotients
S//Enp for higher n ≥ 3 are different ! This is very exciting: it is saying that our algebraic intuition of F2

as the universal commutative ring of characteristic 2 is deceptive, stemming from the fact that E2 = E∞ in
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2.1.6. Moore spectra, more fun! An analogous construction, replacing multiplication
by p with multiplication by n, produces Moore spectra S/n for any n ≥ 0. Here we must
for n = 0 interpret this as S/0 = S.

A slightly elaboration on this construction can make sense of a Moore spectrum SA for
any abelian group A. Indeed, an arbitrary abelian group A is a colimit in the category of
abelian groups of various copies of Z, indexed on the diagram of homomorphisms Z → A
which pick out elements in A. (When the corresponding element of A is n-torsion, this
map factors through Z/n → A. But that’s OK, since Z/n itself is the cofiber of the

multiplication by n map Z
nÐ→ Z.) When working with spectra, the sphere spectrum S

should play the role that the abelian group Z does in algebra. This suggests taking the
colimit over the same indexing category as produces A out of copies of Z, but with copies
of S inserted instead. This produces the Moore spectrum SA.

As noted, the standard presentation of the finite group Z/n ≃ cofib(Z nÐ→ Z) shows
that our previous definition of mod n Moore spectra is the special case S/n ≃ SZ/n. In
particular, SZ ≃ S.

Moore spectra are distinguished by the property that SA⊗Z ≃ A. Indeed, we constructed
them by replacing Z in a colimit computing A by S. Since smashing commutes with
colimits in the first variable (and the second too, but that doesn’t matter here), we find
that applying ⊗Z just replaces the copies of S again with Z. And so the colimit returns
A once again.

2.1.7. Localization of E∞-rings. Let R be an E∞-ring. Given an element x ∈ πi(R),
the localization of R at x is defined to be an initial object R → R[x−1] among E∞-ring
maps R → A under which x is sent to an invertible element in π∗(A). In ∞-categorical
parlance, the rigorous statement would be that we wish the map R → R[x−1] to induce
for any E∞-algebra map R → A an equivalence

MapCAlgR
(R[x−1],A) ≃ MapCAlg(R,A) ×π2(A) π∗(A)×,

where the pullback is along the map sending f ∶ R → A to π2(f)(x), and the map π∗(A)× ↪
π∗(A)→ π2(A) composing the obvious inclusion with the obvious projection.

Evidently this is just the usual universal property of localization, and if i = 0, then
π0(R[x−1]) ≃ π0(R)[x−1]. The underlying classical ring of the E∞-ring localization is thus
the ordinary localization of rings.

2.1.8. Localization of modules. Whenever M is an R-module (recall: always means
“R-module spectrum”), and as before x ∈ πi(R), the R-module localization M →M[x−1]
may be defined through a similar universal property as for rings above, with seeking the
module action of x to invertible. Alternatively, we can simply set M[x−1] ≃M ⊗R R[x−1]
and recover the same object.

For an explicit construction of localization, let us note that the element x ∈ πi(R) may

be identified with an R-linear map R
xÐ→ Σ−iR. Aplying the relative smash product −⊗RM,

we obtain a morphism M
xÐ→ Σ−iM ∈ ModR. Then we may obtain the localization explicitly

as the colimit in the ∞-category ModR of the form

M[x−1] ≃ limÐ→(M xÐ→ ΣiM
ΣixÐÐ→ Σ2M → ⋯).

Note that this is analogous to one way to comute localization in usual algebra too (where
the are of course no suspensions, as there is only π0).

the usual 1-categorical world where such intuition stemms from. On the other hand, to actually achieve
p ≃ 0 in E∞-ring land, more homotopies need to be specified!
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2.1.9. p-localization. We can play the localization game with repsect to an arbitrary
prime p ∈ Z ≃ π0(S) to localize any spectrum M to M[p−1]. When plugging in an E∞-
ring, of course the localization R[p−1] will remain such.

Now note this funny thing: a spectrum M being p-local, which is to say that M ≃
M[p−1], is equivalent to asking that multiplication by p act invertibly on M (in fact, it’s
even enough to ask that it acts invertibly on all the homotopy groups πi(M)). That is

equivalent by the discussion in subsection 2.1.2 to asking that cofib(M pÐ→M) ≃ 0. But of
course the smash product of spectra commutes with colimits in each factor by definition,

and so cofib(M pÐ→M) ≃ cofib(S pÐ→ S)⊗M ≃ S/p⊗M.
In conclusion: a spectrum M is p-local if and only if S/p⊗M ≃ 0. This sort of phrasing

of locality in terms of smash-vanishing is the starting point of Bousfield localization, a
way to localize at any spectrum. But perhaps let us not get into that now.

2.1.10. Rationalization. The localization procedure outlined in the previous few sections
could of course be carried out for several elements at the same time (or iteratively, if you
prefer). Doing it all the primes p ∈ Z produces what is called rationalization, and for a
spectrum M we denote its rationalization as MQ.

Recall however the well-known fact that stable homotopy groups of spheres πi(S) are
all torsion for i ≥ 1. This implies that SQ possesses no homotopy groups but the 0-th one.
As such it is a discrete spectrum, and more precisely SQ ≃ Q.

This has the consequence that the rationalization MQ of any spectrum M comes nat-
urally equipped with an SQ ≃ Q-module structure, showing that rationality immediately
reduces spectra to chain complexes of ordinary Q-modules. The interesting parts of stable
homotopy theory thus lie over primes in the land of torsion.

For any M we also have MQ ≃M⊗Q, which we say in fancy words as it being a “smash-
ing localization”. A similar thing holds for the p-localization of the previous subsection,
where the formula is M[p−1] ≃M ⊗ S[p−1], which we have seen in subsection 2.1.8.

2.2. Topological K-theory

Since most of the initial interest in spectra was from the perspective of cohomology
theories, it is not surprising that that is where some of the first interesting examples of
spectra arise from. The first extraordinary cohomology theory was complex K-theory,
stemming essentially from Grothendieck’s work on the Riemann-Roch theorem (though
that was the algebraic analogue, and the topological is due to Atiyah and Hirzebruch a
year or two later).

2.2.1. The 0-th complex K-theory. For a pointed finite CW complex X, we set
KU0(X) to be the set of complex vector bundles E over X (of finite rank) modulo the
equivalence relation under which two complex bundles E and E′ on X are equivalent if
and only if there exist two trivial complex bundles ε1 and ε2 on X and a vector bundle
isomorphism E ⊕ ε1 ≅ E′ ⊕ ε2. This equivalence is called stable isomorphism, so KU0(X)
consists of stable isomorphism classes of vector bundles on X.

Direct sum of vector bundles makes KU0(X) into a commutative monoid, but as is a
little less obvious, it is in fact a group. Indeed, since X is compact by assumption, we
can collect local trivializations of a vector bundle E together into an embedding E ↪CN

X
into a trivial bundle on X of some sufficiently high rank N . This trivial complex vector
bundle carries a natural inner product structure (take the usual Hermitian inner product
on CN

X), allowing us to form the orthogonal complement E⊥ fiber-wise. This is evidently

also a vector bundle over X, and since it satisfies the isomorphism E ⊕E⊥ ≅ CN
X , we see

that E⊥ is the stable-isomorphism inverse to E.
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2.2.2. Bott periodicity. We have only defined the 0-th group of complex K-theory so
far. Instead of defining KUi(X) explicitly for all i ∈ Z, we instead have a theorem take
us the rest of the way. The theorem in question is the following landmark result in the
history of algebraic topology and homotopy theory alike:

Theorem 15 (Bott Periodicity). For any pointed finite CW complex X there is a canonical
isomorphism KU0(Σ2X) ≅ KU0(X).

As complex K-theory KU should be a cohomology theory, it should satisfy the Eilenberg-
Steenrod axioms. The relevant one here is the suspension axiom, requiring that

KUi+1(ΣX) ≃ KUi(X)
for all i ∈ Z.

Since we already know KU0, we can use Bott periodicity to build the suspension axiom
in “by force” and define even-graded cohomology groups as KU2n(X) ∶= KU0(X) and
odd-graded ones as KU2n+1(X) ∶= KU0(ΣX). Checking the Eilenberg-Steenrod axioms
is now a breeze. Recall from subsection 1.4.11 the Brown Representability Theorem for
cohomolology theories. Through it, the cohomology theory KUi defines a perfectly good
spectrum, which we shall denote KU, and call the complex topological K-theory spectrum.

2.2.3. Unreduced 0-th complex K-theory & Grothendieck group. You might have
been a little surprised by the previous subsection. Indeed, you might have heard before
that complex K-theory sends a space to the Grothendieck group of vector bundles on it.
Let’s briefly recall how that works.

Let VectC(X) denote the set of isomorphism classes of complex vector bundles on a
(non-pointed) finite CW-complex X. Direct sum of vector bundles makes it into a monoid,
from which we can “group complete”, i.e. adjoin formal inverses -E for every (iso class
of a) complex vector bundle E on X satisfying by definition E ⊕ (−E) ≅ 0. This has the
effect of allowing us to multiply vector bundles by integers, with nE = E⊕n for n ≥ 1.
In particular, we obtain an abelian group, and this is KU0

unred(X), the unreduced 0-th
complex K-theory group of X.

This relates to the reduced version of complex K-theory that we discussed in the previous
section through the canonical isomorphism

KU0
unred(X) ≅ KU0(X+).

Indeed, that is how reduced and unreduced cohomology theory coincide with each other
in general. From the point of view of the complex K-theory spectrum KU, we have for all
i ∈ Z

KUi(X) ≃ π−iMapSp(Σ∞X,KU)KUi
unred(X) ≃ π−iMapSp(Σ∞

+ X,KU).
Thus we see that KU encodes complex K-theory reduced and unreduced alike, and the
difference is only that once we are mapping Σ∞ a space and once Σ∞

+ of a pointed space
into it.

Though it is really the spectum KU that we are after interested in here, the idea of
obtaining K-theory by taking a monoid of bundles under direct sum and group completing
it to obtain an abelian group, will have future significance. Namely, we will encounter it
again, when we discuss another class of examples of spectra: algebraic K-theory.

2.2.4. A few words on classifying spaces. If you are fond of classifying spaces, there
is a more concise and more elegant way of phrasing complex K-theory. So let’s say a few
words about topological classifying spaces, that will be pertinent in what follows.

Let BU be the classifying space for the infinite unitary group U = limÐ→nU(n), i.e. the

homotopy quotient ∗/U (or more classically: choose a contractible space EU with a free U-
action, and form the usual quotient BU ∶= EU/U. But this is really just using replacement
to compute homotopy colimits - the map EU→ ∗ is a cofibrant replacement in the model
category of CW-complexes with U-action).

30



Converely, you can construct BU = limÐ→nBU(n) directly as a colimit (without passing

through the infinite unirary group U). This has the advantage that everything is sight
is about finite-rank vector bundles: the maps X → BU(n) are in natural equivalence
with rank n complex vector bundles on X (this is the universal property of a classifying
space, afterall), and the maps BU(n) → BU(n + 1) correspond on the level of bundles to
the “stabilization” map E → E ⊕ CX , in the sense of bundle stabilization as discussed
in subsection 2.2.1. In this sense, BU may be viewed as the classifying space of stable-
isomorphism-classes of complex vector bundles (technically we only get the rank 0 stable
vector bundles, but let us ignote that for the moment).

On the other hand (and we will make no use of this here, but it’s cool) the colimit
description of BU gives an interpretation of this classifying space in terms of perhaps more
familiar objects. Indeed, we may identify BU(n) ≃ Gr(n,C∞) the classifying space of rank
n-vector bundles with the Grassmannian of n-dimensional complex linear subspaces in the
infinite dimensional space C∞. That should make sense; the Grassmanian Gr(n,C∞) has
as points n-dimensional complex vector spaces, so what should a map X → Gr(n,C∞) be
but a way to associate to every point a vector space in a continuous fashion - lo and behold
the universal property of the classifying space BU(n). So BU is in some sense Gr(∞,C∞),
but unlike Gr(n,Cn) which is boring, C∞ admits a lot of different copies of itself inside
it, so this Grassmanian is interesting.

Applying the formula from the previous paragraph for n = 1, we get the fundamental
equivalence BU(1) ≃ CP∞, which shows up often in homotopy theory. This space has
many other names too, btw: since U(1) ≃ S1 ≃ BZ, this is also BS1 ≃ B2Z ≃ K(Z,2). It
also has more esoteric names such as PU(H) for a separable infintie-dimensional Hilbert
space H, but let’s leave it at that.

2.2.4.1. Complex K-theory in terms of classifying spaces. In light of the discussion in the
previous subsection, the definition of the 0-th K-theory group of a finite pointed space X
that we gave in subsection 2.2.1 above amounts to saying that KU0(X) = π0MapS∗(X,BU×
Z), the homotopy classes of pointed maps3 X → BU×Z, where we choose the trivial bundle
as the basepoint in BU (the copy of Z keeps track of the rank of a “virtual” stable vector
bundle).

Bott periodicity then follows from and is equivalent to the classifying space result that
Ω2BU ≃ BU × Z or equivalently Ω2U ≃ U. Indeed, it is in this form that Bott originally
stated his periodicity result.

2.2.5. Homotopy groups of KU. We will use the classifying space approach to complex
K-theory, as given in the previous section, to obtain a straightforward computation of
the homotopy groups of KU. Note from plugging X = ∗ into the correct formulas in
subsection 2.2.3, that we may express the homotopy groups of the complex toplogical
K-theory spectrum as

πi(KU) = KU−i(S0) = KU−i
unred(∗),

allowing us to think of the homotopy groups as the value of the associated unreduced
cohomology theory on the point. This works just as well for any spectrum, viewed as a
cohomology theory.

Since the cohomology theory in question is periodic, we find that the even homotopy
groups of KU are

πev(KU) ≃ KUev(S0) ≃ KU0(S0) ≃ π0MapS∗(S0,BU ×Z) ≃ π0(BU ×Z) ≃ Z.

3A popular and traditional notation for the set of homotopy classes π0MapS∗
(X,Y ) or for π0MapS(X,Y )

is [X,Y ]. These are the Hom sets in the homotopy categories Ho(S∗) and Ho(S) respectively, but since
we are viewing the underlying ∞-categories as more fundamental in these emails, we will prefer the more
explicit notation.
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To figure out the odd ones, we proceed similarly by identifying πodd(KU) ≃ KU−1(S0) ≃
KU0(S1) through either the suspension axiom, or the definition of KUi we gave in sub-
section 2.2.2. Using once again the classifying space approach from subsection 2.2.4, we
get

KU0(S1) ≃ π0MapS∗(S1,BU ×Z) ≃ π0(Ω(BU ×Z)) ≃ π0U ≃ limÐ→
n

π0U(n) ≃ 0,

since4 all the unitary groups U(n) are connected. Together we find that

πodd(KU) ≃ 0.

2.2.6. The underlying infinite loop space of KU. Playing a similar game to the
previous subsection, we will identify the underlying infinite loop space Ω∞KU (note that
up until now, we were only talking about its homotopy groups, which is to say about the
cohomology theory, not about the spectrum itself). By the adjunction between Σ∞ and
Ω∞, we find for any pointed space X a canonical equivalence

MapS∗(X,Ω∞KU) ≃ MapSp(Σ∞X,KU)
to which we apply the functor πi (as these are homotopy groups of spaces, we must have
i ≥ 0) to find

πiMapS∗(X,Ω∞KU) ≃ KU−i(X) ≃ KU0(ΣiX) ≃ π0MapS∗(ΣiX,BU ×Z).
Suspension is a limit and as such goes out the first factor of Hom to become a colimit, so
remembering the definition of higher homotopy groups, we obtain further natural equiva-
lences

π0MapS∗(ΣiX,BU ×Z) ≃ π0ΩiMapS∗(X,BU ×Z) ≃ πiMapS∗(X,BU ×Z).
Connecting all these isomorphisms, we can recognize them as stemming from a map BU×
Z → Ω∞KU, and since this map then induces isomorphisms on all homotopy groups, it
must be an equivalence. Thus in summary we have Ω∞KU ≃ BU ×Z, which is indeed an
infinite loop space by Bott periodicity.

2.2.7. Other versions of topological K-theory. Throughout everything above, we
insistently considered only complex vector bundles. Alas, there is nothing special about
C, and we could have played the same game with R. In that case the classifying space BU
above becomes replaced with BO, the classifying space of the infinite orthogonal group
O = limÐ→nO(n). This space too satisfies a Bott periodicity, but with a period of 8 instead

of 2. That is to say, we have an equivalence Ω8O ≃ O or equivlanetnly

Ω8BO ≃ BO ×Z.

This allows us to use the same trick as before and define KOi(X) = KOi+8(X), and in
conjunction with the suspension axiom for a cohomology theory, we get a spectrum KO.
It is sometimes called real topological K-theory, but the name “real K-theory” is a little
disputed. Where KU has to do with complex vector bundles, KO has to do with real ones.
Its underlying loop space is Ω∞KO ≃ BO ×Z and its homotopy groups, being 8-periodic,
are

π0(KO) = Z, π1(KO) = Z/2, π2(KO) = Z/2, π3(KO) = 0,
π4(KO) = Z, π5(KO) = 0, π6(KO) = 0, π7(KO) = 0.

Of course a similar game could be played with certain other groups G, leading to
topological K-theory spectra KG, e.g. KSp for the symplectic group (it is a wonderful,
though rarely genuinely problematic, accident that Sp is both the standard notation for
the ∞-category of spectra and for the symplectic group). Unlike KU and KO, which

4The observant reader might also inquire about why we were to commute the colimit past π0. Well,
the functor π0 ∶ S→ Set is a left adjoint to the inclusion Set↪ S identifying sets with discrete spaces. And
left adjoints of course always commute with colimits. :)
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are both landmark examples, these other topological K-theories are more of a curiosity
though.

2.2.8. Ring structure on topological K-theory. Topological K-theory, real and com-
plex alike, is built out of vector bundles. The spectrum addition is represented by the
direct sum of vector bundles, but what does the tensor product represent?

The answer, of course, is a ring structure. More precisely, both KU and KO are E∞-
rings. On the level of cohomology theories, this implies that KU∗(X) and KO∗(X) (here
∗ means implicit summation over all possible values ∗ = i) are graded rings for any finite
space X, and on the level of vector bundle representatives for elements of these rings, the
ring multiplication is indeed given by the tensor product of vector bundles.

2.2.9. The conjugation action. The E∞-ring structures on KU and KO are very similar,
the first one arising from ⊗C and the second one from ⊗R. In fact, the complexification map
V ↦ V ⊗RC (of vector spaces, or if you want, vector bundles; really a map BO(n)→ BU(n)
of classifying spaces) induces a E∞-ring map c ∶ KO→ KU.

In fact, the conjugation action of the cyclic group C2 ≅ Z/2 acting on C, and through
it on any complex vector space and bundle alike, induces a C2-action on KU in the ∞-
category of spectra. That means no more and no less than a functor BC2 → Sp, where BC2

is viewed as an ∞-groupoid and in particular as an ∞-category, and where the restriction
∗→ BC2 → Sp gives rise to the “underlying object” on which the group C2 acts, in our case
the spectrum KU. Passing to the limit of the functor BC2 → Sp produces the (homotopy)

fixed-points KUC2 (in more traditional literature denoted KUhC2 . I will switch back and
forth depending on the mood. But as usual, the “homotopy” fixed-points are the natural
ones that we get by trying to say “fixed points” in our ∞-categorical setting. From this
perspective, the h-less notation seems to be more sensible.)

Now the E∞-ring map c ∶ KO → KU given by complexification is C2-equivariant with
respect to the just-described conjugation C2-action on KU and the trivial C2-action on KO

(given by the constant functor BC2 → ∗ KOÐÐ→ Sp). In fact, more is true: it is the universal
such map from a trivial C2-action. That is to say, the map c exhibits an equivalence

KO ≃ KUhC2 .

This is closely analogous to how algebraic geometry over R is nothing but algebraic
geometry over C, conscious of a C2-action. It is also analogous of Galois theory, where
a field extension L/K being Galois implies among other things that K ≃ LGal(L/K). This
analogy has been made precise by Rognes, who developed a theory of Galois extensions
of E∞-rings which also encapsulates a number of other exciting examples, and of which
c ∶ KO→ KU is a prime example (other than, boringly, ordinary Galois extensions viewed
as discrete spectra).

2.2.10. The Chern character. Grothendieck initially invented K-theory (in the alge-
braic setting, and only the 0-th one) in the course of stating and proving what is today
known as the Grothendieck-Riemann-Roch Theorem. This theorem is all about a cer-
tain construction called the Chern character, and we will discuss its analogue in algebraic
topology (i.e. for manifolds, not for varieties) here.

On the most basic level, the Chern character is a ring homomorphism ch ∶ KU0
unred(X)→

H∗(X;Q), sending (the isomorphism class of) a complex line bundle L on X to

ch(L) ∶= ec1(L) = ∑
0≤n≤dimX

1
n!c1(L)n.

Note the 1
n! -factors - they necessitate the Chern character to take values in cohomology

with Q-coefficients, i.e. ch it doesn’t factor through H∗(X;Z). The Chern character is
furthermore required to be compatible with pullbacks along maps f ∶ X → Y on both
sides, qualifying it as a characteristic class. Though we’ve only explicitly specified it on
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line bundles, compatibility with pullback and it being a ring homomorphism determine ch
completely for all vector bundles, due to a certain result called the Splitting Principle, of
which we shall say little more than that it allows for reduction to sums of line bundles.

The cool thing for us here is that this extends to a spectrum-level E∞-ring map ch ∶
KU → ⊕i∈Z Σ2iQ, which on π0 (and evaluated on a space) recovers the Chern character
discussed in the previous paragraph. The reason for the weird-looking direct sum and
suspensions on the RHS is because KU is a 2-periodic spectrum, so we must also ap-
propriately 2-periodize the Eilenberg-MacLane spectrum Q in order to make it capable of
receiving a map from KU. In particular, the RHS spectrum may be identified with Q[β±1],
the E∞-ring of Laurent polynomials with coefficients in Q in a degree 2 variable β. Thus
we obtain the Chern character, incarnated as an E∞-ring map ch ∶ KU→Q[β±1].

The Riemann-Roch Theorem became in Grothendieck’s hands an upon-rationalizing
isomorphism K0(X)Q ≃ A∗(X)Q of a prescribed form (Chern character + Todd class ...).
The analogous statement in algebraic topology is that the above-discussed Chern character
map induces an equivalence

KUQ ≃ Q[β±1],
where the left hand side is KUQ ≃ KU⊗Q, the smash product of KU with the rationals,
which is to say, the rationalization of the complex topological K-theory spectrum.

2.2.11. Snaith’s Theorem. Before we leave the wonderful world of topological K-theory,
let us reflect upon what makes it so interesting. The answer is surely Bott periodicity,
or from the perspective of the spectrum KU, its 2-periodicity. Let us discuss Snaith’s
Theorem, which is essentially a claim about Bott periodicity determining KU.

For any E∞-ring R, the 0-th homotopy group π0(R) inherits a commutative ring struc-
ture, while the other homotopy groups πi(R) carry a canonical π0(R)-module struc-
ture. As such, the Bott periodicity isomorphism π0(KU) ≃ π2(KU) may be viewed as
a π0(KU) = Z-linear map. That is to say, it specifies, as the image of 1 ∈ Z under it, an
element β ∈ π2(KU). By construction of complex topological K-theory, the element β is
invertible in the graded ring π∗(KU).

But what is this Bott element β, geometrically speaking? Well, consider the classifying
space BU. It contains inside the classifying space of complex line bundles BU(1) ≃ CP∞.
In its guise as the infinite complex projective space, we can find an non-trivial element
β ∈ π2(CP∞): consider the inclusion

S2 ≃ CP1 ↪CP∞.

The homotopy class of this map is the promised element β ∈ π0MapS∗(S2,CP∞) =
π2(CP∞). The assertion that this homotopy group element is non-trivial follows by recog-
nizing the map in question S2 →CP∞ ≃ BS1 as the classifying map for the Hopf fibration
S3 → S2. Non-triviality of the Hopf fibration is now equivalent to the fact that β ≠ 0.

Now consider the composite map of pointed spaces

CP∞ ≃ BU(1)↪ BU ≃ BU × {0}↪ BU ×Z ≃ Ω∞KU.

On π2 this sends the Hopf fibration β ∈ π2(CP∞) to the invertible element β ∈ π0(KU),
and furthermore the map in question is a nice map of E∞-spaces (recall: these are spaces
with a homotopy coherently commutative monoid structure). By adjunction this map
corresponds to a E∞-ring map S[CP∞] → KU. On the level of π2, this map becomes
Z[π2(CP∞)] → π2(KU), once more sending β to β. But since β is invertible in π∗(KU),
the universal property of localization gives rise to a E∞-ring map (S[CP∞])[β−1]→ KU.

Theorem 16 (Snaith). The described map is an equivalence of E∞-rings

KU ≃ (S[CP∞])[β−1].
If you wish, you can view this as an alternative characterization of complex topological

K-theory. As expected out of such a non-trivial theorem, it makes several other hard
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theorem easy to prove. It also shows that topological K-theory, though initially constructed
and viewed differently, still essentially belongs to the setting discussed in section 1.2.1.
That is to say, it can be obtained via algebraic operations from suspension spectra of
familiar spaces.

2.3. Thom spectra

In the previous section we saw how vector bundles may be used to give rise to topological
K-theory. But there is another way to create spectra out of vector bundles, and it goes
by the name of this section.

The idea of Thom spectra, or at least of the preceding Thom spaces, was first extensively
studied and used to great avail in Rene Thom’s thesis, a document that many have called
the true birthplace of modern homotopy theory. So, you know, no pressure with your
thesis!

2.3.1. The easy post-modren approach. Though Thom spectra are quite old, the
most elegant approach to constructing them that I am aware of is due to Ando-Blumberg-
Gepner-Hopkins-Rezk, using a heavy dose of ∞-categorical machinery. We discuss this first
(as it’s quite easy) and only later indicate the slightly more intricate classical construction.

2.3.2. Local systems of spectra. Fix for a moment a space X. We wish to consider
local systems of spectra on X. Naively these should be families of spectra {Ex}x∈X such
that

● every point x ∈X gives rise to a spectrum Ex
● every path x→ y in X gives rise to an equivalence of spectra Ex ≃ Ey
● every 2-simplex (or if you want, 2-cell) in X with vertices x, y, z gives rise to a

homotopy exhibiting commutativity of the relevant triangle of maps between Ex,
Ey, and Ez in Sp

● etc.

With ∞-categories at our disposal, this is almost trivial to formalize: we view X as an
∞-groupoid, and define a local system of spectra on X to be a functor E ∶X → Sp. They
clearly form an ∞-category, which is nothing but Fun(X,Sp).

These also go by the name parametrized spectra, and have originally been studied in
an explicit point-set model (without ∞-categorical machinery) in a tour-de-force book of
May-Sigurdsson. But then the ABGHR boys came together and rephrased everything in
extremely elegant terms, and we are following them here.

Of course the choice of taking values in the ∞-category Sp is arbitrary. Nothing would
change if we considered local systems of R-modules for any E∞-ring R. Because it’s all
the same, we stick to the case R ≃ S here.

2.3.3. Functoriality of local systems. We don’t to know much about the techonology
of local systems of spectra, so we will be brief. A map of spaces f ∶ X → Y induces a
number of maps between local systems of spectra, just as you would expect:

● A pullback f∗ ∶ Fun(Y,Sp)→ Fun(X,Sp), given by composing a functor E ∶ Y → Sp
with f .

● A “left” pushforward f! ∶ Fun(X,Sp) → Fun(Y,Sp), given by left Kan extension
along f .

● A “right” pushforward f∗ ∶ Fun(X,Sp)→ Fun(Y,Sp), given by right Kan extension
along f .

By the definition of Kan extensions, we find that these functors form adjunctions f! ⊣ f∗ ⊣
f∗. They also satisfy the base-change formula you would expect, etc.

The case of most interest to us is when we consider the terminal map p ∶ X → ∗. Then
the functorialities become
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● The pullback p∗ ∶ Sp → Fun(X,Sp) sends a spectrum E to the constant local
system with value E.

● The “left” pushforward p! ∶ Fun(X,Sp) → Sp sends a local system of spectra
E ∶X → Sp to the colimit limÐ→E ∈ Sp. More poetically we can write p!E ≃ limÐ→x∈X Ex.● The “right” pushforward p∗ ∶ Fun(X,Sp) → Sp sends a local system of spectra
E ∶X → Sp to the limit lim←ÐE ∈ Sp. More poetically we can write p∗E ≃ lim←Ðx∈X Ex.

Analogy with usual local systems dictates that we think of p∗ and p! as two versions of
global sections, perhaps one viewed as “with compact support” and the other one without.
But let us not take all of this this too seriously.

Cohomology with compact support appears in the version of Poincare duality for non-
compact manifolds. As such, another reasonably popular set of terminology and notations
is to call C∗(X;E) ∶= p!E and C∗(X;E) ∶= p∗E the chains and cochains on X with
coefficients in E respectively. When E ≃ p∗A is the constant local system with the value
A ∈ Ab ≃ Sp♡ ⊆ Sp, this recovers the usual meaning of chains and cochains, hence being a
sensible terminology. Furthermore if E ∈ Sp is any spectrum, identified with a local system
of spectra via the pullback p∗, we have Ei(X) ≃ πiC∗(X;E) and Ei(X) ≃ π−iC∗(X;E)
for all i ∈ Z, where Ei and Ei denote the (non-reduced) homology and cohomology theory
corresponding to the spectrum E.

2.3.4. Example: spectra with a G-action. When we consider local systems of spectra
on the classifying space X ≃ BG of a group (or, if you prefer, grouplike E1-space) G,
we recover the theory of G-actions of spectra. Indeed, both ∞-categories were defined to
be Fun(BG,Sp). That is to say, a local system of spectra on BG is the same thing as a
spectrum with a G-action, just as it surely should be.

In that case the functoriality with respect to the terminal map p ∶ BG→ ∗ recovers

● The spectrum M with a trivial G-action as p∗M .
● The homotopy coinvariants (or quotient) EhG ≃ p!E for any E ∈ Fun(BG,Sp).
● The homotopy invariants (or fixed-points) EhG ≃ p∗E for any E ∈ Fun(BG,Sp).

2.3.5. The J-homomorphism. Now we are almost ready to discuss the construction of
Thom spectra, but for one thing: we must familiarize ourselves with the J-homomorphism.
That is a wonderful and classical map in homotopy theory, which arises as follows.

Consider the n-sphere Sn as the one-point compactification of Rn. The isometry group
O(n) of the latter naturally extends to act on Sn by fixing the point at infinity. Thus
choosing the point at infinity as the basepoint for Sn, any isometry f ∈ O(n) gives rise to
a map f ∶ Sn → Sn. That is to say, we obtain a map O(n) → ΩnSn (where we recall that
based loops, as their name suggests, may be given as ΩX ≃ MapS∗(S1,X), and likewise
for Ωn with Sn). The action of O(n) on Sn is compatible in passage n↦ n+1 through the
isometric isomorphism R⊕Rn = Rn+1. We may therefore pass to the colimit as n→∞ of
the maps O(n)→ ΩnSn to obtain a map J ∶ O→ Ω∞S. This is the most basic form of the
J-homomorphism.

Passing to homotopy, we obtain an explicit family of maps J ∶ πk(O(n)) → πk+n(Sn),
compatible with varying n. By taking n to be big enough, the codomain will stabilize to
the stable homotopy group πsk(S0) = πk(S). On the other hand, the left-hand-side will still
be homotopy groups of orthogonal groups, well understood by Bott periodicity phenomena
(if nothing else). In this way, the J homomorphism traces out stable homotopy classes,
possibly in high-degree homotopy groups of spheres, and indeed the major application
of it in stable homotopy theory has been to try to bootstrap computations of homotopy
groups of spheres off it.

2.3.6. The J-homomorphism not a homomorphism. But back to J ∶ O → Ω∞S in
the abstract. Since O(n) is a group, and that the construction of the J-homomorphism was
stated purely in terms of actions, it seems plausible to expect that the procedure explained
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in the last subsection would leave us with something like a group homomorphism at the
end. The name “the J-homomorphism” sure suggests so too. And while we may recall
that Ω∞S, by the virtue of being an infinite loop space and May’s Recognition Theorem,
carries the structure of an E∞-space, the J-homomorphism in the form J ∶ O → Ω∞S
fails to be a homomorphism of E1-spaces (the “greatest common denominator” between a
group and an E∞-space).

The issue is that the E∞-structure on Ω∞S that we are discussing comes from the
spectrum structure of S, i.e. is in some sense additive. Instead, the J-homomorphism
sends the group operation in O into a “multiplicative” E∞-structure on Ω∞. Of course
this exists, and is inherited from the E∞-ring structure on S, but it is very far from being
grouplike; indeed, π0S ≃ Z fails to be a group under multiplication in an epic way.

The solution is to modify the target, replacing Ω∞ with GL1(S) ≃ AutSp(S), the “au-
tomorphism group” of the sphere spectrum. We will talk more about it in the next few
sections, but the take-away is that it produces a map J ∶ O → GL1(S) of grouplike E1-
spaces, and this is how we understand the J-homomorphism from here on.

2.3.7. The ∞-group GL1(S). Let us discuss the grouplike E1-space GL1(S) with a little
more rigor. In fact, since it is absolutely no harder, let us discuss GL1(R) for any E∞-ring
R.

We may proceed like this: let Mod≃R ⊂ ModR denote the subcategory of the ∞-category
of R-modules where we discard all morphisms that are not equivalences. In this way we
obtain an ∞-groupoid, or equivalently a space. Its objects are the same as of ModR, so
we may consider the full subcategory of Mod≃R spanned by the unit R-module R. Since
this ∞-groupoid has only a single object R, it corresponds to a pointed (with base-point
R) connected space. Now recall the Boardman-Vogt-May Recognition Theorem for Loop
Spaces from 1.6.4. It shows that the connected space in question is in fact of the form
BG for some uniquely-determined grouplike E1-space G. This we finally set to be the
sought-after GL1(R) ∶= G.

That was of course just a fancy way to say that GL1(R) ≃ MapMod≃R(R,R), the space of

R-linear equivalences R ≃ R, in full analogy with how GL1(R) is defined for an ordinary
ring R. The key is merely that the above description also specifies the E1-structure, and
since we are working ∞-categorically, that is a rather formidable accomplishment.

2.3.8. Alternative construction of GL1(S). Another approach is to recall that the set
π0R ≃ π0(Ω∞R) inherits a commutative ring structure from the E∞-ring structure on R.
Thus we can define GL1(R) as the pullback of the cospan Ω∞R → π0(R) ← π0(R)× in
the ∞-category CMon of E∞-spaces. (A basic property of the latter is that the limits in
it are preserved under the forgetful functor CMon → S, thus the underlying space of this
E∞-space is obtained by merely taking the same pullback in the ∞-category as spaces.)

To see that this is the same as the previous constrction relies on observing that Ω∞R ≃
MapModR

(R,R). The advantage of the approach outlined in this paragraph though is that
it automatically equips GL1(R) with an E∞-structure, not merely an E1-structure. Also,
note that this construction explicitly addresses the issue of non-grouplikeness of Ω∞S,
raised in subsection 2.3.3, making it seem like a sensible target for the J-homomorphism.

2.3.9. Digression: the spectrum gl1(R). As such we may use the May Recognition
Principle for infinite loop spaces from 1.6.6 to obtain an essentially unique connective
spectrum gl1(R) for which there is an equivalence of grouplike E∞-spaces Ω∞gl1(R) ≃
GL1(R). So we got another family of examples of spectra, which this section is supposed
to be all about! Sweet!

From the pullback description in the previous paragraph (and since ordinary homotopy
groups of GL1(R) are the same as the homotopy groups of the spectrum gl1(R), it is easy
to determine the homotopy groups of this spectrum as πi(gl1(R)) = πi(R) for all i ≥ 1,
then π0(gl1(R)) ≃ (π0R)×, and finally πi(gl1(R)) = 0 for all i < 0.
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But let’s get back to business:

2.3.10. The definition of Thom spectra. At long last, we can explain how to form
Thom spectra out of vector bundles. This will bring together what we’ve discussed about
local systems of spectra and the J-homomorphism, and then we’ll be done.

Start with a vector bundle E →X of rank r. It is classified by a map X → BO(r), and
composing with the canonical map BO(r) → BO corresponds in light of the discussion
of BO in the last section to passage from E to the associated stable (in the sense of
arbitrary addition of summands R) vector bundle. Now we can apply the J-homomorphism
BO → BGL1(S), which geometrically corresponds to passing to the associated spherical
bundle (indeed, remember that the J homomorphism was about one-point compacitying
copies of Rr into Sr).

Altogether, we obtain a map X → BGL1(S), but recall from subsection 2.3.4 that the
∞-groupoid BGL1(S) is by definition equivalent to the full subcategory of Sp≃ spanned
by S. As such, we can compose with the inclusions BGL1(S) ⊂ Sp≃ ⊂ Sp to end up with
a functor X → Sp, which is to say, a local system of spectra on X. Intuitively, this local
system has at the point x ∈ X value S[Ex], where Ex is the fiber of the vector bundle
we started with, and the fact that we are applying the functor S[−] ≃ Σ∞

+ has to do with
respect to + with the one-point compacitification, and then stabilizing.

Definition 17. The Thom spectrum of the vector bundle E → X, denoted variously by
XE or Th(E), is obtained by applying the functor p! ∶ Fun(X,Sp)→ Sp of left pushforward
along the terminal map p ∶X → ∗ to the local system of spectra associated to E. Explicitly,
that means that the Thom spectrum is given by

Th(E) ≃XE ∶= limÐ→(X EÐ→ BO(r)↪ BO
JÐ→ BGL1(S)↪ Sp).

This definition may strike you as somewhat hardcore: so many functors, so many things
- but it’s really super simple. You start of with a vector bundle E on a space X, view it
as a map to classifying space X → BO, compose with the J-homomorphism to land in the
∞-category of spectra, and take the colimit. Easy-peasy!

2.3.11. Thom spectra are similar to suspension spectra. To convince yourself that
performing this construction might be sensible, recall that the Thom spectrum XE is
roughly limÐ→x∈X S[Ex]. Well, if we didn’t have the suspension spectrum in there, this would

be the colimit limÐ→x∈X Ex. But since the fiber Ex is is equivalent to Rr ≃ ∗, this is the same

as limÐ→x∈X ∗ ≃X. Thus, since the functor S[−] ∶ S→ Sp is a left adjoint and as such preserves

colimits, the Thom spectrum XE is roughly like the suspension spectrum S[X].
But in fact, XE isn’t just limÐ→x∈X S[Ex], and that’s the whole point - it can twist the

fibers a bit before combining them! And that’s why it’s interesting. :)
The question for which bundles E → X we do have XE ≃ S[X] is a very profound

one, leading to the theory of orientations. Indeed, for any E∞-ring R a good notion of
R-orientation for a bundle E →X is the requirement that XE⊗R ≃ R[X]. That is to say,
the answer to the question is affirmative upon smashing with R. This has been thoroughly
studied in stable homotopy theory, from the perspective we are pursuing most notably by
Ando-Blumberg-Gepner.

In particular, any trivial vector bundle is S-oriented, so that all suspension spectra are
examples of Thom spectra.

2.3.12. Mahowald’s Theorem. Indeed, many spectra can be viewed as examples of
Thom spectra. Andrew has a motto about that, which goes something like: “All spectra
are Thom spectra, except the ones that aren’t.” In fact, a certain portion of his career has
been devoted to proving that certain spectra can not be viewed as Thom spectra.
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The historically first example (and by far the simplest, so the one that I shall restrict to
telling here) of this principle was Mahowald’s Theorem, exhibiting the Eilenberg-MacLane
spectrum F2 as a Thom spectrum.

How does this work? Well, note first that

π1(BO) ≃ π0(ΩBO) = π0(O) = Z/2,
the last isomorphism following easily from the fact that O(n) have two components for all
n ≥ 1: the orientation-preserving and the orientation-reversing isometries. Thus there is
only a single non-trivial homotopy class of pointed maps S1 → BO, of course corresponding
to 1 ∈ Z/2. But note that by Bott periodicity BO is an infinite loop space. In particular,
it is a 2-fold loop space.

Now we need a rather easy fact about iterated loop spaces: the forgetful functor from
the ∞-category of n-fold loop spaces (and n-fold loop space maps between them, i.e. maps
which respect the deloopings) to S∗ admits a left adjoint. This functor, which we can call
the free n-fold loop space, sends a pointed space X to the n-fold loop space ΩnΣnX, and
the universal arrow X → ΩnΣnX is just the unit of the adjunction Σn ⊣ Ωn. Thus if Y is
an n-fold loop space, any pointed map X → Y induces an essentially unique n-fold loop
space map ΩnΣnX → Y.

Applying this to the map S1 → BO, we obtain a 2-fold loop space map Ω2S3 ≃ Ω2Σ2S1 →
BO, which we may view as a stable vector bundle on Ω2S3. We can take its Thom spectrum
like before: compose with the J-homomorphism and then take the colimit in the ∞-
category of spectra. Well, Mahowald’s Theorem says that the Thom spectrum produced
this way is the Eilenberg-MacLane spectrum F2.

Variants of this Theorem, found later by Hopkins and others, tell how to construct
Eilenberg-Maclane spectra Fp, Zp, and Z as Thom spectra as well, but the constructions
are much more involved (one needs to work in p-complete spectra, etc.) so we do not go
into them here.

2.3.13. Traditional examples. Mahowald’s Theorem is interesting and unexpected, but
it ends up producing a spectrum we already knew. Instead the more traditional examples
of Thom spectra are ones we haven’t encountered before.

Let G be a group (compact Lie, say, or maybe finite) and ρ ∶ G→ O(n) be an orthogonal
representation thereof. This is equivalent to a rank n vector bundle on BG, given by its
classifying map BG→ BO(n). This gives rise to the Thom spectrum that is usually denoted
just MG, despite technically depending on the choice of the underlying representation ρ.

Of course if the group G admits a particularly canonical (in that case usually also faith-
ful) representation ρ of this form, the symbol MG should be reserved for the Thom spec-
trum with respect to that ρ. Examples are MO(n),MU(n),MSO(n),MSU(n),MSp(n),
etc.

Playing the same game with stable vector bundles instead of actual ones allows us to
form the particularly important MO and MU. Just to unravel what’s going on, note that
the former of the two is given by

MO ≃ limÐ→(BO
JÐ→ BGL1(S)↪ Sp),

literally the colimit of the J-homomorphism in spectra. The spectrum MU is obtained by
merely pre-composing with the map BU→ BO, coming from the inclusions U(n)↪ O(2n),
before applying the colimit. Since the construction of the Thom spectrum commutes with
colimits in the group (easy check with our definition of Thom spectra), these are also
equivalent to MO ≃ limÐ→MO(n) and MU ≃ limÐ→MU(n).
2.3.14. Thom spectra and cobordisms. You might be surprised to learn the names
that MO and MU carry. They are the real and the complex cobordism spectrum respec-
tively. This is due to the highly non-obvious fact that the cohomology theories that they

39



correspond to are the theory of cobordisms of real and complex manifolds repsectively. In
particular, elements in πn(MO) and πn(MU) correspond with cobordism classes of closed
n-dimensional manifolds, real or complex5 respectively.

We have little to say about this, other to mention the theorem of Galatius-Madsen-
Tillmann-Weiss, which among other things shows that this identification also happens on
the level of underlying infinite loop spaces. More precisely, if BordR and BordC are the
∞-categories of bordisms of manifolds (here the n-morphisms are given by n-dimensional
manifolds, viewed as bordisms), then the underlying ∞-groupoids Bord≃R and Bord≃C in-
herit an infinite loop space structure from the symmetric monoidal structure given by
disjoint union on bordisms. With this structure, we have

Ω∞MO ≃ Bord≃R, Ω∞MU ≃ Bord≃C.

Since both spectra are connective, this characterizes them essentially uniquely. For what
it’s worth, let us also point out that their homotopy groups (isomorphic by the above to
cobordism groups, whose determination can be pawned off as a problem for geometric
topologists) are given by the polynomial rings

π∗(MO) ≃ F2[xn∣n ≥ 2, n ≠ 2n − 1], π∗(MU) ≃ Z[u1, u2, . . .]
on generators xn in degree n and generators un in degree 2n respectively. From this, we
may observes that homtopy groups form graded rings. Is there any reason for that, we
might ask.

2.3.15. Ring structure on Thom spectra. Indeed, there is a E∞-ring structure on
MO and MU. This makes sense from the Galatius-Madsen-Tillmann-Weiss perspective:
the disjoint union of manifolds gives rise to the “additive” spectrum structure, so the
product of manifolds should equip it with an appropriate commutative ring structure
(since × distributes over ∐ in the usual way).

As pointed out in light of the ABGHR perspective, the ring structure may be seen as
coming in a more general way from the construction of Thom spectra. This goes roughly
as follows: let E ∶ X → BO be an n-fold loop space map (recall: BO is an infinite loop
space by Bott), so in particular X has to be an n-fold loop space itself. To obtain an
En-structure on the associated Thom spectrum, we procede in steps.

● By the Recogition Principle that should be familiar by now, n-fold loop spaces are
paritcular cases of En-spaces, so we are asking for the classifying map E to be an
En-map.

● We compose with the J-homomorphism J ∶ BO→ BGL1(S), itself an E∞-map and
so an En-map for every n. Thus we have a En-map structure on the composite
J ○E ∶X → BGL1(S).

● Recall that the E∞-structure on GL1(S) comes from the “mutiplicative” struc-
ture on the sphere spectrum. More precisely, if we view BGL1(S) as a sym-
metric monoidal ∞-groupoid (∞-groupoid, which is also a symmetric monoidal
∞-category), then the inclusion functor BGL1(S) ↪ Sp⊗ is symmetric monoidal
with respect to the smash product.

● Altogether, we find that the associated local system of spectra J ○E ∶X → Sp is an
En-monoidal functor, equipping its colimit XE = limÐ→J ○E with a natural structure

of a En-ring.

Since both the identity map BO → BO, as well as the map BU → BO, are infinite loop
space maps, this procedure applies to exhibit a E∞-ring structure on cobordism spectra
MO and MU as promised.

5Technically the relevant structure is not quite a complex one, but instead a stably almost complex one.
That is to say, a complex structure on some sum of the tangent bundle with a trivial bundle.
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2.3.16. Other species of cobordisms. Let us return to the setting of subsection 2.2.3.12.
Essentially through the Galatius-Madsen-Tillmann-Weiss identification of Ω∞MO with
Bord≃R (though this was known much before and requires much less profound technology),
we can obtain a cobordism interpretation of various other variants MG of Thom spectra.

Here G is a group, and to have any hope of forming a Thom spectrum, it must come
equipped with a homomorphism G → O. We can interpret this as a type of tangential
structure: a condition that one might consider requiring on a tangent bundle6 of a manifold

M through its classifying map M
TMÐÐ→ BO, by asking it to factor through BG→ BO. For

example:

● If G = O, then the requirement is void.
● If G = Spin ∶= limÐ→n≥0

Spin(n), it is asking for a spin structure on the manifold M .

● If G = U, this is the requirement that TM carry the structure of a complex vector
bundle. Equivalently, this is asking for an (almost) complex structure on the
manifold M .

● If G = ∗ is the trivial group, the requirement is that the tangent bundle TM is
trivial, i.e. asking that the manifold M is framed.

This defined a class of manifolds, equipped with the prescribed extra structure, and
called G-manifolds. The underlying loop space Ω∞MG of the relevant Thom spectrum
is then equivalent to Bord≃G, the space of cobordisms of G-manifolds (Correction: I am
told this is not known, only conjectured, and known for several groups G that one cares
about). This principle goes by the name of Thom’s Theorem.

Its perhaps most surprising application comes when applied to G = ∗. The relevant
tangential structure is framing, so the relevant Thom spectrum is denoted MFr. This
Thom spectrum is by definition the colimit of the composite functor

∗→ BO
JÐ→ BGL1(S)↪ Sp,

which is just a very fancy way of picking out the sphere spectrum S ∈ Sp. It follows that
MFr ≃ S, and consequently

Ω∞S ≃ Bord≃fr,

identifying (the underlying loop space of) the sphere spectrum with the space of framed
bordisms. In this way, perhaps somewhat unexpectedly, framed bordisms know about the
sphere spectrum.

2.3.17. The original approach to Thom spectra. What we discussed so far in this
section was from the ABGHR ∞-categorical perspective. But Thom spectra much predate
this. Though I think we gained as ample an understanding as possible, the little Arun
voice inside my head would kill me in my sleep if I didn’t at least mention the classical
construction.

Fix a vector bundle E → X. We can form its Thom space T (E), which is just a fancy
name for the one-point compactification of the total space E. Alternatively, if you are in
the setting of smooth manifolds, and pick a fiber-wise inner product on E, you can form
T (E) =D(E)/S(E), that is by quotienting the inclusion S(E) ⊂D(E) of the unit sphere
bundle into the closed unit disc bundle. In any case, there is a canonical equivalence
T (E ⊕R) ≃ ΣT (E).

Now let En → BO(n) be the universal n-dimensional vector bundle. Explicitly it’s the
associated bundle En = EO(n)×O(n) Rn to the universal principal O(n)-bundle EO(n) on
BO(n), if we try to be precise for once. Anyhow, we define the n-th space of the Thom
spectrum MO by MOn = T (En), and its structure maps are

ΣMOn = ΣT (En) = T (En ⊕R)→ T (En+1) = MOn+1.

6Really it is all about the stable tangent bundle, i.e. there can be hidden trivial bundle summands, a
difficulty that we choose to ignore in this discussion.
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The middle map heuristically comes from the fact that the vector bundle En ⊕R has
rank n + 1, and as such admits a map into the universal rank n + 1 bundle En+1. More
precisely, it is the map EO(n) ×O(n) Rn ×R → EO(n + 1) ×O(n+1) Rn+1 coming from the

block inclusion O(n)→ O(n + 1), compatible with the inclusion Rn ≅ Rn ⊕ 0↪Rn+1.
In any even, this is the classical constrution of the Thom spectrum MO (and MU would

be entirely analogous with Cn in place of Rn). You can’t say I didn’t tell it to you. :)

2.4. Truncation of spectra

Unlike all the somewhat fancier and involved things we’ve seen so far, such as topological
K-theory and Thom spectra, let us spend this section discussing a very simple way of
getting new examples of spectra from old ones - by cutting away a bunch of their homotopy
groups!

2.4.1. Truncating a chain complex. Under the analogy between Sp and the derived
category D(R), truncation of spectra should be like truncating a (co)chain complex of
(ordinary) R-modules. Let us take a few subsections to discuss how this works in detail.

2.4.2. Attempt 1: stupid truncation. Given such a complex M●, we could try to cut
it off by merely defining the i-th truncation τ≥is M

● to be the chain complex

⋯→ 0→ 0→M i diÐ→M i+1 di+1ÐÐ→M i+2 → ⋯
with dj ∶M j →M j+1 the differentials of the complex. As the index s indicates, the complex
τ≥is M

● thus produced is called the stupid truncation (actual name, as used in the papers of
Bhargav Bhatt and others). It’s really not a very smart construction, as it’s not invariant
under quasi-isomorphisms - a quasi-iso may very well change the i-th component M i of
M●. As such, τ≥is doesn’t really exist on the level of the derived category D(R).

2.4.3. Attempt 2: actual truncation. So let’s try again. Since we should only take
the weak-homotopy class of M● into account, it seems sensible to demand that τ≥iM● has
the same cohomology groups as M● in degrees ≥ i, and that its cohomology vanish in all
smaller degrees.

This is not very hard to accomplish: set τ≥iM● to be the complex

⋯→ 0→ 0→ Cokerdi−1 diÐ→M i+1 di+1ÐÐ→M i+2 → ⋯.
This clearly is but a chain complex model, but it now gives a well-defined element in
D(R). It comes equipped with a map M● → τ≥iM●, which exhibits its universal property.

2.4.4. Universal property of truncation. Indeed, let D(R)≥i ⊂ D(R) denote the full
subcategory of complexes (with cohomology) concentrated in degree ≥ i. The truncation
τ≥iM● is initial among objects in D(R)≥i with a map from M●. That is to say, the
construction τ≥i ∶ D(R) → D(R)≥i provides a right adjoint to the inclusion D(R)≥i ↪
D(R).

Analogously defining D(R)≤i ⊂D(R) to consist of complexes with chomology purely in
degree ≤ i, we get truncation in the other direction τ≤i ∶D(R)→D(R)≤i as the left adjoint
to the inclusion. We could also explicitly construct a chain model for τ≤iM● as

⋯→M i−2 di−2ÐÐ→M i−1 di−1ÐÐ→ Kerdi → 0→ 0→ ⋯.
Furthermore truncations in one direction may be expressed in terms of truncations in

the other one: clearly τ≤iM● →M● → τ≥(i+1)M● is a (co)fiber sequence.
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2.4.5. Truncation of spectra. Though the analogy between the derived category of
modules and the ∞-category of spectra is imperfect in the sense that we can not make
sense of the chain-complex-level constructions such as in 2.4.3 in Sp, the universal property
from 2.4.4 works flawlessly. We just make one slight cosmetic change - since spectra are
graded homologically, all the indices will lower and all the inequlities will reverse.

We define the subcategory of i-connective spectra Sp≥i ⊂ Sp to be the full subcategory
spanned by spectra X which have πj(X) = 0 for all j < i. The i-truncated spectra Sp≤i ⊂ Sp
are defined analogously to consist of X with πj(X) = 0 for all j > i. Both of these
subcategory inclusions admit adjoints (Adjoint Functor Theorem wonders wants me to
ask who called), with the left adjoint τ≥i ∶ Sp→ Sp≥i usually called the i-connective cover,
and the right adjoint τ≤i ∶ Sp→ Sp≤i called the i-truncation.

For any spectrum X ∈ Sp we have πj(X) = πj(τ≤iX) for all j ≤ i and πj(X) = πj(τ≥iX)
for all j ≥ i as expected. Just as before, we get a fiber sequence τ≥iX → X → τ≤(i+1)X for
every i.

Though we won’t need to know any of the technicalities, allow me to point out that
the structure we are observing here on the ∞-category Sp falls under the heading of a
t-structure, a structure already well-studied in the land of triangulated categories.

2.4.6. Space-level constructions. In analogy with the chain complex picture we have
been propagating so far, it might seem strange to give the two opposite-directed trunca-
tions different names. It makes sense in terms of the analogous space-level construction
though.

We may define subcategories S≥i and S≤i as above in terms of the ordinary homotopy
groups of spaces. Unlike in the case of spectra though, there is in this setting some
asymmetry between the two directions, since we have S = S≥0 while the subcategories
S≤−1 = S≤−2 = ⋯ are all empty. The adjoints τ≥i ∶ S → S≥i and τ≤i ∶ S → S≤i exist as above
due to abstract nonsense.

Given a space X, let us suppose it comes presented as a CW complex. Then the
truncation τ≤iX may be obtained by taking the i-skeleton, then for each non-trivial element
of πi+1X gluing onto it an (i+ 2)-cell contracting it. This may introduce some non-trivial
elements in πi+2, which we kill by gluing in (i+3)-cells. Continuing inductively, we obtain
τ≥iX. This procedure is known classically as “killing homotopy groups”.

In low degrees, we get

● τ≤0X is the connected components π0(X).
● τ≤1X is, under an equivalence of categories between 1-truncated CW complexes

and groupoids, the fundamental groupoid π≤1X, also sometimes denoted Π(X).
● In particular, if X is connected, then its 1-truncation is τ≤1X ≃ Bπ1(X), the

classifying space of the fundamental group. τ≥2X is the universal cover of X.

The last of these cases is especially telling as to why the functor τ≥i is called the i-
connected cover.

2.4.7. Connective spectra. Since all spaces are connective, a distinguished role is played
among spectra which are 0-connective. In that case we simply say that they are connective,
and employ special notation Spcn = Sp≥0. Another reason for this preferential treatment
is, as we already discussed, that the functor Ω∞ ∶ Sp → S restricts to an equivalence to
infinite loop spaces only on the connective part of Sp. As such, connective spectra are
more easily understood as ∞-categorical abelian groups, while the non-connective part is
a bit more mysterious.

Most spectra we encounter in our day-to-day life (e.g. the sphere) will probably be
connective, unless we desuspend them too much. One big exception is topological K-
theory. Indeed, we saw that as a consequence of Bott Periodicity, KU and KO are 2-
periodic and 8-periodic (in homotopy groups) respectively. Of course if we knew in advance
that they are periodic, we could recover them from their connective covers. The latter
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are called connective complex and real topological K-theory respectively, and are denoted
ku ∶= τ≥0KU and ko ∶= τ≥0KO. Indeed, this is a case of a common paradigm, where capital
letters denote non-connective (usually periodic) spectra, while their small-letter analogues
refer to their connective covers (compare with gl1(R) from 2.3.7).

In fact, the connective cover functor τ≥0 ∶ Sp → Spcn determines the whole t-structure
on Sp. Indeed, We have Sp≥n ≃ Spcn[n], the n-connective cover is given in terms of
the connective cover as τ≥nX ≃ τ≥0(X[−n])[n], truncated spectra may be obtained as

Sp≤n ≃ fib(Sp
τ≥(n+1)ÐÐÐÐ→ Sp≥(n+1)), and finally n-truncation my be obtained as the cofiber

τ≤nX ≃ cofib(τ≥(n−1)X → X). In this way, connective spectra Spcn ⊂ Sp know everything
about the t-structure.

2.4.8. Non-connective spectra are weird. The distinguished role of connective spectra
is also seen in spectral algebraic geometry, where although most of the definitions make
sense for non-connective E∞-rings just as well, they only have nice behavior, which is
to say, exhibit properties familiar from usual algebraic geometry, under the additional
assumption of connectivity.

Perhaps the most poignant demonstration is this: for a connective spectrum X, the
truncation map X → τ≤0X ≃ π0(X) exhibits the map to the “underlying ordinary abelian
group” π0(X) of X. When X is not connective, the interpretation of π0(X) as an under-
lying abelian group is a lot less tangible, since the natural maps only go

X → τ≤0X ← τ≥0τ≤0X ≃ π0(X).
This may not seem so bad, but if you want to interpret a spectral scheme as some sort of

“higher nilpotent thickening” of an underlying ordinary one, it is quite unfortunate if there
is no canonical map from the underlying ordinary scheme into its supposed thickening.

2.4.9. The Postnikov tower. Truncations are often used to inductively study a spectrum
(or space) X through its Postnikov tower

⋯→ τ≤2X → τ≤1X → τ≤0X → τ≤(−1)X → τ≤(−2)X → ⋯
whose “associated graded” is (i.e. the fibers are) Σiπi(X) (or the iterated classifying
space Biπi(X) in the case of spaces). Spectra with various desired properties can be built
successively by constructing their i-truncation, and then checking in terms of πi(X) that
the extension problem to ascend the tower is verified. Furthermore we have a convergence
result X ≃ lim←Ðk→∞ τ≤kX, allowing us to reduce the study of any construction that preserves

filtered limits entirely to what it does to truncated spectra. This is a technique that is
very often immensely useful.

2.5. Algebraic K-theory

In section 1.2.2 we discussed topological K-theory, constructed out of topological vector
bundles. We mentioned however that the origins of K-theory link it to Grothendieck’s
work on the Riemann-Roch theorem. In this section we will briefly review that story, and
then explain how it extends to give rise to algebraic K-theory spectra.

2.5.1. The Grothendieck group of a variety. Let X be a smooth variety over a
field k. Let Coh(X) denote the category of (non-derived) coherent sheaves on X. Let
A = Z⟨Coh(X)≃⟩ denote the free abelian group generated by isomorphism classes [F ]
of coherent sheaves F on X, and let R ⊆ A denote the subgroup generated by elements
[F ′] − [F ′] + [F ′′] for all short exact sequences

0→F ′ →F →F ′′ → 0

of coherent sheaves on X. The Grothendieck group of X is defined to be the quotient
group K0(X) ∶= A/R.
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2.5.2. Universal property of the Grothendieck group. In light of split short exact
sequences, we see that the addition on the Grothendieck group is given by [F ] + [F ′] =
[F ⊕F ′]. In this way, we may interpret the construction of the Grothendieck group as
the universal way of making all short exact sequences of quasi-coherent sheaves behave
as if they were split. This can be easily made precise as a universal property: K0(X) is
initial among abelian groups A with a (set-theoretic) map f ∶ Coh(X)≃ → A satisfying
f(F ) = f(F ′) + f(F ′′) for every short exact sequence

0→F ′ →F →F ′′ → 0

of coherent sheaves on X.
This is why Grothendieck initially introduced his group (and with this, K-theory). In

the Riemann-Roch story, as by that time re-interpreted by Serre, Weil, and Hirzebruch,
the goal was to compare various “characteristic classes” of coherent sheaves, satisfying the
above-described additivity property wrt short exact sequences. Grothendieck’s innocuous
idea was to take this seriously and consider these functors as group homomorphisms from
K0(X). The advantage is that K0(X) itself behaves a lot like a cohomology theory for
schemes, which could be exploited. And so, K-theory was born.

2.5.3. Grothendieck group of vector bundles. Suppose that X is a smooth variety.
In that case, any coherent sheaf admits a resolution

0→ Er → ⋯→ E1 → E0 →F → 0

by locally free sheaves (always of finite rank) Ei. Exactness of this sequence implies the
equality [F ] = ∑0≤i≤r(−1)i[Ei] in K0(X), thus showing that the Grothendieck group is
generated by (the image of) the subgroup Vect(X)≃ ⊆ Coh(X)≃ of locally free sheaves,
i.e. vector bundles, inside coherent sheaves.

This was behind the definition of topological K-theory in section 1.2.2: since every short
exact sequence of topological vector bundles on a manifold splits, additivity was reduced
to [E ⊕E ′] = [E ]+ [E ′]. Alas, a short exact sequence of algebraic vector bundles need not
split algebraically, so the more complicated definition is necessary. That is, it does not
split unless ..

2.5.4. The affine case. If X = SpecA is an affine scheme, then every short exact sequence
of vector bundles does indeed split. (The reason that this always happens in the algebro-
topological case is that, from many points of view, all topological manifolds “topologically
affine” - that’s one perspective on the Whitney Embedding Theorem, anyway.) Indeed, in
terms of the equivalence of categories QCoh(X) ≃ Mod♡A between (ordinary, non-derived)
quasi-coherent sheaves on the affine and modules, vector bundles correspond to projective
A-modules. The latter are defined by the fact that they split short exact sequences.

Consequently the Grothendieck group K0(A) ∶= K0(X) is the free abelian group gener-

ated by classes [M] of projective modules M ∈ Modproj
A under the relation that [M⊕M ′] =

[M]⊕ [M ′]. All that taking the free abelian group accomplishes is thus to add in formal
inverses [M] for each projective (discrete) A-module M .

That is to say, consider the set (Modproj
A )≃ of isomorphism classes of projective A-

modules. The operation ⊕ of direct sum makes it into a commutative monoid. Then
K0(A) is the group completion of this monoid.

2.5.5. Group completion. Group completion is the left adjoint to the inclusion Ab ⊆
CMon♡ of the category of abelian groups into the category of commutative monoids. That
is to say, given a commutative monoid M , its group completion Mgp is an abelian group
together with a homomorphism M → Mgp of commutative monoids, and initial among
abelian groups with such a homomorphism.

The Grothendieck group of a commutative ring is then nothing but

K0(A) ≃ ((Modproj
A )≃)gp.
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Of course we are describing this because it will generalize in a simple way to the ∞-
categorical setting.

2.5.6. Toward the K-theory spectrum. Let us turn our attention now to constructing
algebraic K-theory, as an ∞-categorical analogue of the preceding discussion. In accor-
dance with the philosophy that we have encountered several times now, we replace in the
above discussion commutative rings with E∞-rings, commutative monoids with E∞-spaces,
and abelian groups with grouplike E∞-spaces (which, we know, amounts to the same thing
as connective spectra). Let us carry out this program. In the next few subsections.

2.5.7. Group completion for E∞-spaces. Group completion of E∞-spaces may be de-
fined analogously to the discrete case in the previous section, as the left adjoint to the
inclusion of ∞-categories CMongp → CMon of grouplike E∞-spaces into not-necessarily-
grouplike ones.

Restricted to discrete objects CMon♡ ⊆ CMon, the group completion in this sense agrees
with the one from subsection 2.6.5. In particular, it lands inside the subcategory of discrete
objects Ab ⊆ CMon.

An explicit construction of group completion may be given as Mgp ≃ ΩBM , which passes
through the Boardman-Vogt Recognition Principle identifying loop spaces and grouplike
E1-spaces. Since we will not need this, let us not go in more detail.

2.5.8. Perfect modules. What will we use in place of projective modules over the discrete
commutative ring A, that were used to construct K0(A)? The answer is that for an E∞-

ring A, we should consider the full subcategory Modperf
A ⊆ ModA of perfect A-modules.

This is a ubiquitous condition to put on a module in this setting, and as such there is a
myriad of perspectives on it.

● On the one hand, Modperf
A is the smallest stable subcategory of ModA containing

A itself and retracts. That is to say, any perfect A-module M may be built out of
A by a finite process involving only ⊕, Σ, fibers, and cofibers.

● Saying essentially the same thing a bit differently, an A-module is perfect iff it can
be written as a retract of some module of the form Σi1A ⊕ ⋯ ⊕ ΣikA for ij ∈ Z.
Compare this to projective modules (over a classical commutative ring, if you
insist), which are only retracts of A⊕⋯⊕A, so no shifts allowed.

● Yet differently, Modperf
A is the category of compact objects in ModA. This is under

the categorical meaning of compactness: an object K in an ∞-category C is said
to be compact if the Yoneda functor C ↦ MapC(K,C) commutes with filtered
colimits. The idea is that the filtered limit might be something like an ascending
chain of open inclusions in some ambient topological space U1 ⊆ U2 ⊆ U3 ⊆ . . ., and
if K is a compact subset of the same space, then K ⊆ ⋃i≥0Ui implies that there is
some index k such that K ⊆ Uk.

● Or one can ask for the tensor product N ↦ N ⊗A M to preserve limits (as it
already preserves colimits). That is equivalent to dualizability, in the sense of
there existing a dual module M∨ for which there is an equivalence

MapModA
(N ⊗AM,L) ≃ MapModA

(N,M∨ ⊗A L)
natural in arbitrary N,L ∈ ModA.

● Under a Noetherian hypothesis on connective E∞-ring A (precisely: π0(A) is a
Noetherian ring and all the modules πi(A) are finitely generated), we can charac-
terize an A-module M as perfect iff it is flat, the π0(R)-modules πi(M) are finitely
generated for all i, and vanish for i sufficiently small.

● When A is an ordinary commutative ring, viewed as a discrete E∞-ring, the sub-

category Modperf
A ⊆ ModA ≃ D(A) consists of perfect complexes, i.e. chain com-

plexes of A-modules whose cohomology modules are finitely generated projective,
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and vanish outside a finite range of degrees. In short: it is the derived category
analogue of projective modules, as it should be.

With so many nice characterizations and properties of perfect modules, surely we are
happy to feed them into the machine to produce algebraic K-theory.

2.5.9. Algebraic K-theory space. The time has come to unveil algebraic K-theory of
an E∞-ring A. We proceed in tight analogy with subsection 2.6.6. Instead of taking

isomorphism classes, we should discard all the non-equivalence morphisms in Modperf
A .

This leaves us with the maximal contained ∞-groupoid (Modperf
A )≃, and via the usual

identification between ∞-groupoids and spaces, we may consider it as a space.
Furthermore the construction C → C≃ is symmetric monoidal as a functor Cat∞ → S, if

both ∞-categories are equipped with the Cartesian symmetric monoidal structure (prod-
ucts are just the categorical products). Thus it induces a functor CAlg(Cat∞) → CMon
from symmetric monoidal ∞-categories to E∞-spaces, since both are the commutative al-
gebra objects in the repsective ∞-categories. That is to say that a symmetric monoidal
structure on C descends to give an E∞-structure on the space C≃.

We apply this to the Modperf
A , equipped with the symmetric monoidal structure given

by ⊕. This makes (Modperf
A )≃ into an E∞-space. Finally we group complete to obtain the

algebraic K-theory space of A as Ω∞K(A) ∶= ((Modperf
A )≃)gp.

2.5.10. Algebraic K-theory spectrum. By design the algebraic K-theory space Ω∞K(A)
is a grouplike E∞-space. Recall that the functor Ω∞ induces an equivalence of ∞-categories
Spcn ≃ CMongp by the May Recognition Principle. Thus there exists an essentially unique
connective spectrum K(A) with the K-theory space of A as its underlying infinite loop
space, and this spectrum we call the algebraic K-theory spectrum of A.

We obviously have π0(K(A)) = π0(Ω∞K(A)) ≃ K0(A), recovering the Grothendieck
group, while the higher homology groups Ki(A) ∶= πi(K(A)) are known as higher algebraic
K-theory.

You might ask what some examples of algebraic K-theory spectra are, but of course if
you have heard anything about algebraic K-theory, you have probably heard that it’s hard
to compute. Instead, it contains much interesting information about the commutative
algebra of the rings in question.real

Do note however that algebraic K-theory fails to share the most distinguishing feature
of its topological cousin: there is no analogue of Bott periodicity. In many ways, this is
why algebraic K-theory is hard, and also why it took much longer for people to figure
out how to even correctly define higher algebraic K-theory - there was no Bott periodicity
cheating available!

2.5.11. Ring structure on algebraic K-theory. Note that for a commutative ring A,
the Grothendieck group K0(A) actually carries a ring structure. Indeed, the multiplication
comes from the tensor product of projective A-modules.

The situation is fully analogous in the ∞-categorical situation: the relative smash prod-
uct ⊗A equips K(A) with an E∞-ring structure.

In fact, up until now we have in this chapter never made use of the E∞-structure on A.
Thus everything would work just as fine for an En-ring A for any n ≥ 1. The only thing

that would change is that the relative smash product ⊗A would only make Modperf
A into an

En−1-monoidal ∞-category, and as such K(A) would be itself an En−1-ring. We conclude
that K-theory reduces commutativity by one.

2.5.12. An analogous construction of topological K-theory. A highly analogous
aproach to how we defined algebraic K-theory can be taken to obtain topological K-theory
as well.

47



Indeed, let Vectfd
C denote the ∞-category whose objects are finite dimensional complex

vector spaces, and whose mapping spaces are the spaces of linear maps, equipped with
their usual topology, inherited from that on C. If we did not demand finite dimensionality
we would instead obtain a bigger ∞-category VectC, of which Vectfd

C ⊆ VectC is the full
subcategory of compact objects (alternatively: of dualizable objects). In this way the

inclusion Vectfd
C ⊆ VectC is analogous to Modperf

A ⊆ ModA discussed in 2.6.8.

Pushing this analogy further, direct sum of complex vector spaces makes Vectfd
C into a

symmetric monoidal ∞-category, and makes its maximal ∞-subgroupoid (Vectfd
C)≃ into an

E∞-space. Group completing produces the space ((Vectfd
C)≃)gp, which we easily recognize

as the underlying infinite loop space Ω∞KU of complex topological K-theory.
Using May Recognition Principle, this recovers the connective complex K-theory spec-

trum ku. Applying the same construction with Vectfd
R finite dimensional real vector spaces

would produce ko, the connective real topological K-theory spectrum. In this way, alge-
braic K-theory is more an analogue of ku and ko than of KU and KO.

2.5.13. Algebraic K-theory of a category. Note that nothing in the construction of
algebraic K-theory, as outlined in subsections 2.6.9. and 2.6.9, used any special properties

of the ∞-category Modperf
A . We may generalize it to construct K-theory K(C) of any

presentably symmetric monoidal ∞-category C⊗ as the composite functor

K ∶ CAlg(PrL) (−)ωÐÐ→ CAlg(Cat∞) (−)≃ÐÐ→ CMon
(−)gpÐÐÐ→ CMongp Ω∞

←ÐÐ Spcn,

where we use that the last functor is an equivalence of ∞-categories. The first functor
in the composition is one induced on commutative algebras by the symmetric monoidal
functor PrL → Cat∞ of passage to subcategory of compact objects C↦ Cω. The rest of the
functors we already discussed.

This puts all the versions of (connective) K-theory that we encountered so far on the
same footing: algebraic K-theory is K(A) ≃ K(ModA) and topological K-theory is ku ≃
K(VectC) and ko ≃ K(VectR).
2.5.14. The Barrat-Quillen-Priddy Theorem. The incarnation of K-theory for a sym-
metric monoidal ∞-category from the previous section, also appears in the following cel-
ebrated Theorem:

Theorem 18 (Barrat-Quillen-Priddy). There is a canonical equivalence K(Set) ≃ S.
Chasing through the definitions, the theorem identifies the E∞-space Ω∞S with the

group completion of (Setfin)≃, the (nerve of the category of) finite sets with bijections be-
tween them. A finite set is determined up to bijection by its cardinality, and the bijections
of an n-element set form the symmetric group Σn, so we have (Setfin)≃ ≃∐n≥0 BΣn.

The Barrat-Quillen-Priddy Theorem is super easy to prove in our context. Here’s the
idea: recall that the free E∞-space functor S → CMon is given by X ↦∐n≥0X

n
hΣn

, where
Xn
hΣn

is the homotopy quotient of the permutation-of-factors action of ΣnonX
n. Thus

(Set)≃ is the free E∞-space on a single generator. By thinking about adjoints, it is clear
that group completion takes free E∞-spaces into free grouplike E∞-spaces on the same
generators. Thus it remains to prove that Ω∞S is the free grouplike E∞-space on a single
generator. We can use May’s Recognition Principle to reduce this to saying that S is the
free connective spectrum on a single generator. Here “free spectrum functor” is the left
adjoint of the “forgetful functor” Ω∞ ∶ Spcn → S, i.e. it is given by X ↦ S[X]. Finally
indeed S ≃ S[∗], and the theorem is proved. See, too easy not to prove!

2.5.15. Counting with the sphere spectrum. As consequence of Barrat-Quillen-Priddy,
the sphere spectrum S is the group completion of (Setfin)≃ ≃ ∐n≥0 BΣn. Note that on π0

this reproduces the counting numbers Z≥0, just as π0(S) ≃ Z.
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This is the content of the following allegory, allegedly due to Lars Hasselholt, but that
I learned from Yuri Sulyma: “When the prehistoric shepherds were on the right track
when they chose to count sheep with numbers and permutations, but went astray when
they added the negative numbers only on π0, forgetting about the permutations. It took
humanity millennia afterwards to realize that we shouldn’t be counting with the integers,
but with the sphere spectrum.”

Let us point out that, since the rationalization of the sphere spectrum is SQ ≃ Q, the
“difference” goes away the moment we allow ourselves to also divide by non-zero numbers.
The difference between Z and S, between ordinary algebra and homotopy theory, is in
that sense only about the way in which group completion is applied. Better: if we don’t
want to forget permutations when we start counting with negative numbers, we arrive at
the sphere spectrum.

2.5.16. Other variants of algebraic K theory. We have spent a fair while discussing
an analogue of the Grothendieck group of an affine scheme. But as we saw in subsections
2.5.1 - 2.5.3, the Grothendieck group of a non-affine scheme is much more complicated.

There exists an analogous construction of algebraic K-theory, via the so-called Wald-
hausen S●-construction. We will not go into any detail, other than to remark that the
construction is a careful elaboration on the idea from subsection 2.5.1 of splitting certain
pre-specified sequences.

Indeed, it is this Waldhausen version of K-theory that is usually meant as algebraic
K-theory, and is the better-behaved notion for non-affine schemes, spectral or otherwise,
and other spectrally-enriched categories in general. (When the two disagree, i.e. outside
the affine situation, algebraic K-theory as we have discussed is usually called “direct sum
K-theory”.)

A still slightly further elaboration exists in the form of non-connective K-theory. As
the name suggests, this sometimes produces negative K-theory groups, agreeing with ones
that algebraists had predicted long ago, before it was even clear how to correctly define
higher K-theory groups. For this version, notations K(A) and K(A) are common. A re-
sult of Blumberg-Gepner-Tabuada is that both Waldhausen K-theory and non-connective
K-theory admit characterizations by universal properties in terms of non-commutative
motives.

Non-connective K-theory was first introduced in a paper by Thomason-Trobaugh, which
is notable among much else for this simultaneously haunting and charming dedication:

The first author must state that his coauthor and close friend, Tom Trobaugh,
quite intelligent, singularly original, and inordinately generous, killed him-
self consequent to endogenous depression. Ninety-four days later, in my
dream, Tom’s simulacrum remarked, “The direct limit characterization of
perfect complexes shows that they extend, just as one extends a coherent
sheaf.” Awaking with a start, I knew this idea had to be wrong, since some
perfect complexes have a non-vanishing K0 obstruction to extension. I had
worked on this problem for 3 years, and saw this approach to be hopeless.
But Tom’s simulacrum had been so insistent, I knew he wouldn’t let me
sleep undisturbed until I had worked out the argument and could point to
the gap. This work quickly led to the key results of this paper. To Tom,
I could have explained why he must be listed as a coauthor. During his
lifetime, Tom also pointed out the interesting comparison of the careers of
Grothendieck and Newton.

What a quaint note to end this section on!
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2.6. Topological Hochschild homology

After the ever-profound and mysterious algebraic K-theory, let us tackle a most fashion-
able example: topological Hochschild homology. Though this spectrum has been around
for a long time, essentially as long as the subject, it has attracted a lot of attention in re-
cent years when the influential series of papers by Bhatt-Morrow-Scholze used THH first
as inspiration and later made an explicit connection to various arithmetic cohomology
theories. For those who know more than me, I should start saying things like AΩ, prisms,
and I don’t know what else; but I really don’t know, so let us stop there.

In this section however, we will see none of the flashy connections to arithmetic geometry.
Instead, we merely recount the beautiful classical tale of introducing Hochschild homology,
topological or otherwise, and leave discussion of some of its finer structure to the next
section.

2.6.1. Classical Hochscild homology. The classical definition of the i-th Hochshild
homology group of a commutative R-algebra A is as

HHi(A) = TorRi (A,A).
If we wish to emphasize the dependence on the underlying ring R, the notations HHi(A/R)
and HHR

i (A) are also not uncommon.
This can be expressed more elegantly using the technology of the derived category.

Indeed, let us denote the derived tensor product on D(R) by ⊗L
R. Then we may identify

Hochshild homology as the homology groups of the derived tensor product A ⊗L
A⊗RA

A.

Let us denote this element of D(A) as HH(A) (or HH(A/R), if we wish to emphasize R)
and abusively refer to it as the Hochschild homology of A.

2.6.2. Derived Hochschild homology. The classical treatments of Hochshild homology
one finds in the literature usually insist that A be a smooth, or at the very least flat, R-
algebra. Without that assumption Hochschild homology HH(A) = A ⊗L

A⊗RA A fails to
exhibit much nice behavior. Of course, the reason for this is quite transparent from the
derived perspective: the tensor product below is not derived.

To fix this, one may define derived Hochschild homology to be A⊗L
A⊗L

RA
A, which may

look a little intimidating but is actually a very friendly object.
For the majority of practitioners of Hochschild homology these days, this is the correct

definition of Hochschild homology for a non-flat R-algebra A anyway, so the adjective
derived is usually dropped (and the non-derived version never considered). We follow this
and boldly recycle the notation HH(A) (or HH(A/R)).

2.6.3. Topological Hochschild homology. In accordance with our usual perspective

of treating Sp⊗ ≃ Mod⊗S
S as a close analogue of the derived category D(R)⊗L

R ≃ Mod⊗R
R

for any discrete commutative ring R, we define the topological Hochschild homology of any
E∞-ring A as

THH(A) ∶= A⊗A⊗A A.
That is to say, topological Hochshild homology is nothing more and nothing less than
HH(A/S), (derived) Hochschild homology over the sphere spectrum.

Note that, since A ⊗R B is the pushout of the diagram A ← R → B in the ∞-category
CAlg, topological Hoschshild homology of A naturally comes equipped with an E∞-
structure. It also carries two A-module structures (one from the first and one from the
second copy of A), but we fix one of them and just view it as an A-module (an E∞-algebra
over A, even).
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2.6.4. THH for E1-rings, I. At this point we should admit that we did not actually need
A to be a E∞-ring. Recall that E1-rings (also known as A∞-rings in older literature) are
the homotopy coherent versions (in spectra) of associative rings. The construction of THH
works in the setting E1-rings also, albeit we need to be a little careful. This is because
an En-ring structure on A only implies that the relative smash product ⊗A induces an
En−1-monoidal structure on the ∞-category of (left, say) A-modules ModA. Thus an E1-
structurcture does not induce even a monoidal (which is to say, E1-monoidal) structure
on A-modules, making it a little more difficult to form the tensor products that we need
to define THH.

2.6.5. Digression: Relative smash product and bimodules. The way to go is to
observe what the natural domain and codomain of the relative smash product actually are.
Fix three E1-rings A, B, and C. Let ABModB denote the ∞-category of (A,B)-bimodules,
that is to say, informally, spectra M together with a left action maps A ⊗M ⊗B → M .
Equivalently: M has a compatible left A-module and right B-module structure. The
relative smash product is then most organically viewed as a functor

⊗B ∶ ABModB × BBModC → ABModC .

When we plug in A ≃ C ≃ S, we recover the usual smash product of a right B-module
with a left B-module, but without the presence of an E2-structure on B, the B-module
structure is not preserved.

The only remaining fact to note about bimodules, relevant for constructing THH, is that

ABModB is canonically equivalent to the left module ∞-category ModA⊗Bop , where Bop is
an E1-ring with the same underlying spectrum as B, only with the order of multiplication
reversed.

2.6.6. THH for E1-rings, II. Thus to form topological Hochschild homology of an E1-
ring A, we should consider A as an (A,A)-bimodule. Informally we may define an action
of A⊗A on A by (aL ⊗ aR)a ∶= aLaaR. Then we define THH as

THH(A) ∶= A⊗A⊗Aop A.

Note that, unlike when A is an E∞-ring, for an E1-ring THH(A) is merely a spectrum.
This lack of a ring structure is compatible with remarks made about E1-rings in subsection
2.7.4.

Unwinding the definition of the relative smash product as a colimit of a simplicial
diagram, we may express

THH(A) ≃ limÐ→(⋯⇛ A⊗A⇒ A)
showing THH itself to be a colimit (or as we would say in this case, geometric realization)
of a particularly natural simplicial diagram. This formula of course works for E∞-rings
just as well as for E1-ones.

That said, while topological Hochschild homology exists for any E1-ring, and even has
a lot of nice properties, it behaves best in the E∞-case, so we will mostly (possibly fully)
restrict ourselves to that for the remainder of this section.

2.6.7. Geometric interpretation: self-intersection of the diagonal. THH admits a
number of beautiful and sometimes useful (some dispute this last bit) interpretations in
terms of spectral algebraic geometry.

We need not go into details of SAG for this, all we need to assume that such a thing
exists, that to every E∞-ring we associate an affine spectral scheme SpecA, and that the
functors Spec ∶ (CAlg)op ↔ Affnc ∶ O is an equivalence of ∞-categories. The subscript
“nc” indicates that we are doing a non-connective version of this story; were we trying to
do real algebraic geometry with this, it would probably be better to add a connectivity
assumption (remember: nonconnective spectra are weird).
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Thus let X = SpecA be an affine spectral scheme (in usual terminology: affine non-
connective spectral scheme) for an E∞-ring A. The ring multiplication map A ⊗ A → A
corresponds geometrically to the diagonal map X →X ×X. Then we get that X ×X×XX ≃
Spec (A⊗A⊗A A) ≃ Spec THH(A), since pullback in affine spectral schemes correspond to
pushouts of E∞-rings, and the latter are formed by relative smash products. That is to
say that THH is given by (the functions on) the self-intersection of the diagonal of X
inside X × X. Such an intersection would not be very interesting in classical algebraic
geometry, but in SAG (as in DAG), it is highly interesting. This is due to it being very
far from transverse, and one perspective on derived pullbacks is that they are derived
functors of ordinary pullbacks, agreeing with them when the intersection is transversal,
but computing the “correct” intersection otherwise.

2.6.8. Geometric interpretation: the free loop space. There is another algebro-
geometric interpretation of THH, or perhaps the same one, but evoking different intuition
in light of classical analogies. We need three preliminaries:

(1) Recall that a circle may be glued together from two intervals, which intersect each
other in a disjoint pair of intervals. Since an interval is contractible as a space,
this exhibits a presentation

S1 ≃ ∗ ∐
∗∐∗

∗

of the circle as a pushout. Of course this pushout has to be considered in its
homotopical, which is to say ∞-categorical, incarnation.

(2) Note that spectral stacks should from the “functor of points” perspective be con-
strued as certain sorts of functors CAlg → S. In particular, we can define for any
space K ∈ S the constant functor like that with value K (or possibly sheafification
thereof, if you insist) and view it as some sort of a spectral stack.

(3) Given any pair of spectral stacks X and Y (irrelevant of whatever that should
mean), we may consider the mapping stack Map(X,Y ) defined by the requirement
that for any spectral stack Z there is a natural homotopy equivalence

MapSpSt(Z,Map(X,Y )) ≃ MapSpSt(Z ×X,Y ).
We make no promises that Map(X,Y ) is itself a spectral stack (in any of the

requirements that should imply), but a variant of a result by Toen in the DAG
setting should get you far. All that is relevant for us is that this thing is a functor
CAlg → S, which we choose to think of as a spectral stack.

Combining the 2. and 3. together, we may for any spectral stack X define its free loop
space to be LX ∶= Map(S1,X), where S1 is the circle viewed as a constant spectral stack.

By 3. and some basic properties of the mapping stack construction (it takes pushouts in
the first variable to pullbacks, and Map(∗,X) ≃X for any X), we find that

LX ≃ Map(∗ ∐
∗∐∗

∗,X) ≃X ×X×X X.

That means that, from the derived perspective, the free loop space coincides with the self-
intersection of the diagonal. Since the latter is an incarnation of THH, so is the former.
More precisely, there is an equivalence of E∞-rings

THH(A) ≃ O(LX)
for an affine spectral scheme X = SpecA.

If you were to run this same reasoning in derived algebraic geometry over a ring R, you
would arrive at a geometric interpretation of HH(A/R) as functions on the (derived) free
loop space on SpecA in the context of derived R-stacks, i.e. derived stacks over SpecR.
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2.6.9. Digression: tensoring with a space. There is a way to express the contents of
the previous paragraph entirely without the language of algebraic geometry, at the cost of
perhaps even a little more categorical nonsense.

Recall that the ∞-category of spaces S is generated by a single generator, the con-
tractible space ∗, under colimits. Let C be any ∞-category which has all colimits. Then the
previous generation statement translates into that a colimit preserving functor F ∶ S → C

is specified essentially uniquely and entirely by specifying the (equivalence class of, as is
always implicit,) the object F (∗) ∈ C. The tensoring of an object C ∈ C with spaces is
defined as the colimit-preserving functor − ⊗C ∶ S→ C specified by ∗ ⊗C ≃ C.

This admits a more explicit description. Recall that any space X ∈ S may be written as

X ≃ limÐ→
x∈X

{x} ≃ limÐ→
X

∗;

this is a slight extension of the claim that any space admits a CW complex model, since
gluing is a form of a colimit, and the spheres are S0 ≃ ∗∐∗ and Si ≃ ΣiS0, all created
by colimits from a point. The tensoring of an object C ∈ C by a space X ∈ S is then the
object X ⊗C ∈ C given by X ⊗C ≃ limÐ→X C.

You might begin to notice that the tensor product symbol ⊗ is much overloaded in
higher algebra. Thus we will sometimes denote tensoring by spaces in the ∞-category C

by ⊗C when wishing to emphasize the context.

2.6.10. THH as tensoring with the circle. Now that we know what tensoring with a
space is, we claim that for any E∞-ring A, the topological Hochschild homology of A is
equivalent to S1 ⊗CAlg A.

Indeed, this is easy: recall that S1 ≃ ∗∐∗∐∗ ∗. Since pushouts in the ∞-category of
E∞-rings CAlg are given by relative smash product, we find that

S1 ⊗CAlg A ≃ A⊗A⊗A A ≃ THH(A).
2.6.11. The circle action. Viewing S1 ≃ U(1) ≃ SO(2) as a group, the tensoring con-
struction of the previous subsection can be reinterpreted as saying that THH(A) is initial
among E∞-algebras over A with an S1-action through E∞-maps.

Here the S1-action comes through the equivalence THH(A) ≃ S1 ⊗ A from S1 acting
on itself by left multiplication. Under the geometric interpretation THH(A) ≃ O(LX) for
X = SpecA, it comes from rotation of loops.

Though the contents of the previous few paragraphs hold exclusively for E∞-rings, the
spectrum THH(A) still carries a canonical S1-action (now only through spectrum maps,
as there is no guaranteed ring structure in sight!) for any E1-ring A. The origin of the
S1-action can in that case be traced to geometric realization presentation of THH we
encountered in subsection 2.7.6.

The circle action is a rather crucial aspect of the structure on topological Hochschild
homology, and will be especially crucial in a future section where we outline a construction
of topological cyclic homology.

2.6.12. THH is computable. One great thing about THH is that given A, by an large it
is possible to compute THH(A). As mentioned in the last section, that is in start contrast
with algebraic K-theory.

For instance, let X be an arbitrary connected space. The based loop space ΩX carries a
natural E1-space structure, coming from concatenation of loops. This makes its suspension
spectrum S[ΩX] into an E1-ring. Its topological Hochschild homology is then

THH(S[ΩX]) ≃ S[LX],
where LX ∶= MapS(S1,X) is the free loop space. Note the all-but-accidental analogy with
the algebro-geometric interpretation of THH from 2.7.8.
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Another example, which is at the heart of why THH is interesting to aritmetically-
minded people, is this: a simple computation of ordinary Hochschild homology shows
that

HH∗(Fp) ≃ ΓFp(u)
is a divided power algebra on a single generator u of degree 2. On the other hand, we a
much more sophisticated landmark computation due to Bokstedt identified the homotopy
ring of topological Hochschild homology of the Eilenberg-MacLane spectrum of Fp as

π∗(THH(Fp)) ≃ Fp[u],
a polynomial algebra on a same degree 2 generator u. Since polynomial algebras are in
very many ways much better behaved than divided power algebras, this is very useful.

In light of the this subsection, it is quite amazing that THH carries a distinguished map
from K-theory, and that this map often knows quite a lot about K-theory itself. Alas, it
exists, and is called the Dennis trace map. We will discuss it in the next section.

2.7. Traces and topological cyclic homology

The division of this section and the previous is rather artificial. Indeed, we will mention
results and notions from the previous section constantly. The reason for the split is
primarily to punctuate a perspective shift, but also so as hopefully not ruin the impression
of accessibility of THH that the previous section hoped to instill.

Thus now that we know what topological Hoschschild homology is, this section is ded-
icated to discussing its relationship with algebraic K-theory. As alluded to at the end
of the last section, the relationship stems from a trace map from K-theory to Hochschild
homology. Let us explain where this comes from.

2.7.1. Chern character and loop spaces. A construction of a slightly weaker trace
map that I am quite fond of is this: start with our affine spectral scheme X = SpecA and

a rank r vector bundle E on X. It is classified by a map of spectral stacks X
EÐ→ BGLr,

where the RHS denotes the classifying stack of the spectral algebraic group GLr. Passing

to free loop spaces gives rise to a map of spectral stacks LX
LEÐ→ LBGLr.

Now for any group scheme G, spectral or otherwise, the derived free loop space may be
identified as LBG ≃ G/conjG, the quotient of G by the action of itself under conjugation.
Functions LBG are thus equivalent to conjugation-invariant functions on G itself. When
G is a matrix group, the trace map tr ∶ G → A1 (note that functions on X are the same
things as maps X →A1, if you wish by the universal property of the affine line) is a prime
example of such a map.

Putting this together, starting with a rank r vector bundle E on X, we obtain a function
on LX given by

LX
LEÐ→ LBGLr ≃ GLr/conjGLr

trÐ→A1.

This is a trace construction ch ∶ Vectr(X) → O(LX), which we will call the Chern char-
acter.

Examples:

● Under the Hochschild-Kostant-Rosenberg isomorphism (which is a fascinating story
upon itself that I don’t wish to talk too much about here - a story for another day!),
which for a smooth algebra A over a characteristic 0 field k identifies Hochschild
homology with (Kahler) differential forms as

HH(A/k) ≃ Sym∗
k(ΩA/k[1]) ≃⊕

i≥0

Ωi
A/k[i],

this trace construction is identified with the classical (algebro-geometric) Chern
character that we briefly touched on in 2.2.10.
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● Conversely, let X ≃ BG be the classifying stack of an algebraic group (or group
scheme alike) G. Then the Chern character maps

Repr(G) ≃ Vectr(BG) chÐ→ O(LBG) ≃ O(G/conjG) ≃ O(G)G =∶ Cl(G)
from rank r-representations of G to the class functions on G. Tracing through the
construction, we may recognize that it sends a representation to its character, thus
justifying the name Chern character.

BTW: the HKR Theorem can be extended to non-smooth algebras (or even E∞-algebras
over k) at the cost of replacing Kahler differentials ΩA/k with the cotangent complex LA/k.
Since the HKR Theorem will not be used for anything other than motivation here, we do
not go into more detail, but it is a really neat story.

2.7.2. Trace in the affine case. In the affine case when X ≃ SpecA for an E∞-ring A,
the Chern character map may be viewed in light of subsection 2.7.8 as map from the full
subspace BGLr(A) (where unlike in the last subsection, with some potential for confusion,
this stands not for the stacky quotient, but a classifying space of a grouplike E∞-space)
of Mod≃A, spanned by the object A⊕r, to THH(A).

The subspace of perfect A-modules (Modperf
A )≃ ⊆ Mod≃A is generally bigger than just

∐r≥0 BGLr(A), as there are more perfect A-modules then merely A⊕r (unless say A is
a field), but it does behave much like it. In particular, the trace maps on BGLr(A) all

come from a trace map on (Modperf
A )≃. Given a perfect A-module E, we may construct an

A-linear map

A→ EndA(E) ≃ E∨ ⊗A E → A

in which the first map is the inclusion of the identity morphism, the second map is an
equivalence that follows from E being perfect (more precisely: dualizable), and the last
map is the evaluation map, viewing the dual E∨ ≃ Map

A
(E,A). as A-linear functionals

on E. This assembles into a map

(Modperf
A )≃ →MapModA

(A,A) ≃ Ω∞A

and it is not hard to convince oneself that this is a map of E∞-spaces.

Viewing the left-hand side as a spectral stack Perf≃ ∶ CAlg → S, sending A↦ (Modperf
A )≃,

and right-hand side as A1(A) ≃ Ω∞A, the naturality in A of this construction shows that
this trace is a map of spectral stacks tr ∶ Perf≃ →A1.

2.7.3. Cyclic symmetry of the trace. Just as in the BGLr(A) situation, the trace map
tr ∶ Perf≃ →A1 possesses a cyclic symmetry. Very informally and naively: that means that
tr(fgh) = tr(hfg), a property surely familiar from linear algebra. Less informally but also
likely less insightfully: it is an S1-equivariance structure supplied, in light of dualizability
of perfect complexes, by the famous Cobordism Hypothesis. Formally this means that the
trace map in fact lifts to a map of stacks tr ∶ LPerf≃ →A1.

2.7.4. The Dennis trace map. We may now repeat the arguments from 2.8.1 with Perf≃

in place of BGLr to obtain a “character” map

(Modperf
A )≃ → Ω∞O(LSpecA) ≃ Ω∞THH(A).

This is furthermore a map of E∞-spaces, where the structure on the left-hand side is given
by direct sum ⊕. Group completing leads to a map

Ω∞K(A) ≃ ((Modperf
A )≃)gp → Ω∞THH(A)

of grouplike E∞-spaces. Under the equivalence Ω∞ ∶ Spcn ≃ CMongp of May’s Recognition
Theorem, we obtain a map of spectra

tr ∶ K(A)→ THH(A).
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This, at last, is the Dennis trace. As is clear from the preceding discussion, the Dennis
trace map is yet another analogue of the Chern character.

2.7.5. Topological negative cyclic homology. The S1-equivariance that went in sub-
section 2.8.3 into the construction of the Dennis trace map makes it quite clear that the

tr ∶ K(A) → THH(A) factors through the circle action invariants TC−(A) ∶= THH(A)hS1
.

This spectrum is called the topological negative cyclic homology spectrum.
Under the geometric interpretation THH(A) ≃ O(LX) with X ≃ SpecA, topological

negative cyclic homology is given as

TC−(A) ≃ O((LX)/S1),
the (stacky) quotient of the free loop space LX by its S1-action given by rotation of loops.
At first glance one might expect that (LX)/S1 might be very close to X itself, but in fact
it is “a bit more fuzzy”. It is none the less closer to it that LX is, which is to say that
TC−(A) is a finer invariant of A than THH(A).
2.7.6. (Non-topological) cyclic homology. The analogue of topological cyclic homol-

ogy over an ordinary ring k instead of over the sphere spectrum S is HC(A/k) ∶= HH(A/k)hS1
,

known simply as cyclic homology of A. It is a confusing but entrenched state of terminol-
ogy that the direct topological analogue of cyclic homology is called “topological negative
cyclic homology”, while the simpler name “topological cyclic homology” is reserved for a
more sophisticated construction.

A landmark result of Goodwillie asserts that the descended Dennis trace map tr ∶
K(A) → HC(A/k) (sometimes called the Goodwillie-Jones trace) is quite close to being a
rational equivalence:

Theorem 19 (Goodwillie). The rationalized trace map tr ∶ K(A)⊗Q→ HC(A/k)⊗Q is
locally constant.

That is to say, let A→ A′ be nilpotent extension (i.e. surjection with a nilpotent kernel)
of commutative k-algebras (or connective E∞-algebras, or just connective E1-algebras).
The map that the trace map induces between the cofibers of K(A)→ K(A′) and HC(A/k)→
HC(A′/k) is an equivalence after smashing with Q.

This may be viewed as saying that (rationally) K and HC− are uniformly apart. This
is very computationally powerful, as it allows for computation of the rational part of
algebraic K-theory by ascending towers of nilpotent extensions.

When A is a smooth k-algebra and k a field of characteristic zero, cyclic homology has
an HKR description. Recall from subsection 2.8.1 that HH(A/k) ≃ ⊕Ωi

A/k[i], which

may by Dold-Kan be viewed as a chain complex with differential i-forms in the i-th
degree and the zero differential between them. The circle action, through the identification
C∗(S1;k) ≃ H∗(S1 ∶ k) ≃ k[x] (the first equivalence is due to what is called the rational
formality of the circle, and it is what makes this story work in char 0 but not outside it)
with x in degree 1, corresponds to a degree 1 map on the chain complex. That is nothing
but the de Rham differential. Passing to homotopy invariants is related to building this
differential in and viewing the result as a new chain complex. Thus HC(A/k) is related
to the de Rham chain complex

Ω0
A/k

dÐ→ Ω1
A/k

dÐ→ Ω2
A/k → ⋯

and is as such a good analogue of the de Rham cohomology of A.

2.7.7. Periodic cyclic homology. Really there is still some refinement available: the
“relationship” between the de Rham complex and HC(A/k) is slightly more complicated
than might have come across from the remarks in the previous subsection.

In particular, what is needed to actually compare them is to invert the action of the gen-
erator inducing the S1-action, which under the equivalence H∗(BS1;k) ≃ k[u] corresponds
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to degree 2 element u. This comes at the expense of introducing a lot of redundancy in
the cohomology, effectively making it periodic. For this reason, the result is called the
periodic cyclic homology HP(A/k). The extension of the HKR Theorem, alluded to in the
previous subsecton, is an equivalence

HP∗(A/k) ≃ H∗
dR(A/k)[u−1]

between periodic cyclic homology groups and periodicized (algebraic) de Rham cohomol-
ogy groups.

The analogous construction can be done over the sphere spectrum too. We start off
with THH(A) with its S1-action as before. But to explain what we do next, i.e. in what
way we should periodicize the S1-action, we need to dip our toes in a slight digression.

2.7.8. Digression: the Tate construction. Whenever G is a compact Lie group acting
on a spectrum M , there exists a distinguished map of spectra

Nm ∶ Σg(MhG)→MhG,

called the norm map, where g is the Lie algebra of G. Its cofiber is called the Tate
construction and denoted M tG.

This map is probably the most familiar in the case of a finite group G, where g ≃ 0 and
so the suspension disappears. Then the norm map Nm ∶MhG →MhG is given informally
by [x] ↦ ∑g∈G gx, i.e. sending an orbit to the sum of its elements. Of course the actual
formal ∞-categorical construction of the norm map is quite a fair bit more involved. Lurie
does it in HA in an inductive way, but there is a more traditional way of doing it through
genuine equivariant homotopy theory - pick your poison!

When G is a non-discrete Lie group, the sum should be replaced by integration over G,
which at least heuristically explains the shift to get things in the top degree, that being
dimg = dimG, so as to make things fit to be integrated over G.

Let G be a finite (or profinite) group, and M an abelian group with a G-action (i.e.
a Z[G]-module). The just as the homotopy groups of the homotopy invariants MhG are
group cohomology H∗(G;M), and homotopy groups of homotopy coinvariants MhG are
group homology H∗(G;M), the homotopy groups of the Tate construction M tG give rise to

Tate cohomology Ĥ∗(G;M). The latter might perhaps be familiar from class field theory,
for the purposes of which Tate introduced it. It intertwines group homology and cohomol-
ogy (as seen in the definition of the Tate construction above), agreeing with H∗(G;M) in
positive degrees, and with H−∗−1(G;M) in negative degrees. This sort of intertwining of
degrees and smearing homotopy groups accross all degrees is the periodization proceedure
that we need.

2.7.9. Topological periodic cyclic homology. Thus topological periodic cyclic homol-

ogy of an E∞-ring (or E1-ring) A is defined as TP(A) ∶= THH(A)tS1
. Indeed, the most

succinct definition of periodic cyclic homology over a commutative ring k is also HP(A/k) ≃
HH(A/k)tS1

.
And though this is a wonderfully complicated spectrum, knowing much about A and

being quite close to algebraic K-theory, we must work a little harder still to define the
coveted topological cyclic homology. The construction of the latter, as we shall see, es-
sentially uses the Tate construction of subsection 2.8.8, as well as TP(A) itself, so the
discussion of the periodic version was no detour, but rather a necessary pit-stop on the
rout toward TC(A).
2.7.10. The Dundas-Goodwillie-McCarthy Theorem. Before we actually go through
the motions of creating this Frankenstein-like horror, let us first say what it is good for.
So assume that we already have TC(A), whatever it is, with a factorization of the Dennis
trace map into the cyclotomic trace trc ∶ K(A) → TC(A). With this, the Goodwille’s
Theorem, mentioned in 2.8.6, admits an integral (as opposed to rational) refinement:
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Theorem 20 (Dundas-Goodwillie-McCarthy). The cyclotomic trace map trc ∶ K(A) →
TC(A) is locally constant.

That is to say, let A → A′ be a map of connective E∞-rings (or E1-rings), such that
π0(A)→ π0(A′) is a nilpotent extension (i.e. surjection with a nilpotent kernel) The map
that the trace map induces between the cofibers of K(A) → K(A′) and TC(A) → TC(A′)
is an equivalence.

This theorem is quite amazing. As with Goodwillie’s Theorem, it allows to extend
computation of K-theory from simpler rings to more complicated ones via ascending along
towers of nilpotent extension. But now there is no rationality assumptions - we are ob-
taining full torsion information as well! This is great: though the definition of TC(A) is,
as we shall see in the next few subsections, a fair bit more involved than that of THH(A),
it is still essentially a very computable spectrum. That it remains “a constant distance
away from” algebraic K-theory, a highly non-computable spectrum, is quite an amazing
miracle, and most exploitable.

For a pleasantly readable proof of the Dundas-Goodwillie-McCarthy Theorem, see the
exposition by Sam Raskin (though beware of some non-conventional choices, such as grad-
ing spectra cohomologically).

2.7.11. A roadmap to TC. To construct topological cyclic homology, we follow an ap-
proach of Blumberg-Mandell, which we outline here. Then we will sketch two ways in
historical order of supplying the details: first (and with hardly any details) via genuine
equivariant homotopy theory, and then (with slightly more details) a naive approach due
to Nikolaus-Scholze.

We start off by defining the ∞-category of cyclotomic spectra CycSp. This should be
something slightly stronger than spectra with an S1-action. In particular, the sphere
spectrum with its trivial action should give rise to an object S ∈ CycSp. Next we upgrade
the circle action on THH(A) to a cyclotomic structure. Finally we define topological cyclic
homology as the mapping spectrum (as CycSp, being a stable ∞-category, will possess a
natural enrichment in Sp)

TC(A) ∶= Map
CycSp

(S,THH(A)).
This definition may seem quite indirect, and justly so. Following the Nikolaus-Scholze

approach, will enable us to provide a somewhat more explicit formula later on.
The yoke of the job is thus to define cyclotomic spectra.

2.7.12. Cyclotomic spectra via genuine S1-equivariant spectra, I. If you have
skipped subsection 1.5.3, where we briefly dipped our toes into genuine equivariant ho-
motopy theory, then perhaps you may wish to skip this subsection as well. Note however
that we will not be using much genuine technology, so you may as well stick around.

Well, other than the following piece of equivariant technology, that we haven’t encoun-
tered before:

2.7.13. Intermezzo: Geometric fixed points. Let G be a compact Lie group (the one
we have in mind is S1 ≃ U(1) ≃ SO(2)). Then recall that a genuine G-space X (say pointed,
though this makes no difference) is really a certain sort of functor, and in particular for
any closed normal subgroup H ⊆ G, it produces a (pointed) genuine G/H-space XH ,
its H-fixed points (in fact, this exists for non-normal subgroups too, but we will only
need it for normal ones). A similar construction works for G-spectra, giving rise for a
genuine G-spectrum M to a genuine G/H-spectrum MH , which is called the categorical
H-fixed-points of M .

Just as ordinary pointed spaces admit suspension spectra, giving rise to the functor
Σ∞ ∶ S∗ → Sp, so does this happen in the G-world, and there is an analogous G-suspension
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functor Σ∞
G ∶ SG∗ → SpG. Alas, this functor is not compatible with the fixed points

discussed in the previous paragraph.
Thus we define a new fixed-point functor for genuine G-spectra to bridge this gap. The

geometric fixed-points functor ΦH ∶ SpG → SpG/H is defined by the requirements that

● For any pointed genuine G-space X we have

ΦH(Σ∞
GX) ≃ Σ∞

G/H(XH).
● The functor ΦH is symmetric monoidal (with respect to the genuine smash prod-

ucts) and preserves colimits.

This specifies geometric fixed-points essentially uniquely. The discrepancy between ΦH(M)
and MH is behind many of the more unpleasant (or charming, depending on ones per-
spective no doubt) aspects of genuine equivariant homotopy theory.

2.7.14. Cyclotomic spectra via genuine S1-equivariant spectra, II. Defining cy-
clotomic spectra is easy now. The data of a cyclotomic spectrum consists of a genuine
S1-equivariant spectrum M together with a system of compatible S1-equivariant equiv-
alences ΦCn(M) ≃ M for all n ≥ 0. Here the geometric fixed points are taken along the
inclusion Cn ⊆ S1 of the cyclic group of order n, embedded as n-th roots of unity into
U(1) ≃ S1. Since the equivalence S1/Cn ≃ S1 is exhibited by the n-th power map z ↦ zn,
we may indeed view ΦCn(M) as an S1-spectrum.

This is a neat enough definition, claiming invariance under taking (geometric) fixed
points along arbitrary-order roots of unity inside the circle, hence the number theoretic
term “cyclotomic”. The annoying part of this is the homotopy-coherence mess that
specifies the appropriate “compatibility” between the equivalences ΦCn(M) ≃ M and
ΦCm(M) ≃M for various n and m. Not intractible, just a little impractical.

It remains to exhibit a cyclotomic structure on THH(A) and for S with the constant
S1-action, which Bokstedt, Goodwillie, Waldhausen, Hesselholt, and other friends did.

2.7.15. The Nikolaus-Scholze naive approach. When studying all this, Peter Scholze
observed that much of the above could be rephrased without explicit mention of geometric
fixed points, and furthermore without using any genuine S1-equivariant structure. This
was carried out in the rather influential joint paper with Nikolaus.

The idea is roughly to employ the Tate construction to rephrase things without explicit
mention of geometric fixed-points. This is because the Tate construction, though the
approach to it that we indicted in subsection 2.8.8 used only naive actions, also admits
an genuine equivariant approach. We will not explain anything more about how to pass
between the Nikolaus-Sholze construction and the genuine equivariant one though, and
will instead refer any interested reader to Nikolaus and Scholze’s wonderful paper.

2.7.16. p-typical cyclotomic spectra. Let p be any fixed prime. In the genuine ap-
proach, outlined in subsection 2.8.14, we could have defined p-typical cyclotomic spectra
as genuine S1-spectra M together with an equivalence ΦCp(M) ≃M. This “one prime at
a time” approach is ill-suited to that approach, however, as it lacks the compatibility data
between the different cyclotomic structure maps required.

The naive definition of p-typical cyclotomic spectra is that such a spectrum consists of a
spectrum with an S1-action M (i.e. a naive equivariant spectrum) and an S1-equivariant
map ϕp ∶ M → M tCp . Here the Tate construction is taken with respect to the inherited
Cp-action, coming from the standard copy Cp ≃ µp ⊂ U(1) ≃ S1 of the p-th roots of unity
inside the unit circle.

This time we do not require the cyclotomic structure maps to be equivalences. The
key thing is though that unlike the genuine cyclotomic structure maps M ≃ ΦCp(M), the
naive ones ϕp ∶M →M tCp are entirely independent of each other!
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2.7.17. Naive approach to cyclotomic spectra. This allows us to define CycSp to
have for objects spectra M with an S1-action, equipped with a family of S1-equivariant
maps ϕp ∶M →M tCp for all primes p. That is it - easy peasy!

We would be remiss not to point out that this definition of CycSp only agrees with the
genuine one from 2.8.14 on essentially connective (if you want: bounded below) objects.
But since those are the only ones that come into question for the construction of TC(A)
(at least for A connective), this more than suffices.

2.7.18. Explicit formula for topological cyclic homology. The rather concrete naive
definition of cyclotomic spectra also allows us, following Nikolaus-Scholze, to give a rather
concrete description of the mapping spectrum Map

CycSp
(S,M), for any cyclotomic spec-

trum M (the reason this is so interesting is of course that TC is a special case). Passing to
(ordinary, i.e. homotopy - no genuine equivariant business here!) S1-fixed-points from the

cyclotomic structure map ϕp gives rise to maps ϕhS
1

p ∶MhS1 → (M tCp)hS1
. But spectrum

maps of that form can also be obtained just from the S1-action as

canp ∶MhS1 ≃ (MhCp)h(S1/Cp) → (M tCp)hS1

,

in which the last map is obtained by simultaneously passing through the map MhCp →
M tCp , from the definition of the Tate construction, and using the equivalence S1/Cp ≃ S1

in the external homotopy fixed-points. The mapping spectrum is then given as the ∞-
categorical equalizer

Map
CycSp

(S,M) ≃ Eq(MhS1 ⇉∏
p

(M tCp)hS1)

of the structure maps ∏pϕ
hS1

p and the cannical maps ∏p canp. We may identify the

codomain of the equalizer with a profinite completion (M tS1)∧ of the S1-Tate construction.
When specializing to M = THH(A), with its yet-to-be-discussed cyclotomic structure,

we obtain the formula for topological cyclic homology as the equalizer

TC(A) ≃ Eq(TC−(A)⇉ TP(A)∧)
of the cyclotomic structure maps and the canonical maps, both viewed as mapping into
the profinite completion of the topological periodic cyclic homology.

2.7.19. The cyclotomic structure on THH, I. One piece of the puzzle remains, and
that is to exhibit a cyclotomic structure on topological Hochschild homology. This is one
more of those things that is perfectly doable for E1-rings, but simplifies substantially for
E∞-rings. Thus we only discuss the latter situation.

Let A be an arbitrary fixed E∞-ring, and p a fixed prime. To exhibit a cyclotomic
structure on THH(A), we must specify an S1-equivariant map THH(A) → THH(A)tCp .
Suppose further that this map of spectra will in fact be a map of E∞-rings. Then we can
use the fact we learned in subsection 2.7.11 that THH(A) is initial among E∞-algebras over
A with an S1-action, to reduce ourselves to constructing an E∞-ring map A→ THH(A)tCp .
To find such a map, we use a key construction available in the ∞-category of spectra Sp
that is not available in a derived category D(R) ≃ ModR for any ordinary commutative
ring R:

2.7.20. The Tate Diagonal. Let M be a spectrum, and consider its p-th smash power
M⊕p. Cyclic permutation of smash factors induces an action of Cp on M⊕p. Thus we can

form the Tate construction Tp(M) ∶= (M⊗p)tCp , which has a rich history in homotopy
theory, having been studied by Lunoe-Nielsen and Rognes under the name topological
Singer construction. The Tate diagonal is a map of spectra ∆p ∶M → Tp(M), natural in
M.
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The simple desiderata of such a non-trivial map is impossible to satisfy in D(R) for
any commutative ring R; indeed, any natural transformation M → Tp(M) is trivial in
D(R) ≃ ModR. The point is that the Tate diagonal ∆p can not be made to be R-linear
for any ordinary commutative ring R. This is the real thing that Sp ≃ ModS has going
for it that ordinary derived categories of modules do not, and why certain things, such as
an “integral” version of the Goodwillie Theorem, only work over the sphere (in said case,
the Dundas-Goodwillie-McCarthy Theorem), but not over Z.

The existence of the Tate diagonal is one of those landmark super-easy-to-prove things
that is easier to prove than to not prove. Assume that the functor Tp ∶ Sp→ Sp is exact -
there is something to check here, but it boils down to simple combinatorics and the obser-
vation that the Tate construction vanishes on induced representations. The Tate diagonal
natural transformation ∆p that we seek should live in the space MapFunex(Sp,Sp)(idSp, Tp).
Recall from the universal property of stabilization that composing with the functor Ω∞ ∶
Sp→ S induces an equivalence between Funex(C,Sp) ≃ Fun(C,S) for any stable ∞-category
C. Thus we have homotopy equivalences

MapFunex(Sp,Sp)(idSp, Tp) ≃ MapFun(Sp,S)(Ω∞,Ω∞Tp) ≃ MapFun(Sp,S)(MapSp(S,−),Ω∞Tp).
Now we may invoke the Yoneda lemma, which identifies for any ∞-category C, any functor
F ∶ C→ S and any object C ∈ C a homotopy equivalence

MapFun(Sp,S)(MapFun(C,S)(MapC(C,−), F ) ≃ F (C),
to conclude that

MapFun(Sp,S)(MapSp(S,−),Ω∞Tp) ≃ Ω∞Tp(S) ≃ MapSp(S,Tp(S)) ≃ MapSp(S,StCp).
The last equivalence comes from the fact that, due to the sphere spectrum being a unit for
the smash product, having an identification S⊗p ≃ S with the sphere spectrum with the
trivial Cp-action. It follows that we are reduced to finding a map of spectra S → StCp . For

this, note that the homotopy invariants funtor M ↦ MhCp is symmetric monoidal, and
as such preserves commutative algebra objects. This means that ShCp carries a canonical
E∞-ring structure, and as such receives an essentially unique E∞-ring map S → ShCp of
“inclusion of the multiplicative unit”. We compose this map with the canonical quotient
map ShCp → StCp , coming from the definition of the Tate constriction, to obtain the
desired map S → StCp . Following the chain of equivalences we have woven, this produces
the Tate diagonal transformation ∆p ∶M → Tp(M), natural in M ∈ Sp.

Though we will not show it (Nikolaus-Scholze provide highly recommendable clean and
meticulous exposition), both the Tate construction itself, as well as the Tate diagonal
transformation, are in fact lax symmetric monoidal. In particular, though this does not
mean that it preserves the smash product, it is enough to show that it preserves com-
mutative algebras. Hence Tp(A) is an E∞-ring whenever A is an E∞-ring, and the Tate
diagonal map ∆p ∶ A→ Tp(A) is a map of E∞-rings.

2.7.21. The cyclotomic structure on THH, II. We promised to use the Tate diagonal
to construct the cyclotomic structure on topological Hochschild homology of an E∞-ring
A. In subsection 2.8.20 we already reduced this task to choosing an E∞-ring map A →
THH(A)tCp . Using the Tate diagonal we may obtain

A
∆pÐ→ Tp(A) ≃ (A⊗p)tCp ≃ (Cp ⊗CAlg A)tCp → (S1 ⊗CAlg A)tCp ≃ THH(A)tCp ,

where the second map (first equivalence) is merely the definition of Tp, the third map
(second equivalence) is the observation that, based on the definition of tensoring with
spaces from subsection 2.7.9, the smash power A⊕p coincides with the tensor Cp ⊗ A in
the ∞-category CAlg (since Cp ≃ ∐1≤i≤p ∗ and the coproduct in CAlg is given by the

smash product), the thirst map comes from the inclusion Cp ⊆ S1, and the final map
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(equivalence) comes from the identification between THH and tensoring with S1 in E∞-
rings from subsection 2.7.10.

Thus (modulo assuming the lax symmetric monoidality of the Tate diagonal) we have
shown how to construct the cyclotomic structure on the topological Hochschild homology
of an E∞-ring. With that concludes our tour of THH and its many variants. But before
we end the section, since we are right here at the gates, les us shoot but a sneak peak at
another application of the Tate diagonal.

2.7.22. The Tate-valued Frobenius of E∞-rings. As mentioned above, the Tate diago-
nal is behind much of what makes the theory of spectra richer than that of chain complexes
of modules (this is partially why we chose to go down the rabbit-hole of topological cyclic
homology - to naturally encounter this structure). In particular, it gives something very
exciting when applied to E∞-rings.

Let A be an E∞-ring. Then composing the Tate diagonal with the multiplication of
p factors map µ ∶ A⊗p → A (which is Cp-equivariant, and even more, Σp-equivariant
essentially by definition), we obtain an E∞-ring map

ϕ ∶ A ∆pÐ→ Tp(A) ≃ (A⊗p)tCp
µtCpÐÐ→ AtCp

for every prime p. This is the Tate-valued Frobenius, also sometimes called the Nikolaus-
Scholze Frobenius. It is the correct notion of the Frobenius map for E∞-rings.

2.7.23. Ordinary Frobenius also takes values in the Tate construction. The Tate-
valued Frobenius might look strange at first sight, namely the codomain might seem all
wrong. To convince ourselves that it it all right, let us recall in a bit more detail how
the usual Frobenius of commutative rings works. For a commutative ring R, it is a map
R → R given by x ↦ xp. It is not a ring map, as while perfectly multiplicative, it fails to
be additive. Indeed, we have by the Binomial Theorem for any x, y ∈ R

(x + y)p = xp + pxp−1y +⋯ + pxyp−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
divisible by p

+yp

and so the Frobenius does descend to a ring map R → R/p. The reason we aren’t used
to seeing this quotient R/p is that we usually consider the p-Frobenius for a commutative
ring R of characteristic p, for which the quotient map is an isomorphism R ≃ R/p.

But we saw in subsection 2.1.5 that quotienting by p is not a valid construction to
perform with E∞-rings, so that does not look promising. The solution is to look at what
the ring R/p that appeared really is more closely. Indeed, setting p = 3 for simplicity, the
above calculation is in more detail

(x + y)3 =
invariant under C3³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

x3 + xxy + yxx + xyx
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sum of a C3-orbit

+ yxx + xyx + xxy
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

sum of a C3-orbit

+ y3,

showing that the quotiented copy of the ideal in R generated by p is in fact the sum of
C3-orbits (and thinking about the combinatorics behind the Binomial Theorem, we see
that the same happens for any prime p), i.e. the image of the norm map Nm ∶ RCp → RCp .

The quotient thereof is precisely the Tate construction RtCp , albeit done in the ordinary
category of abelian groups instead of spectra, analogous to where we claim the E∞-ring
Frobenius takes values. (The key difference is that in the ∞-categorical setting, we must
handle the permutations of the facts more carefully, hence why we must view the codomain
as the Tate construction.) Taking the Tate construction for R with a trivial Cp-action in

abelian groups, we have RCp ≃ RCp ≃ R, and so the norm map may be identified with the
map R → R sending x↦ ∑Cp

x = px. Hence the Tate construction is in this context indeed

RtCp ≃ R/p, the codomain of the usual Frobenius map.
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2.7.24. Tate-valued Frobenius and power operations. This changes when doing the
Tate construction in spectra. Even if R is a discrete E∞-ring, i.e. an ordinary commutative
ring, the spectra RhCp and RhCp will generally have a lot of homotopy groups. Those of
the former are H∗(Cp;R), group cohomology of the trivial Cp-module R, and of the latter
are H∗(Cp;R), its group homology. When p is not invertable in R, these groups will
generally refuse to vanish - we enter the domain of modular representation theory. This
is the reason that the hypothesis that the size of the group not divided the characteristic
of the ring of coefficients is so pervasive in basic representation theory of finite groups.

Thus the Tate construction, whose homotopy groups will be the Tate cohomology groups
Ĥ∗(Cp;R), will usually be quite far from being concentrated in degree 0. That suggests
that the Tate-valued Frobenius might be encoding some interesting information.

For instance, when p = 2 and R = F2, we have FtC2
2 ≃ ⊕i∈Z F2[i]. The components of

the Tate-valued Frobenius

F2
ϕÐ→ FtC2

2 ≃⊕
i∈Z

F2[i] priÐ→ F2[i]

then encodes the data of Sqi ∶ F2 → F2[i], the i-th Steenrod square. In particular, applying
this for a fixed spaceX to the functor of cochains C∗(X;−), we obtain a map of F2-modules
of cochains C∗(X;F2) → C∗(X;F2)[i], and passing to homotopy groups π−n we obtain
for i ≥ 0 the Steenrod squares

Sqi ∶ Hn(X;F2)→ Hn+i(X;F2)
in their usual form that you likely know and possibly love.

Playing a similar game with a higher prime p ≥ 3 and R = Fp gives rise to the Steenrod
extended p-th power operations Pi and their Bockstein multiplets βPi, the generators of
the mod p Steenrod algebra.

When we plug in R = KU, the p-Frobenius will gives rise to the stable Adams operations
ψp ∶ KU∗(X) → KU∗(X), the multiplicative operations determined by the requirement of

functoriality and that ψp ∶ KU0(X)→ KU0(X) sends the class of a line bundle [L] to the
tensor power [L⊗p], with respect to tensor product of line bundles on X.

Thus in general, the additional data encoded in the Tate-valued Frobenius of E∞-ring
spectra has to do with power operations. This is quite exciting, showing where these
highly useful computational tools arise from a purely algebraic perspective.
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