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1 Affine Varieties

1. Exercise.

(a) Let Y be the plane curve y = z2. Show that A(Y') is isomorphic to a polynomial ring in
one variable over k.

(b) Let Z be the plane curve zy = 1. Show that A(Z) is not isomorphic to a polynomial ring
in one variable over k.

(c¢) Let f be any irreducible quadratic polynomial in k[z,y], and let W be the conic defined by
f. Show that A(W) is isomorphic to A(Y') or A(Z). Which one is it when?

Solution.

(a) The coordinate ring A(Y) is k[z,]/(y — 2?). We have a map k[z] — A(Y) given by z + .
This is clearly injective and surjective, so k[z] = A(Y).

(b) The coordinate ring A(Z) is k[x,y]/(xy — 1). If A(Z) — k[z] is a map, then x and y are
both mapped to units, and hence elements of k. Thus no such map can be surjective.

(c) Given an irreducible quadratic polynomial P = az? + bxy + cy? + dx + ey + f, we may
assume without loss of generality that either a # 0 or b # 0. Note that performing invertible
changes of coordinates preserve the property that P is irreducible.

In the first case, we complete the square for 22 + (by + d)x and do a change of coordinates
so that we may write the polynomial as 22 + c¢y? + ey + f for some new values of c, e, f. If
¢ = 0, then we must have e # 0 because of the irreducibility, so doing a linear change of
coordinates gives x2 —y. If ¢ # 0, then again completing the square and doing a change
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of coordinates gives 22 + y% + f for some new (nonzero) value of f. We may use a linear
change 2 — ax + By and y — yx + 0y in order to cancel the resulting 22 and y? terms, so
we are left with something of the form xy 4+ f where f # 0.

In the second case, we can assume that a = ¢ = 0 or else we are in the previous case, so
we have zy + dz + ey + f. Then writing it as z(y + d) + ey + f and doing y — y — d
gives y(z + €) + (f — de), and again doing = — z — e gives zy + f — de and f — de # 0 by
irreducibility, so we can scale our coordinates to get xy — 1. U

2. Exercise (The twisted cubic curve). Let Y C A3 be the set Y = {(¢,t%,¢%) | t € k}. Show
that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) is
isomorphic to a polynomial ring in one variable over k. We say that Y is given by the parametric
representation x =t, y = t2, 2z =13,

Solution. The ideal I(Y) is generated by the polynomials z — 2% and y — 22. We have a map
kt] — A(Y) defined by t — x which is injective and surjective. Since this is an isomorphism,
A(Y') has dimension 1, so Y has dimension 1. Also, k[t] is a domain, so I(Y") is a prime ideal,
and hence Y is an affine variety. O

3. Exercise. Let Y be the algebraic set in A% defined by the two polynomials 22 — yz and 2z — x.
Show that Y is a union of three irreducible components. Describe them and find their prime
ideals.

Solution. The intersection of Y with the plane z = 1 is defined by z? = y. The intersection
of Y with the plane z = 0 is defined by £ = 0. On the rest of Y, the equation xz = x has no
solution except = = 0, and the equation z? — yz becomes yz = 0, so we also have y = 0. Hence
we see that Y is the union of the affine varieties defined by the prime ideals (z — 1,22 —y), (z,v),
and (z, 2). O

4. Exercise. If we identify A? with A! x A! in the natural way, show that the Zariski topology
on A? is not the product topology of the Zariski topologies on the two copies of Al

Solution. The zero locus of y = 22 is a closed subset in the Zariski topology of A2, but cannot

be a closed subset in the product topology on A x A! because a basis for the topology is U x V
where U and V are both complements of finite sets of points in A!, and there is no way to write
the complement of y — 2% as a union of such sets. U

5. Exercise. Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic
set in A", for some n, if and only if B is a finitely generated k-algebra with no nilpotent elements.

Solution. Since B is finitely generated, we can write B = k[zy,...,z,]/a for some n and some
ideal a. The condition that B have no nilpotents is equivalent to a being a radical ideal. So B
is the coordinate ring of the algebraic set Z(a) (Corollary 1.4). O

6. Exercise. Any nonempty open subset of an irreducible topological space is dense and irre-
ducible. If Y is a subset of a topological space X, which is irreducible in its induced topology,
then the closure Y is also irreducible.

Solution. Let X be an irreducible space, and let U C be a nonempty open subset. Then
X = U U (X \U), where U denotes the closure of U, so either X = U or X = X \ U. The
latter is ruled out since U is nonempty, so U is dense in X. Also, if U is the union of two closed
subsets Uy U Us, then there exist X; and X5 such that X1 NU = U; and X NU = U,. Hence
X = X{UX) where X! = X; U(X \U). If U # Uy, then X{ # X}, which contradicts that X is
irreducible, so U is irreducible.
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Now let Y C X be some subset which is irreducible with respect to its subspace topology.
Suppose we can write its closure Y as a union of proper closed subsets Y = Y; UY,. Then Y}
and Y5 are both closed in X, so Y1 NY and Y5 NY are closed in Y. Then either Y =Y NY
or Y =Y,NY, or equivalently, Y C Y; or Y C Ya. In the first case, this implies that ¥; =Y,
which is a contradiction, and similarly in the second case. Thus Y is also irreducible. O

7. Exercise.

(a) Show that the following conditions are equivalent for a topological space X: (i) X is
Noetherian; (ii) every nonempty family of closed subsets has a minimal element; (iii) X
satisfies the ascending chain condition for open subsets; (iv) every nonempty family of open
subsets has a maximal element.

(b) A Noetherian topological space is quasi-compact, i.e., every open cover has a finite subcover.
(¢) Any subset of a Noetherian topological space is Noetherian in its induced topology.

(d) A Noetherian space which is also Hausdorff must be a finite set with the discrete topology.
Solution.

(a) The equivalence of (i) and (iii) is trivial, as is the equivalence of (ii) and (iv). We show
that (i) is equivalent to (ii). Assuming (i), any nonempty family of closed subsets must
have a minimal element. For instance, pick any closed subset Zj. If it is not minimal,
pick Z; contained in it. If that is not minimal, pick Z5 contained in it. Eventually, this
must terminate because we get a descending chain of closed subsets Zg D 21 D Zy D ---.
Assuming (ii), let Zy O Z3 D Z3 O --- be a descending chain of closed subsets. Then this
is a family of closed subsets which has a minimal element, say Z,.. So Z, = Z; for t > r,
which means X is Noetherian.

(b) Let {Uy} be an open cover of a Noetherian space X. Pick any open set U;. Inductively
if Uy U---U;—1 # X, we pick U; to be any open subset not contained in Uy U--- U U;_q,
otherwise, let U; = U;_1. Then setting Z; = X \ (U1 U---UU;), we get a descending chain
of closed subsets Z1 D Zs O ---, which must terminate, so there exists r such that Z, = Z;
for t > r. This implies that at the rth step, Uy U--- U U, = X, so X is quasi-compact.

(c) This is an immediate consequence of characterization (iv) of (a).

(d) Let X be a Noetherian Hausdorff space, and suppose X has infinitely many points. Then
pick 1,91 € X, we can find disjoint open sets U; > x1 and Vi 3 y;. Then either X \ Uy
is infinite or X \ V} is infinite. Without loss of generality, X \ U; is infinite. Since X \ U;
is Hausdorff, we can find Us C X \ U; which is open relative to X \ U; and such that
X \ (U1 UUy) is also infinite. In this way, we can continue to find U; for all ¢ > 0 such that
Ui CX\ (U3 U---UU;_1) is open relative to X \ (U3 U---UU;—1) and X \ (U1 U---U ;)
is infinite. For each Uj, there is an open set U/ C X such that U/ N (X \ (U U---UU;_1))
is open relative to X \ (U; U---UU;_1). Setting Z; = Uj U--- U U/, we get an ascending
chain of open sets Z; C Zs C ---, which must terminate by (a), and which contradicts the
infinitude of X. Hence X must be a finite set. Since the points of a Hausdorff space are
closed, we conclude that X has the discrete topology. O

8. Exercise. Let Y be an affine variety of dimension r in A”. Let H be a hypersurface in A",
and assume Y ¢ H. Then every irreducible component of Y N H has dimension r — 1.

Solution. Let f be the irreducible polynomial defining H. Since Y ¢ H, the image of f under
the quotient map k[z1,...,x,] — A(Y) is nonzero. The irreducible components of H NY are
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precisely the affine varieties defined by the minimal primes of A(Y’) which contain f. Hence
they have dimension dimY — 1 by Theorem 1.11A. U

9. Exercise. Let a C A = k[xy,...,2,] be an ideal which can be generated by r elements. Then
every irreducible component of Z(a) has dimension > n — r.

Solution. The irreducible components Z; of Z(a) correspond to prime ideals p; of A/a. Hence
by Theorem 1.8A(b), dim Z; = dim A/p; = n — height p;. Using Theorem 1.11A, we see that
the height of a prime ideal is bounded above by its minimal number of generators, so dim Z; >
n—r. U

10. Exercise.

(a) If Y is any subset of a topological space X, then dimY < dim X.

(b) If X is a topological space which is covered by a family of open subsets {U;}, then dim X =
sup dim Uj.

(c) Give an example of a topological space X and a dense open subset U with dimU < dim X.

(d) If Y is a closed subset of an irreducible finite-dimensional topological space X, and if
dimY = dim X, then Y = X.

(e) Give an example of a Noetherian topological space of infinite dimension.
Solution.

(a) Let Y be a subset of topological space X. If Yo C Y7 C Y C -+ is an ascending chain
of closed irreducible subsets of Y with strict inclusions, then Yo C Y1 C Yo C -+ is an
ascending chain of closed irreducible subsets of X with strict inclusions, so dimY < dim X.

(b) From (a), we get that dim X > supdimU;. Let Xy C X; C --- be a chain of closed
irreducible subsets of X with maximal length. We can find some U; such that X =
XoNU; # @. Then X is open relative to X and hence is dense (Ex. 1.6). Since X \ X is
a nonempty open subset of X1, it intersects X{), so intersects U;. Continuing this reasoning,
U; N X properly contains U; N X;_q for all j, which means that dim U; > dim X, and hence
dim X = sup dim U;.

(c) Let X = {a,b} be a two point space whose open sets are {&, {a},{a,b}}. Then dimX =1
by the chain {b} C X, but U = {a} has dimension 0 and is dense in X.

(d) Suppose that r = dimY and Y # X. If Yy C --- C Y, is a chain of irreducible closed
subsets of Y, then Yy C --- C Y, C X is a chain of irreducible closed subsets of X, so
dim X > r + 1. Hence if dimY = dim X, then Y = X.

(e) Let X, be a Noetherian space of dimension n. Then the disjoint union X = [], ., X, is
Noetherian, but is infinite-dimensional. O

2 Projective Varieties

1. Exercise. Prove the “homogeneous Nullstellensatz,” which says that if a C S is a homogeneous
ideal, and if f € S is a homogeneous polynomial with deg f > 0, such that f(P) = 0 for all
P € Z(a), then f? € a for some ¢ > 0.

Solution. Let a C S be a homogeneous ideal and f € S a homogeneous polynomial with
deg f > 0, such that f(P) =0 for all P € Z(a) in P™. Then f vanishes for all representatives
for points in Z(a), so in particular, f* € a when thinking of Z(a) as being in A"*! (Theorem
1.3A). O
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2. Exercise. For a homogeneous ideal a C S, show that the following conditions are equivalent:

(i) Z(a) = 2;
(ii) v/a = either S or the ideal S, = @ - Sa;
(iii) a 2 Sy for some d > 0.
Solution. First suppose (i) holds. By (Ex. 2.1), every polynomial f € S with deg f > 0 satisfies

f7 € a for some r, so Sy C +/a. If \/a contains any element of Sy, then it contains them all by
virtue of being an ideal, so either \/a = Sy or v/a=S.

Now suppose that (ii) holds. Then for each x;, there is an integer r; such that 2" € a. So for
N = maxr;, we have z¥ € a, and hence for d sufficiently large (d > (n + 1)(N — 1) + 1 where

S = klxg,...,zy]), every monomial of degree d contains a multiple of va for some ¢, so Sy C a.
Finally, suppose that (iii) holds. Then a contains 3:;-1 for i = 0,...,n, which means that Z(a)
consists of those points which are 0 for all z;, and hence is empty. U

3. Exercise.

(a) If Ty C Ty are subsets of S, then Z(Ty) D Z(T3).
(b) If Y7 C Y5 are subsets of P, then I(Y7) D I(Y>).

(c) For any two subsets Y1,Ys of P™, I(Y1 UY2) = I(Y1) N I(Y2).

(d) If a C S is a homogeneous ideal with Z(a) # @, then I(Z(a)) = v/a.

(e) For any subset Y C P, Z(I(Y)) =Y.
Solution.

(a) If P € Z(T3), then f(P) =0 for all f € T, so in particular, this is true for all f € 17, so
Pe Z(Th).

(b) If f € I(Y2), then f(P) =0 for all P € Y», so in particular, f(P) = 0 for all P € Y7, which
means that f € I(Y7).

(c) We have f € I(Y1 UY3) if and only if f(P) =0 for all P € Y1 UY; if and only if f € I(Y7)
and f € I(Y2).

(d) The inclusion I(Z(a)) C v/a follows from (Ex. 2.1) because constant polynomials are not
contained in a if Z(a) # @. Conversely, if f" € a for some r, then for P € Z(a), f"(P) =0
so f(P)=0.

(e) For this we can pass to the affine case using Corollary 2.3. O
4. Exercise.

(a) There is a 1-1 inclusion-reversing correspondence between algebraic sets in P", and homo-
geneous radical ideals of S not equal to S, given by Y — I(Y) and a — Z(a).
(b) An algebraic set Y C P™ is irreducible if and only if I(Y) is a prime ideal.

(c) Show that P™ itself is irreducible.
Solution.

(a) We know that Z(I(Y)) =Y =Y (Ex. 2.3(e)) and that I(Z(a)) = va = a (Ex. 2.3(d)) for
a# S+ (Ex. 2.2). The inclusion-reversing part is the content of (Ex. 2.3(a,b)).
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(b) This is the same as the proof of Corollary 1.4 by using the fact that a homogeneous ideal a
is prime if for any two homogeneous elements f and g, fg € a implies either f € aor g € a.

(c) The ideal I(P™) is the zero ideal, which is prime in S, so P" is irreducible (Ex. 2.4(b)). O
5. Exercise.

(a) P™ is a Noetherian topological space.

(b) Every algebraic set in P™ can be written uniquely as a finite union of irreducible algebraic
sets, no one containing another. These are called its irreducible components.

Solution.

(a) Let Y3 D Y5 D --- be a descending chain of closed subsets of P". Then I(Y7) C I(Y3) C ---
is an ascending chain of ideals in S, which terminates because S is Noetherian, so using
the fact Y; = Z(1(Y;)), we get that P™ is Noetherian.

(b) A closed subset of a Noetherian space is Noetherian, so an algebraic set in P" is Noetherian,
and hence can be expressed uniquely as a finite union of irreducible algebraic sets, no one
containing another (Proposition 1.5). O

6. Exercise. If Y is a projective variety with homogeneous coordinate ring S(Y), show that
dim S(Y) =dimY + 1.

Solution. Let Y C P” be a projective variety with homogeneous coordinate ring S(Y’), and
let U; be the standard open affines of P” with homeomorphisms ¢;: U; — A™. Let Y; be the
affine variety ¢;(Y N U;) with affine coordinate ring A(Y;) = k[z1,...,z,]/1(Y;). We claim
that A(Y;) is isomorphic to the degree 0 part of the localization S(Y),,. If we think of U;
as having coordinates (ag/a;,...,an/a;) where a;/a; is omitted, then the polynomials of A(Y;)
are equivalent to homogeneous polynomials of S(Y),, of degree 0 via homogenization (i.e., the
map 3 used in the proof of Proposition 2.2). Then it follows that S(Y),, = A(Y;)[zi,z;']. By
Theorem 1.8A(a), the dimension of A(Y;)[z;, z; '] is dim A(Y;) + 1, which is equal to dim Y; + 1
by Proposition 1.7. Using (Ex. 1.10(b)), we see that dimY = supdimY;. Finally, for Y; # &,
dimY; +1 = dimS(Y),,, and dimS(Y),, = dim S(Y) by Theorem 1.8A(a). In conclusion,
dimY +1=dimS(Y). O

7. Exercise.

(a) dimP™ =n.
(b) If Y C P" is a quasi-projective variety, then dimY = dimY’.
Solution.
(a) This is a direct consequence of (Ex. 2.6) because the coordinate ring of P™ is k[xg, . .., z,].

(b) Following the proof of (Ex. 2.6), we see that it is enough to know that the dimension
of a quasi-affine variety is the same as its closure, and this is the content of Proposition
1.10. O

8. Exercise. A projective variety Y C P” has dimension n — 1 if and only if it is the zero set of
a single irreducible homogeneous polynomial f of positive degree. Y is called a hypersurface in
P

Solution. Using (Ex. 2.6), this statement follows as it does in the proof of Proposition 1.13. [
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9.

10.

11.

Exercise (Projective closure of an affine variety). If Y C A" is an affine variety, we
identify A™ with an open set Uy C P™ by the homeomorphism ¢g. Then we can speak of Y, the
closure of Y in P", which is called the projective closure of Y.

(a) Show that I(Y) is the ideal generated by B(I(Y)), using the notation of the proof of
Proposition 2.2.

(b) Let Y C A3 be the twisted cubic of (Ex. 1.2). Its projective closure Y C P? is called
the twisted cubic curve in P3. Find generators for I(Y') and I(Y), and use this example
to show that if fi,..., f. generate I(Y), then B(f1),...,3(fr) do not necessarily generate
I(Y).

Solution.

(a) Choose f € I(Y). Note that I(Y) and I(Y) have the same coordinate rings by (Ex. 2.3(e))
and (Ex. 2.4(a)). Then f vanishes on all (a1 /ag,...,an/ap) where (ag,...,a,) € Y. Hence
f is a multiple of a polynomial of degree e of the form xfg(z1/x0,...,zn/0), and so f is
in the ideal generated by G(I(Y)).

(b) The polynomials f = z — 2® and g = y — 2% are generators for I(Y). Generators for I(Y)
are {wz? — 3, wy — 2%, wz? — y3}. Note that wz? — y> is not generated by the first two
generators because there is no way to get the 3. O

2

Exercise (The cone over a projective variety). Let Y C P” be a nonempty algebraic set,
and let §: A"\ {(0,...,0)} — P" be the map which sends the point with affine coordinates
(ag, - .. ,am) to the point with homogeneous coordinates (ag, . .., a,,). We define the affine cone
over Y to be

cY)=60"Y(y)u{(o,...,0)}

(a) Show that C(Y) is an algebraic set in A"+ whose ideal is equal to I(Y'), considered as an
ordinary ideal in k[xo, ..., zy].

(b) C(Y) is irreducible if and only if Y is.
(¢) dmC(Y)=dimY + 1.

Sometimes we consider the projective closure C(Y') of C'(Y) in P**!. This is called the projective
cone over Y.

Solution.

(a) Pick f € I(Y). Then f is homogeneous and hence vanishes at the origin. Also, f vanishes
at every point in §71(Y") because the vanishing of f at a point P € P" is independent of
the choice of its representative. Finally, if g € I(C(Y)), then g must be homogeneous since
it vanishes at the origin, and it vanishes at each representative of P € Y, and hence is a
polynomial in I(Y).

(b) We know that C(Y) is irreducible in A" if and only if I(Y') is a prime ideal (Corollary
1.4) and this is if and only if YV irreducible in P" (Ex. 2.4(b)).

(c) Let A = k[xo,...,z,]. Wehave dimC(Y) = dim A/I(Y") (Proposition 1.7), and dim Y +1 =
dim A/I(Y) (Ex. 2.6), so dimC(Y) =dimY + 1. O

Exercise (Linear varieties in P™). A hypersurface defined by a linear polynomial is called a
hyperplane.
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(a) Show that the following two conditions are equivalent for a variety Y in P™:

(i) I(Y) can be generated by linear polynomials.
(ii) Y can be written as an intersection of hyperplanes.

In this case we say that Y is a linear variety in P™.

(b) If Y is a linear variety of dimension r in P", show that I(Y") is minimally generated by
n — r linear polynomials.

(c) Let Y, Z be linear varieties in P", with dimY = r, dimZ = s. If r+ s —n > 0, then
Y NZ # &. Furthermore, if Y N Z # &, then Y N Z is a linear variety of dimension
>r+s—n.

Solution.

(a) First suppose that I(Y') can be generated by linear polynomials, I(Y) = (f1,..., fr). Then
Y =V(fi)N---V(f;),s0Y can be written as an intersection of hyperplanes. Conversely, if
Y can be written as an intersection of hyperplanes Y = HiN---NHg, then write I(H;) = fi;
we have I(Y) = (f1,..., fs)-

(b) Let Y be a linear variety of dimension r in P", and write I(Y) = (f1,..., fs) where the
fi are linear polynomials and s > n —r. We induct on n — r. If r = n — 1, then we
can take s = 1 by (Ex. 2.8). Otherwise, up to reordering, we can assume that Y’ =
V(fi)N---NV(fs—1) is a linear variety properly containing Y such that Y NV (fs) =Y
because a linear variety of dimension r + 1 is isomorphic to P"*!, which can be seen by
the isomorphism k[zo, ..., zn]/(f1,- -+, fn—r—1) = k[yo, - . ., Zr+1] (since by induction, I(Y”)
can be generated by n — r — 1 linear polynomials fi,..., fn—r—1). So Y is a codimension
one linear variety in P"*!, so we are done.

(c) Now let Y, Z be linear varieties in P" with dimY = r and dimZ = s. Consider the
projection 7: A"\ 0 — P" and let Y/ = 771 (Y)UO0 and Z’ = 7#=1(Z) U0. Then
YNZ=mn(Y'NZ'"),and Y'NZ is a linear subspace of A"*! (considering it as a k-vector
space) which has dimension > r + s — n by basic linear algebra, so Y N Z # @. Conversely,
ifYNZ+#@, thendimYNZ=dimY' NZ'">r+s—n. O

12. Exercise (The d-uple embedding). For given n,d > 0, let My, My,..., My be all the

monomials of degree d in the n+1 variables xg, . .., z,, where N = (":d) —1. We define a mapping

pa: P* — PV by sending the point P = (ag,...,a,) to the point pg(P) = (My(a),..., My(a))
obtained by substituting the a; in the monomials M;. This is called the d-uple embedding of P™
in PV. For example, if n = 1, d = 2, then N = 2, and the image Y of the 2-uple embedding of
P! in P? is a conic.

(a) Let 0: klyo,-..,yn] — k[zo,...,x,] be the homomorphism defined by sending y; to M;, and
let a be the kernel of §. Then a is a homogeneous prime ideal, and so Z(a) is a projective
variety in PV,

(b) Show that the image of p, is exactly Z(a).

(¢) Now show that p, is a homeomorphism of P™ onto the projective variety Z(a).

(d) Show that the twisted cubic curve in P? is equal to the 3-uple embedding of P! in P3, for
suitable choice of coordinates.

Solution.
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(a) Since the image of 6 is a subring of k[xg, ..., z,], it must be a domain, so a is a prime ideal.
Also, if pyMy + - - 4+ py My is any polynomial relation among the monomials of degree IV,
then degp; = --- = degpn, so a is also homogeneous.

(b) It is immediate that the image of p4 is contained in Z(a). Note that a is a binomial ideal
generated by elements of the form w;y; — yrye where the subscripts are chosen so that
M;M; = M;,M,. This shows that any point that satisfies all of these equations must be in
the image of pg.

(c) Given (My(a),...,Mn(a)) € Z(a), we can recover (ag,...,a,) up to multiplication by
an nth root of unity as follows: some M;, is the monomial z7, so set a; = {/Mj,(a). By
examining other monomials such as mm?_l, x%x?_2, etc., we can determine which nth roots
of unity to take, but we can still always scale all a; by a common nth root of unity. Since
(ag, - ..,a,) € P™ this is sufficient, so 6 is bijective. Also note that 8(Z(T)) = Z(T)NZ(a),

so f is a closed map, and hence is a homeomorphism.

(d) The 3-uple embedding of P! in P? is parameterized by (t3,¢%s,ts%,s%). Identifying A3
with the open subset of P3 defined by xy # 0, we see that this is a parameterization of the
twisted cubic curve. O

14. Exercise (The Segre embedding). Let 1): P” x P* — P" be the map defined by sending
the ordered pair (ag,...,a,;) % (bo,...,bs) to (..., a;bj,...) in lexicographic order, where N =
rs+r+s. Note that v is well-defined and injective. It is called the Segre embedding. Show that
the image of v is a subvariety of PV,

Solution. Note that ¥(Aja, Aeb) = A\ A2tb(a,b), so it is well-defined. If ¥ (a,b) = ¥ (d’, V'), we

can show b =’ by finding some nonzero a; and looking at the images a;b; for j =0,...,s and

also by finding some nonzero aj, and looking at the images a;cb;-. Similarly, one can show that
/

a=ada.

Let a be the kernel of the map k[{z;;}] — k[zo,...,%r,%0,...,ys] (here the z;; are indexed by
i=0,...,7and j =0,...,s) defined by z;; — x;y;. Then imaget C Z(a). It is not hard to see
that a set of generators for a is the set {2;j2p¢ — 2kj2i | 0 < i,k <r, 0 < j,¢ < s}. From this,
the other inclusion Z(a) C image 1) follows. O

3 Morphisms

2. Exercise. A morphism whose underlying map on the topological spaces is a homeomorphism
need not be an isomorphism.

(a) For example, let ¢: Al — A2 be defined by t — (t2,¢3). Show that ¢ defines a bijective
bicontinuous morphism of A! onto the curve y? = 3, but that ¢ is not an isomorphism.

(b) For another example, let the characteristic of the base field k& be p > 0, and define a map
¢: A — Al by t — tP. Show that ¢ is bijective and bicontinuous but not an isomorphism.
This is called the Frobenius morphism.

Solution.

(a) It is clear that ¢ is injective. Any point (z,y) that satisfies y> = 2% can be written as

(t2,t3) where t is a square root of z, and the sign is chosen so that > = y, so ¢ is also
surjective. The inverse image of a closed point of the curve y?> = 23 is a closed point of
A', so ¢ is a continuous map. Since ¢ maps closed points of A! to closed points of the
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curve y? = 23, p~! is a continuous map. Now let f: V — k be a regular function where V/

is an open set of the curve 32 — 23. Then f o p: ¢~ 1(V) — k is obtained by substituting
t2 and t3 into f, so f o ¢ is a regular function; the denominator of this substitution does
not vanish on ¢~!(V) since the denominator of f does not vanish on V. However, using
Corollary 3.7, ¢ cannot be an isomorphism because A(A!) = k[t], whereas the coordinate
ring of the curve y? = 23 is k[z,y]/(y? — 23), which is not a UFD.

(b) If t? = sP, then (t — s)P =tP — sP =0, so t = s, so ¢ is injective. Since k is algebraically
closed, ¢ is also surjective. Bicontinuity follows from the fact that closed points are mapped
to closed points. Verification that ¢ is a morphism follows as in (a). However, the inverse
map ¢ — tY/P is not a morphism because substitution of tY/? into a rational function need
not yield another rational function. O

3. Exercise.

(a) Let ¢: X — Y be a morphism. Then for each P € X, ¢ induces a homomorphism of local
rings ¢©p: Oyp)y — Opx-

(b) Show that a morphism ¢ is an isomorphism if and only if ¢ is a homeomorphism, and the
induced map ¢% on local rings is an isomorphism, for all P € X.

(c) Show that if ¢(X) is dense in Y, then the map ¢}, is injective for all P € X.
Solution.

(a) Given f € Oyp)y, we define o1 (f) = fop. This is clearly a map of rings, and if f vanishes
on ¢(P), then ¢} (f) vanishes on P, so ¢} maps the maximal ideal to the maximal ideal,
and hence is a homomorphism of local rings.

(b) If ¢ is an isomorphism, then it is certainly a homeomorphism, and its inverse induces
inverses for ¢} for all P € X. Conversely, suppose that ¢ is a homeomorphism and that
¢©p is an isomorphism for all P € X. Then ¢ = ¢~ ! is a morphism because for any regular
function f in a neighborhood of Q €Y, fot € Oyg) x — Oq,v, so is regular.

(c) Suppose that ¢} (f) = 0 for some regular function f on Y. Then fo¢ =0, and hence f is
0 on a dense subset of Y, which means f = 0, so % is injective. O

6. Exercise. There are quasi-affine varieties which are not affine. For example, show that X =
A%\ {(0,0)} is not affine.

Solution. The map «a: k[z,y] — O(X) given by interpreting a polynomial as a rational function
on X is injective because any vanishing polynomial on X would also vanish at the origin by
continuity. Any rational function with a nonconstant denominator has a zero somewhere other
than the origin, so a rational function on X must be polynomial. Hence « is also surjective, and
O(X) = k[z,y]. If X were affine, then Theorem 3.2(a) implies that I(X) = 0, but this is not
the case. O

9. Exercise. The homogeneous coordinate ring of a projective variety is not invariant under
isomorphism. For example, let X = P!, and let Y be the 2-uple embedding of P' in P2. Then
X =Y (Ex. 3.4). But show that S(X) 22 S(Y).

Solution. First, S(X) = k[z,y]. By (Ex. 2.12(b)), S(Y) is isomorphic to the image of
0: klx,y,2] — k[z,y] given by z +— 2%, y — zy, and 2z — y?. However, the ring k:[a:Q,J:y,yQ] is
not a UFD, so S(X) 2 S(Y). O
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11.

12.

13.

15.

Exercise. Let X be any variety and let P € X. Show there is a 1-1 correspondence between
the prime ideals of the local ring Op and the closed subvarieties of X containing P.

Solution. If X is affine, then by Theorem 3.2(c), Op = A(X)m,, so the prime ideals of Op are
in bijection with the prime ideals of A(X) contained in mp. These prime ideals are in bijection
with the closed subvarieties of X that contain P. If X is quasi-affine, then embed Y as an open
subset of an affine variety X’. Then the same reasoning holds, just noting that for a closed
subvariety Y of X', Y N X is a closed subvariety of X. The analogous argument for projective
and quasi-projective varieties follows from Theorem 3.4(b). O

Exercise. If P is a point on a variety X, then dim Op = dim X.

Solution. If X is an affine variety, then this follows from Theorem 3.2(c). If X is a projective
variety, then we use (Ex. 2.6) to conclude that S(X) = dim X + 1. Then Theorem 3.4(b) shows
that Op = S(X)(mp), so dim Op = dim S(X) — 1 (Theorem 1.8A). In the case that X is quasi-
affine, we use Proposition 1.10 to get dim X = dim X. Since X is dense in X, Opx = Op¥,
so we can still conclude that dim Op = dim X. Finally, the case for quasi-projective varieties
follows from the quasi-affine case. O

Exercise (The local ring of a subvariety). Let Y C X be a subvariety. Let Oy x be the set
of equivalence classes (U, f) where U C X is open, UNY # @, and f is a regular function on
U. We say that (U, f) is equivalent to (V,g), if f = g on UNV. Show that Oy x is a local ring,
with residue field K (Y) and dimension = dim X — dim Y. It is the local ring of Y on X. Note
if Y = P is a point we get Op, and if Y = X we get K(X). Note also that if Y is not a point,
then K(Y') is not algebraically closed, so in this way, we get local rings whose residue fields are
not algebraically closed.

Solution. The set of all functions which vanish at ¥ forms the unique maximal ideal of Oy x.
To see this, note that if f(P) # 0 for some P € Y, then there is a neighborhood U of P for
which f is nowhere zero, so its inverse is given by (U, 1/f), so it is a unit. We define a function
Oy,x — K(Y) by interpreting an element f € Oy x as a rational function on Y via restriction.
The kernel is the set of all f that vanish on Y, i.e., the maximal ideal, so K(Y") is the residue
field of C)Y7 X

Using an argument similar to (Ex. 2.6), we can assume that Y and X are affine if we just
want to compute the dimension of Oy x. Then as in the proof of Theorem 3.2, let py C A(X)
be the prime ideal of functions vanishing on Y. Then A(X)/py = A(Y), so by Theorem
1.8A, dim A(X) = heightp 4+ dim A(Y’). Finally, heightp = dim Oy, x since Oy x = A(X)y,
(this is similar to Theorem 3.2), so we conclude that dim Oy x = dimA(X) — dimA(Y) =
dim X —dimY. O

Exercise (Products of affine varieties). Let X C A™ and Y C A"™ be affine varieties.

(a) Show that X x Y C A" with its induced topology is irreducible. The affine variety
X x Y is called the product of X and Y. Note that its topology is in general not equal to
the product topology.

(b) Show that A(X xY) = A(X) @ A(Y).
(c) Show that X x Y is a product in the category of varieties.
(d) Show that dim X x Y =dim X +dimY".

Solution.
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(a) Suppose that X x Y = Z; U Zy with Z; closed and proper. Then define X; = {x € X |
xxY CZ} Ifre X\ (X;jUXs),defineY; = (xxY)NZ;. Then z xY =Y, UY;, and
both are closed in Y by virtue of being the intersections of closed subsets. So without loss
of generality, x x Y = Y7, which implies z € X7, a contradiction. Hence X = X; U X,
and both are closed in X (we can write down equations for X; given equations for Z;), so
without loss of generality, X = X;. This means that X x Y = Z;, so X x Y is irreducible.

(b) Let I(X) C k[x1,...,z,] and I(Y) C E[y1,...,Ym] be the ideals of X and Y. Then
identifying k[z1,...,2,] and k[y1,...,ym] as subrings of k[z1,...,2n,y1,...,Ym], We see
that I(X xY) = I(X)I(Y). The conclusion follows from

AX xXY) = k[xy, ..., 20 Y1y Ym)/I(X)I(Y)
= klzy, . @] /1(X) @k kly1s - yml /1Y)
= AX) @ AY).

(¢) The fact that the projections X x Y — X and X x Y — Y are morphisms follows from
the fact that the maps A(X) — A(X) @ A(Y) and A(Y) — A(X) ®k A(Y) given by
z— x®1and y — 1 ®y are k-algebra homomorphisms. The fact that X x Y is a
categorical product follows from Proposition 3.5, Corollary 3.8, and the fact that tensor
product is the coproduct in the category of k-algebras.

(d) The formula dim X x Y = dim X + dim Y follows from (b). O

21. Exercise (Group varieties). A group variety consists of a variety Y together with a morphism
u:Y xY — Y, such that the set of points of Y with the operation given by u is a group, and
such that the inverse map y — y~! is also a morphism of ¥ — Y.

(a) The additive group Gy is given by the variety A' and the morphism p: A2 — A! defined
by u(a,b) = a+ b. Show it is a group variety.

(b) The multiplicative group G, is given by the variety A'\ {(0)} and the morphism s (a, b) =
ab. Show it is a group variety.

(c) If G is a group variety, and X is any variety, show that the set Hom(X, G) has a natural
group structure.

(d) For any variety X, show that Hom(X, G,) is isomorphic to Ox as a group under addition.
(e) For any variety X, show that Hom(X, G,,) is isomorphic to the group of units in O(X),
under multiplication.
Solution.
(a) Given a rational function f(t), substituting a + b and —a for ¢ results in another rational
function, so G, is a group variety.

(b) Given a rational function f(t) whose denominator does not vanish, substituting ab and a1
for ¢ results in another rational function whose denominator does not vanish, so G,, is a
group variety.

(c) Given f,¢g € Hom(X,G), define fg to be the function z — u(f(x),g(z)). And define the
inverse by f~!(x) = f(z)~!. Then Hom(X, G) has a natural group structure from G.

(d) By Proposition 3.5, we have a bijection of sets

a: Hom(X, G,) — Hom(k[t], O(X)).
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A k-algebra homomorphism k[t] — O(X) is determined by the image of ¢, so the second
set is in bijection with O(X). Looking through the proof of Proposition 3.5, we see that
a map h: k[t] — O(X) is mapped to the function a='(h): X — G, defined by P ~
h(t)(P). Given another map h': k[t] — O(X), we have h + h': k[t] — O(X) defined by
t +— h(t)+h'(t). Then a~!(h+h’) is the function X — G, defined by P — (h(t)+H (t))(P),
which is the same as h(t)(P) + h'(t)(P), so in fact, o is a group homomorphism. So
Hom (X, G,) = O(X) as groups.

(e) This follows as in the discussion of (d). O

4 Rational maps

7. Exercise. Let X and Y be two varieties. Suppose there are points P € X and ) € Y such that
the local rings Op x and Og y are isomorphic as k-algebras. Then show that there are open sets
PeUCXand Q € V CY and an isomorphism of U to V which sends P to Q.

Solution. Since this is a local question, we may assume without loss of generality that X and Y
are affine varieties. Let A = O(X) and B = O(Y) be the coordinate rings of X and Y, andp C A
and q C @ the prime ideals corresponding to the points P and Q). The assumption that X and
Y are varieties implies that A and B are domains. By assumption, we can find an isomorphism
p: By — Ap. Since this is an isomorphisms of local rings, we necessarily have o tp) = q.
Let {f1,..., fr} be generators for A as a k-algebra. Since A is a domain, we can identify A
as a subring of Ay, so let {g1,...,9-} C Bq be such that ¢(g;) = f;. By finding a common
denominator, the subring of B, generated by B and {gi,...,g,} is contained in some B[g™!]
since B is a domain. Then ¢(B[g~!]) = Alp(g9)~!], and the restriction p: Blg~'] — Ap(g)}]
is an isomorphism, and hence the induced maps D(¢(g)) — D(g) is an isomorphism of open
neighborhoods of P and (), which sends P to @Q by a previous remark. O
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1 Sheaves

1. Exercise. Let A be an Abelian group, and define the constant presheaf associated to A on the
topological space X to be the presheaf U +— A for all U # @&, with restriction maps the identity.
Show that the constant presheaf o7 defined in the text is the sheaf associated to this presheaf.

Solution. This will follow from the proof of (1.2). Let A denote the constant presheaf. The
stalks Ap for all P € X are equal to A, so the sheafification of A on an open set U is defined
to be the set of all maps to A that are continuous, and this is precisely the definition of the
constant sheaf. O

2. Exercise.

(a) For any morphism of sheaves ¢: .% — ¢, show that for each point P, (ker p)p = ker(pp)
and (image ¢)p = image(pp).

(b) Show that ¢ is injective (respectively, surjective) if and only if the induced map on the
stalks @p is injective (respectively, surjective) for all P.

(c) Show that a sequence

i—1 i
p

il 2 i Fitl

of sheaves and morphisms is exact if and only if for each P € X the corresponding sequence
of stalks is exact as a sequence of Abelian groups.

Solution. Choose x € (ker¢)p. Then there is an open set U > P such that x is the class
of 2 € (ker)(U). Then ¢p(z') is represented by 0 in ¥p, so 2/ € ker(¢p). Conversely, pick
x € ker(pp). Then there is an open set U > P such that x is represented by 2’ € Z(U),

*by Robin Hartshorne
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and ¢(2') is represented by 0 in ¥p. This means that there is an open set V' C U such that
e(2)|v =0, so x € (ker¢)p. Hence (ker p)p = ker(pp).

Now pick x € (imagey)p. Since the stalk of a presheaf at P is the same as the stalk of its
sheafification at P, we see that there exists an open set U > P and y € .%#(U) such that
©(y) = x. Then p(yp) = xp, so x € image(pp). Now suppose = € image(¢pp). Then there is an
open set U 3 P and 2/ € 4 (U) representing = such that there exists y € .Z(U) with ¢(y) = o/,
so ¢(yp) = x. Thus (image ¢) p = image(ypp), which finishes (a).

For (b), note that ¢ is injective if and only if ker ¢ = 0, which is equivalent to (ker p)p = 0 for
all P € X. By (a), this is equivalent to ¢p being injective for all P € X. Surjectivity of ¢ is
similar.

Now (c) is a direct consequence of (a) since kernels and images are preserved by taking stalks. []
3. Exercise.

(a) Let ¢: F — 4 be a morphism of sheaves on X. Show that ¢ is surjective if and only if
the following condition holds: for every open set U C X, and for every s € 4(U), there is
a covering {U;} of U, and there are elements t; € .#(U;), such that ¢(t;) = s|y, for all i.

(b) Give an example of a surjective morphism of sheaves ¢: .% — ¢, and an open set U such
that p(U): F(U) — 4(U) is not surjective.

Solution. Let ¢: . % — ¢ be a morphism of sheaves. By (Ex. 1.2(b)), ¢ is surjective if and
only if ¢p is surjective for every point P € X. Suppose @p is surjective for every P € X. Let
U C X be an open set and s € 4(U). There exists an element tp € Zp such that pp(tp) = sp,
which means there is some neighborhood Up of P such that ¢(t|yr) = s|yr. Then {U'} is a
covering of U, and the condition holds. Conversely, suppose that the condition holds and let
5 € 9(X). For any point P € X, there is an open covering {U;} of X and elements t* € .# (U;)
such that ¢(#') = s|y, for all 4. There is some i such that P € U;, which gives pp(ts) = sp. So
each pp is surjective, and thus ¢ is surjective, which gives (a).

As for (b), let .# be the sheaf on C with the usual topology that sends an open set U to the
group of all analytic functions on U with the obvious restriction maps. Let D: % — % be
differentiation; that is, for an open set U, D(U) sends f to its derivative, which is also analytic.
We use the fact that an analytic function f on an open set U has an antiderivative if and only if
the integral of f over any closed contour in U is 0. In particular, the integral of f over a closed
contour C' is 0 if f is analytic in the region bounded by C. For any open set U and analytic
function f on U, there exists an open covering {U;} of U such that each U; is simply connected
(take a small enough neighborhood around each point). Thus the integral of f along any contour
in U; is 0, so f has an antiderivative, which is of course analytic. Using part (a), this means that
D is a surjective morphism of sheaves. However, let U = C\ {0}. The function f(z) = 1/z is
analytic on U, but has no antiderivative since the integral of 1/z going counterclockwise along
the unit circle is 27i, so D(U): % (U) — % (U) is not surjective. O

4. Exercise.

(a) Let ¢: F — ¢ be a morphism of presheaves such that o(U): Z#(U) — 4(U) is injective
for each U. Show that the induced map ¢ : ZF1T — &7 of associated sheaves is injective.

(b) Use part (a) to show that if ¢: .# — ¢ is a morphism of sheaves, then image ¢ can be
naturally identified with a subsheaf of ¢, as mentioned in the text.
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Solution. Part (a) follows from the fact that the sheafification process does not change stalks.
Namely, if ¢ is an injective map of presheaves, then the stalks are all injective functions, so this
implies that the map of sheafifications is also injective by (Ex. 1.2(b)).

Let .# be the presheaf U +— image(p(U)). It is enough to show that .# is a sheaf since
image(o(U)) € 4(U) for all U. Let {U;} be a covering of U, and suppose there is an ele-
ment s € image(¢(U)) such that sy, = 0 for all . There is an element ¢ € .#(U) such that
w(U)(t) = s. Since s|y, € image(¢(U;)), there exists t; € % (U;) such that o(U;)(t;) = s|y,, and
t; = 0 since p(U;) is injective. Since p(U;) opé]Ui = P{(iUi op(U) for all i, t|y, =t; =0, s0 t =0,
and thus s = 0. 7 7

Now suppose there are elements s; € image(¢(U;)) such that for all i and j, si|v;nv; = s;jlunu; -
Since ¢ is injective, there are unique t; and t; such that o(U; N Uj)(t;) = silu;nu; and o(U; N
Uj)(tj) = sjlu,nu;- Again by the commutative relation mentioned earlier, t;|v;,nu; = tjlvnu;,
so there is a t such that ¢y, = ¢; for all i. Setting s = ¢(U)(t), one gets s|y, = si, so & is a

sheaf. The isomorphism is a consequence of the universal property of sheafification. This finishes
(b). Ol

5. Exercise. Show that a morphism of sheaves is an isomorphism if and only if it is both injective
and surjective.

Solution. A morphism of sheaves is an isomorphism if and only if the induced maps on stalks
are isomorphisms (1.1). This is equivalent to the induced maps on stalks being injective and
surjective, which in turn is equivalent to the morphism of sheaves being both injective and
surjective (Ex. 1.2(b)). O

6. Exercise.

(a) Let .7’ be a subsheaf of a sheaf .%#. Show that the natural map of .# to the quotient sheaf
F | F' is surjective, and has kernel .#’. Thus there is an exact sequence

0 F! F F|F —0.

(b) Conversely, if 0 - F" — F — Z"” — 0 is an exact sequene, show that .#’ is isomorphic
to a subsheaf of .%, and that .#” is isomorphic to the quotient of .# by this subshealf.

Solution. Let .#’ be a subsheaf of the sheaf .#. There is an inclusion #'(U) — % (U) for all
open sets U, which gives an injective morphism .%’ — .%. For all open sets U, there is a canonical
projection Z(U) — Z(U)/F'(U), which gives a morphism of presheaves. Composing this with
the canonical morphism from the quotient presheaf to its sheafification gives a morphism of
sheaves ¢: # — Z/%'. For any point P € X, one has pp: Fp — (F/.F')p, and from the
definition of direct limit, (% /. #')p = Fp/Fp, so pp is canonical projection. By (Ex. 1.2(b)),
¢ is surjective. In each case, ker(pp) = Fp, so by (Ex. 1.2(a)), (kerp)p = %}, which gives
ker p = .Z#'. This gives (a).

For (b), let ¢ denote the injective morphism %' — #, and let .# be the presheaf U +—
image(p(U)). By (Ex. 1.4(b)), .# is a subsheaf of .#. The morphism %' — ., where
F'(U) — image(o(U)) is induced by ¢(U) for all U, is an isomorphism, so .#’ is isomorphic to
a subsheaf of .#. Let ¢ be the surjective morphism .# — .Z”. By exactness, image ¢ = ker 1.
By (Ex. 1.7(a)), image ) = .% / ker ¢, which means .#" = .% /ker . Since .#’ can be identified
with ker ¢ via isomorphism, %" = % /7. O

7. Exercise. Let ¢:.% — ¢ be a morphism of sheaves.
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(a) Show that image p = .7 / ker ¢.
(b) Show that coker ¢ = ¢ /image .

Solution. Let .# be the presheaf U — image(p(U)). Letting ¢'(U): image(¢(U)) — Z(U)/ ker(p(U))
be the canonical map for all open sets U defines a morphism of presheaves. This gives a mor-
phism . — %/ ker ¢ by composing with the canonical morphism from the quotient presheaf to
its sheafification, and this induces a morphism of sheaves 1: image ¢ — % / ker ¢. For any point
P, the induced map ¢p: (imagep)p — (F/kery)p can be rewritten, using (Ex. 1.2(a)), as
Yp: image(pp) — Fp/ker(pp), and is the canonical isomorphism. Thus v is an isomorphism,
so image ¢ = .F / ker .
Let € be the presheaf U +— coker(¢(U)). The canonical map .# — image ¢ induces a homomor-
phism

9(U)/image(p(U)) — ¢ (U)/(image )(U)

since there is a natural embedding image(¢(U)) C (image)(U). Composing this with the
identity map
coker(p(U)) — 4(U)/ image(p(U))

induces a morphism 1: coker ¢ — ¢ /image ¢ as in (a). For any point P, the induced map
Yp: (coker p)p — (¢ /image ¢)p
can be rewritten, using (Ex. 1.2(a)), as

Up: Gp/ image(iop) — Fp/ image(op).
and is the identity. Thus 1 is an isomorphism, so coker ¢ = ¢ /image ¢. O

8. Exercise. For any open subset U C X, show that the functor I'(U,-) from sheaves on X to
Abelian groups is a left exact functor, i.e., if 0 — %' — . — %" is an exact sequence of
sheaves, then 0 — T'(U, #') — T'(U,.%) — T'(U, #") is an exact sequence of groups.

Solution. Let p: %' — % and ¢: .# — .Z” be the morphisms in the sequence. Since ker p = 0,
ker(p(U)) =0, so p(U): F'(U) — F(U) is injective. By (Ex. 1.4(b)), U + image(p(U)) is a
sheaf isomorphic to image ¢. Since image ¢ = ker ¢, the isomorphism image(p(U)) = ker(¢(U))
follows, so I'(U, -) is left exact. O

9. Exercise (Direct Sum). Let .# and ¢ be sheaves on X. Show that the presheaf U —
F(U)BY(U) is a sheaf. Tt is called the direct sum of % and ¢, and is denoted by . &¥. Show
that it plays the role of direct sum and of direct product in the category of sheaves of Abelian
groups on X.

Solution. Let {U;} be an open cover of U. Given (s;,t;) € .#(U;) ® ¥ (U;) such that for all 4, j,
we have (s;,t;) = (sj,tj) on U; N Uj, then there exists a unique (s,t) € .Z#(U) @ ¥ (U) such that
(s,t) = (s4,t;) on U;. Namely, we take s to be the gluing of the {s;} and ¢ to be the gluing of
the {t;}. Hence .# & ¥ is a sheaf.

That . ©¥ plays the role of direct sum and direct product in the category of sheaves of Abelian
groups on X follows immediately from its description and the fact that direct sum plays this
role in the category of Abelian groups. 1
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Exercise (Support). Let .# be a sheaf on X, and let s € .#(U) be a section over an open set
U. The support of s, denoted Supp s, is defined to be {P € U | sp # 0}, where sp denotes the
germ of s in the stalk .#p. Show that Supp s is a closed subset of U. We define the support of
Z, Supp Z, to be {P € X | #p # 0}. It need not be a closed subset.

Solution. We show that the set T'= {P € U : sp = 0} is an open set of U to get the desired
conclusion. Pick P € T. Then there exists an open neighborhood V' of P such that s|y = 0.
For any other point @) € V/, this means that sg = 0, so T' is open.

Now let X = R with the standard topology. For every open set U, define .#(U) to be the group
of all functions f: U — R subject to f(0) = 0 if 0 € U where the group operation is pointwise
addition. For V' C U, the restriction map .#(U) — % (V) is just restriction of domain. If {U;}
is a covering of U, and we have functions in .%(U;) for all i such that they agree on overlaps,
then they uniquely determine a function in .#(U), so .% is a sheaf. Note that .#p # 0 means
that there is some f € .#(X) and some open neighborhood Up of P such that f|y, is nonzero
on all of Up. It is clear then that %p = 0if P =0 and .%p # 0 otherwise, so the support of .#
is R\ {0}, which is not a closed set. O

Exercise (Sheaf J#om). Let .%, & be sheaves of Abelian groups on X. For any open set
U C X, show that the set Hom(.Z |y, 9 |y) of morphisms of the restricted sheaves has a natural
structure of Abelian group. Show that the presheaf U — Hom(.Z |y, ¥|7) is a sheaf. It is called
the sheaf of local morphisms of F into ¢, “sheaf hom” for short, and is denoted JZom(.%#,¥).

Solution. For two morphisms ¢, € Hom(.Z |y, ¥9|v), we define ¢ + 1 to be the map such that
for every open set V C U,

(e +2)(V) =0(V) + (V).
For any inclusion of open sets W C V', the equality

(W) +B(W)) 0 gyl = prt, o (p(V) + 1(V)),

where the p are the restriction maps, holds because composition of homomorphisms distributes
with respect to addition for Abelian groups, so ¢ + 1 is a morphism of sheaves. The identity
element is the morphism 0 such that 0(V') is the zero map for all open sets V', and the inverse
of ¢ is the morphism that sends an open set V' to the map —p(V). Commutativity follows
from commutativity of adding homomorphisms of Abelian groups. This gives Hom (% |7, 4|v) a
natural Abelian group structure induced by the Abelian group structure from Hom(.#(V),¥4(V))
for all V C U.

Now let #Zom be the presheaf U — Hom(.#|y,¥|v). The restriction map pyyv: #Zom(U) —
' om(V) is defined as follows. For any open set W C U, (Z|y)(WNV) =W nNV), and
(Flu)(W) =F (W), so py,y is the family of restriction maps .# (V) — .Z(VNW). Let {U;} be
an open covering of U and choose ) € s#om(U) such that 1|y, = 0 for all . Then for any open
set W C U, the map (W NU;) is 0. Since {W N U;} is a covering of W, for any x € .Z (W),
Y(x|wnr,) = 0. Since ¥ is a sheaf, ¥(z) = 0, so this means that (W) = 0 for all W C U, so
1 = 0 in the first place.

Now suppose there are elements v; € S om(U;) such that for all i and j, ¥;|v,nu; = ¥jlunu, -
For any open set W C U, the compatibility of the v; gives rise to a map ¢ € #om(U) such that
Y|u, = ; for all i because ¢ is a sheaf. Therefore, .7#om satisfies the additional sheaf axioms,
so is a sheaf. O

Exercise (Flasque Sheaves). A sheaf % on a topological space X is flasque if for every
inclusion V' C U of open sets, the restriction map .#(U) — .# (V) is surjective.
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(a) Show that a constant sheaf on an irreducible topological space is flasque.

(b) f0 — %' — % — F"” — 0 is an exact sequence of sheaves, and if .#' is flasque, then for
any open set U, the sequence 0 — Z'(U) — F(U) — F"(U) — 0 of Abelian groups is
also exact.

(¢c) 00— F — F — F" — 01is an exact sequence of sheaves, and if .Z" and .7 are flasque,
then .#” is flasque.

(d) If f: X — Y is a continuous map, and if .# is a flasque sheaf on X, then f..% is a flasque
sheaf on Y.

(e) Let .# be any sheaf on X. We define a new sheaf ¢, called the sheaf of discontinuous sections
of .7 as follows. For each open set U C X, 9(U) is the set of maps s: U — Upcy Fp
such that for each P € U, s(P) € .#p. Show that ¢ is a flasque sheaf, and that there is a
natural injective morphism of % to ¥.

Solution. Let X be an irreducible topological space, let A be an Abelian group, and let &7 be
the constant sheaf on X determined by A. We claim that every open set U C X is connected. If
U =X or U =@, this is clear. Otherwise, if U # X is nonempty and not connected, then there
is a nonempty proper subset U; C U such that both U; and U\ U; are closed relative to U. This
means that there are closed subsets X1, X2 C X such that Uy =U N X; and U\ U; = U N Xo.
Since U # X, X1 and X5 are both proper subsets of X. It must be that X # X; U X, or else
X is reducible. But X \ U is closed, so we can write X = (X \ U) U (X; U X3) as the union
of two closed proper subsets, which is a contradiction. Now let V' C U be an inclusion of open
sets. Then any f € &/ (V) is a constant map since V' is connected. Thus f can be extended to
U,so pyy: o (U) — o/ (V) is surjective, and &7 is flasque. This gives (a).

Now we show (b). Let ¢ be the map # — %" and ¢ be the map .#' — #. By (Ex. 1.8),
the functor I'(U, -) is left exact, so it remains to show that p(U): .Z(U) — Z"(U) is surjective.
Pick s € #”(U). Consider the set S of pairs (V,t) with V' C U open and ¢t € .# (V) such that
©(t) = s|y. This is nonempty because for each point P € X, ¢p is surjective by (Ex. 1.2(b)). We
partially order such pairs by (V;t) < (V',¢')if V. C V' and t = t/|,. It is clear that for any chain
{(Vi, t;)}, the element (|, V;,t) is a maximal element, where ¢ is the element such that t|y, =¢;
for all ¢ (which exists because .# is a sheaf). By Zorn’s lemma, there is a maximal element of
S, which we denote (W, z). Suppose W # U. Then pick P € U \ W. By the surjectivity of ¢p,
there is a neighborhood W’ containing P and an element y € #(W') such that ¢(y) = s|w.
Then ¢(z|waw — ylwaw’) = 0, so by exactness, there is an element a € Z'(W NW') such that
Y(a) = zlwaw’ — ylwow. Since .Z is flasque, pffé:WmW,: F'(W) — F' (W NW') is surjective,
so we can lift a to an element b € #'(W). Then

(y +YO)|w)lweaw' = ylwaw: + L (0)lwaw = zlwaw,

where the second equality follows because (W N W') o p%lWﬂW’ = piwew © Y(W). Since
{W, W'} is a cover of W UW’, there is an element ¢ € . (W UW’) such that |y =y + (b)|w
and c|y = x. This implies that ¢(c) = s|wuwr, which contradicts the maximality of (W, z), so
in fact W = U, and thus ¢(U) is surjective.

Let V C U be an inclusion of open sets. Then by (b), since %' is flasque, .# (V) — F"(V) is
surjective. Since .Z# is flasque, % (U) — % (V) is also surjective. Their composition is surjective,
and is the same map as #(U) — 7" (U) — F"(V). This implies " (U) — .Z" (V) is surjective,
so F" is flasque, so we have (c).
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If f: X — Y is continuous and .% is a flasque sheaf on X, then for any inclusion of open sets
V CU, puy: (f+F)U) — (fF)(V) is exactly the restriction map . (f~1(U)) — F(f~1(V)),
which is surjective since .# is flasque, so f..# is flasque. This gives (d).

Finally, we prove (e). The restriction maps of ¢ are restriction in the usual sense. Let {U;}
be a covering of U, and choose s € ¢(U) such that s|y, = 0 for all i. This means that
slu;: Ui — Upey, Zp is just the zero map. Since {U;} is a covering, each P € U is mapped
to 0, so s = 0. Now suppose we have elements s; € ¢(U;) such that for any two ¢ and j,
silu,nu; = sjluinu,- Define s € 4(U) in the obvious way. That is, for a point P, there is an i
such that P € Uj, so let s(P) = s;(P). Since the s; agree on their overlaps, s is well-defined,
and s|y, = s; for all i, so ¢ is a sheaf. Now let V' C U be an inclusion of open sets. For any
s € 4(V), we can extend s to an element t € 4(U) by setting t(P) = 0if P € U\ V, and
t(P) =s(P)if P e U, so ¥ is flasque.

For an open set U C X, define .#(U) — 4(U) by z +— (P +— zp). It is immediate that this
defines a morphism .% — ¢. Suppose P +— xp is the zero map for x € % (U). Then for every
point P € U, there is an open neighborhood Up such that x|y, = 0. Since {Up} is a cover of U,
and .# is a sheaf, x = 0. Thus .# (U) — ¢(U) is injective for all U, so .# — ¥ is injective. [

Exercise (Skyscraper Sheaves). Let X be a topological space, let P be a point, and let A be
an Abelian group. Define a sheaf ip(A) on X as follows: ip(A)(U) = A if P € U, 0 otherwise.
Verify that the stalk of ip(A) is A at every point @ € {P}~, and 0 elsewhere, where {P}~
denotes the closure of the set consisting of the point P. Hence the name “skyscaper sheaf.”
Show that this sheaf could also be described as i,(A), where A denotes the constant sheaf A on
the closed subspace {P}~, and i: {P}~ — X is the inclusion.

Solution. If @ is in the closure of P, then every open set containing () contains P, so the
stalk at @ of ip(A) is A. If @ is not in the closure of P, then there is some open set of () not
containing P, and its value under ip(A) is 0, so the stalk of ip(A) at @ is also zero.

Since every open set of {P}~ contains P, the constant presheaf A on {P}~ is a sheaf. By
definition, i,(A) is A on every open set of X containing P, so is exactly the sheaf described
above. .

Exercise (Extending a Sheaf by Zero). Let X be a topological space, let Z be a closed
subset, let i: Z — X be the inclusion, let U = X \ Z be the complementary open subset, and
let j: U — X be its inclusion.

(a) Let .# be a sheaf on Z. Show that the stalk (i..%)p of the direct image sheaf on X is .Zp if
PeZ 0if P ¢ Z. Hence we call i,.%# the sheaf obtained by extending .# by zero outside
Z. By abuse of notation we will sometimes write F' instead of i,.%#, and say “consider .#
as a sheaf on X,” when we mean “consider i,.%.”

(b) Now let .# be a sheaf on U. Let ji(.%#) be the sheaf on X associated to the presheaf
Vi ZF(V)it VC U,V — 0 otherwise. Show that the stalk (j1(.%#))p is equal to Fp if
P eU,0if P ¢ U, and show that ji.% is the only sheaf on X which has this property,
and whose restriction to U is .#. We call ji.% the sheaf obtained by extending F by zero
outside U.

(c) Now let .# be a sheaf on X. Show that there is an exact sequence of sheaves on X,

0—=i(ZFlv) —=F ——i.(F|z) —=0.
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Solution. If .7 is a sheaf on Z, then for any open set V C X, (i.%)(V) = Z(i"Y(V)) =
F(VNZ). For any point P € Z, (i,.%)p is the direct limit of the groups (i..%)(V') for all open
sets V' C X containing P. Equivalently, this is the direct limit of the groups .#(V N Z) for all
open sets V' C X containing P. On the other hand, .%p is the direct limit of .% (W) for all open
sets W of Z containing P. The open sets of Z are exactly those of the form V N Z for some
open set V of X, so these direct limits are the same, and hence (i..%)p = %p. For any point
P ¢ Z, there is a neighborhood W containing P such that W N Z = & since Z is closed. Then
(1. F)(W) = 0, so every germ of (i..%)p is 0, and (i+.%#)p = 0. This gives (a).

Let .# be a sheaf on U = X \ Z, and let .# be the presheaf V — Z (V) if V C U and V +— 0
otherwise. For any P € X, (ji(#))p = #p. If P € U, then #p = Zp since .Z is the restriction
of £ onU. If P ¢ U, then #p = 0 because any neighborhood W of P is not contained in U,
which means . (W) = 0. Suppose ¢ is another sheaf on X whose restriction to U is .# and such
that ¥p = 0 for all P ¢ U. Then we can define a morphism . — ¢ by letting .#(V) — 4(V)
be the identity for V' C U and letting 0 — ¢(V') be the zero map otherwise. This induces a
morphism ¢: j(F) - 4. If P € U, ¥p is a map Fp — ¥p = Fp, which is an isomorphism,
and similarly, if P ¢ U, then ¢¥p: 0 — 0 is also an isomorphism, so 1 is an isomorphism. This
gives that j(.#) is the unique sheaf up to isomorphism subject to the properties described. So
(b) is proven.

Let .# be the presheaf V — (Z|y)(V) = F(V) it V C U and V + 0 otherwise. Then there
is a natural map .# — % where for V C U, #(V) = #(V) — F#(V) is the identity, and
F(V)=0— .Z(V) is the zero map otherwise. This induces a unique morphism j(F|y) — Z.
For any open set V C X, (i.(Z|2))(V) = (Z|2)(V N Z), which is equal to the direct limit of
F (W) over all open sets W C X containing V' N Z, but we lose nothing by only taking the limit
over those W that are also contained in V. Using the restriction maps of .# gives a map of
Z (V) to this direct limit, and also gives a natural morphism .# — i,(.%|z) by composing with
the canonical morphism from the direct limit presheaf to its sheafification. By (Ex. 1.2(c)), it
is enough to show that for every P € X,

0= (W Flv))p = Fp — (1x(F|z))p — 0

is exact. If P € U, then (ji(Z|v))p = (Flu)p = Fp and (ix(F|z))p = 0, and in this
case, (ji(:#plu))p — Fp is an isomorphism since this is the identity map. If P ¢ U, then
(W(ZFv))p =0 and (ix(F|2))p = (F|z)p = Fp, and Fp — (ix(F|z))p is an isomorphism
because these two sheaves behave the same on open sets of X contained in Z, so again it is the
identity map. In both cases the corresponding sequence is exact. ]

Exercise (Subsheaf with Supports). Let Z be a closed subset of X, and let .# be a sheaf on
X. We define 'z (X, .%) to be the subgroup of I'( X, .%) consisting of all sections whose support
is contained in Z.

(a) Show that the presheaf V — 'z (V,.Z|y) is a sheaf. It is called the subsheaf of .7 with
supports in Z, and is denoted by J#2(F).

(b) Let U = X \ Z, and let j: U — X be the inclusion. Show there is an exact sequence of
sheaves on X
0——=HQ(F) —F —j(F|v) .

Furthermore, if .# is flasque, the map # — j.(%|y) is surjective.
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Solution. Let V C X be an open set with a covering {V;}. Choose s € I'zay (V, .Z|v ) such that
sly; = 0 for all 7. This means that the support of s|y; in V; is empty. Since {V;} covers V, the
support of s in V' is also empty since sp = (s|y;)p for all i. Then sp = 0 for all P € V, which
means that s = 0 since .# is a sheaf. Now suppose we have elements s; € I'zny; (Vi, Z|v,) such
that for all i and j, si|v;nv; = sjlviny;. Since F is a sheaf, there is a unique element s € .7 (V')
such that s|y; = s;. We wish to show that s € I'zAy(V, Z|v). Forany P € V\ Z, P € V; for
some i, S0 sp = (s]y;)p = (s;)p. Since the support of s; in V; is contained in V; N Z, (s;)p =0,
so the support of s is contained in Z NV, and thus 2 (%) is a sheaf.

For every open set V C X, (J2(F))(V) is a subgroup of .Z#(V), so define p: #2(F) — F
by inclusion, which is injective. Also, (j«(F|v))(V) = (Z|v)G~H(V)) = (ZF|ly)(UNV) =
FUNV), solet ¥: .F — j.(F|u) be given by the restriction maps of #. If # is flasque,
then by definition, v is surjective on each open set and thus surjective. Since ¢ is injective,
the presheaf V' +— image(p(V)) is a sheaf by (Ex. 1.4(b)), and it is enough to show that
image(p(V)) = ker(¢(V)) for all V' to show that imagep = kervy. If x € ker(¢(V)), then
z|uny = 0, which means its support in V' must be contained in Z NV, so x € image(p(V)). On
the other hand, if x € image(p(V')), then for every Q € V\Z =UNV, zg = 0, so there is some
neighborhood Vg C U NV containing @ such that x|y, = 0. Since {Vg} is a cover of UNV and
J«(F|v) is a sheaf, (V) (x) = z|yny = 0, so = € ker(p(V)). O

Exercise (Gluing Sheaves). Let X be a topological space, let 4 = {U;} be an open cover
of X, and suppose we are given for each i a sheaf .%; on U;, and for each 4,5 an isomorphism
vij: Filuinu; — Fjluinu, such that (1) for each i, ¢y = id, and (2) for each 4,5k, i =
@jr o on UyNU; NUy. Then there exists a unique sheaf .# on X, together with isomorphisms
Vi Fly, — F; such that for each 4,7, 1; = @;; 01 on U; NU;. We say loosely that . is
obtained by gluing the sheaves .%; via the isomorphisms ;;.

Solution. For every open set V C X, {V NU;} is a covering. Consider the group [[, % (V NU;),
and for an element s, let s; be the component of s in .%;(V N U;). Define .# (V) to be the
subgroup of components s such that for all i and j, one has ; ;(si|vrv,nv;) = sjlvavinu;- For
W C V, there is a map .# (V) — .# (W) induced by each .%;(V NU;) — % (W NU;), which is
well-defined because of the compatibility of the ¢ on each triple intersection. We let these be
the restriction maps of .#, so it is clear that .% is a presheaf. Now let {V;} be a covering of V,
and suppose that s € # (V) is such that s|y; = 0 for all j. More precisely, for each component
s; € Fi(VNU;) of s, 54y, = 0 for all j. For any given i, {U; NV} is a covering of U;NV, and .%;
is a sheaf, so this implies s; = 0 for all 7, and hence s = 0. Now suppose there are s/ € .F (V)
such that for all j and k, sj\vjm/k = sk|vjmvk. For fixed i, {U; N V;} is a covering of U; NV, and
Sg|vjmv,€ = Sﬂvjmvk- Since .7; is a sheaf, there is an element s; such that s;[y, = sg for all j.
Furthermore, these elements satisfy the condition ¢; ;(si|vruv,nu;) = sjlvauv.nu;, so they are the
components of some s € .%#(V), and therefore .# is a sheaf.

For every inclusion of open sets V- C U;, (F v, ) (V) = F(V), so there is a morphism ¢; (V') : (F|y,)(V) —

Zi(V) by s — s;. To see this is injective, suppose there is ¢ such that the component of ¢ in
Fi(V) is si. Then for any j, @;(tjlvru;) = tilvru; = silvau,. Since @;; is an isomorphism,
tilvau; = sjlvau,, so t = s. For surjectivity, we can define s; = ¢; ;(silvny,), which is an
element of V' N Uj, and by definition this gives an element of .% (V). The map s — s; gives rise
to an isomorphism v;: F |y, — %;. That ¢; = ¢; j01p; on U;NU; for all i and j is a consequence
of the definition of the elements in .%#(X). Finally, suppose there is another sheaf ¢ on X such
that there are isomorphisms ¢;: |y, — F; satisfying ¢ = ¢; j o 9] on U; N Uj for all i and j.
This gives isomorphisms Zy, — 9, via (¢)) "t o). By (Ex. 1.15), #om(F,¥) is a sheaf, and
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{U;} is a covering, so there is a morphism 0: . — ¢ such that 6|y, = (1}) 7! 0 1;. By the same
reasoning we get a morphism ¢': 4 — F such that ¢'|;;, = ¢; ' o4l Since (6 o )|y, restricts
to the identity map, we conclude 6 o #’ is the identity. Thus .# and ¢ are isomorphic, so .Z is

unique up to isomorphism. ]

Schemes

. By definition, D(f) is the set of prime ideals of A not containing f. Let ¢: A — Ay be the

natural map a +— a/1. The map I — ¢ !(I) is an inclusion preserving injection from the
set of ideals of Ay and the set of ideals of A, and is also a bijection between the set of prime
ideals Ay and the primes of A that don’t contain f, so the map v¢: D(f) — Spec Ay given by
this bijection preserves closed sets and hence is a homeomorphism. We wish to define a map
Y OSspeca; — ¥+«Ox|p(f). For each open set U C Spec Ay, we need

¢#(U)3 OSpecAf(U) - OX’D(f) (Wl(U))'

But we can identify ¢~ (U) with U via the homeomorphism, and since D(f) is an open set,
Ox|p(s)(U) = Ox(U). We also remark that for any prime p € D(f), (Ay)p = Ay in a natural
way via ¢; call this isomorphism ¢’. By the construction of O, we can give an isomorphism
OSpeCAf(U) - OX|D(f)(¢_1(U))' That is, for a function s: U — HpeU(Af)P in Ox|pp(U),
map it to
) - I A,
e~ Hp)ey=1(U)

which is defined by composing s with the appropriate maps. This is an element in Ox| D( f)(U);
the condition of being locally a quotient of elements follows because it is true of s, and ¢# (U)(s) is
nothing more than a renaming of variables of s. Thus we have given the desired isomorphism /7.
The stalk at any point is then also an isomorphism, so is automatically a local homomorphism.
Thus, (1, ) is an isomorphism of locally ringed spaces (D(f), Ox|p(s)) — (Spec Ay, Ospec a,)-

(a) We will show that Ox p has no nilpotent elements for all P € X if and only if Ox(U) has

no nilpotent elements for all open sets U C X. Suppose that there exists P € X such that
Ox p has a nilpotent element fp # 0. Let f € Ox(X) be a representative of fp. There
exists n and an open neighborhood V' C X containing P such that f™|y = 0, which means
(flv)*=0. If fly =0, then fp = 0, contrary to hypothesis, so f|y is a nilpotent element
in Ox(V)
Conversely, suppose that there is some open set U C X such that Ox(U) has a nilpotent
element f # 0. If fp # 0, then it is a nilpotent element of Ox p. Suppose that fp = 0
for all P € U. Then for all P € U, there exists a neighborhood Vp C U of P such that
flv, = 0. Since {Vp} is a covering of U, this implies f = 0, contrary to hypothesis, so
Ox,p has a nilpotent element.

(b) For every point P € X, there is a neighborhood U? such that (U, Ox/|;») is isomorphic
to (Spec A”, Ogpe. 4r) for some ring A”. Also, ((Ox)red)p is the direct limit of Ox (U)req
over all open sets U containing P. Each such ring is Ox (U)/I(U) where I(U) is the ideal
of nilpotent elements of Ox (U), so ((Ox)red)p = (Ox)p/I where I is the ideal of nilpotent
germs of (Ox)p (this follows because by (a) we know that a representative of a germ is
nilpotent if and only if that germ is nilpotent). Dividing by an ideal I preserves inclusions
of ideals containing I, so ((Ox)red)p is local since (Ox)p is, and (X, (Ox)red) is a locally
ringed space.
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Let Y¥ = Spec A” ;. We claim that (U”, (Ox)red|yr) is isomorphic as a locally ringed space
to (YP,0yp). Any prime ideal of A” must contain the ideal of its nilpotent elements I, so
there is a bijection of ideals of A" containing I and ideals of Af;d given by projection which
preserves inclusions and primes, and this bijection induces a homeomorphism f: Y* —
Spec A”. For an open set U C Spec A” = UF, define

Ox|yr(U) — Oyr(f71(V))

in the following way. An element of Ox |7 (U) is a function s — [,/ A{: with s(p) € Af
and that locally is a quotient of elements of A”. We can describe Oyr(f~1(U)) in a
similar way. Localization preserves quotients; that is, (A/I), is canonically isomorphic to
Ap/(IAp). Thus, an element of Ox|;p(U) can be mapped naturally to an element of Oy p
by composing with
A{; - (Af)red - (Afad))ﬂ'

If a function s € Ox|yr(U) is nilpotent, this means that s(p) is nilpotent for all p € U,
which means that its image in Oyp(U) is 0, so we have a map Ox (U)yeq — Oyr(f~HU)).
This defines a map of presheaves, which induces a morphism of sheaves f#: (Ox)red|pr —
f+Oy-p. Taking the stalk at a prime p € Y| we get from our description above that

((Ox )realtrr) sy = ((Ox)rea) ) = ((Ox) p(p)red = (AT Ireds

and we get the map of stalks ff : (Af(p))red — (Aid)p, which is the canonical isomorphism

described above, and therefore a local homomorphism. This also implies that f# is an
isomorphism of sheaves, so (f, f#) is an isomorphism of locally ringed spaces, and thus
(X, (Ox)red) is a scheme.

Since X and X,eq have the same underlying topological space, the identity f: X,eq —
X is a homeomorphism. For every open set U C X, there is a projection Ox(U) —
Ox (U)req, which defines a morphism of presheaves Ox — (U — Ox(U)req). Composing
this with the sheafification morphism (U — Ox(U)ed) — (Ox)req gives a morphism of
sheaves f#: Ox — f«(Ox)rea. For any point P € X, the stalk at P gives fﬁ: Ox,ppy —
((Ox)red) - Note that ((Ox)red) P = (Ox,p)red, and that f# is projection. Projection of a
local ring is a local homomorphism by the ideal inclusion preserving property of division, so
(f, f7) gives a morphism of schemes X;oq — X that is a homeomorphism on the underlying
spaces.

Let f: X — Y be a morphism of schemes where X is a reduced scheme, and let ¢: Yieq — Y
be the natural map described in (b). We wish to define a morphism g: X — Yj¢q such that
f = @ og. Since ¢ is a homeomorphism on the underlying topological spaces, there is no
choice but to define the map of topological spaces g: X — Y;eq to be ¢ 1o f. For any open
set U C Y, we have a ring homomorphism f#: Oy (U) — Ox(f~1(U)). Since Ox (f~1(U))
is reduced, any nilpotent element of Oy (U) must be in the kernel of f#. By the universal
property of the kernel, this induces a unique homomorphism Oy (U)ea — Ox(f~1(U))
which commutes with the projection Oy (U) — Oy (U)req. This gives a morphism of
presheaves (U +— Oy (U)ed) — f+Ox. Since the preimage of ¢ ~}(U) under g is the same
as the preimage of U under f, and by the universal property of sheafification, this induces
a unique morphism of sheaves g7 : (Oy)red — 9+Ox such that g7 o p# = f#. Finally, for
any point P € X, the stalk at P induces maps fﬁ: Oy,jp) — Ox,p and

#
¢ g
OY7@(9(P)) g(P) ((OY)red)g(P) —P> OX’P



2 SCHEMES 12

which are equal. Since fﬁ and apj(g( p)) are local homomorphisms, gﬁ is also local. If not,

then the preimage of the maximal ideal in Ox p under gﬁ would not be maximal, and

in turn gives that the preimage under the composition gﬁ o gpjj(g( P) isn’t maximal, which

contradicts that f;f is local since it is equal to the composition of those two maps. Thus,
(g,g™) is a morphism of schemes such that o g = f. To see that it is unique with respect
to this property, let A be another such morphism. Then h# (Oy )red — hsOx gives a
morphism of presheaves (U — Oy (U)req) — f«Ox by composing with the sheafification
morphism. But this presheaf map is unique, so h and g are the same.

4. We construct an inverse map a~! to show that « is a bijection. Let ¢: A — I'(X, Ox) be a ring
homomorphism. For each P € X, there is an open neighborhood U” C X such that (U”, Ox|y»)
is isomorphic as a locally ringed space to (Spec A" ; Ogpec ap) for some ring AP, There is a
restriction map I'(X, Ox) — ['(UY, Ox). Since UF is open, I(UF, Ox|yr) £ T(UF, Ox), which
is in turn isomorphic to A”, so using these isomorphisms, we get maps o : A — AP, These
induce morphisms of schemes Spec A — Spec A whose global sections A — AF are precisely
. The map of topological spaces f: X — Spec A induced by the ¢ is well-defined because
on any intersection Spec A" N Spec A9, the values are induced by the restriction maps of Oy,
which force compatibility. That this map is continuous follows because each map Spec A" —
Spec A is continuous. Now we need to define Ogpec 4(V) — Ox(f~1(V)) for an arbitrary open
set V' C Spec A. We can cover V by {V N U}, so that we have maps Ogpec a(V N UF) —
Ogspec ar (f7H(V N UT)). We claim that the images of a fixed element # € Ogpeca(V N UT)
agree on their overlaps and hence glue to give an image of z in Ox(f~*(V)). This follows
because the restriction maps of each Ogpe. 4P are the restriction maps of Ox. This also gives
compatibility of our defined map with the restriction maps, so we have given a morphism of
sheaves f7: Ospec 4 — f+Ox. Also, for any point P € X, fff is the same as taking the stalk of
P of Ogpec 4 — Ogpec 4P 80 is a local homomorphism. Hence (f, f#) is a morphism of schemes.

We want that Ogpec a(Spec A) — I'(X, Ox) is ¢ after identifying Ogpec 4(Spec A) with A. This
map is defined for each AP via the restriction maps of Ox and ', so the images of any
s € Ospeca(Spec A) under ¢ is the restriction of I'(X,Ox) to T(UF,Ox|yr), so they glue
together to ¢(s).

Now we need to show that a~!oa is also the identity. Suppose (f, f#) is a morphism of schemes
from X to Spec A. Taking global sections gives a ring homomorphism ¢: A — I'(X,Ox). The
morphism of schemes o~ '(¢) at agrees with f on all open sets U” by construction. Since the
rest of the ring homomorphisms are determined by these values, a~!(p) = (f, f#), so we have
the desired bijection.

5. Since Z is a principal ideal domain, the topological space SpecZ consists of one point for every
prime number p, and one point for the zero ideal. Every closed set is of the form V((n)) for
some integer n, and (n) C (p) if and only if p|n, so the closed sets of SpecZ are all finite sets
consisting of the ideals generated by prime numbers, the whole set and the empty set. This
implies that every open set is of the form D((n)). In particular, O(D(n)) is isomorphic to the
localized ring Z,, where n is any integer. For any scheme X, there is a bijection of sets

a: Homge, (X, Spec Z) — Homging (Z,I'(X, Ox))

by (Ex. 2.4). There is a unique morphism Z — I'(X,Ox) because 1 is sent to 1 and this
determines the image of all elements in Z, so there is a unique morphism X — Spec Z.



2 SCHEMES 13

7. Since K is a field, Spec K is a one point space, so for a morphism f: Spec K — X call the
image of this point z. There is also a morphism of sheaves f#: © — f+«Ospec k- Considering the
stalk at z, we get ff : Oz — (f+«Ospec K )z, which is a local homomorphism by definition. Also,
(f+OSspec i) is the direct limit of Ogpec x(f~1(U)) where we range over open sets U containing
z. In each case, f~1(U) = Spec K, and Ogpec i (Spec K) = K, 50 (f+Ospeck )z = K. Since i
is a local homomorphism, (ff)_l(O) = m,. This means the kernel of ff is m;, so there is an
inclusion O, /m, — K.

Conversely, suppose we are given a point z € X and an inclusion k(z) — K. We define a
continuous map f: Spec K — X by sending the one point of Spec K to x. There is a projection
O, — O, /m,, which we compose with the given inclusion to get a map O, — K. We need
to define a morphism of sheaves f#: (O — f+«Ospec k. However, if U does not contain x, then
J+Ospec kK (U) = 0, so we only need to specify f# on open sets U containing 2. On such open
sets, fiOspeck(U) = K. Then f# is induced by the map O, — K since O, is the direct limit
of O(U) for all U containing z, and since the direct limit uses the restriction maps of O, these
induced maps on O(U) define a morphism of ringed spaces f#. Finally, we need to check that
fﬁ is a local homomorphism for all P € X. If every open set of P contains z, then this property
is given by the fact that Op = O, and that O, — K has kernel m,. Otherwise, Op = 0, and
there is nothing to show. Thus (f, f#) is a morphism of schemes. These two processes described
are inverse to one another, so giving a morphism Spec K — X is equivalent to giving a point
x € X and an inclusion k(z) — K.

8. The ring k[e]/e? has one prime ideal. To see this, note that any prime ideal contains 0 = &2,

so must also contain €. Since (¢) is maximal and the smallest ideal containing e, we get the
claim. If we have a k-morphism f: Speck[e]/e? — X, let & be the image of (¢). There is also a
morphism of sheaves

f#: Ox — f*OSpeck[E}/EQ'

Taking the stalk at (¢), Ogpeckfe]/e2,(c) = Fle]/ 2, so we get a local homomorphism
fgff): Ox.. — kle]/€2.

Then the preimage of (¢) is m,, and k[e]/e = k, so composing f(f ) with this projection gives a
map Ox , — k whose kernel contains m; and hence induces an injection i: Ox ,/m, — k. Since
f is a k-morphism, the following diagram

Spec kle] /&2 AN X

P A

Speck

Note that Ogpec k,p(2) = K, 80 we get local homomorphisms d)f: k — Ox . and gozi) : k — k[e] /e

Since (wf)*l(mw) = 0, by composing with the projection Ox , — Ox /m,, we get an injection

' k — Ox 5 /m, such that iod' = wzﬁ)- But ¢Z§:) is the inclusion k — k[e]/e2, so Ox »/m, = k,

and hence x is rational over k. The image of mf; under f(#: ) is 0 because €2 = 0, so this gives a

k-vector space homomorphism m,/m2 — (). Also, there is an isomorphism () — k via € + 1,
so this map gives an element of T, = Homy(m,/m2, k).
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Conversely, suppose we are given a point x € X such that Ox,/m, = k, and a k-vector
space homomorphism m,/m2 — k. This extends to a map m, — (¢), which we can further
extend to Ox , — kle]/ £2 by sending an element not in m, to its image under the projection
Oxx — k. Then define a continuous map f: Speckl[e]/e? — X by sending (g) to z. This is a
local homomorphism because the preimage of (¢) is m,.

To define f#: Ox — f.Speck[e]/e?, we need only specify its values on open sets containing
since otherwise f.Ogpecpie)/e2(U) = 0. We already have homomorphisms compatible with the

restriction maps for all such open sets given by Ox . — k[e]/€2, so this gives f#. The map f}ﬁé is
the map Ox , — k[e]/e? as defined above if every open set of P contains x; otherwise, Ox p = 0.
In either case, the map on stalks is a local homomorphism, so (f, f#) is a morphism of schemes.
We now need to check that this is a morphism over Spec k. This follows because the maps of
rings on open sets are k-algebra homomorphisms by construction. The process described here
of getting a k-morphism from a point x € X rational over k£ and an element of T} is inverse to
the process described in the previous paragraph, so we have the desired equivalence.

(a) Let X be a Noetherian topological space. Let U C X with a covering {U;}. We will build

a sequence of open sets V; as follows. Let Vj = @. Assuming that V,, has been constructed,
and that V,, # U, choose U; not entirely contained in V,,, and let V41 = V,, UU;. If
V, = U, then we stop. In this case, {U;} has a finite subcover. If not, then there is
an infinite descending chain of closed sets of X given by U\ Vi 2 U\ V3 2 ---, which
contradicts that X is Noetherian. Thus, every open set U is quasi-compact.
Conversely, suppose that we have a descending chain of closed sets V3 D Vo D -+ in X.
Let U = [J;o X \ Vi. Since U is open, there is a finite subcover {X \ V;,,..., X \ V;,}.
Then for all j, X \ V; € Up_; X \ Vi, = X \ Nj—; Vi,. This implies that N, Vi, C V; for
all j. If N = max}_, ix, then (), Vi, = Vi, so Viy = Vj for all j > N, which implies that
X is Noetherian.

(b) Since X is an affine scheme, let A be a ring such that X = Spec A. Suppose that {U;} is
a covering of X. Since the open sets of the form D(f), where f € A, are a basis for the
topology of X, each U; can be written as the union of D(f;). This gives a finer covering.
If we can show that this finer covering has a finite subcover, it will imply that {U;} has a
finite subcover, so without loss of generality, assume U; = D(f;) for some f; € A. Since
U D(f;) is the set of prime ideals not containing any of the f; and X is the set of all prime
ideals of A, we get that |JD(f;) = X if and only if the f; generate the unit ideal. Thus,
there is some finite sum > ; a;f; = 1 for some a; € A. This gives that | ; D(fi) = X,
so X is quasi-compact.

Let k be a field and let R = k[z1,x2,...]| be the polynomial ring over k in infinitely many

variables. The infinite ascending chain of prime ideals (z1) & (z1,22) & --- in R gives an
infinite descending chain of closed sets V(1) 2 V(z1,22) 2 --- in Spec R, so this is an

example of a ring whose spectrum is not a Noetherian space.

(c) Let A be a Noetherian ring and V; O V5 O - -+ be a descending chain of closed sets in Spec A.
Each closed set is of the form V'(a;) for some ideal a; C A, and V(a;) D V(a;) if and only
if \/a; C NS this chain gives an ascending chain of ideals y/a; C /as C --- in A. Since
A is Noetherian, there exists a number N such that j > N implies that ,/a; = /ay, and
this implies that V; = Vi, so Spec A is a Noetherian space.

(d) Let k be a field, and let A = k[x1,22,...]/(z},23,...). Each z; is nilpotent, so every prime
ideal must contain x; for all 7, and the smallest such ideal (x1,x2,...) is maximal since
A/(x1,x2,...) = k. So there is one prime ideal, and hence Spec A is Noetherian. However,
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since the x; are independent of one another, we get an infinite ascending chain of ideals

(1) ; (71, 22) ; .-+, 80 A is not Noetherian.

Suppose that some element € S, is not nilpotent. Then form the subset A = {x, 22, 23,...},
and let P be the set of homogeneous ideals not meeting A. This is nonempty because 0 € P,
and if {P;} is a chain in P, then their union is an ideal, and it is homogeneous because it
is generated by the generators of each P;, so by Zorn’s lemma, P has a maximal element p.
We claim that p is prime. It is enough to show that for any two homogeneous elements a
and b, ab € p implies either a € p or b € p. Suppose a and b are homogeneous elements such
that ab € p but a ¢ p and b ¢ p. Then (p,a) and (p,b) are homogeneous ideals properly
containing p, so must meet A. Then for some elements pi;,ps € p and c1,co € S, and
numbers n and m, we have p; + cia = z™ and py + cob = ™. Multiplying them together,
we get
p1p2 + craps + prcab + craceb = "™,

but the sum on the left hand side is an element of p, which is a contradiction. Then p is a
homogeneous prime ideal which does not contain all of S, so Proj .S # &.

Suppose every element of S, is nilpotent. If p is a prime ideal of S and f € S is a nilpotent
element, then f* = 0 for some n. Then f™ € p, which implies f € p, so every prime
ideal must contain the set of nilpotent elements, and hence contain Sy, so in this case
Proj S =o.

The set ProjT'\ U = {p € ProjT : p D ¢(S+)} is the same set if we replace ¢(S1) by the
ideal it generates. Any element f € S can be expressed as a sum f; + --- + f,, where the
fi are homogeneous, so ¢(f) = ¢(f1) + -+ + ¢(fn) where each ¢(f;) is homogeneous, so
the ideal generated by (S5 ) is generated by homogeneous elements. Thus Proj7'\ U is a
closed set, so U is an open set.

As a map of topological spaces, define f: U — ProjS by p — ¢~ *(p). Since p B ¢(S4),
0 1(p) 2 S4, so this is well-defined. Consider the localized map 0w Se1p) — Tip)
where T{;,) is the ring of elements of degree zero in the localized ring A7T where A is the
multiplicative system consisting of all homogeneous elements of T" not in p, as defined in
Hartshorne. Note that S -1(p) is a local ring whose maximal ideal is the image of 0 1(p),
and similarly with 7{). From this, we see that ¢, is a local homomorphism. Now we need
to define a morphism of sheaves f#: Oprojs — f:U. If V.C Proj S is an open set, then
Oprojs(V) consists of functions s: V' — [] .y S(q) such that s(q) € S, and s is locally a
quotient of elements of S. By composing with the localized maps, we can turn each such
function into a function t: f~1(V) — e 1) Tig) such that ¢(q) € T{g) and ¢ is locally a
quotient of elements of T'. The restriction maps of Op,s; 5 and Oy are restriction of domain,
so the map just defined gives a morphism of sheaves. The stalk at any point p € U is the
map ¢y, which is local, so f is a morphism of schemes.

Let p be any homogeneous prime ideal of T, and suppose that p contains ¢(Sy). Let z € T'
be a homogeneous element of degree a > 0. For some n, na > dy, so "™ € T = ¢(Sna) C
p, so z € p. This implies that 7. C p, so U = ProjT. The induced map of topological
spaces f: ProjT — Proj S is given by p — ¢~ !(p). Suppose that o ~1(p) = ¢~!(q) for two
ideals p,q € ProjT. Then pg; = qq for all d > dy. For any homogeneous element = € q
of positive degree, some large power =" has degree > dy, so " € p, which implies = € p.
By symmetry, pg = qq for all d > 0. If © € pg, then since p € Proj T, there exists some
homogeneous element y ¢ p with degy > 0. This means that degxy > 0, so zy € q. Since

y ¢ q, we have = € q, so by symmetry, pp = qo, and f is injective.
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Now we show that f is surjective. Let {c;} be a set of homogeneous generators for T’ .
Then {D4(«;)} is a cover of ProjT. For any prime p € Proj T, a?o € p if and only if a; € p,
so we may assume that deg o;; > dy for all i. We claim that {D (¢~ !(;))} forms a cover of
ProjS. If not, then there exists p such that ¢ ~!(oy) € p for all i. However, the a; generate
@dz do Ld, S0 its preimage is contained in p. However, this preimage at least contains Sy
because g is an isomorphism for d > dy, so S; C p, which contradicts that p € ProjS.
Then we have maps fa,: D1 (i) — Di(¢ 1(;)) for all i. This map can be rewritten as
SpecT(qa,) — Spec S(y-1(a;)), Which is induced by the localized map ¥: Si,-1(a,)) = T{ay)-
We claim that this localized map v is an isomorphism. If ¢(a/u) = 0, then

Y™ (a)a/¢™ (ai)u) =0,

which gives
el (e)a) /o™ (ai)u) =0
in T(,,)- This means that

afo(p ™ (a)a) = (e~ (ai)aaf) =0

for some n, and we may take n large enough so that the degree is higher than dy, so
¢ (ai)aa? = 0, which means a = 0 in S(p-1(ay))- For surjectivity, choose b/ai € T(q4,).
Then for some m, deg bal™ > dy, so there is an element =1 (ba™) /o~ (aT™) in S(o1(a))s
which maps to b/a]" by ¢. Thus, v is an isomorphism, so f7# is an isomorphism of sheaves
because the D, («;) form a cover. Then f is a homeomorphism because inverse image
preserves ideal inclusion and hence closed sets, so (f, f#) is an isomorphism of schemes.

An example of such a ¢: § — T is given by letting T" be a polynomial ring in n variables
where each variable has degree 1, letting S be T" except the degree 1 part is replaced by 0,
and letting ¢ be the inclusion. Then ¢ is degree preserving and an isomorphism for d > 2,
but is not surjective, so is not an isomorphism.

We write U N Xy as the set of p € Spec B for which f, ¢ m, in the local ring O,. Also,
D(f) is the set of prime ideals of B not containing f, which is the set of prime ideals
p of B for which f is invertible in B, = O,. Notice that O, \ m, is the set of units of
Oy. It is clear that every unit of O, is not in my,. For the converse, an element x ¢ m,
generates an ideal not contained in my, so must be the unit ideal since O, is local, so is a
unit. Thus, U N X is the set of elements p € Spec B for which f, is invertible in O, so
UNX; = D(f). Now cover X with open affine subschemes Spec 4;. Then Spec A; N X
is an open set since it equals D(f;) where f; is the restriction of f to I'(Spec A;, Ospec 4, ),
and [J(Spec A; N X¢) = Xy, so Xy is an open subset of X.

Since X is quasi-compact, let Uy, ..., Uy be a covering of X such that U; = Spec A; for some
ring A;. Let p; be the restriction map I'(X, Ox) — I'(U;, Ox|y,). Since the restriction of
a to Xy is 0, the restriction of a in U; N Xy is 0 for all 4. If f; is the restriction of f to
A; =T(U;, Ox|y,), then U; N Xy = D(f;) by (a). By (Ex. 2.1), D(f;) = (A;)y,, so there
exists n; > 0 such that f]"p;(a) = 0. If n = max¥®_; n;, then f7p;(a) = 0 for all 4, and each
such element is the restriction of f"a. Since the U; form a cover, this implies f"a = 0.

Write U; = Spec A; for the finite cover of X, and let f; be the restriction of f in Uj.
For each i, let b; be the restriction of b in U; N X¢. By (a), Ui N Xy = D(f;), so we
can write b; = ¢;/ fl-" ¢ for some ¢; € A; and integer n;. On each intersection U; N Uj, let
N;; = max(n;,n;). Then fZ-Nbi — ijbj restricts to 0 in U;NU;N X, so by (b), there is some
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n;,j so that fl-]Vi‘jJrni’jbi = fJNi‘jer’jbj. Letting N = max{N; j +n; ;} (which is over a finite

set), the elements fZN b; € U; all agree on overlaps, so lift to an element x of A. Since the
restriction of x is fVb; on each U; N Xy, its restriction is Vb on X because Vo, — m|Xf
restricts to 0 on each U; N Xy.

With the hypothesis of (c), cover X with open affines U; = Spec A;. Let f; be the restriction
of fin T(U;,Ox). By (a), UiN X; = D(fi). Since D(f;) = Spec(4;)y,, f; ' exists in
I'(U; N Xf,0x). They are all restrictions of the same element, so they agree on overlaps.
The U;N Xy cover Xy, so they lift to an element g. Then fg|Uian =1 for all 7, so fg|Xf =1,
and f|x, is invertible. Thus, the map A — TI'(Xy, Ox,) induces a ring homomorphism
Ay — I'(Xy, Ox,). The injectivity follows from part (b); in that proof we only needed that

X has a finite cover by open affines. The surjectivity follows from part (c), so we conclude
that Af = F(Xf, OXf)~

For z,2’' € X, if f(z) = f(2'), then f(z) € U; for some U;, so z,z' € f~1(U;). Since f
induces a homeomorphism f~1(U;) — U;, we have = 2/. Also, for any y € Y, y € U;
for some 4, and there is a homeomorphism f~!(U;) — U; which means y has a preimage,
so f is bijective. To see that f is a homeomorphism, consider an open set V' C X. Then
V is covered by V N f~1(U;), which are open sets in f~!(U;). By the homeomorphism
f~YU;) — U;, each V N f~1(U;) is mapped to an open set by f, so V is mapped to their
union, so f is a homeomorphism.

Now let V C Y be an open set. We get a map f7: Oy (V) — Ox(f~1(V)), which we
claim is an isomorphism. Since the induced map f~(U;) — U; is an isomorphism, we
have Oy, (V N U;) — Op-1(y,(f(V N U;)) is an isomorphism, which we can rewrite as
Oy(VNU;) — Ox(f~Y(V NU;)). Note that the f~1(V N U;) form a cover for f=1(V). If
a € Oy (V) maps to 0, then f#(a) restricts to 0 in Ox (f~*(V NU;)), so must come from 0
in Oy (VNU;). But then this implies that a restricts to 0 in each Oy (V NU;) so a = 0, and
f# is injective. For any b € Ox (f~1(V)), let b; be the restriction of b in Ox (f~H(V NT;)).
For each b;, there is a corresponding a; € Oy (V N U;) that maps to it. The a; agree on
overlaps because their images in Ox (f~1(V NU;)) do (and their overlaps are isomorphic),
so they lift to an element a € Oy (V), and f#(a) = b, so f# is surjective. Thus f* is an
isomorphism on all open sets, so is an isomorphism of sheaves, and f is an isomorphism of
schemes.

If X = Spec A is an affine scheme, then the identity 1 generates the unit ideal, and X; = X
since 1, is the multiplicative identity for any point x € X, so cannot be in the maximal
ideal m, of O,.

Conversely, suppose there are elements fi,...,f, € A = I'(X,Ox) such that the open
subsets Xy, are affine, and fi,..., f, generate the unit ideal in A. This means that for
any ¢ € X, (f1)z,-.-,(fr)z generate the unit ideal of O,, so there is some i such that
(fi)s € my. Then z € Xy, so the Xy, cover X. By (Ex. 2.16(d)), I'(Xy,, Ox, ) = Ay,, so
since Xy, is affine, Xy, = Spec Ay,. By (Ex. 2.4), the identity A — I'(X,Ox) induces a
morphism of schemes ¢: X — Spec A. The map ¢ of topological spaces is given by taking
an affine covering of X, say Xy,, and mapping Spec Ay, — Spec A by the induced map of

A= I'(X, Ox) = F(Xfi’OXfi) = Ay,

That is, if we call the above map p;, then Spec Ay, — Spec A is defined by p pi_l(p).
Now consider D(f;) C Spec A. Its preimage under ¢ is the set ngl{p € Spec Ay, :
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fi ¢ pj_l(p)}. Certainly, this set contains Spec Ay, because f; is invertible in Ay,. If this
set contains p € Spec Ay, then p € Xy, which means f, ¢ my in Oy = (Ay,;)p. Since
fi ¢ p}l(p), we also have f,, is not contained in the maximal ideal of (Ay,)p, so p € Xy,.
Then ¢~ 1(D(f;)) = Spec Ay,, and the induced map Spec Ay, — D(f;) is an isomorphism.
Then ¢ is an isomorphism by (a) because the D(f;) cover Spec A since the f; generate the
unit ideal. Therefore, X is an affine scheme.

The intersection of all prime ideals of A is equal to the nilradical of A. Thus f is nilpotent if
and only if f is contained in every prime ideal, which is equivalent to saying that D(f) = &.

Suppose that ¢ is injective, and let f: Y — X be the induced morphism of schemes. Taking
the stalk at a point p € X, we get f;#: Ox,p — (f«Oy)p. We know that Oxp, = A, and
(f+Oy )y is the colimit of Oy (f~1(U)) over all open sets U containing p, which is the same as
considering just basic open sets D(f) containing p. Since Oy (f~H(D(f))) = Oy (D(¢(f))),
this colimit is equal to B localized at p (thinking of B as an A-module). To see that ff
is injective, suppose that a/u maps 0. Then there exists s ¢ ¢~ !(p) such that sp(a) = 0,
which means that ¢(sa) = 0. Since ¢ is injective, sa = 0, so a/u = 0.

If f#: Ox — f.Oy is injective, then taking global sections, I'(X,0x) — T(Y,Oy) is
injective, but this is ¢ by the correspondence of induced maps.

To see that f(Y) is dense in X, we show that the intersection of all closed sets containing
f(Y) is X, which is acheived by showing that any closed set containing f(Y") is X. This is
further reduced to showing that if a is an ideal contained in [,y ¢~ 1(p), then V(a) = X.
For any = € a, ¢(z) is contained in all prime ideals of B, so ¢(x) is nilpotent and there
exists n such that ¢(z)™ = 0. Since ¢ is injective, this means that ™ = 0, so z is contained
in every prime ideal of A, which gives that V(a) = X.

The map f: Y — X is defined by p — ¢~ '(p), which we claim is injective. Suppose
o Yp) = ¢ 1(q) for two prime ideals p,q € Y. If p # q, then choose x € q\ p. Since ¢
is surjective, ¢ ~!(x) is nonempty. If p~1(x) C p, then p(p~1(p)) is strictly bigger than
p, which is a contradiction, so f is injective. We now claim that f(Y) = V(a) where
a=pey ¢~ 1(p). Suppose q contains a, and let g’ be the inverse image of (q). Note that
©(q) is a prime ideal of B because ¢ is surjective. That is, if ab € ¢(q), then both a and b
have preimages whose product is contained in ¢, which means that at least one of a and b
is contained in (q). By definition, g’ D q. If the inclusion is proper, then pick z € ¢’ \ g.
There is some y € q such that ¢(z) = ¢(y). But then z —y € ¢’ \ q and ¢(x —y) = 0.
However, 0 is contained in every prime ideal of B, and hence x — y is contained in a, which
is a contradiction, so ' = g, which proves the claim and shows that f(Y) is a closed set.
So f is a bijection, and ¢ preserves inclusion of ideals, so f is a homeomorphism.

The proof that f# is surjective is similar to the one in (a) showing that f# is injective.
The map on stalks is the same as the localization map of A-modules ¢p: Ay — By, which
is surjective because ¢ is surjective.

There is a canonical injective ring homomorphism : A/ker¢o — B. Letting X' =
Spec A/ ker ¢, this induces a map f: Y — X’ and a map f#: Oxs — f.Oy. The
prime ideals of X’ are in bijection with the prime ideals of A which contain ker ¢, so
X" = V(ker ). By assumption, f(Y) is homeomorphic to a closed subset of X’. By (b),
f(Y) is dense in X', so f(Y) is homeomorphic to V (ker¢). For any p € Y, the map on
stalks f;#: Ox/p-1(p) — Oy,p is the same as the map on stalks Ox ,-1(,) — Oy, induced

by . These maps are surjective by assumption, so ff is also surjective. By (b), ff
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is also injective, so each is an isomorphism, which means (f, f#) is an isomorphism of
schemes. Then there is an inverse morphism of schemes, which corresponds to an inverse
ring homomorphism B — A/ ker ¢, so A/ker ¢ = B, which means that ¢ is surjective.

19. If A= Ay x Ay, let f = (1,0) and g = (0, 1). The localization Spec Ay = Spec A; is an open set in
Spec A whose complement is Spec A; = Spec As, so Spec A is disconnected. Conversely, suppose
U is an open set in Spec A whose complement V' is also open. Then we have maps A — O(U)
and A — O(V) with no relations because U NV = @. In this case, A = O(U) = O(V). This
establishes the equivalence of (i) and (iii).

It is obvious that (iii) implies (ii), jus ttake e; to be f as above and ey to be g. Given elements
e1, ez € A with the described properties, we claim that A = Ae; @ Aes. If ae; = d’es for some
a,a’ € A, then multiplying both sides by e; gives ae; = 0 and similarly, multiplying by e gives
0 = dey, so Aeg N Aeg = 0. Also, Aey and Aes generate A because e + e = 1, so (ii) implies

(iif).

3 First Properties of Schemes

If f: Spec A — Spec B is a morphism of schemes, then for any g € B, one has f~*(D(g)) = D(f*g).
This follows because there is a map B — A given by the structure sheaf, and also a localization
map A — A®p By = Ag#,. The composition of these maps is the same as first localizing B — By
and then using the map given by the structure sheaf.

Lemma 1. Let X be a scheme and P a property of open affines of X such that
(1) For any Spec A C X, if Spec A has property P, then so does D(f) = Spec Ay for all f € A.
(2) If f1,..., fn generate A and each D(f;) C Spec A has property P, then so does Spec A.

Then if there is an open affine covering of X such that each affine has property P, then every open
affine of X has property P.

Proof. Let Spec A; be an open affine covering of X such that each affine has property P, and let
Spec B be any open affine. Then Spec BN Spec 4; is an open covering of Spec B. Each intersection
can be covered with open affines that are localizations of both B and A; by an element. By (1),
these localizations also have property P. Now we have a covering of Spec B as in (2), which finishes
the proof. ]

1. Let f: X — Y be a morphism that is locally of finite type. We invoke Lemma [1| where P is
the property that the preimage of an open affine Spec B has a covering by open affines Spec A;
such that each A; is a finitely generated B-algebra. Let Spec B C Y be an open affine so
that f~!(Spec B) has a covering Spec 4; such that each A; is a finitely generated B-algebra.
Choose g € B. If f;: Spec A; — Spec B is the restriction of f, then f; '(D(g)) = Spec(A;),, s0
f~1(D(g)) = USpec(4;),. Each (A;), is a finitely generated Bg-algebra whose generators are
the images of the generating set of A; as a B-algebra, so this verifies (1) of the lemma.

To verify (2), suppose g1, ..., gn generate the unit ideal of B, and that By, has property P. Then
the D(g;) cover Spec B, so the f~!(Spec By,) cover f~!(Spec B). Notice that By, is a finitely
generated B-algebra with the generating set 1/g;, so any finitely generated B,-algebra is also
a finitely generated B-algebra. Since each f~!(Spec B,,) can be covered by finitely generated
B,,-algebras, we take the union over all 7 to get a covering of f ~1(Spec B) by finitely generated
B-algebras. We conclude that every open affine Spec R C Y has property P.
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3.

The converse follows by definition.

. Let f: X — Y be a quasi-compact morphism, and let V; be an open covering by affines of Y such

that f~1(V;) is quasi-compact for all i. Given an open affine U C Y, we can cover UNV; by open
sets that are distinguished open sets in both U and V;. Since U is affine and hence quasi-compact,
we can take a finite number of such distinguished open sets. Then f~!(U) is the finite union of the
preimages of these distinguished open sets, so it is enough to show that each distinguished open
set has a quasi-compact preimage. We reduce to the case f: X — Y where X is quasi-compact
and Y is affine, and showing that the preimages of distinguished opens are quasi-compact. Cover
X with finitely many affines Spec A; and let Y = Spec B. Let f;: Spec A; — Y be the restriction
of f, and choose D(g) C Y. Then f;'(D(g)) = D(f]"g). Finally, f~1(D(g)) = U f; "(D(9)),
and each D( fl-# g) is quasi-compact because it is isomorphic to Spec(A4;) g 8O f~1(D(g)) is the
finite union of quasi-compact spaces and hence quasi-compact. '

The converse follows by definition.

(a) Suppose f: X — Y is of finite type. By definition, it is locally of finite type. Since f is of

finite type, there is a covering by open affines of Y = |JV; such that f~1(V;) can be covered
by a finite number of open affine subsets U;;. Let W be an open covering of f~1(V;). Then
Wi, N U;; is an open covering for each U;;, and since affine schemes are quasi-compact, we
can select finitely many of the W}, N U;; to be a cover. Taking the finite union of all such
Wy, for each Uj; gives a finite cover for f~1(V;). Thus f~(V;) is quasi-compact, so f is
quasi-compact.
Conversely, suppose that f is locally of finite type and quasi-compact. By (Ex. 3.1), for
any covering by open affines Y = |JSpec B;, f~!(Spec B;) can be covered by open affines
Spec A;j such that A;; is a finitely generated Bj-algebra. By (Ex. 3.2), the f~!(Spec B;)
are quasi-compact, so we can choose finitely many Spec A;;, which means that f is of finite
type.

(b) Let f: X — Y be of finite type, and choose an open affine subset V' = Spec B of Y. Using
(a), we know that f is locally of finite type and quasi-compact. By (Ex. 3.1), f~1(V) can
be covered by open affines U; = Spec A; such that A; is a finitely generated B-algebra. By
(Ex. 3.2), f~}(V) is quasi-compact, so we only need finitely many U;.

The converse follows from the definition of finite type.

(c) Let V' = Spec B be an open affine of Y. We use Lemma on f~Y(V) with P being the

property that if Spec A C f~1(V) is an open affine, then A is a finitely generated B-
algebra. Let A be a finitely generated B-algebra with generators {ai,...,a,}. For any
g€ A, {1/g,a1/1,...,a,/1} generate A, as a B-algebra, so D(g) has property P.
Now suppose that (g1,...,9m) = A, and that each A, is a finitely generated B-algebra.
Let {a;1/9;"™,...,ai/g;™} be a set of generators for A; (each one is finitely generated,
so we assume for convenience that each is generated by k elements since there are only
finitely many algebras to consider). Choose any r € A. For each g;, there is a polynomial
in the generators that makes it equal to /1. Combining these fractions and getting a
common denominator, we can express g, 'r as a polynomial in the a;; with coefficients in
B for some n;, call this polynomial p;. Let N = max]"; n;. Then (g{v, e ,g%) = A, so we
can write clg{V + -+ cmg =1 for some ¢; € B. Then clg{V*"im + o epgN T, =
cglr + -+ emglr = r. Thus, {a;;} U {g;} gives a finite generating set for A as a B-
algebra. We conclude that for every open affine Spec A C f~!(Spec B), A is a finitely
generated B-algebra.
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4.

5.

Suppose f: X — Y is a finite morphism. We use Lemma |1| where Spec B has property P
if f~!(Spec B) is affine, equal to some Spec A, and A is a finitely generated B-module. Let
Spec B C Y be an open affine with property P, so that f~!(Spec B) = Spec A where A is a
finitely generated B-module, and choose ¢ € B. The B-module structure on A is given by the
map ¢: B — A, which is induced by the restriction f: Spec A — Spec B. Localizing at g, we
get @41 By — Ay where Ay = A®p By. If {g1,...,9r} is a generating set for A as a B-module,
then {g1/1,...,9-/1} is a generating set for A, as a By-module, so A, is a finitely generated
Bg-module. This gives that Spec By has property P because f~1(Spec By) = Spec Ap#g.

Now suppose that there are elements g1, ..., g that generate B such that each By, has property
P. That is, f~!(Spec By,) = Spec A;, where each 4; is a finitely generated By,-module. By
abuse of notation, we shall use g; to also mean the image of g; under the map B — I'(X, Ox).
Note that I'(X, Ox) is generated by the g;. Let X’ = f~!(Spec B). Using the notation of (Ex.
2.16), we claim that X, = A; for all i. By (Ex. 2.16a), Spec A4; N X|, is the set of primes of 4;
that do not contain g;. Since we have a map By, — A;, it must be that g; is invertible in 4;, so
no primes can contain it, and Spec A; C X;Z,. For any other j, Spec By, N Spec By, = Spec By, .
This gives that Spec A; N Spec A; is

{p €SpecAj:g; ¢ p} ={p €SpecA;:g;¢np}

which means that X, N Spec A; = Spec A; N Spec A;, which proves the claim. By (Ex. 2.17),
this means that f~!(Spec B) is affine, say equal to Spec A.

Then we get a map Spec A — Spec B, which means that each A; is a localization of A as B-
modules. In particular, A; = Agy,. Let {a;;} be a finite generating set for A; as a By,-module.
Then the set {a;;j/1,a;j/9;} is a generating set for A; as a B-module. Then for any ¢ € A, we
can write ¢/1 = p;/g;"" in Ay, where p; is some linear combination of the a;; using coefficients
from B. Then g;"c = p; for all i. Let N = max],_, ng; then there are coefficients b; € B such
that bygl¥ +---+b,gY = 1in A. This gives blg{V*mpl -+ bgN T = ¢, s0 {ai U {gFHY,
gives a finite generating set for A as a B-module, which verifies (2) of Lemma so we're done.

The converse follows by definition.

(a) Let f: X — Y be a finite morphism, and y € Y some point. There is an open affine
U = Spec B containing y, and by (Ex. 3.4), f~}(U) is an open affine Spec A such that the
map @: B — A induced by f: Spec A — Spec B makes A a finitely generated B-module.
Then y corresponds to a prime ideal of B, and f~!(y) is the set of prime ideals in A whose
preimage under ¢ is y. There is a bijection between the prime ideals of A whose preimage is
y and the prime ideals of A®p B, = A,. Also, A, is a finitely-generated By-module via the
localized map ¢, : By — A,. Now B, is a local ring and we are concerned with the number
of primes of A, whose preimage is the maximal ideal yB,. Thus, we divide by this ideal
to get B, /yBy — Ay/py(y)Ay. Then A, /@, (y)A, is a finitely generated B, /yB,-module.
In particular, By /yB,y is a field, so A,/¢,(y)Ay is an Artinian ring, and hence has finitely
many prime ideals. So f~1(y) is a finite set, and thus f is quasi-finite.

(b) Let f: X — Y be a finite morphism. We claim that it is enough to show that f(X) is
closed to show that f(V) is closed for any closed V' C X. To see this, note that there is a
closed immersion V' < X which is finite because V' = Spec A/I for some ideal I, and the
composition of finite maps is finite. Thus if we know the above fact, then the image of V'
is closed under the map V — X — Y.

To show that f(X) is closed, it is enough to show that for any open affine U C Y, f(X)NU
is closed in U. To see why, take a covering U; of Y. Then if f(X) N U; is closed relative



3 FIRST PROPERTIES OF SCHEMES 22

to U;, then U; \ f(X) is open in Y, and JU; \ f(X) = Y \ f(X), so f(X) is closed.
Furthermore, f~!(U) is an open affine of X, VN f~1(U) is closed in f~!(U) and has image
U;N f(X). Let U; = SpecB and f~}(U) = Spec A. We reduce to the case of showing
that if f: Spec A — Spec B is a finite morphism, then f(Spec A) is closed in Spec B and
f(Spec A) = Spec BN f(X).

The morphism of schemes f: Spec A — Spec B induces a ring homomorphism ¢: B — A.
If I = ker, then there is a factorization B — B/I — A that induces a morphism of
schemes

Spec A — Spec B/I — Spec B.

Then Spec B/I = V(I) C B, which is closed in B. Also, V(I) = f(X) N Spec B because
f~(Spec B) = Spec A. The morphism Spec A — Spec B/ is finite because if A is a finitely
generated B-module given by the action B — A, and the kernel of the action is I, then
A is a finitely generated B/I-module because everything in I acts trivially on A. So if
{a1,...,a,} is a generating set as a B-module, and a € A can be written bjaj + - - -+ bpay,,
then a = byay + - - - + bya, where b; is b; modulo I. If Spec A is closed in Spec B/I, we're
done, so we reduce to the case that B — A is an injection and f: Spec A — Spec B is
finite.

Then B — A is an integral extension. Any closed set of Spec A is of the form V(a), and
the image of this set under fis {p N B :p O a}. We claim that f(V(a)) = V(an B). The
inclusion f(V(a)) C V(a N B) is clear; if p O a, then BNp DO BNa. The reverse direction
is a consequence of the going up theorem. That is, for a prime q in B such that ¢ © BNa,
there is a prime p such that ¢ = pN B. Thus f(V(a)) is closed, which finishes the proof.

(c) Let k be a field, and let X be the scheme obtained by gluing two copies of A/ll€ at the
complement of a point P, and let Y = Speck[z] = A,{z. We get a morphism of schemes
f: X — Y by gluing the identity morphisms A,1g — A,lc along the complement of P. Then
f is surjective and quasi-finite because f~!(P) is two points and f~!(z) is one point for
every x # P. To see that f is of finite type, note that Y is affine and that f~}(Y) = X is
covered by the two copies of Al each of which is equal to Spec k[z], and k[z] is a finitely
generated k[z]-algebra. Since f~(Y) is not affine, f is not finite by (Ex. 3.4).

6. We first show that any integral scheme has a unique generic point. For some Spec A C X,
we claim that the point £ corresponding to the 0 ideal of A is the desired generic point. By
€, we mean the closure of the set {¢}. Note first that & O Spec A because every prime ideal
of A contains 0. Then we can write X = £ U (X \ Spec A) as a union of closed sets. Since
X is an irreducible space, it must be that £ = X, so ¢ is a generic point. Now we show that
¢ is independent of A. Choose two open affines Spec A,Spec B C X. Since X is irreducible,
Spec A N Spec B is nonempty. Then there is an open set SpecC' in Spec A N Spec B that is a
distinguished open in both Spec A and Spec B. This means that the point corresponding to 0
in A is the same as the point corresponding to 0 in C' since C' is a localization of A. Likewise
for B, so the points corresponding to 0 in A and B are the same, so we have shown uniqueness.
Then for any Spec A, O¢ = (Olspec 4)¢, Which is isomorphic to A ), the quotient field of A, so
O is a field.

7. Let f: X — Y be a dominant, generically finite morphism of finite type of integral schemes.
Let £ be the generic point of X and 7 be the generic point of Y. We claim that f(§) = 7. The
closure of f(€) is the intersection of all closed sets containing f(£). The preimage of each such
closed set is a closed set of X containing £, and hence is all of X. Then any closed set containing
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f(&) contains f(X). Since f(X) is dense, any closed set containing f(£) must be Y. This means
that f(£) is a generic point for Y'; by uniqueness, f(£) = 7.

Choose Spec B C Y whose preimage is nonempty, and choose Spec A C f~!(Spec B). Then A is
a finitely-generated B-algebra, so A is also a finitely-generated B(g-algebra, and By = K(Y),
the function field of Y by (Ex. 3.6). By Noether normalization, there exists n such that A is
an integral extension of K(Y)[z1,...,2y]. If n > 0, then there are infinitely many primes in
K(Y)[x1,...,zy], each of which lies over 0 in K(Y'). By the going up theorem, each of these
primes corresponds to a prime in A that lies over 0 in K(Y'), but this contradicts that the fiber
of n is finite. Thus n = 0, so A is a finite K(Y)-module. Since K(X) = Ox is the colimit
over these A (because f(¢) = n implies ¢ € f~1(Spec A)), we conclude that K(X) is a finite
K (Y)-module, which means K(X)/K(Y) is a finite field extension.

Now let {g1,...,9-} be a generating set for A as a B-algebra. Since K(X)/K(Y) is a finite
field extension, there exist polynomials p;(x) with coefficients in K(Y) such that p;(g;) = 0.
Multiplying denominators, we can assume these coefficients are in B. Let b; be the leading
coefficient of each p;. Let b = by --- b, and localize to get A, as a finitely generated Bp-algebra.
Then the generating set is {g1/1, ..., g-/1}, and they satisfy the localized versions of p;. However,
each b; /1 is now invertible, so we have that each g;/1 satisfies a monic polynomial with coefficients
in By. Thus, A is a finitely generated Bp-module.

It remains to be shown that there is some open affine in Spec B whose preimage is an open
affine. We can cover f~!(Spec B) by open affines Spec Ay, ..., Spec A,, such that each A; is a
finitely generated B-algebra. By localizing, and the comments above, we can assume without
loss of generality that each A; is a finitely generated B-module. If n = 1, then we’re done, so
assume otherwise. Let V be the intersection of the Spec A;. There exists a; € A; for each i such
that D(a;) C V. Since each A; is a finitely generated B-module, a; satisfies a monic polynomial
with coefficients in B. The maps B — A; are injective because f(§) = n, and B is an integral
domain, so we may assume that the constant term of each polynomial is nonzero; call these
constant terms ¢;. Let ¢ =c¢;---¢,—1. Each ¢; is a multiple of a;, so any prime ideal of A; that
contains a; also contains c. Thus Spec(4;)q, 2 Spec(4;). for ¢ < n. This means that for i < n,

Spec(4;). € V N f~1(Spec B..) C Spec A, N f~1(Spec B.) = Spec(A4,)..

We also have f~!(SpecB.) = |JI_, Spec(4;)., but by the previous computation, this union
is just Spec(A).. Finally, by previous remarks, (Ay). is a finitely generated B.-module, so
f~(Spec B.) — Spec B, is a finite morphism. Also, Spec B, is nonempty because ¢; # 0, and
B is an integral domain, which means ¢ # 0. Since Y is an irreducible space, this gives that
Spec B. must be dense.

8. For any two open affines Spec A and Spec B of X, we show how to glue together Specg and
Spec B. The inclusions A — A and B — B induce morphisms of schemes f: Specg —
Spec A and g: Specé — Spec B. If Spec A N Spec B = &, there is no gluing to do, so assume
otherwise. We can cover Spec A N Spec B by open sets that are distinguished open sets in
both. Consider one such open set SpecC C Spec A N Spec B. Then both f~!(SpecC) and
g~ Y(Spec C) are distinguished opens in Specg and Spec J§, respectively, and we claim they are
isomorphic. Both of these rings can be thought of as localizations of normalizations. However,
normalization commutes with localization [2) Proposition 4.13], so f~!(Spec C') and g~*(Spec C)
can be obtained by first localizing A and B, and then taking the normalization. By our choice
of Spec C, the localizations are equal, so we get the isomorphism. These isomorphisms glue to
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12.

give an isomorphism of schemes
f~1(Spec AN Spec B) — g~ *(Spec A N Spec B),

and we use this isomorphism to glue Spec A and Spec B together. The last thing to verify is that
if we have a third scheme Spec 15, then it is irrelevant in which order we glue it to Specg and
Spec B. But this follows because we are gluing along intersections using localization to identify
isomorphic pieces (i.e., if we localize three times, it’s irrelevant in which order it is done). Thus,
we have specified a gluing along intersections that is compatible along triple intersections, so we
glue all the normalizations to get X. Any local ring of X is a localization of some open affine
in X. All such affines are integrally closed domains, and hence remain integrally closed under
localization, so X is a normal scheme.

To get a morphism ¢: XX , we glue the morphisms Spec A— Spec A induced by the inclusion
A — A for all open affines Spec A C X. Let Z be a normal integral scheme with a dominant
morphism f: Z — X. Then for Spec A C X, and Spec B C f~!(Spec A), we have an injective
ring homomorphism A — B where B is integrally closed. The injectivity follows because f
being dominant means it maps the generic point of Z to the generic point of X, so the preimage
of 0 is 0. Then B is the integral closure of A in some field extension L of K(A), the quotient
field of A. Since we have specified an embedding of A in L, there is a unique way to extend this
embedding to K (A). Restricting this map to A, we get a factorization A — A — B, which gives

Spec B — Spec A— Spec A.

The maps Spec B — Specg are compatible on overlaps (since we can cover them with distin-
guished opens) so glue together to give a morphism Z — X, and f factors uniquely through
X.

Now suppose X is of finite type over a field k. For any Spec A C X, we have ¢~ !(Spec A) =
Specg by construction. Then A is an integral domain that is a finitely generated k-algebra and
A is the integral closure of A in K (A). A theorem of Noether [2] Theorem 4.14] then says that
Aisa finitely generated A-module, so ¢ is a finite morphism. This result is also the content of
Theorem 1.3.9A in Hartshorne.

(a) If p: S — T is surjective and degree preserving, then ¢(S;) = T4. By definition, U = {p €
ProjT : p 2 ©(S+)}, so we see that U = ProjT. The map f: ProjT — ProjS is defined
by p — ¢~ 1(p), which we claim is injective. Suppose ¢ ~1(p) = ¢~ 1(q) for p,q € ProjT. If
p # q, then choose = € q\ p. Since ¢ is surjective, o ~!(z) is nonempty. If p~*(z) C p, then
(¢~ 1(p)) is strictly bigger than p, which is a contradiction, so f is injective. We now claim
that f(ProjT) = V(a) where a = (\,cp,o;7 ¢~ 1(p). Suppose q D a, and let ¢’ be the inverse
image of ¢(q). Note that ¢(q) is a homogeneous prime ideal of B because ¢ is surjective.
That is, if ab € ¢(q), where both a and b are homogeneous, then a and b have homogeneous
preimages whose product is contained in ¢, which means that at least one of a and b is
contained in ¢(q). By definition, g’ O g. If the inclusion is proper, then pick = € ¢'\ q.
There is some y € q such that p(z) = ¢(y). But then x —y € ¢’ \ q and p(z — y) = 0.
However, 0 is contained in every prime ideal of B, and hence x — y is contained in a, which
is a contradiction, so q = ¢, which proves the claim and shows that f(ProjT) is a closed
set. So f is a bijection, and ¢ preserves inclusion of ideals, so f is a homeomorphism.
Finally, the map on stalks is the same as the localization map ¢y : S(p) — T ®s Sy, which
is surjective because ¢ is surjective. Thus, f is a closed immersion.
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13.

(b)

There is a commutative diagram of graded rings where the maps are projection.

§—=S/I

e

S/
This induces a commutative diagram of schemes.

Proj S <—— Proj S/I'

|

ProjS/1

The map S/I' — S/I is an isomorphism on the degree d part for d > dy, so by 2.14c, the
map Proj S/I — ProjS/I' is an isomorphism. The commutative diagram above shows that
I and I’ determine the same closed subscheme.

Let f: X — Y be a closed immersion. Then we identify X with a closed subset V C Y.
Cover Y by open affines U; = Spec A;. Locally on each U;, we have a closed immersion
YV NU;) — U; which looks like A; — A;/I; for some ideal I; C A;. Then A;/I; is a
finitely generated A;-algebra, so f is a morphism of finite type.

Let f: X — Y be a quasi-compact open immersion. Then we identify X with an open
affine U C Y. For any open affine V C Y, f~}(V) = UNV. We can cover this intersection
with open sets that are distinguished in both U and V', and since f is quasi-compact, we
can choose finitely many to cover. If V = Spec A, then each such distinguished open in
UNV is Spec Ay for some f € A, and Ay is a finitely generated A-algebra with generating
set {1/f}, so f is of finite type.

Let f: X - Y and g: Y — Z be two morphisms of finite type, and let h = go f. Let
U = SpecC be an open affine of Z. By (Ex. 3.3(b)), ¢g~'(U) can be covered by finitely
many Spec B; such that B; is a finitely generated C-algebra. Then f~!(Spec B;) can be
covered by finitely many Spec A;; such that A;; is a finitely generated B;-algebra. Then we
have C — B; — A;j, so A;j is a finitely generated C-algebra. To see this, it is enough to
note that for some n and m, there are surjective homomorphisms B;[z1, ..., z,] — A;; and
Clyi,...,ym] — Bi, so this gives a surjective homomorphism C[z1,...,Zn, Y1, ., Ym] —
A;j;. Since h=1(U) is the union of the Spec A;j, we see that h is a morphism of finite type.

Let f: X — S and g: S’ — S be morphisms such that f is of finite type. Let f’ be the
morphism X’ — S’ where X’ = X xg S’. Choose an open affine U = Spec A C S with
g~ Y(U) nonempty, and U’ = Spec A’ C g~'(U) such that f'~!(U’) is nonempty. We can
cover f~1(U) (which is nonempty) by finitely many open affines V; = Spec B; such that
B; is a finitely generated A-algebra. By the comments in Hartshorne’s construction of the
fiber product, f/~1(U’) is covered by V; xy U’ = Spec(B; ®4 A’). If {by,...,b.} is a finite
generating set for B; as an A-algebra, then {by ®4 1,...,b, ®4 1} is a finite generating
set for B; @4 A’ as an A’-algebra. We can cover S with open affines U;, and gil(Ui) is
a cover for S’. We have just showed that we can cover each ¢~!(U;) with open affines
Vij = Spec Aj; whose preimage under f’ can be covered by finitely many W;j, = Spec B,
such that each BZ’-jk is a finitely generated A;j—algebra, so f' is a morphism of finite type.
Therefore, morphisms of finite type are stable under base extension.
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(e) The morphism X xgY — S can be factored X xgY — Y — S. The first map is of finite
type since X — S is of finite type and by (d), and the second map is of finite type by
assumption. Part (c) gives that their composition X xgY — S is of finite type.

(f) Let f: X — Y be a quasi-compact morphism, and let g: ¥ — Z be a morphism such
that h = g o f is of finite type. Pick SpecC C Z, Spec B C g~ !(SpecC), and Spec A C
f~(Spec B) (assuming these are nonempty; there’s nothing to do in the case of empty
preimage). Then Spec A C h~!(Spec(C), so by (Ex. 3.3(c)), A is a finitely generated C-
algebra, and we have ring homomorphisms C — B — A. If {a4,...,a,} are the generators
for A as a C-algebra, then there is a surjective homomorphism C[x1,...,x,]| given by the
map C' — A and mapping each z; to a;. Then this factors through a map Blzy,...,z,] — 4
where each x; maps to a; and B — A is given. Since

Clz1,...,xn) = Blz1,...,2n) = A

is equal to Clzy,...,z,] — A and hence surjective, this implies that Blz1,...,x,] — A is
surjective, so A is a finitely generated B-algebra. Finally, if Spec C; is a cover of Z, then
we can find a cover Spec B; of Y such that Spec B; C g~ (Spec C;) for some 4, and such
that by the above remarks, f~!(Spec B;) can be covered by finitely many Spec A;;, such
that Aj is a finitely generated Bj-algebra, so f is locally of finite type. By assumption, f
is also quasi-compact, so f is of finite type by (Ex. 3.3(a)).

(g) Since Y is Noetherian, it is quasi-compact, so we can cover it with finitely many open affines
Spec B;. Then each f~!(Spec B;) can be covered by finitely many open affines Spec A4;;
each of which is quasi-compact, and the f~!(Spec B;) cover X. So X is a finite union of
quasi-compact open sets, which means X is quasi-compact. Also, each A;; is a finitely
generated Bj-algebra. Then A;; = Bj[z1,...,x,]/I for some n and some ideal I. Since
Y is Noetherian, B; is a Noetherian ring, so by the Hilbert basis theorem, B;[z1, ..., %)
is Noetherian, and homomorphic images of Noetherian rings are Noetherian. Thus we
have covered X by Noetherian rings and shown it is quasi-compact, which means X is a
Noetherian scheme.

14. We show that every open subset of X contains a closed point of X. Let U = Spec A C X be an
open affine, and p € U a point corresponding to a maximal ideal in A. Then p is closed relative
to U. We claim that p is closed in X. Let V = Spec B be any other open affine that contains
z. Then we can cover U NV by an open set containing x that is distinguished in both U and
V. Call it Spec Ay = Spec By. If p is the ideal corresponding to p, then pAy is maximal in Ay,
and corresponds to a maximal ideal in B, of the form qB,. We wish to show that q C B is
maximal. Note that By/qB; = (B/q)y. We know that B is a finitely generated k-algebra by
(Ex. 3.3(c)), so B/qB is also a finitely generated k-algebra. It is also an integral domain, so
the Krull dimension of B/qB is the same as the transcendence degree of its quotient field over
k. However, its quotient field is (B/q)y = By/qBy, which is a finitely generated k-algebra also,
so the Krull dimension of B,/qBy is the same as its transcendence degree over k. However, the
Krull dimension of By/qB, is 0 because it is a field, so the Krull dimension of B/q is 0, which
means 0 is a maximal ideal and hence B/q is a field, and implies that ¢ C B is a maximal ideal
as desired.

We have thus shown that p is closed relative to any open affine U; that contains p. This means
that (X \ U;) U{p} is a closed set of X for all U, and their intersection is (X \ U)U{p} where U
is the union of the U;, so no point of U; that is not p can be a limit point of p. Also, if z € X\ U,
then no open affine containing x contains p, so x is also not a limit point of p. We conclude that
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the closure of p in X is just p, so it is a closed point. Finally, any open set can be covered by
open affines, so contains a closed point of X. Thus, the set of closed points of X is dense.

To see that this is not true for an arbitrary scheme, let k be a field, and consider Spec k[z](,),
which contains two elements corresponding to the 0 ideal and (z). Then () is a closed point
and 0 is not, so the set of closed points is not dense in this case.

Let S be the set of nonempty closed subsets V' C X such that V' does not have property
&. If S is nonempty, it has a minimal element Y with respect to inclusion; if not, then we
would have an infinite descending chain of closed sets that never stabilized. Then Y must have
proper nonempty closed subsets or else Y would vacuously have property 2. But each proper
nonempty closed subset must then have property & by minimality, so Y has property &2, which
is a contradiction. Thus S is empty and X has property &.

(a) If X is a Noetherian scheme, then X can be covered by finitely many open affines Spec 4;

such that each A; is a Noetherian ring. By (Ex. 2.13(c)), each Spec 4; is a Noetherian
topological space, so by (Ex. 2.13(a)), each open subset of Spec A; is quasi-compact. We
can intersect any open subset U C X with each Spec A; to write it as the finite union of
quasi-compact open sets, which means U is quasi-compact. Using (Ex. 2.13(a)) again, X
is a Noetherian topological space.
Let V' C X be a closed irreducible subset. Giving V' the structure of a closed subscheme, it
is enough to show that an irreducible scheme has a unique generic point. First note that an
irreducible affine scheme Spec A has a unique generic point corresponding to the nilradical
nil A. That nil A is prime follows because Spec A is homeomorphic to Spec(A/ nil A) since
every prime of A contains nil A, so Spec(A/nil A) is irreducible. It is also reduced, and
hence integral, so nil A is prime. That this is a generic point follows because every other
prime ideal contains nil A, and this also gives that it is unique. If X is an irreducible
scheme, then any open affine is also irreducible (if U = U; U Uy with U; and Us proper
closed subsets relative to U, then U; U (X \ U) and Uy U (X \ U) are proper closed subsets
of X). For any two open affines Spec A and Spec B of X, they have nonempty intersection
since X is irreducible. We can find an open set in their intersection that is distinguished
in both Spec A and Spec B, call it Spec Ay = Spec By. Then note that (nil A)A; = nil Ay
and also (nil B)B, = nil By, so the nilradical in A and B correspond to the same point in
X. Also, the closure of this point contains both A and B. Since A and B were arbitrary,
this means this same point corresponds to the nilradical of any open affine, and hence is a
generic point for X. Finally, it is unique because any other generic point must be a generic
point relative to any open affine that contains it, where we know that it is unique. So X is
a Zariski space.

(b) Let V C X be a minimal nonempty closed subset. Then V' is irreducible, and the closure
of any point of V is V', which means each point is a generic point of V. Since X is a Zariski
space, V has a unique generic point, so V' contains only one point.

(¢) Choose z,y € X, and assume that an open set contains z if and only if it contains y. Since
X is Noetherian, we can find a closed set Y minimal among those that contain x and y.
Then Y is irreducible; if not, then write Y = Y7 U Y, where Y7 and Y, are proper closed
subsets of Y. Then neither can contain both z and y by the minimality of Y, so say x € V]
and y € Yo. Then X \ Y is an open set that contains x but not y, which is a contradiction,
so Y is irreducible. Then £ = §y = Y. However, this means that both x and y are generic
points of Y, which contradicts that X is a Zariski space. So either there is an open set
containing x but not y or vice versa, which means that X satisfies the Ty separation axiom.
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(d)

()

Since the closure of the generic point is X, every other point of X is a limit point of it.
Thus if U is a nonempty open set of X, then U either contains the generic point or another
point that is a limit point of the generic point; either way U contains the generic point.

Let z denote the closure of {x}. For a point x € X, the set of points y € Z is the set of y
such that z ~» y, so z is a closed point if and only if x is minimal with respect to ~-.
Now suppose x is a generic point of an irreducible component X’ C X. If y ~» x, then
x € y. This means that § O X’. If y € X’, then y C X’ since X’ is a closed set containing
y. Then y = x since X is a Zariski space, so closed irreducible subsets have unique generic
points. If y ¢ X' then there is some closed irreducible subset X" containing y. If z is the
generic point of X”, then y € z, so z ~» y. This implies z ~» x, which means z € z. Then
X’ C X", which contradicts that X’ is an irreducible component of X. We conclude that
x is maximal with respect to ~-.

Conversely, suppose z is maximal with respect to ~». Then Y = Z is irreducible because
no proper closed subset of Y can contain x. So zx is a generic point of Y. Now we claim
that Y is an irreducible component of X. Write X = X; U---U X, where each Xj; is a
closed irreducible set such that X; ¢ X;. If Y C X; for some 4, and &; is the generic point
of X;, then z € &, which means & ~» x and thus & = z, which implies Y = X;. So if
Y ¢ X; forall i, then Y = (Y NX;)U---U (Y NX;) gives Y as a union of proper closed
subsets, contradicting that Y is irreducible. We conclude that = is the generic point of an
irreducible component of X.

Finally, let Y C X be a closed set and choose x € Y. If y is a specialization of x, then
y € T CY, so every closed set contains the specializations of all of its points. Dually, if
U C X is an open set, € U, and y is a generization of z, then z is a limit point of y, so
yelU.

Suppose X is a Noetherian topological space. Any descending chain of closed sets in ¢(X)
is of the form ¢(V;) 2 t(V3) D --- where the V; are closed sets in X. Then this gives a
descending chain of closed sets in X: Vi D Vo, D ---. Since X is Noetherian, this chain
stabilizes, so the chain in #(X) also stabilizes, which means #(X) is Noetherian.

If V is reducible, say V = V3 UV, where V; and V, are proper closed subsets, then ¢(V') =
t(V1) Ut(Va) and ¢(V1) and t(V2) are proper closed subsets, so t(V') is reducible. If ¢(V) is
reducible, then ¢(V') = t(V1) U ¢(Va) where t(V71) and ¢(V3) are proper closed subsets since
every closed set in ¢(X) is of the form ¢(U) for some closed U C X. Then V = V; U V3
and V; # V because otherwise ¢(V;) = t(V). So a closed set V' C X is irreducible if and
only if (V) C ¢(X) is irreducible. Let V' C X be a closed irreducible subset. The set
t(V) is the set of closed irreducible subsets of V' C X. We claim that the point py in ¢(V)
corresponding to V' is the unique generic point of ¢(V'). That it is a generic point follows
because any closed set containing py is a closed irreducible subset of V' containing V', and
the only such one is V. So the closure of py is £(V'). Any other point of ¢(V') corresponds
to a proper closed subset of V' C X, so cannot have ¢(V') as its closure. This gives the
claim, so t(X) is a Zariski space.

If X is not a Zariski space, then there is some closed irreducible subset V' C X that either
has no generic point, or more than one. In the first case, the point in ¢(X) associated to
V has an empty preimage under «, and in the second case its preimage has more than one
element under «. Either way, « is not bijective, so is not a homeomorphism. Conversely,
suppose X is a Zariski space. If a(z) = a(y), this means that the closure of x and y are
the same. However, the closure of a point is an irreducible set, so by uniqueness of generic
points, z = y, and « is injective. Also, a is surjective because every closed irreducible
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set has a generic point. Every closed set of #(X) is of the form #(V') for some closed
subset V' C X. The closure of a point p € X is contained in V if and only if p € V, so
a~1(t(V)) = V. Also, for any closed subset U C X, we can write U = Uy U---UU, as a
union of irreducible closed subsets. Then a(U) = t(U;) U --- U t(U,) because the closure
of any point in U is an irreducible closed subset of some U;. Each t(U;) is a closed set by
definition, so « takes closed sets to closed sets. Thus, « is a homeomorphism.

Let $o be the set of open sets of X. Inductively, define §,, to be the union of §,_1 and
the set of subsets that are finite intersections or complements of subsets in §,_1. Then
5§ = Ur” o 8n because this is the smallest such family of subsets satisfying (1), (2), and
(3). Thus, any constructible set can be obtained by a finite number of operations involving
finite intersections and complements.

Suppose U is a constructible set. Then U is obtained by using a finite number of operations
of finite intersection and taking complements. We induct on the number n of such steps to
show that U is a disjoint union of locally closed subsets. If n = 0, then U is an open set of X,
and thus locally closed. Otherwise, let n be the minimal number of operations needed. Then
either U was obtained as the intersection of finitely many subsets of §F,—1 or X \U € §p,—1.
In the first case, we have U = Uy N---NU, where U; € §,_1 and each U; is a finite disjoint
union of locally closed subsets. To show U is a disjoint union of locally closed subsets, we
can assume r = 2 and use induction. So write U1 = Vi U---UVyand Uy =W U---UW;
where the V; and W; are locally closed subsets. Then U = Uy NU; = JV; N W, s0 U is a
finite union of locally closed subsets. In fact this union is disjoint since the V; are disjoint
as are the W;.

In the second case, X \ U is a finite disjoint union of locally closed subsets Vi, ..., V,. Then
U=X\V)Nn---N(X\V;). We have V; = O; N C; for some open set O; and closed set
Cj, so

Since X \ (O; UC;) = (X \ 0;) N (X \ Cy), we have written X \ V; as a finite disjoint union
of locally closed subsets, which reduces to the first case, so U is a finite disjoint union of
locally closed subsets. This finishes our inductive step, so we conclude all constructible sets
can be written as a finite disjoint union of locally closed subsets.

Now suppose U is a finite disjoint union of locally closed subsets Uy, ..., U,. Then each U;
is constructible, as is X \ U;. So ()., X \ U; = X \ U is constructible, which means U is
constructible.

Suppose U is a dense constructible set. By (a), U is a finite disjoint union of locally closed
subsets U;. Then the closure of U, which is X, is equal to the union of the closures of the
U;. Since X is irreducible, there is some U; whose closure is X. Then U; = O; NC; where O;
is open and C} is closed. Since the closure of U; is X, we get C; = X, so U; is an open set
of X. Then U; contains the generic point, so U does too. This also shows that U contains
a nonempty open subset of X. If a constructible set contains the generic point of X, then
it is dense because every open set contains that generic point.

If S is closed then it is the complement of an open set and hence constructible, and by (Ex.
3.17(e)), it is stable under specialization. Now suppose S is constructible and stable under
specialization. By (a), S is the finite disjoint union of locally closed subsets Si,...,S;.
Then S; is the intersection of an open set O; and a closed set C;. For any irreducible
component Z of C;, S; N Z is an open set of Z, so contains the generic point of Z. Since
S is stable under specialization, it contains the closure of this generic point, so contains
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Z. Thus, each S; is closed because X is Zariski and hence C; can be written as a union
of finitely many irreducible components. So S is a finite union of closed sets and therefore
closed.

If T is open, then it is constructible, and by (Ex. 3.17(e)), it is also stable under gener-
ization. Now suppose T' is constructible and stable under generization. Then X \ T is
constructible. We claim that X \ T is stable under specialization. If not, then there is some
xo ¢ T such that some 21 € T is a specialization of xy. Since T is stable under generization,
this cannot happen. By what we have shown above, X \ T is closed, so T' is open.

Let f: X — Y be a continuous map of Zariski spaces, and let U be a constructible subset
of Y. By (a), we can write U = Uy U --- U U, where each U; is a locally closed subset, so
write U; = O; N C; where O; is an open subset of Y and C; is a closed subset of Y. Since
preimage preserves unions and intersections, we get

FHU) = (FHO) N FHC) U U (F7HO0) N fTHG).

Then each f~1(0;) is open and each f~1(C;) is closed. Finally,
(FTHON N FHC)) N (fFTHON N FHE))) = FHUNT)) =2

for i # j since U; NU; = @, so f~1(U) is a finite disjoint union of locally closed subsets,
and hence constructible by (a).

Suppose we can show that f(X) is constructible under the given hypotheses. If U is a
constructible subset of X, then using (Ex. 3.18(a)), write U = U; U - -- U U, where U; is
a locally closed subset. Write U; = O; N C; where O; is open and Cj is closed. Then U;
has a closed subscheme structure in O;. We have a restriction U; — Y, and this morphism
is locally of finite type since O; is Noetherian, so for any Spec B C Y, f~!(Spec B) N C;
locally looks like quotients of finitely-generated B-algebras by (Ex. 3.11(b)), and are hence
finitely-generated. Since X is Noetherian, so is U, and closed subsets of quasi-compact
sets are themselves quasi-compact. Then the restricted morphism is of finite type between
Noetherian schemes, so f(U;) is constructible by our assumption. Then f(U) = f(U;) U
U fUp) and Y\ f(U)= Y\ f(U1)N---n (Y \ f(U,)), so f(U) is constructible. Thus

we reduce to showing that f(X) is constructible.

We may also assume that X is affine because we can cover X by finitely many open affines
Vi, so f(U NV;) is constructible implies f(U) is constructible. Similarly, we may assume
that Y is affine because if we cover Y by finitely many open affines W;, then we have maps
Un f~Y(W;) — f(U)NW;. Then the union of the images of U N f~4(W;) in f(U) N W;
is f(U) and constructibility preserves finite unions. In addition, an open subscheme of a
Noetherian scheme is locally Noetherian by Proposition 3.2, and is quasi-compact by (Ex.
3.17(a)) and (Ex. 2.13(a)), so is Noetherian. Also, a closed set of an affine scheme Spec A
looks like Spec A/I for some ideal I, and A being Noetherian implies A/ is Noetherian,
so we may assume that both X and Y are also Noetherian.

By (Ex. 2.3(b)), there is a morphism X,.q — X that is a homeomorphism on the underlying
spaces. Since constructibility is a topological property, we can replace X with X,.q and get
amap Xeq — X — Y. By (Ex. 2.3(c)), we can also replace Y with Y;.q and get a map
Xied — Yied- So we may assume that both X and Y are reduced schemes. Also, since X
and Y are Noetherian, we can focus on the irreducible components of X and Y by similar
reasoning as above, so we may further assume that X and Y are irreducible schemes.
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By Proposition 3.1, this means we may assume that X and Y are integral schemes. If
X = Spec A and Y = Spec B, then we have a morphism (which is of finite type because
each of the reductions thus far have preserved this) f: X — Y which is equivalent to a
ring homomorphism ¢: B — A. Then the map B/kerp — A is an inclusion which gives
a dominant morphism f’: X — Spec(B/kery) C Spec B. Thus proving that f/(X) C
Spec(B/ ker ) is constructible gives that f(X) is constructible in Y because Spec(B/ ker ¢)
is a closed subset of Y.

Therefore, we have reduced to showing that f(X) is constructible in the case that f: X — Y
is a dominant morphism of finite type of integral Noetherian affine schemes.

Let n be the number of generators of B as an A-algebra. We split the proof of the algebraic
result into two cases when n = 1 and when n > 1. This proof is a rewording of the one
found in [1].

If n = 1, write B = A[t] where t € B generates B as an A-algebra. Pick nonzero b € B,
and write it as b = ¢gt® + cq_1t* 1 + - + ¢ where ¢4 # 0 and ¢; € B. We consider two
subcases (1) when t has no relations (i.e., B is the polynomial ring in one variable over
A) and (2) when ¢ satisfies some relation, so that ¢ € K(B) is algebraic over K(A) where
K (A) means the quotient field of A.

In the first case, let a = a4. Let K be an algebraically closed field and ¢: A — K such
that ¢(a) # 0. The polynomial ¢(ag)xz? + --- + ¢(ag) has d roots and K is infinite since
it is algebraically closed (if K were finite and equal to {ki,...,k}, then the polynomial
(x — k1) (z — k) 4+ 1 has no roots in K), so there is some r € K such that p(aq)r? +
-+ p(ap) # 0. Extend ¢ to ¢': A[t] — K by mapping ¢ to 7.

Now suppose that t is algebraic over K(A). Then there are equations

agt? + ag 1t + - 449 =0

and
ad b 4+d 0H T 4 4ay=0

where a;,a; € K(A) and ag # 0 and al, # 0. Let a = aqal.. Let K be an algebraically closed
field and ¢: A — K such that ¢(a) # 0. We first extend ¢ to A, — K in the obvious way
by sending 1/a to 1/¢(a). We can next extend ¢ to some valuation ring R containing A,
[T} Theorem 5.21]. From the equations we know that ¢ and b=! are both integral over A,.
Since the integral closure of A, is the intersection of all valuation rings of K(A4,) containing
it, this means ¢t and b~! are elements of R. Since t € R, so is b, so b is a unit of R, which
means our extension R — K maps b to something nonzero. Since R contains ¢t and A, we
can restrict it to B to get a map ¢’: B — K that maps b to something nonzero.

If n > 1, we use induction on n. Suppose B is a finitely-generated A-algebra with generators
bi,...,b,. Pick any nonzero b € B. Note that B is a finitely-generated A[b]-algebra
with generators bg,...,b, and that A[b;] is a Noetherian domain. By induction, there
is a nonzero ¢ € A[bi| such that for all homomorphisms ¢: A[b;] — K where K is an
algebraically closed field such that p(c) # 0, ¢ extends to a homomorphism ¢': B — K
with ¢'(b) # 0. Now note that A[b1] is a finitely-generated A-algebra so we apply induction
again to get an element a € A such that for any homomorphism v¢: A — K where K is an
algebraically closed field such that ¢ (a) # 0, ¢ extends to a homomorphism ¢': A[b;] — K
with ¢'(c) # 0. Putting this together, we get the following: if K is algebraically closed and
¢: A — K is any homomorphism such that ¢(a) # 0, then ¢ extends to a homomorphism
¢+ B — K such that ¢'(b) # 0. This finishes the proof of the algebraic result.
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Let X = SpecB and Y = SpecA. In our case, f: Spec B — Spec A is a dominant
morphism of finite type of integral Noetherian affine schemes, so the induced map A — B
is injective and makes B a finitely-generated A-algebra, and both A and B are Noetherian
domains. So we can use the algebraic result above on 1 € B, to get an element a € A
with the appropriate properties. We claim that D(a) C f(Spec B). Choose p € D(a),
ie., a ¢ p. Then A/p is an integral domain, so we can take the algebraic closure of its
quotient field, call it k. Then we have a map A — A/p — K(A/p) — k which maps a to
something nonzero and has kernel p, call it . Then ¢ extends to a map ¢': B — k such
that ¢/(1) # 0, so we have the following commutative diagram of schemes

Spec B N Spec A

=

Speck

where Spec k — Spec A maps the one point of Spec k to p and Spec k — Spec B maps the one
point to ker ¢’. This means that f(ker ¢’) = p, so p € f(Spec B) implies D(a) C f(Spec B)
as claimed. Thus f(Spec B) contains a nonempty open subset of Y.

(c) By (b), there exists a € A such that D(a) C f(X). We will show that f(X) N V(a) is
constructible in Y. If this intersection is empty, there is nothing to do, so assume otherwise.
Note that V(a) = Spec A/(a), so consider the map f’: Spec B/aB — Spec A/(a) induced
by f, whose image is f(X) N V(a). Since A — B is injective, we have A/(a) — B/aB
injective also, so f’ is dominant. Also, both are Noetherian rings. We know that (a)
has a primary decomposition because A is a Noetherian ring, so we can write (a) as the
intersection of some primary ideals. Furthermore, the radicals of these primary ideals are
prime, call these primes p1,...,p,. Then \/@ = pi, so V(a) = J; V(p;) as topological
spaces since V(a) = V(1/(a)) as topological spaces. For each p; B, we can do the same thing
since B is Noetherian, so we have maps Spec B/q; — Spec A/p; for primes q; € Spec B,
and the union of their images is f(X)NV (a). While the scheme structure may be different,
constructibility is a topological property and we are preserving the underlying topological
spaces. These maps now involve integral domains, so each image contains a nonempty
open subset by (b), and hence is constructible in V(p;) by Noetherian induction. A locally
closed subset of V(p;) is also a locally closed subset of Spec B, so in fact the images of
Spec B/q; — Spec A/p; are constructible in Spec B. Since constructibility is closed under
finite unions, we conclude that f(X) N V(a), and therefore f(X), are constructible.

(d) Let f: Af — P2 be the morphism given by z +— (z,1,0). Then f(A}) is neither open nor
closed because (z,1,0) is not the zero set of any ideal of homogeneous polynomials, and
neither is its complement.
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4 Separated and Proper Morphisms

1. Let f: X — Y be a finite morphism of schemes. Then we can cover Y with open affines U; such

that f~1(U;) — U; is a map of affine schemes. By Proposition 4.1, each morphism f~!(U;) — U;
is separated. Then

A: YU = U0 xu, )

is a closed immersion for all 4, so A: X — X xy X is also, which means f is separated. Now
let g: X’ — Y be a morphism. Choose an open affine Spec A C Y, let f~!(Spec A) = Spec B,
and choose an open affine Spec C' C g~!(Spec A). Then the preimage of SpecC in X xy X' is
Spec(B ®4 C'), which is a finitely generated C-module since B is a finitely generated A-module.
We can cover X’ with such open affines, so finite morphisms are stable under base change. By
(Ex. 3.5(b)), finite morphisms are closed, so f is universally closed. Finally, finite implies finite
type, so f is proper.

. Let U be the dense open subset such that f|y = g|y. The maps f: X — Y and g: X — Y are
S-morphisms, so they induce a morphism h: X — Y xg Y. Let p; and ps be the projection
maps Y xgY — Y given by the fiber product. The product of the morphisms f|y and g|y is
hly because h|y = h o where i is the inclusion U < X, and this is the unique morphism such
that p; o h|ly = flu and p o h|ly = g|y. By the same reasoning, h|y = f|y o A, or we could

*by Robin Hartshorne
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appeal to the following diagram

Y

S

and note that everything clearly commutes except maybe h|y = f|yoA, but this follows from the
definition of fiber product. This means that h(U) C A(Y) CY xgY. Since Y — S is separated,
A(Y) is closed, so b1 (A(Y)) is a closed subset containing U. We are given that U is dense, so we
conclude that h(X) C A(Y). Now consider the image subscheme of h, which we call image(h).
By (Ex. 3.11(d)), since X is reduced, image(h) is h(X) with the reduced induced subscheme

structure. By (Ex. 3.11(c)), there is a factorization X — image(h) — image(h) N A(Y) —
Y xg¢Y. In particular, this gives a map X — Y since A is a closed immersion, so we can factor
has X - Y &y x g Y; call this first map h’. By definition, p; o A and ps o A are the identity
morphism on Y. Since f = pjoh and g = psoh, we get f = pjoAoh’ = hand g = ppoAoh’ = h,
so f=g.

(a) Let R = Clx,y]/(2?,2y), let S = Spec C and let X =Y = Spec R. Since Y is affine, Y — S
is separated. The set U = D(y) is dense because it contains the nilradical (x), which is the
generic point. Let f: X — Y be the map corresponding to the identity R — R, and let
g: X — Y be the map corresponding to the map R — R defined by = — 0,y — y. Since f
and g do not give the same map on global sections, f # g. However, we claim that f and
g agree on U. Note that D(y) = Spec R, = Spec Cly,y '], where the last equality follows
because x = 0 since xy = 0 and y becomes invertible. Since our ring homomorphisms only
differed in where they sent x, and now x is gone, it is clear that f and g agree on U.

Y

(b) Let X = Spec C[z] and let Y be two copies of X glued along the complement of the point
P = (z—1). Write Y = U; U U, where both U; and Us are isomorphic copies of X. Let
f: X — Uy and g: X — U; be the respective isomorphisms. Then X is reduced over Spec k
and f and g agree on Speck[z] \ {P}, which is open because (x — 1) is maximal by the
Nullstellensatz. This set is dense because it contains the generic point, but f # g.

3. Let X be a separated scheme over S = Spec A, and let U = Spec B and V = SpecC be open
affines of X. The fiber product U xg V is equal to A(UNV) C X xg X. Since X is separated,
A is a closed immersion, and in particular, this implies that U NV and U xg V' are isomorphic
as schemes. Finally, U xg V = Spec(B ®4 C), so U NV is affine.
Let k be a field, and let X; and X2 be copies of A2. Let U; C X; be the open set A2\ {(z,y)} =
D(z) U D(y), and let X be the result of gluing U; to Uy via the identity morphism. Then X
is a nonseparated scheme over Speck, and X; and X» are open affines of X. However, their
intersection is isomorphic to D(x) U D(y), which is not an affine scheme.

4. Let Z be a closed subscheme of X which is proper over S. The diagram
Z—=X—>Y

NS

S
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5.

commutes. Since Z — § is proper and Y — S is separated, we get that Z — X — Y is proper
by Corollary 4.8e. Proper implies closed, so f(Z) is closed in Y. Now put the image subscheme
structure on f(Z). Then f(Z) — Y is a closed immersion and hence a finite type morphism by
(Ex. 3.13(a)). Since Y is Noetherian, f(Z) is Noetherian by (Ex. 3.13(g)). Closed immersions
are separated by Corollary 4.6a, so by Corollary 4.6b, f(Z) — S is separated.

Now we show that f(Z) — S is universally closed. Let V' — S be any morphism. We get the
following commutative diagram

VXSZ A

L

V xs f(Z2) —= f(2)

L

Vv S

We first show that V xg Z — V xg f(Z) is surjective. Pick any = € V' xg f(Z), and let y be its
image in f(Z). Since Z — f(Z) is surjective, let ¢y € Z be an element in its preimage. Then we
have maps of residue fields k(y) — k(z) and k(y) — k(y'). Then let L be some field containing
both k(z) and k(y'). The inclusions k(x) — L and k(y') — L give the following diagram

Spec L

Vxs f(Z2) —=f(2)

The image of SpecL in V xg Z then maps to x, which shows the surjectivity. To see that
V xg f(Z) — V is closed, let U be a closed subset of V' xg f(Z). Its preimage U’ in V Xg Z is
closed, and we know that the composite map V xg Z — V is closed because Z — S is proper,
so the image of U’ in V is closed. Since V xg Z — V xg f(Z) is surjective, the image of U’ in
the composite map V xg Z — V is the same as the image of U in the map V xg f(Z) — V.
Thus, f(Z) — S is universally closed, so is proper.

(a) Let R be some valuation ring of K/k. Since X is an integral scheme over a field, it is
Noetherian and irreducible, so has a generic point £&. By Lemma 4.4, a point x such that
R dominates Ox , is equivalent to a morphism Spec R — X that sends the maximal ideal
of R to z. Such a morphism is equivalent to a dotted arrow in the following commutative
diagram
Spec K ——= X

.
Spec R —— Speck
where the map Spec K — X sends the point of Spec K to £. By the valuative criterion,

at most one such arrow exists. So if a center of a given valuation of K/k exists, then it is
unique.
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(b) This is the same as above, except that the valuative criterion now tells us that exactly one
such dotted arrow exists, so every valuation of K /k has a unique center.

(d) The map X — Speck induces an injective map of rings k¥ — I'(X,Ox), so identify k
as a subring of I'(X,Ox). If k # I'(X,Ox), then choose a € TI'(X,Ox) \ k. Since k is
algebraically closed, k[a™!] C K is a transcendental extension of k and thus (a~!) is a
maximal ideal. Localizing at this ideal, we get a local ring A such that a=! € my. By
Theorem 1.6.1A, there exists a valuation ring R of K/k such that R dominates A. In
particular, a=! € mp because mp N A = my.

We claim that the image of a is nonzero in every local ring of X. First suppose that X
is affine, say X = Spec A. To compute the local ring at a point x € X, it is enough to
take limits over distinguished opens containing x. Distinguished opens are the spectra of
localizations of A, and X is integral, so the image of a is nonzero in each. Now for X
not necessarily affine, cover it with affine schemes. Suppose that the image of a under the
restriction maps is zero in some open affine U. Then the intersection with U and any other
open affine V' is nonempty since X is irreducible, so cover their intersection with open sets
distinguished in both U and V. Since V is an integral affine, the image of a in T'(V, Ox)
must be zero, and hence the image of a is zero in all open affines of X. By the sheaf
property, a = 0 in the global section. This proves the claim.

Now pick any z € X. If a™! € Ox .z, then a~! is a unit, since a € Ox .z, 0 a”! ¢ m,. But
a e RN Ox z, which means x is not a center for R. If a1l ¢ Ox,, then a is not a unit,
so a € m,. However, a ¢ R, so RNOx , # m,, so z is not a center for R in this case either.
This means R has no center, which contradicts (b). We conclude that k = T'(X, Ox).

6. If X and Y are affine varieties over k, we can write X = Spec A and Y = Spec B where A and
B are finitely generated k-domains. Let f: X — Y be a proper morphism. Let ¢: B — A be
the induced map of rings, which we can factor as B — B/ ker ¢ — A. This gives a factorization
X — Spec(B/kerp) — Y. The second map is finite and a composition of finite maps is finite,
so to show that f is finite, it is enough to show that X — Spec(B/ker ¢) is finite. Also, by
Corollary 4.8(e), X — Spec(B/ ker ¢) is proper. Thus, we may assume that ¢ is injective.

In this case, to show that f is finite means to show that A is a finitely generated B-module.
Let K be the fraction field of A. Then it is enough to show that A is contained in the integral
closure of B in K. By Lemma 4.4, there is a morphism Spec K — X that sends the one point
of Spec K to the generic point of X. Now let R be any valuation ring of K that contains B, and
let Spec R — Y be any morphism such that the following diagram

Spec K ——= X

S

SpecR——Y

commutes, where 7 is the map induced by the inclusion R — K. By the valuative criterion, there
is a unique morphism Spec R — X filling in the diagram, and this corresponds to a map of rings
A — R. Then the generic point of Spec R is mapped to the generic point of X, which means
A — R is injective. Thus A is contained in the intersection of all valuation rings containing
B. By Theorem 4.11A, this intersection is the integral closure of B in K, so A is an integral
extension, as desired.

8 Let f: X — Y and f': X’ — Y’ be two S-morphisms having &2. Define Z := Y xgY’. The
projection map Z — Y gives a base extension X Xy Z — Z having & and similarly, the base
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extension X' Xy, Z — Z has &. In the fiber square

(X Xy Z) xz (X' xy' Z) 2> X! xy1 Z

P

XXyZ VA

both p; and ps have &. By transitivity of fiber products,
(X xy Z) xz (X' xy' Z) =2 X x5 X'.
Thus the composition X xg X’ — Z has property &, which is the product morphism f x f’.

Now let f: X — Y and g: Y — Z be two morphisms such that g o f has & and g is separated.
The following diagram

commutes by definition. The morphism I'y: X — X xz Y is a base extension of the diagonal
morphism A: Y — Y Xz Y. Since g is separated, A is a closed immersion and hence has &,
and so I'y also has &7. Also, p is a base extension of g o f so has &?. Thus the composition
f=p20ol; has Z.

Note that the map X;eq — X is a closed immersion so has &. First we know from (Ex. 2.3(b))
that it is a homeomorphism. To see that the map of sheaves is surjective, it is enough to check on
stalks. But Oy, is defined as the sheafification of U — Ox (U);eq. The presheaf that it comes
from has the same stalks as Ox,_,, and now it is obvious that the map on stalks is surjective
because they are colimits of maps of rings Ox(U) — Ox(U)yed, which are surjective. So the
composition X;q — X — Y has & and is equal to X;eq — Yiea — Y. But Yeq — Y is a closed
immersion and hence separated, so X;oq — Yzeq has Z2.

9. Let f: X =Y and g: Y — Z be projective morphisms. Let P} denote P, x Y. Then we have

xJt .oy 2.y
lf/% %4
Py Py

for some n and m where f’ and ¢’ are closed immersions and py and p, are projections. The
projection P — Z and g: Y — Z give a projection a: P, xz Y — P7, and note that
P? x7Y = Py. So the following diagram

pPf
n
PY

Y
NG g

~N
~N

N
n mPZ m
PZ Xz PZ 4>PZ

P7 VA
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SHEAVES OF MODULES 6

commutes. Now note that (P x zP7%) xppY = P xzY = Py, so in fact, § is a base extension
of ¢’ and hence a closed immersion.

Now we show that there is a closed immersion v: P xz P7 — P]ZV where N = nm +n + m.
First suppose that Z is affine, say Z = Spec A. Write R = Alxg,...,z,]) and S = Alyo, ..., Yn]-
Then P?% = Proj R, P = Proj S, and we can write PY = Proj A[zoyo, - - -, Ti¥j, - - -, Tn¥m]. We
claim that P xz P = Proj B where B = @fio R; ®4 S;, and R; denotes the degree i part
of a graded ring R. This follows because for any homogeneous element r ® s in B, one has an
isomorphism B(,gs) = R(;) ®4 5(5)- Then we have a surjection A[zoYo, - - -, Tilj, - - s TnYm] — B,
which gives the desired closed immersion. In the case that Z is not affine, we can cover it with
open affines and give a closed immersion on the preimage of each open affine in P x z P, and
our construction of the map is compatible on overlaps.

Thus, the composition X — Py — P, xz P — P]ZV is a closed immersion. Combining all of
the above information, the following diagram

X Y A
o i oA
Py Py

.

n m Y N

commutes where py is a projection map. To see that the triangle involving py commutes, it is
enough to consider open affines and to think of the map of rings (which commutes because pz
and py become inclusions), so gf is projective.

Now say that a morphism has property & if that morphism is projective. To see that &2 satisfies
(a)-(f) of (Ex. 4.8), it is enough to check (a)-(c). We have done (b) above. For (a), let f: X — Y
be a closed immersion. Since POY Y, we can factor f as X — Pg, — Y, and hence closed
immersions are projective. For (¢), let f: X — Y be a projective morphism, and g: Y’ — Y be
any other morphism. For some n, we can factor f as X — P} — Y where the first map is a
closed immersion and the second is a projection. Then the following diagram

X xy Y’
y ¥ P
\\h

|
X P?/XyY,HY/
L
g
Py Y

commutes. First note X xpr (P} xy Y’) = X xy Y, so h is a base extension of X — PY., and
hence is a closed immersion. Finally, P} xy Y’ =2 PY,, so f’ is a projective morphism.

Sheaves of Modules

Let &* denote the dual sheaf 7 ome, (£,Ox). Since & is locally free, let U be an open affine
such that &y is free. We will define canonical isomorphisms in the following problems. Hence
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they will agree on overlaps (since they are independent of a choice of basis), so it is enough to
define canonical isomorphisms and assume that & is free to begin with.

()

Let U be an open set. We will exhibit an isomorphism &(U) = &**(U). Pick x € &(U).
We define z € &**(U) by mapping f € &*(U) to f(z) € Ox(U). If x # 0, then since &(U)
is free, there exists a basis of &(U) that contains z, so there is a homomorphism f € &*
that sends x to something nonzero. Hence x — Z is injective. Furthermore, z +— Z is an
isomorphism because the double dual of a module has the same rank as the module. Thus
the map & — &** given by &(U) — &**(U) for all open sets U as above is an isomorphism.

We have HOm@X(U) ((g)(U), <9\((])) = HOmOX(U)(é"(U), O_)((U)) ®(9X(U) g(U) by the uni-
versal property of the tensor product of modules and this isomorphism is canonical. This
gives an isomorphism Homp (&, .#) = (Homop, (&, Ox) ®o, -# ) where by the right hand
side we mean tensor presheaf. Now we use the universal property of sheafification to get a
(canonical) isomorphism of sheaves.

For modules, &(U) ®o 17y — is the left adjoint of Home , (17)(£(U), —), so for O x-modules
Z and ¢, we get the canonical isomorphism

Homgp , (17)(6'(U) ®oy @) F(U),49(U)) = Homp , 1y (F (U), Homep 1y (&(U), 9 (U))),

which by the above comments gives the desired isomorphism with the tensor presheaf in
place of the tensor sheaf. We finish by using the fact that sheafification is left adjoint to
the forgetful functor from the category of sheaves to the category of presheaves.

Write & = OF (from above comments we may assume & is free). We remark that direct
sum acts as the product and coproduct in the category of Ox-modules, and thus commutes
with functors that are either left or right adjoints. Then we have

f(F) ®oy OF = (fu(F) @0y Oy)" = (fo(F))" = fu(F).

Now we compute the other expression

fo(F ®ox [FOV) = fu(F ®ox (f1O0% @10, Ox))
~ f.(F ®oy (f 'Oy @10, Ox)")
= f*(j\ Xox O?()
= fu(F"),

where the isomorphism Ox = f*Oy follows from the fact that f* is a left adjoint of f, and
using Yoneda’s lemma. Thus, we have shown the desired isomorphism.

Let % be an Ox-module. Since R is a DVR, X has two points, ty and t1, where tg corre-
sponds to the zero ideal and ¢; corresponds to the maximal ideal. Let M = .%#(X), which
is a module over I'(X,Ox) = R, and L = .#({t¢}), which is a module over Ox({to}) = K,
and hence a vector space. Finally, the restriction map .#(X) — .#({to}) gives the homo-
morphism p: M ®p K — L.

Conversely, suppose we are given an R-module M, a K-vector space L, and a homo-
morphism p: M ®p K — L. Let #(X) = M and % ({tg}) = L. Then the map
p: F(X) — Z({to}) makes .Z an Ox-module, and it is clear that we have just defined a
bijection of data.
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4.

5.

(b) Use the notation from (a). If .# is quasi-coherent, then by Proposition 5.4, .# = M.
Since R is a DVR, the maximal ideal is generated by an element m, and we can write
{to} = D(m). By Proposition 5.1(c), . ({to}) = My, = M ®pr K, so p is an isomorphism.
Conversely, if p is an isomorphism, then .% is given by .7 (X) = M and .Z ({to}) = M ®rK,
so .Z = M and is hence quasi-coherent.

Let % be an Ox-module where X is a scheme. Suppose that .7 is quasi-coherent and pick a
point x € X. Then there exists an open set U > z such that U = Spec A is affine and |y = M
where M is an A-module. Let E — G — M — 0 be a presentation of M. Write F = A! and
G = A’ for indexing sets I and J, and let & = (Ox|y)! and 4 = (Ox|y)? where we mean a
direct sum of Ox |y with one copy for each element of I and J, respectively. The map F — G
induces a morphism of sheaves & — ¢ whose cokernel is .% |7, which can be seen by looking at
stalks. Conversely, suppose every point € X has a neighborhood such that .# |y is isomorphic
to a cokernel of a morphism & — ¥ of free sheaves on U. If M =¥ (U)/&(U), then Z |y = M
because we can define a map of presheaves induced by the identity M — ¥4 (U)/&(U) and appeal
to the fact that stalks are the same after sheafification. So .# is quasi-coherent.

If instead we assume that X is Noetherian and .% is coherent, then we can find a finite presenta-
tion ¥ — G — M — 0, which shows that % is locally a cokernel of a morphism of free sheaves
of finite rank. Conversely, if we know that X is Noetherian and .# is locally a cokernel of a
morphism of free sheaves of finite rank, then M = ¥4 (U)/&(U) is a finitely generated A-module,
so Z is coherent.

(a) Let k be a field, let X = Speck[z], and let Y = Speck. The inclusion k — k[z] induces a
morphism f: X — Y of varieties over k. Let .# = Ox, which is a coherent sheaf on X.

However, f..# is not a coherent sheaf on Y because f..7#(Y) = . (X) = k[z], and k[z] is
not a finitely generated k-module.

(b) Let f: X — Y be a closed immersion. Then we identify X with a closed subset V C Y.
Cover Y by open affines U; = Spec A;. Locally on each U;, we have a closed immersion
YV NnU;) — U; which looks like A; — A;/I; for some ideal I; C A;. Then A;/I; is a
finitely generated A;-module, so f is a finite morphism.

(c¢) Let f: X — Y be a finite morphism of Noetherian schemes, and let .% be a coherent sheaf on
X. Let U; = Spec A; be a covering by open affines of Y. For any 4, f..# (U;) = .Z(f~1(U))),
and f~Y(U;) = Spec B; where B; is a finitely generated A;-module by (Ex. 3.4). By
Proposition 5.4, .%| o = ]\Z where M; is a finitely generated B;-module, hence is also
a finitely generated A;-module. Thus f..% is a coherent sheaf on Y.

(a) By definition, Suppm = {p € X : my # 0} where my, denotes the germ of m in .#, = M,
(the equality follows by Proposition 5.1(b)). We have p € Suppm if and only if the image
of m is nonzero in the localized module M. This is equivalent to Annm C p, which is
equivalent to p € V(Annm). We conclude that Suppm = V(Annm).

(b) By definition, Supp .# = {p € X : .%, # 0}. It is clear that if p € Supp.#, then Ann M C p
because .#, = M,. Conversely, suppose p ¢ Supp .#, so that M, = 0. Let {m,...,m,} be
a generating set for M. Then each m; is annihilated by some a; € A\ p, so in particular,
M is annihilated by a1 ---a,, so Ann M ¢ p. Thus Supp.# = V(Ann M) if M is finitely
generated.

(c) Let X be a Noetherian scheme and let .# be a coherent sheaf on X. Cover X with finitely
many open affines U; = Spec A;. By Proposition 5.4, we know that .7 |y, = ]\Z where M;
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7. (a)

is a finitely generated A;-module. Since the stalks of .# and .# |y, agree at any p € U;, we
see that Supp.# NU; = Supp Z|y,. By (b), each Supp .# |y, is closed relative to U;. Since
the intersection of Supp.# with every U; is closed, Supp .% is a closed subset of X.

By (Ex. 1.20(b)), we have an exact sequence
0 — H)(F) —F — j«(Z|v)

where U = X \ Z and j: U — X is inclusion. Since .# is quasi-coherent, so is .Z#|y. Also,
X is Noetherian, so by Proposition 5.8, j.(Z|y) is quasi-coherent. Then J#3(.%) is the
kernel of a morphism of quasi-coherent sheaves, so is itself quasi-coherent by Proposition
5.7. The global section of s (%) is I'z(.#), which is the submodule of I'(X,.#) = M
consisting of all sections whose support is contained in Z = V' (a). By (a), this is the set of
m € M such that V(Annm) C V(a), or equivalently vAnnm 2O /a. This also describes
La(M), so we have 'q(M) 2 T'z(F), which means that T'o(M)~ = J#0(.F).

If # is a quasi-coherent Ox-module, cover X with open affines U; = Spec A4; such that
Flu, = M; where M; is an A;-module. Then .7 |, is a quasi-coherent Op,-module. From
(d), we know that A5, (F|v,) = To,(M;)™ where ZNU; = V (a;) (the V taken in Spec A;).
Furthermore, we have S22 (F) N U; = %ZomUi (Z|u,), so HQ(F) is quasi-coherent. If in
addition we know that .# is coherent, then we can take each M; to be a finitely generated
A;-module. Since X is Noetherian, A; is Noetherian, so I'q,(M;) is a submodule of a
Noetherian module and hence Noetherian. This gives that J#2(.%) is coherent.

Let V' 5 z be an open affine Spec A such that 7|y = M where M is a finitely generated
A-module. Since (F|y), = %, and (Oly ), = Oy, x corresponds to some prime ideal p C A,
and we know that M, is a free Ap-module.

Let ai,...,a, be a basis for M, as a Ay-module. Clearing denominators, we may assume
that a; € M. Now let by,...,b, be a generating set for M as an A-module. Then we can
write b; = > c¢;ja; for all 4, and after clearing denominators, we see that some multiple
of b; is generated by the a; with coefficients in A. Denote this multiple d;b;, then d; ¢ p
because none of the denominators of the ¢; ; are in p. Now let e = dy - - - d,;, be their product.
Then M is contained in the A.-module generated by aq,...,a,, which implies that M, is
generated by ai,...,a, as an A.-module. Since the a; have no relations as an Ap-module,
they have no relations as an A.-module since e ¢ p. Thus M, is a free A.-module. By
Proposition 5.1(c), #|p) = (M)™, which gives the desired result since D(e) is open in X
and contains .

If % is locally free, then cover X with open affines U such that % |y is a free O|y-module.
Then for any x € U, (F|y)s is a free (O|y)y-module because localization commutes with
direct sums (because tensor product does). Using the fact that (F|y), = %, and (Oly), =
O, we see that %, is a free O -module for all x € X.

Conversely, suppose that .Z, is a free O,-module for all x € X. By (a), for every x € X,
there is an open neighborhood U* 3 x such that .#|y= is free. Then by definition, .Z# is
locally free.

First suppose that .# is invertible. Then let ¢4 = S omo, (%, Ox), the dual sheaf of .Z.
For every open set V', we can define I'(V, % @ ¢) — Ox (V) by defining it on the presheaf
F(V)®@Hom(Z#(V),0x(V)) and using the universal property of sheafification. Define the
presheaf morphism by = ® f — f(z). This is a morphism because it is compatible with the
restriction maps.
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By (b), #, is a free Oz-module for every x € X, and by (a), there is a neighborhood U”* 5 z
such that Z|y= is free, so Z is free when restricted to a distinguished open set of an open
affine of X. To show that .% ® ¥4 — Ox is an isomorphism, it is enough to do so on these
distinguished opens. Then we need to show for a ring R that the map R ® Hom(R,R) — R
given by r ® f +— f(r) is an isomorphism. Letting f be the identity homomorphism shows
that this is surjective. If f(r) = 0, then f(1) = 0, which means f is the zero map, and hence
r ® f =0, which shows injectivity.

Conversely, suppose that there exists ¢ and ¢ such that ¢: F®¥ — Ox is an isomorphism.
Write o(f1 @91+ + fn®gn) = 1. Then ¢, : %, R0y, Yx — Ox  is an isomorphism for all
x € X. Let m; denote the maximal ideal of Ox ;. Then for some i, we have ¢, (fi®g;) ¢ my.
Since Ox is a local ring, . (fi ® g;) is a unit, so define f = (,(f; @ ¢;)) "' fi. Then
Fp =2 Oxof, s0 Fy is a free Ox y-module of rank 1. Using (b), .# is locally free of rank 1.

Cover X with finitely many open affines U; = Spec A4; such that .Z |y, = J\AJJZ where M; is a
finitely generated A;-module. For any =z € U;, we have (Z|y,)r = F, and (O|y,)z = Oy,
so ¢(z) can be computed in either X or U;. If we can show that for all n € Z, {x € U, :
o(x) > n} is a closed subset of U;, then {x € X : p(z) > n} is a closed subset of X, so we
can reduce to the case that X is affine. For notation, let X = Spec A and . = M with M
a finitely generated A-module.

Now pick x € X and let p C A be the prime corresponding to x. We have
Fe Qox k() = My @4, Ap/pAp = My/pMy,

which is a k(z)-vector space with dimension ¢(z) =: n. Let a1, ..., a, be a basis for M, /pM,
over Ap/pAy. Clearing denominators, we may assume that a; € A,. Since Ay is a local ring,
by Nakayama’s lemma, aq,...,a, is a generating set for M, as an Ap-module. Now let
mi,...,m, be a generating set of M as an A-module. We can write m; = ) ¢; ja; where
¢ij € Ap. Clearing denominators, some multiple of m;, say d;m;, is a linear combination of
the a; with coefficients in A. Let e = dj - - - d, be their product, then e ¢ p, so x € D(e).
Now choose any other 2/ € D(e) and let g be the prime ideal corresponding to z’. Since
e ¢ q, we see that My/qM, is generated by the images of the a; as a k(z')-vector space,
so p(2') < n. Therefore, for all n, the set {z € X : p(z) < n} is open, which means its
complement is closed.

By (Ex. 5.7(b)), #; is a free Ogy-module for all z € X. The rank of .%, is the rank
of .#|y where U is some open set of X containing z such that .#|y is free. Since X is
connected, these ranks are the same for all z € X. Write .%, = O} for some n. Then
Fyz Qo, k() = (Oy/my)", so the rank of %, as a free O,-module is the same as the
dimension of .#,; ®e, k(x) as a k(z)-vector space, which means that ¢(z) is a constant
function.

Since .# being locally free is a local criterion, we can reduce to the case that X = Spec A is
affine, .# = M with M a finitely generated A-module, and A ¢+ = Ox(D(f)) is reduced for
all f € A. Choose p € X. As in part (a), we can choose my,...,my, € M, such that they
form a basis for M,/pM, as a k(p)-vector space and generate M, as an Ay-module.

We claim that M, is a free Ap-module. To show this, it is enough to show that the m; are
linearly independent. Suppose we have a relation ) mel = 0 where a; € A and b; ¢ p
in My. Then there is an element a ¢ p such that a(}_,(I[;4 b;)mi) = 0. Since the m;
are linearly independent over A,/pA,, we see that a; € p for all i. We can choose e € A
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as in (a) such that if g € D(e), then My/qM, is generated by the images of the m;. Now
let f = aeby---b,. From our choice of e, if ¢ € D(f), then the images of my,...,m, in
Mg/qM, are generators. Since ¢ is a constant function, this implies that the images are
in fact a basis. This implies that the relation Z—:mi = 0 holds in My, which means that
a; € q. Therefore, a; € ﬂq3 74, and this intersection is the nilradical of f, which is 0. Thus
the a; = 0, which gives the desired claim.

Then .%, is a free Oz-module for all z € X, so by (Ex. 5.7(b)), .# is locally free.

Let X = Spec A be a Noetherian affine scheme, and let .# = M be a quasi-coherent sheaf
on X. We can write M = |Jgc,; AS where AS is the A-submodule of M generated by S
and where the union is taken over all finite subsets S of M, so M is the union of its finitely
generated submodules. We claim that .% is the union of (AS)™. Let U be any open subset
of X, and pick any m € #(U). If U = D(f) for some f € M, then #(U) = My, and it is
clear that My is the union of (AS);. Otherwise, cover U with finitely many distinguished
opens D(f;). If m; is the image of m in My,, then there is some subset S; C M such
that m; € I'(D(fi), (AS;)~). Let S = JS;. Then m; € I'(D(f;), (AS)™), so by the sheaf
property, m € I'(U, (AS)~). Note that S is a finite set, so (AS)™ is a coherent sheaf. We
conclude that % is the union of its coherent subsheaves.

Let i: U — X be the inclusion morphism. An open subset of a Noetherian scheme is
Noetherian, so by Proposition 5.8(c), i+.% is a quasi-coherent sheaf on X. By (a), i..% is
the union of its coherent subsheaves .%,. Then .# (U) is the union of the .#,(U). Since .#
is coherent, .Z (U) is a Noetherian module, there exists finitely many «; such that #(U) is
the union of .%,, (U), or else we could build an infinite ascending chain of submodules. Then
the union of their finite generating sets is finite, so there exists « such that %, (U) = % (U).
Let 7' = Z,. Since Z#'|y and . are both coherent and have the same global section,
Flly =2 F.

Let i: U — X beinclusion, and let p: ¢ — i.(¥|y) be the morphism such that for every open
set V C X, themap 4 (V) — I'(V,i.(¥4|y)) is given by the restriction map ¢ (V) — 4(UNV).
Let p~1(i+%) C ¥ be the set-theoretic inverse image of .7 in i+(¥|y). Then p~!(i,.F) is
a subsheaf of a quasi-coherent sheaf and hence is a quasi-coherent sheaf. Now we proceed
as in (b) to find a coherent subsheaf of p~1(i,.%), which we call .Z’, such that F'|y = 7.
We see that .#’ is a subsheaf of ¥ necessarily.

Cover X with finitely many open affines V4,...,V,. Then U N V7 is an open subset of Vi,
and Z|yny; is a coherent sheaf and ¥|y; is a quasi-coherent sheaf. By (c), we can find a
subsheaf .#; C 9|y, on Vi such that .Z1|yny; = Z|uny;. Now we consider the open subset
(Uu V)N Vy C Vs, By construction, .# and .#; agree on (U U V) N Vs, so glue to give a
sheaf. Using (c) again, we may find a subsheaf %2 C ¥|y, on V5 such that its restriction
to (U U V1) N Vs is the same as our glued together sheaf. Again, we can glue %, and .7
together because they agree on overlaps by our choice. Now it is clear how to repeat this
process, and since there are only finitely many V;, at the end we are left with a coherent
subsheaf .Z' C ¢ such that #'|y = .Z.

Let U be an open set of X, and choose s € .#(U). Let 4 be the coherent subsheaf of
Z|u generated by s. By (d), there exists a coherent subsheaf of .7, denote it ¥, such that
Ys|lv =2 4. Hence we can write .# as the union of the ¥, where s ranges over all sections
over all open sets of ..

For any z € X, we have T" (.7 ), = (F Qo - - R0y F )z = F20" and similarly for S"(F)
and A" (.F) because stalks commute with quotients (and the stalk of a presheaf and of its
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sheafification are the same). So we have reduced to the case of showing that for a free
module M of rank n, T"(M), S"(M), and A\"(M) are free of rank n”, ("1 "), and (7),
respectively.

Write M = R™. Then T"(M) = R" ® - -- ® R". Since tensor product commutes with direct
sum, we can expand this to get 7" (M) = R™ . Since M is a free module, S(M) is isomorphic
to the polynomial ring over R in n variables, and the degree r part is freely generated by the
monomials of degree . The number of such monomials is the number of ways to choose r
things from a collection, without order, of n things allowing repetition, and this is given by
(":ﬁ;l) Now choose a basis e1, ..., e, of M. Then A\"(M) is freely generated by alternating
forms of length r of the form e;, A --- Ae;,. where i1 < --- < 4,. This follows by considering
the basis for 7" (M), and then noting that the relations of the exterior algebra show that if
ij = iy, for some j and k, then e;; A---Ae;. = 0, and also that if the 7; are not in increasing
order, then one can anticommute them and get the same element, with the 7; in increasing
order, up to a sign. So the number of basis elements is (:‘)

From (Ex. 5.1(b)), #Zomo, (A" " F,N"F) = (N""F)* @0, \"-Z. The multiplication
map \".Z @ \""F — A".Z induces a map \".F — Homo, (N F,\"F) in the
obvious way. We claim that this is an isomorphism. From (a) and the isomorphism above,
both are locally free and have the same rank, so it is enough to show that this induced map
is injective. To check this we pass to stalks. Choose z € X. If f € (A" %), induces the
0 map on stalks, then f = 0 because it kills any basis of (A" .%)., so we get the desired
claim.

We proceed by induction on n, the case n = 0 being clear. For n > 0,

T"(f*(F)) = £(F) @ox T"H(f(F))
FHUF) 510, Ox) ®ox f1(T"H(F))

I
—~

= fUF) @10, FHTHT))

= fUF) @10, (FH(FO ) ®f-10, Ox)
= fHFO) @10, Ox

= [A(IT"(F)),

where the last isomorphism follows because f~! is defined as a colimit, which commutes
with left adjoints (in this case ®).

Let .# be the degree n part of the sheaf ideal such that T'(%#)/.% = S(.%). Since f* is a left
adjoint, it is right exact, so

f*I — [ (T(F)) — f*(5"(F)) —=0

is exact. In fact, for sections z,y of .#, one has f*(r®y) = f*x® f*y since tensor commutes
with f*, so we can write an exact sequence

0 s (f(F) —=5"(f*(F)) —=0.

We have already shown that T"(f*(.%)) = f*(T"(%#)), so we deduce that S™(f*(.#)) =
f*(S™(.#)). Showing that A commutes with f* proceeds in the same way.

Let U = Spec A C Y be an open affine. We claim that f~1(U) — U is an affine morphism.
Since f: X — Y is affine, there exists a covering of open affines U; = Spec A; C Y such that
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f~1(U;) = Spec B; is affine. We can cover U N U; with open sets Vi; that are distinguished
in both U and U;. Write V;; = D(g;;) where g;; € A;, and let h;j be the image of g;; under
the map A; — B;. Then f~1(D(gi;)) = Spec(B;i)p,,- Since the D(gy;) cover U, f~1(U) — U
is an affine morphism as desired.

So it is enough to show that if f: X — Y is an affine morphism and Y = Spec A is affine,
then X is also affine. So there is a covering of Y by open affines such that their preimages are
affines. By the above comments, we may assume that these open sets are in fact distinguished
opens, and we can take finitely many, say D(g1),...,D(gn). Let h; be the image of g; under
the map A — I'(X, Ox). Write f~1(D(g;)) = Spec B;. Then we claim that X}, = Spec B;.
By (Ex. 2.16(a)), Spec B; N X}, is the set of primes of B; that do not contain h;. Since
we have a map A,, — B;, it must be that g; is invertible in B;, so no primes can contain
it, and Spec B; C Xp,,. For any other j, Spec Ay, N Spec Ay, = Spec Ag,4.. This gives that
Spec B; N Spec Bj is {p € SpecB; : h; ¢ p} = {p € SpecB; : h; ¢ p}. This means that
Xpn, N Spec Bj = Spec B; N Spec Bj, which proves the claim. Finally, hq,...,h, generate
I'(X,Ox), and each X}, is affine, so by (Ex. 2.17(b)), X is affine.

Let f: X — Y be an affine morphism. There is a covering U; of Y by open affines such
that f~1(U;) is affine. Since an affine scheme is quasi-compact, this means that f is quasi-
compact. Since the maps f~1(U;) — U; are between affine schemes, they are separated
by Proposition 4.1. Then by Corollary 4.6f (note that the Noetherian condition is not
necessary), f is separated. That a finite morphism is affine follows from the definition of
finite.

We wish to glue together the schemes Spec &7 (U) as U ranges over all open affines of Y.
Let U = Spec A and V = Spec B be two open affines. If U NV is empty, there is nothing
to do. Otherwise, cover U NV with open sets that are distinguished in both U and V. Let
W = SpecC be a distinguished open in U N'V. Also, let A = &/(U), B' = &/(V), and
C' = o/ (W). Since & is an Oy-module,

A (U) L o/ (W)

.

Oy (U) ——= Oy (W)

is an Oy (U)-module homomorphism where pyyy is the restriction map given by «7. As C
is a localization of both A and B, we also have that C’ is a localization of both A" and B’
since & is quasi-coherent, and hence we can identify A’ and B’ along C’. There are maps
A — A" and B — B’ given by the Oy-algebra structure of &7, and they induce morphisms
g: Spec o/ (U) — U and h: Spec o (V) — V.

In fact, the isomorphisms given by the distinguished covering of U NV patch together to give
an isomorphism ¢g=1(UNV) — h=1({UNV). Since these isomorphisms come from restriction
maps of a sheaf, it is clear that they agree on triple overlaps, so this gives a gluing, call the
scheme X. The maps o/ (U) — U for all open affines are compatible on overlaps, so glue
together to give a morphism f: X — Y. For an inclusion U C V of open affines of Y, the
morphism f~1(U) — f~1(V) is given by the restriction homomorphism .27 (V) — & (U) by
construction above.

If there is an X’ and f’: X’ — Y with the same properties of X, then we can define a
morphism X — X’ by gluing together morphisms on open affines Spec .« (U) where U is an
open affine of Y. Then this morphism will be an isomorphism, so we see that X is unique.
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(d)

By construction, for every open affine U C Y, f~1(U) = Spec.o/(U), so f is affine. Also,
for every open set U C Y, we have f,Ox(U) = Ox(f~Y(U)) = &/ (U). The isomorphism is
clear if U is affine, or if U is contained in some open affine. In the general case, cover Y
with open affines U;, and for each U N U;, we have Ox (f~Y(U N U;)) = &/ (U N U;), which
follows from the construction. Since these isomorphisms are canonical, they patch together
to give the isomorphism for U.

Conversely, suppose that f: X — Y is an affine morphism, and set & = f,Ox. For every
open set U C Y, & (U) = Ox(f~Y(U)), so there is a morphism Oy (U) — Ox(f~1(U)),
which gives o7 (U) the structure of Oy (U)-module. For an inclusion V' C U, it is clear that
the restriction map Ox (f~1(U)) — Ox(f~1(V)) is an Ox(U)-module homomorphism. So
o/ is an Oy-module.

In particular, for every open affine U = Spec A C Y, f~1(U) = Spec B is affine by (a).
Considering B as an A-module, o7 |y = E, so & is a quasi-coherent sheaf of Oy -algebras.
Now if V' C U is an open affine, the morphism on spectra f~1(V) — f~1(U) is induced by
the map of rings & (U) = Ox(f~1(U)) — Ox(f~%(V)) = (V). From the uniqueness of
Spec .« in (c), we conclude that X = Spec «7.

Let .# be a quasi-coherent .«7-module. We glue together the Ox (f~1(U))-modules (.Z (U))™
as U ranges over all open affines of Y. Given two open affines U and V of Y, we can cover
their intersection with open sets that are distinguished in both. The sections of these
distinguished open sets are given by localizing modules, and since they are the same in both
A (U) and # (V'), there is an isomorphism on their intersection. These isomorphisms are
compatible with triple overlaps because they are given by localization. So we can glue these
sheaves by (Ex. 1.22) to get an Ox-module which we call .Z.

We claim that ~and f. give an equivalence of categories between the category of quasi-
coherent Ox-modules and the category of quasi-coherent /-modules. Let ¥ be a quasi-
coherent Ox-module. Then (f..%)"~ is naturally isomorphic to .# because they are isomor-
phic on open affines and using Corollary 5.5. Similarly, if .# is a quasi-coherent .&7-module,
then f,.# is naturally isomorphic to .Z .

Pick two open affines Uy = Spec A; and Uy = Spec A such that &|y, and &|y, are free
of rank n, and pick an open affine subset V= SpecB C U NUs;. Let ¢ = 1 o ¢;1,
which is an automorphism of A}, = Spec B[x1,...,zy], and let 0y, 62, and 0 be the induced
automorphisms from 11, 19, and v, respectively. The diagram

commutes, where the unlabeled arrows are the ones induced by the ring homomorphisms
A; — B, and their linear extensions A;[z1,...,x,] — B[z1,...,2,]. The identification of
S(&(U;)) with O(U;)[x1, . . ., xy] fixes the coefficients of O(U;), and hence the automorphism
of Blzy,...,zy,] induced by ¢ ! fixes B by the commutativity of the above diagram, and
similarly with 1. Let eq,..., e, be the chosen basis for &(Us). By the diagram, we see that
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07! (2;) is the image of e; under the map S(&(U2)) — S(&(V)), so 02(07 (z)) = 0(z;) = ;.
This shows that (X, f,{U},{v}) is a vector bundle of rank n over Y. A different choice of
bases for the &(U) would result in different maps ¢/, but (X, f,{U}, {¢'}) is isomorphic to
(X, f,{U},{¢'}) via the identity morphism X — X.

First assume that Y = Spec A is affine. Since f: X — Y is a vector bundle of rank
n, X = Ay. The sections s € I'(Y,.”(X/Y)) are in natural bijection with A-algebra
homomorphisms 6,: A[z1,...,x,] — A, which are themselves in natural bijection with n-
tuples (0s(z1),...,0s(xy,)), namely the images of ;. The set of all n-tuples (a1, ...,a,) € A"
has a natural A-module structure, so we use this to determine an Oy-module structure on
Z(X/Y). Namely, for two sections s and ¢, let s + ¢ be the section determined by the A-
algebra homomorphism 0s,,: A[z1,...,x,] — A defined by z; — 04(x;) + 0¢(x;). For a € A,
define as to be the section determined by the A-algebra homomorphism 6,s: Alz1,...,z,] —
A defined by x; — abfs(x;). From these constructions, it is clear that .(X/Y) = Of, and
hence is free of rank n. It is also clear that if Y is not necessarily affine, then this local
construction glues together to give a global Oy-module structure on .#(X/Y) that makes
it locally free of rank n.

Let V. C Y be an open set. Define a map &*(V) — (V) in the following way. Any
s € E*(V) is an element of Hom(&|y/, Oy ). This determines an Oy-algebra homomorphism
S(&ly) — Oy, which in turn determines a morphism Spec Oy — SpecS(&|y). Since
Spec Oy =V and Spec S(&|y) = f~1(V), this is an element of .#(V). To show that this
is an isomorphism, we can show that it is an isomorphism on stalks. Since . and &* are
both locally free of rank n, ., and &7 are both free Oy-modules of rank n for all y € Y, so
it is enough to check that the map given is injective on stalks.

The only part in question is getting an Oy-algebra homomorphism S(&|y) — Oy from an
element of Hom(&'|y, Oy ) since the rest of the operations are clearly invertible. On the
level of stalks, (&]y)y is a free Oy-module of rank n, and S(&|v) = Oy[z1,...,z,]. Some
basis of (&£]y), has been chosen for the given vector bundle structure on Y. The O,-algebra
homomorphism Oyz1,...,z,] — Oy is determined by the images of xz;, which are in turn
determined by the images of the basis elements of (&'|y),. Now it is clear that a nonzero
map Hom(&|y, Oy ) gives a nonzero map S(&|y) — Oy, so we get the desired isomorphism.

By (b), for every vector bundle f: X — Y of rank n, we have an associated sheaf of sections
S (X/Y). It is clear from construction that two isomorphic vector bundles give isomorphic
sheaves of sections. Also by (b), the sheaf of sections arising from a vector bundle of n is
a locally free sheaf of rank n. Every locally free sheaf has an associated geometric vector
bundle, and part (c¢) implies that two locally free sheaves are isomorphic if and only if they
admit isomorphic vector bundles. Finally, part (a) says that the geometric vector bundle
associated to a locally free sheaf is in fact a vector bundle. These comments give the following
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injections

of vector bundles

isomorphism classes <
of rank n over Y

isomorphism classes of
sheaves of sections on Y

isomorphism classes
— | of locally free sheaves
of rank n on Y

isomorphism classes
— of associated vector
bundles of rank n over Y

isomorphism classes
— of vector bundles ,
of rank n over Y

which shows that there is a bijection between isomorphism classes of locally free sheaves of
rank n on Y, and isomorphism classes of vector bundles of rank n over Y.

6 Divisors

1. Let X be a scheme satisfying (x), that is, X is a Noetherian integral separated scheme which is
regular in codimension one. The projection X x P — P™ is a base extension of X — SpecZ
and hence separated. The map P"™ — SpecZ is projective and thus also separated, so the
composition X x P™ — SpecZ is separated. Also there is a finite covering of X by Noetherian
open affines, and the same for P", so their pairwise fiber products give a finite covering of X x P"
of Noetherian open affines, which means X x P is Noetherian.

Let m: X x P™ — X be canonical projection and suppose that there are two generic points 7
and 72 of X x P”. Then both map to nx, the generic point of X. Choose some open affine
U = Spec A of X containing ny. Then 7= }(U) = P’; which contains 7, and 72. We know
that A’} is a dense open subset of P’}, and that it is irreducible, so this implies that P’} is also
irreducible, and is a contradiction. Hence X x P is integral.

Now let z € X x P™ be a point of codimension one, and put y = m(z) Then either y is a point of
codimension one, or y is the generic point of X. In the first case, Z = 77! (y) = Spec k(y) x P,
which we can write as the union of open affines isomorphic to AZ(y). This implies that O, is
isomorphic to a localization of Oy[t1,...,t,]. By assumption, O, is dimension one. Since O, is
a DVR, it is integrally closed, and hence so is Oy[t1,...,t,]. So O, is integrally closed and also
a DVR. In the second case that y is the generic point of X, we see that O, is a localization of
Klt1,...,t,] where K is the function field of X. By the same reasons as above, this means O,
is a DVR. So we see that X x P" is regular in codimension one and therefore X x P" satisfies
Now we can define maps pj: C1X — CI(X x P") and p5: CI1P" — Cl(X x P") coming from
the projection maps. Both are injective and pj comes from case 1 mentioned above, and pj
comes from case 2 mentioned above. If H is a hyperplane that generates C1P" = Z, then pj is
defined by H — X x H. Finally, these two maps induce a map ¢: ClX & CI1P" — Cl(X x P"),
which is surjective because the prime divisors of X x P™ must be of either case 1 or case 2. The
injectivity of ¢ follows because PZ(y) and X x H have different images when projected under



6 DIVISORS 17

the appropriate maps, and these are what come from pj and p5. Thus, ¢ is an isomorphism, so
ClI(X xP") 2 (ClX x Z.

4. From the choice of f, 22 — f is an irreducible polynomial. Since k[z1,...,z,, 2] is a UFD, this
means that (22 — f) is prime, and hence A is a domain. Let K denote the quotient field of A.
Then K = k(z1,...,2,)[2]/(2%2 — f) because 271 = zf L. Let A’ = k(x1,...,2n).

Every element o € K can be written a = g+ hz with g,h € A’. If g,h € k[x1, ..., 2,], then the
equation a? — 2ga + (g2 — h%f) = 0 shows that « is integral over k[z1,...,2,]. On the other

hand, if & = g + hz is integral over k[z1,...,x,], then there is a monic polynomial F(X) such
that F'(a) = 0. Since X2 —2¢gX + (g% — h?f) is the minimal polynomial of «, it divides F'(X). In
particular, the coefficients —2g and g? —h? f are integral over k[z1, ..., x,]. Since —2g, g>—h%f €

A’; and k[zq,...,2,] is a UFD, it must be that —2g,¢? — h®f € k[z1,...,7,]. In particular,
this implies that g € k[z1,...,7,], and hence h2f € klx1,...,z,]. If h € A"\ k[x1,..., 2], then
write h = hy/hy in reduced terms. Then f/h3 € k[z1,...,z,], but f is square-free, so this is a
contradiction. Thus, h € k[z1,...,z,] also.

We have thus shown that g + hz is integral over k[x1,...,x,] if and only if g, h € k[zq,...,z,].
This implies that the integral closure of k[z1,...,z,] in K is A, and hence A is integrally closed.

5. For the change of coordinates in part (b), we must at least assume that k has a square root of
—1. For example, there can be no such change of coordinates if k = R because 23 + -+ 122 =0
has one solution while zgz; = 23 + - - - + 22 has infinitely many.

(a) Ifr > 2, f = —(22 + --- + 22) is a square-free polynomial, so by (Ex. 6.4), the ring
k[zo, ..., xn)/(x3 + 23+ - -+ 22) is integrally closed. The localization of an integrally closed
domain is again an integrally closed domain, so X is normal.

(b) Let i be a square root of —1. We do the change of coordinates zg — (20 + 21)/2, z1 —
i(z0 — z1)/2, and xj — iz for j > 2. Then

a4 al = (254 + 2021 /2 + 21/4) + (=25 /4 + 2021 /2 — 21/4) — 25 — - — 2P
2

2
22021—22—--~—Zr,

so we have the desired change of coordinates.

(1) Let A = Specklxo, ..., =]/ (zor1 —23), and let Y be defined by 1 = 29 = - -+ = x,, = 0.
Then Y is a prime divisor, so by Proposition 6.5(c), there is an exact sequence

v/ ClX CUX\Y)—>0

where the first map is 1 — 1-Y. Then Y is cut out set-theoretically by the function
1, and the divisor of 1 is 2 - Y because 1 = 0 implies x% = 0 and xo generates
the maximal ideal of the local ring at the generic point at Y. So X \'Y = A4,, and
Ay, = klzo,z1, 27 .. 2]/ (woxy — 23). Then o = 2723, so Ay, = klzy, 27, ... 2]
Since this is a UFD, CI(X \ Y) = 0 by Proposition 6.2. This implies that Y generates
ClX.

Finally, we show that Y is not principal. By (Ex. 6.4), A is integrally closed, it is enough
to show that p = (z1,...,x,) is not a principal ideal. The sufficiency can be found in the
proof of Proposition 6.2. Let m = (zo,...,2,), then m/m? is an n-dimensional vector
space over k generated by the images of the z;. Since p C m and the image of p in m/m?
contains the images of the x;, we conclude that p is not principal. Hence Y generates
Cl X and has order 2, so we conclude that C1 X = Z/2.
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(2) Let V be the projective variety defined by the equation x3 + --- + 22 = 0. By the
comments above, there is a change of coordinates so that V is given by xgz1 = zoxs3.
From Example 6.6.1, C1V =2 Z ® Z for n = 3, but the ambient space is irrelevant, i.e.,
for n > 3, we can take the fiber product of P}C Xk P,l'C with A,lC n — 3 times to get ) and
use Proposition 6.6. By (I, Ex. 2.10(a)), A is the affine cone of V, so by (Ex. 6.3(b)),

there is an exact sequence
0—Z——ClV——=ClX —0

where Z — ClV is given by 1+ V.H. The cokernel of this map is Z, so C1.X = Z.

(3) By Proposition 6.2, it is equivalent to show that A = k[xo, ..., z,]/(zor1 — 25— - —22)
is a UFD if r > 4. First note that A/(z¢) = k[z2,...,z,]/(z3 + -+ + 22) is normal by
(a), so ¢ is prime in A. We now appeal to a theorem by Nagata that says that if A is
a domain and S is a multiplicative set generated by prime elements in A, then A is a
UFD if and only if S™' A is a UFD and A has the ascending chain condition for principal
ideals. Here the ascending chain condition is clear because A is Noetherian, and we take
S to be generated by zg. Then Ay, = k[zro,x2,...,Tn]z,, which is a localization of a
UFD and hence a UFD. Thus A is a UFD.

(1) Let X be the affine quadric hypersurface given by the equation xgz; = x3. Then by
(Ex. 6.3(b)), there is a short exact sequence

0—=Z——ClQ——ClX —=0

where Z — C1Q is given by 1 — @Q.H. From (b) part 1, the cokernel of this map is
Z /2, which means that C1Q =2 Z or C1Q = Z & Z/2. But C1(Q is cyclic and generated
by the ruling of the projective quadric cone as in Example 6.5.2. So C1Q = Z, and the
class of a hyperplane section Q).H is twice the generator.

(2) This was done in (b) part 2 above.

(3) Let X be the affine quadric hypersurface given by the equation zor; = 23 + -+ + =
Then by (Ex. 6.3(b)), there is a short exact sequence

2
e

0—=Z—ClQ——ClX —=0

where Z — Cl1Q is given by 1 — Q.H. From (b) part 3, the cokernel of this map is 0,
which means that it is an isomorphism, so C1@Q = Z and it is generated by Q.H.

If P,Q, R are three collinear points of X, then P + Q + R ~ 3F,. Since P is associated
to the divisor P — Py in Cl° X, we see that P+ @ + R = 0 in the group law. Conversely,
if P+ @Q + R = 0 in the group law, then (P — Py) + (Q — Py) + (R — Fy) is principal, or
equivalently, P + Q + R ~ 3F,. Since 3P, is linearly equivalent to z = 0, there is a line L
meeting X in P, Q, R.

If the tangent line at P passes through Py, then P+ P 4+ Py ~ 3Py, which we can rewrite as
P+ P ~ 2Py. Then the image of P+ P in CI° X is 2(Py — Py) = 0, and thus P has order 2
in the group law. Conversely, suppose that P has order 2 in the group law. Since P is the
identity element in the group law, this means that P+ P + Py = 0. By part (a), this means
that P, P, Py are collinear counting multiplicity, so the tangent line at P passes through F.

If P is an inflection point, then there the tangent line at P passes through P with multiplicity
>3,s0 P+ P+ P =0 in the group law by (a), so P has order 3. Conversely, suppose that
P has order 3 in the group law. Then there is a line passing through P with multiplicity
> 3. In particular, the tangent line at P does this, so P is an inflection point.
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(d) Because of the relation P+ @Q + R = 0 if P,Q, R are collinear, we need to check that if P
and @ correspond to rational points on X, then so —R also corresponds to a rational point.
Since —R and R are reflections across the z-axis, it is enough to show that if P and @) are
rational points, then the line P() intersects X at a rational point. If the line PQ is tangent
to either P or @), then either P+ Q + @ =0or P+ P+ @ = 0, and if PQ passes through
Py, then P+ Q = 0.

If P =@, then PQ is the tangent line at P. If this tangent line P(Q) passes through Fy, then
by (b), P+ P = 0. Otherwise, we consider the curve defined by 3? = 2> — 2 in C? and check
that the tangent line of P intersects this curve in a rational point. Let P be of the form
(a,va? —a) where a ¢ {0,1,—1}. (If a € {0,1,—1}, this corresponds to the tangent line
passing through Py. Also, the case (a,—va3 — a) is similar, so we omit it.) The derivative

3z2 -1
of y = vad — 1z is 2%, so the equation of the tangent line through P is
3 —x
3a%2 — 1
=——(r—a)+Val—a. 1

3

Substituting this into y? = 23 — z, we get (after simplification via Maxima):

(r —a)?((4a® — 4a)x — (a* + 2a% + 1))

=0
4a3 — a

and the solutions are rational, so the intersection is in fact a rational point since the equation
for P@ has rational coefficients.

The last case is when P # () and their third point of intersection is not P, @, or Py. Again, we
can work in the complex plane C? and consider the curve defined by the equation 3? = 23 —x.
Then consider two points on this curve with rational coordinates P = (a,va3 —a) and
Q = (b, Vb3 —b). There are two choices for the sign of the square root, but the other three
cases are similar. Given these two points, with a # b (since PQ does not intersect at Fp),

we have the equation for the line PQ:

y—\/a3_a:\/b3_l;:;/a3_a(x—a). (2)

Solving for y and substituting this into y? = 2% —z, we get (after simplification via Maxima):

(x —a)(x —b)((b—a)®x+ (2va3 — avVb® — b —ab® — a®b+ b+ a))

(b= a) =0

The three solutions for x are all rational, and the equation (2| for PQ has rational coefficients,
we conclude that PQ intersects the curve defined by y? = 2> — z in a rational point. Thus,
the points of X with coordinates in Q form a subgroup of the algebraic group structure on
X.

There are an obvious four rational points on X, which are (0, 1,0), (1,0,1), (=1,0,1), and
(0,0, 1), all of which have order 2 and form the group Z/2 @ Z/2. We claim that these are
the only rational points on X. Let (z,y,2) be a rational point with z # 0. Then we can
work in the affine plane and consider a rational point (x,y).

We first show that |z| is the square of a rational number. Write |z| = a/b. For a prime p,
let p™ be the highest power of p dividing a and p™ be the highest power of p dividing b, and
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define v,(x) = n — m. We claim that v,(z) is even for all primes p, which will show that
7 is a square. Choose a prime p and assume v,(z) # 0. If v,(z) > 0, then v,(2% — 1) = 0,
which implies that v,(y*) = 2v,(y) = v,(z) because y*> = z(2? — 1). If v,(z) < 0, then
vp(22 — 1) = 20,(z), 0 2v,(y) = 3v,(x). This gives the claim. Now write |z| = u?/v?. Since
y? = x(x? — 1), |22 — 1] is a square. Then |v*(2? — 1)| = |u* — v¥| is a square, and is in fact
an integer.

4

Lemma. The equation u* — v* = +w? has an integer solution only if at least one of u, v, w

is zero.

Proof. Suppose u,v,w are positive and satisfy this equation, with w minimal with respect
to these properties. By symmetry, we can assume the sign of w? is positive. Then (v2, w, u2)
is a Pythagorean triple. If z is even, then we must have u and v odd by minimality. So
v? =p? — ¢%, w = 2pq, and u? = p® + ¢ for some odd integers p and g by the classification
of Pythagorean triples. But now p* — ¢* = (uv)?, which contradicts minimality.

So it must be that w is odd, in which case v? = 2pq, w = p? — ¢?, and u? = p? +¢? for odd p
and q. Since 2pq is a square, we can write p = r? and g = 2s?. We can also write p = o — 32,
q = 2a3, and u = o + 3% because (p, ¢, u) is a Pythagorean triple. Since 2s5? = 2,3, we can
write @ = A% and 8 = B?. Substituting these into p = a? — 32 gives r2 = A* — B*. Since
w=(p+q)(p—q), p+q < w implies r < w, which contradicts minimality. O

We cannot have v = 0 since it is a denominator. If w = 0, then u = £+v, so x = +1. Finally,
if u = 0, then x = 0. We conclude then that the four rational points mentioned above are
the only ones.

7. We let X be the nodal cubic curve %z = 2> + 2%z in Pi for some field k with char k # 2,3. The
proof that the Cartier divisors of X of degree 0, CaCl° X, are in bijection with the nonsingular
closed points of X is similar to Example 6.11.4, so we omit it.

The nontrivial part is providing an isomorphism of algebraic groups G,, — X \ Z where 7 is
the singular point (0,0,1). Let Py = (0,1,0) be the identity of X \ Z. Imitating the proof
t3
of Example 6.11.4, we might try t — <t, 1, 1t2> However, we know that (—1,0,1) is the
unique point on X whose tangent line passes through Py, so —1 must map to (—1,0,1). Also,
1 must map to Py, so this map does not work. We see that 0 — (0, 1,0). Restricting to z = 1,
11 1
2B

oo +— (1,0,1) and 1+~ (0,0,1).

we get the curve t — | —1 + 1>. Thinking of this as a map P/,l€ — P%, we see that

To fix the map, we should use a linear fractional transformation S such that S(0) =1, S(1) =0,

1-—t
S(—1) = co. Such an S is given by ¢t — ——. If we compose our original map with S, then we

1+¢
get
1—t —t)3
t— , 1, (1=1) .
1+6 7 4(1 +t)
However, this isn’t defined at t = —1, so we fix this by clearing denominators to get

t— (4t(1 —t),4t(1 +t), (1 — t)®).

Now this defines a morphism of varieties f: G,, — X \ Z, which is clearly an isomorphism.
Finally, we need to check that f is a morphism of algebraic groups. Given two points P =
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(4t(1 —t),4t(1 + 1), (1 — t)?) and Q = (4u(1 — u),4u(l + u), (1 — u)?), there are a few cases
to check. Since Py is the identity in the group law, we can assume that ¢ and u are different
from 1. So in fact, we may assume that both P and Q live in A2, so treat them as points
4t 4t(1 4 t) 4u du(l + u)

P= (o asar) ™= (oo G )

Ift =u= -1, then P =Q = (—1,0,1), and the tangent line at PQ passes through P, so
P + @ = 0, which agrees with the fact that —1 has order 2 in G,,,. If t = u # —1, then assume
that P lies on the curve y = Va3 + 22 (By curve we mean the set of points (x,y) for which the
square root exists. Also, the case y = —v/23 + 22 is similar). The derivative of this function

322 + 2z
is ———. The computation of the third point on P(Q is too messy to include, but it is

2V a3 + a2

2 2 2
R= <(1 ftt2)2’_4zl(i—;)t3)>, so P+ P = —R, which means f(t?) = f(t) + f(t).

The last case is when ¢ # u. In this case, the equation for the line PQ is

4t(1+4¢) 4u(14u)
) a1+t [—® ~ 0w’ (x 4 > 3)
(1 - t)g (1i€5)2 - (1i1£)2 (1 - t)Q

Substituting this into y? = 2% + 22 and simplifying with Maxima, we get

((t —1)%z — 4t)((u — 1)%z — 4u) ((tu — 1)%z — 4tu) = 0

4t
ﬁ' Plugging this into (3), we get that P+ Q = —R
— tu

41 Atu(l + ¢t
= ?u)2 ,— (;L(_ ;)?) Therefore, f(ut) = f(u) + f(t), so we have the desired

so the third point has z-coordinate

where R = (

isomorphism.

8. (a) If .Z is an invertible sheaf on Y, then we claim that f*.Z is an invertible sheaf on X. The
question is local, so we can assume X = Spec A and Y = Spec B are affine, and that ¥ = B.
Using Proposition 5.2(e) and Corollary 5.5, f*.¢ = (A®p B)~ = A, which gives the claim.
It is clear that if £ =2 #, then f*.Z =2 f*.# because functors preserve isomorphisms, so
f*: PicY — Pic X is a well-defined function. To see that it is a group homomorphism, we
need to show that f*(Z ®p, )= f*L @0, f*# where £ and A are invertible sheaves
on Y. This is illustrated in the following steps:

FZ@os [l =(f'L @10, Ox) ®ox (1M @10, Ox)
= (fT1L @0y [TIM) @10, Ox
&~ fﬁl(g ®oy M) ®r-10y Ox
= (& @0y, A)
where the second isomorphism follows because f~! is defined as a sheafification of a colimit,

and thus commutes with ® as presheaves because it is a left adjoint. Using the universal
property of sheafification gives the desired result.

(b) Since f: X — Y is a finite morphism of nonsingular curves, from Proposition 6.11 and
Proposition 6.15, we have the following diagram

Y —2% CaCly 2> PicY

|7 |-

Ol X —% Cacl X 255 pic x
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where the horizontal arrows are isomorphisms. We claim that this diagram commutes.
Denote the function fields of X and Y by K(X) and K(Y).

We first define a map f*: CaClY — CaCl X induced by f*: PicY — Pic X. For any Cartier
divisor D € CaClY represented by {(U;,a;)}, let f*(D) be represented by {(f~(U;),b;)}
where b; is the image of a; in the inclusion of function fields K(Y) — K(X). It is clear that
ZL(f*(D)) = f*(£(D)) because we can define canonical isomorphisms on f~*(U;) and Uj;
since f* is defined with a colimit over open sets containing f(f~!(U;)) = U; (which is open).
Also, this map is a homomorphism because it is equal to ﬁ)_(l f*By.

Using the isomorphisms ay and ax, the homomorphism f*: CaClY — CaCl X induces a
homomorphism ClY — Cl X, which we claim is the same defined in the text. Pick a Cartier
divisor D € CaClY. By extending linearly, we can assume that under the isomorphism ay,
D corresponds to a closed point @ € Y. Under the isomorphism ax, f*(D) is > vp(b;) - P
where for each closed point P, the b; corresponds to an index i for which P € f~1(U;).
However, if P ¢ f~1(Q), then vp(b;) = 0. This follows from the fact that ¢p: Oy ,p) —
Ox,p is a local homomorphism and the fact that valuation 0 corresponds to not being in
the maximal ideal of a local ring. So this sum is exactly what is described in the text on
p-137, ie., f*(Q) = X pes-1(g)vp(t) - P where t € K(Y) is such that vg(¢) = 1. Thus the
diagram above commutes, so the homomorphisms f* correspond under the isomorphisms.

(c) Now let X be a locally factorial integral closed subscheme of Y = P} and f: X < Y be the
inclusion. As above, we have the following diagram

ClY —2> PicY

Lk

CIXLPicX

where ¢ and 1 are the isomorphisms of Proposition 6.16. We claim that this diagram
commutes. First note that ClY is generated by a hyperplane H, which corresponds to
Oy (1) under ¢. By Corollary 5.16(a), X = Proj k[zo, ..., x,]/I for some homogeneous ideal
I. Then by Proposition 5.12(c), f*(Oy (1)) = Ox(1) as elements of Pic X. Locally, Ox (1)
is generated by the the Z;, which are the images of the x;, on the open sets D (Z;). This
describes the Cartier divisor D identified with Ox(1). The Weil divisor identified with D
is Y vy (T;) - Y € ClX where Y ranges over all prime divisors of X and Y N D4 (7;) # .
This is precisely the image H.X described in (Ex. 6.2(a)). Since the diagram commutes for
H, which is a generator of C1Y, it commutes for all of Cl1Y".

10. For notation, we let F'(X) be the free Abelian group generated by all coherent sheaves on X,
and we let H(X) be the kernel of the canonical projection F(X) — K(X).

(a) Since X is affine, every coherent sheaf is isomorphic to M for some finitely generated klz]-
module M. By Proposition 5.2(a), Corollary 5.5, and Proposition 5.6, the sequence

0 M’ M M 0 (4)

is exact if and only if the sequence

0 M M M" 0

is exact. So we can think of K(X) as the quotient of the free Abelian group generated
by all the finitely generated k[zx]-modules, by the subgroup generated by all expressions
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M — M’ — M" whenever an exact sequence as in (4)) exists. So we claim that k[x] generates
K(X). By induction, the direct sum of n copies of k[z] is equivalent to n - k[z] in K(X) by
the exact sequence

00— k[z]" ! —— k[z]" k[x] 0.

For a general finitely generated module M, there exists a finite free resolution of length < 1

0 Fy Fy M 0

where Fy and F) are finitely generated free k[z]-modules by the structure theorem of finitely
generated modules over a PID. Namely, M = k[z|" @ k[z]/a1 @ - - - ® k[z]/as for some r and
proper principal ideals a;. So we can take F} to be r + s copies of k[x], and then s copies
of k[x] for Fy, where the map Fy — F} is given by multiplication by generators of the a;.
Thus M is equivalent to some multiple of k[z], and we have a surjective map f: Z — K(X).
Suppose that ker f # 0, and let n > 0 be in ker f. If n > 1, then k[z]® = 0 in K(X). Since
k2] = k[z]" "' + k[z] and k[z]"! = (n— 1) - k[z] by (4), then k[z] = —(n — 1) - k[x], which
implies that k[z] = 0. So either K(X) = 0 or K(X) = Z. In part (b), we will show that
there is a surjective homomorphism K(X) — Z, so in fact K(X) = Z.

Let X be an integral scheme with function field K and generic point . If the sequence

0—>F —>F —>F"—0

is exact, then dimg % = dimg fé +dimg ﬂé’ because the stalk functor is exact. It follows
that for any expression a1. %1+ - -+a,.%, € H(X), we have }_a; = 0. Thus v(.%) = 0 if and
only if dimg #¢ = 0. So there is a well-defined map rank: K(X) — Z defined by (%) —
dimg #¢ and extending linearly. This map is a homomorphism because for two coherent
sheaves .7 and & on X, y(F)+v(¥9) = v(F ®¥), and dimg ¥ +dimg ¥ = dimg (F ©Y)¢
(we can extend linearly to see that rank preserves addition of arbitrary linear combinations
of coherent sheaves). Finally, rank is surjective because n - Ox — n for all n.

Let i: Y — X be the given closed immersion, and let Z = X \ Y. Let a: K(Y) — K(X)
be defined by v(.%) — v(ix.%) where .Z is a coherent sheaf on Y, and extending linearly,
and let 3: K(X) — K(Z) be defined by v(.#) — v(.Z|z) where .¥ is a coherent sheaf on
X, and extending linearly.

We first claim that o and (8 are well-defined homomorphisms. The map « defines a homo-
morphism F(Y) — F(X) by (Ex. 5.5(b)) and (Ex. 5.5(c)). Composing with the projection
F(X) — K(X), we get a homomorphism F(Y) — F(X). To see that « is a well-defined
homomorphism, it is enough to check that if v(.%#) = 0 where .% is a coherent sheaf on Y,
then v(ix.#) = 0. This follows because an exact sequence of coherent sheaves on Y remains
exact after applying the functor i,. We can check this by passing to stalks and using (Ex.
1.2(c)). By (Ex. 1.19(a)), if P € Y, then #p = (ix.%)p, and if P ¢ Y, then (i+.%)p = 0.
Similarly, to see that g is a well-defined homomorphism, it is enough to check that if .% is
a coherent sheaf on X and (%) = 0, then y(.#|z) = 0. This follows from the fact that an
exact sequence of coherent sheaves on X remains exact after restricting to Z, which we can
check by passing to stalks.

Next we claim that ker 5 = image o and that  is surjective. By (Ex. 1.19(a)) and (Ex.
1.19(b)), the stalk of the coherent sheaf that 3(«(y(.#))) represents, where .# is a coherent
sheaf on Y, at any point is 0. Extending linearly, we see that image o C ker 3.
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Now suppose that .Z is a coherent sheaf on X and that S(v(#)) = 0, i.e., that the support
of Z is contained in Y. We wish to show that (%) € image . We can reduce to the affine
case, so that X = Spec A, ¥ = J\7, Y =V (I) for some ideal I C A, and Sy = I. We shall
show that I"M = 0 for some n. Since M is finitely generated, we can show that there is
some n so that I™ annihilates each of the generators, and then take the maximum of all such
n, so reduce to the case that M is cyclic, i.e., so that M = A/ Ann M. From (Ex. 5.6(b)),
Supp.# = V(Ann M). This implies that V(I) D V(Ann M), so vI C v/Ann M. Since A is
Noetherian, this implies that I™ C Ann M for some n, which gives the claim. So then we
have a finite filtration

F=F2F12F22 2 Fp12F,=0
where .%; = J{}ﬁ . Also,
]{}9/%{}“9 ~ 7L F @0y Ox /Sy = I4.F @0, Oy,

so %/ Fit1 is an Oy-module for all i. Now suppose that y(#;11) € imagea. First, the
F; are subsheaves of .%# and hence coherent Ox-modules. Since .%;/%; 1 is an Oy-module,
which is coherent, we have v(%;/%;1+1) € imagea, so V(%) = V(Fir1) + V(Fi) Fit1) €
image . By induction, we see that (%) € image a.

A general element of K(X) is of the form > (%) — >.v(%). Taking . = @ .%; and
Y = P Y, this element is equal to v(F) — v(¥). For notation, let U = X \ Y. If y(.F) —
v(94) € ker 3, then v(F|y) — v(¥4|v) = 0 in K(U). We first prove the following lemma:
Lemma. If .Z is a coherent sheaf on U and .#’ and .#” are two coherent sheaves on X
which are extensions of . %, then v(Z') — y(F") € K(Y).

Proof. Let j: U — X be the open immersion. Consider the exact sequence
00— T —=F' —=juj*(F) —= G (F') —=0,

where we are taking ffyl(ﬁ’ "} to be the cokernel of the previous map. By the exactness of
j*, we get the exact sequence

0—=R(F )|y F T HHTF )|y —=0

where the map .# — % is the identity since j, and j* form an adjoint pair. This means that
Supp(42(F')) and Supp(4L(F')) are contained in Y, so (F'/H2(F'))|y = F, which
means that F' /42 (F') is coherent and SB(F' | H2(F')) = 0.

Replacing %' with F'/S42(F'), we can assume J42(.F') = 0, and get an exact sequence

0 F—= T HNF) —=0.

Now let .#' + .Z" be the image of #' & F" — j..#, which is coherent. Replacing j.(.%) by
F'+ .F", we get a short exact sequence

()4>3‘5/4>91_‘_91/ (9’+,9?”)/9’ 0 (5)

Then (F' + F"))F' C HHF') and Supp(F' + F")/F' C Y implies that v((F' +
F" ] F') e K(Y), and similarly we get v((%#' + ")/ F#") € K(Y). By the exact sequence

, we have

NI +A(F + F"))F) =1(F' + .7
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and
AT +(F + F))F) =T+ F"),

so Y(F) —~v(F") e K(Y). ]

Returning to the proof, we write

Flo+) (=S =S/ +8) =9+ > (-R; - R} + Ry)

=1 =1

as formal symbols where we have short exact sequences of coherent sheaves on U

0 S! S; SV 0

and

0 R R; R! 0.

Without loss of generality, we can assume that .|y = R; and 4|y = S, and can take
extensions to coherent sheaves on X to get exact sequences

0 R! F R! 0

and

0 S; 9 Sy 0.
Then we can write
Q—Si—Sil-f—Slzg—R/l—R/{-i-Rl
as sheaves on X. The sheaves R| and S] restrict to the same sheaf on U, and so do R/ and
1, so we can write

YF) =) = v(Ry) —v(S1) + v(RY) — 7(S7).

By the lemma above, this implies that v(.%#) —v(¥) € K(Y). So ker § = image « as claimed.

The surjectivity of 3 follows from (Ex. 5.15) because Z is an open subset of X. Therefore,
the sequence

K(Y) 2> K(X) — > KX \Y)—>0

is exact.

Since ny(Ox) = v(0O%), and the rank of O% is n, rankof is the identity on Z. This implies
that f: Z — K(X) defined by 1 — v(Ox) is an injection. Now identify Pic X = C1X. We
claim that ¥: Pic X — K(X) is an injection. Indeed, by (b), det ot is the identity on Pic X
because any divisor D is identified with .2 (D) under the identification Pic X = C1 X.

Now we show that image f Nimaget) = 0. Since any divisor D is linearly equivalent to an
effective divisor, image 1) consists of elements of the form v(Op) where D is an effective
divisor. Since Op is the structure sheaf of a subscheme of X of codimension one, we cannot
have v(Op) = v(Ox), which gives the claim. Finally, we show that their images generate
K(X). By (c), for any coherent sheaf .# of rank r, we have v(.%#) — ry(Ox) € image).
By definition, ry(O,) € image f, so we see that v(.%) is generated by image f and image 1.
The elements v(.%#) are generators for K(X), so we have the claim.

From the above comments, we can identify Pic X and Z as subgroups of K(X) such that
PicX +Z = K(X) and Pic X NZ = 0, so we conclude that K(X) = Pic X @ Z.
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~

12. Consider K(X) — Pic X — Z where the first map is projection via the isomorphism K (X) =
Pic X ®Z, and for the second map, we write an invertible sheaf as a Weil divisor )’ n; P; and map
it to " n;. Let deg be the composition K (X) — Z where deg.# = deg~y(#). It is immediately
clear from the definition of K(X) that condition (3) is satisfied. From the definition of degree
of a divisor, it is also clear that condition (1) is satisfied.

If .Z is a torsion sheaf, then y(.#) = v(Op) for some effective divisor D = ) n;P;. The stalk of
Op at P; is k™, whose length as a k-module is n;. We claim that this is also the length of k™ as
an Op,-module. Since k is algebraically closed, we have an embedding k <— Op, and the residue
field of Op, is k. So a filtration of £ as an Op,-module can be extended to a k-filtration. On
the other hand, a maximal k-filtration of k™ has simple quotients, and we claim that such a
filtration remains simple over Op,. To see this, let M = (a) be a simple nonzero module. Then
it is isomorphic to Op,/ Anna. Since Op, is local, Anna C mp, which means that mp/ Anna
must be 0 since it is a submodule of M. Hence, M = mp/Anna = k, which gives the claim.
Thus, deg(.F) = > n; = Y pcx length(.Fp), so this function also satisfies condition (2).

Finally, the degree function must be unique. To see why, we can check by induction on the rank
of a sheaf. If a sheaf has rank 0, then it is a torsion sheaf, and condition (2) forces uniqueness of
degree. For invertible sheaves of rank 1, condition (1) forces uniqueness. For all other sheaves,
we can find an exact sequence as in (Ex. 6.11(c)) and then condition (3) forces uniqueness by
induction.

7 Projective Morphisms

1. Let P € X be a point. The map on stalks fp: £p — .#p is surjective. By assumption, . and
A are invertible sheaves, so Zp and .#p are isomorphic to Ox p as Ox p-modules. Then fp
is given by multiplication by an element x € Ox p. If x belongs to the maximal ideal of Ox p,
then the image of fp is the maximal ideal and hence cannot be surjective. Hence x is a unit, so
fp is an isomorphism. We conclude that f is an isomorphism.

4. (a) Suppose there is an invertible sheaf Z on X such that £ is ample. Then by Theorem 7.6,
Z™ is very ample over Spec A for some m > 0. In particular, this means that there is an
immersion i: X — P’ that factors through the map X — A such that i*(O(1)) = ™. By
definition, ¢ factors as X — Y — P’ where Y is a closed subscheme of P’y and X — Y is
an open immersion. This means that the morphism X — Spec A is quasi-projective, so by
Theorem 4.9, X is separated over A.

(b) Let Uy and U be the two copies of the affine line glued together to form X, and choose
& € PicX. Then & restricted to each U; is also an invertible sheaf, and hence must be
trivial by Proposition 6.2. So every invertible sheaf on X is the result of taking the structure
sheaf on U; and Us and gluing on their intersection. We know that Uy NUs = Spec k[z, 27 1],
so again by Proposition 6.2 the restriction of .Z to Uy N Uy is trivial. Thus, we are asking
about automorphisms of the structure sheaf of Spec k[x,z~!]. By Corollary 5.5, these are
equivalent to the k[z, 2~ !]-module automorphisms of k[z, z~!], namely the automorphisms
of the free module on one generator. These are all given by multiplication by a unit, and
the units of k[x,27!] are of the form az™ where a € k* and x € Z. It is immediate that
two sheaves obtained by the automorphisms az™ and bz™ are not isomorphic if n # m. If
n = m, however, the sheaves differ by multiplication of a unit in k[z], so there are natural
isomorphisms on open sections of the sheaves. Thus, Pic X = Z. To fix notation, let %, be
the invertible sheaf given by the automorphism that is multiplication by z".
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We claim that ., is not generated by global sections if n # 0. In U; and Uy, we have
two different points corresponding to the prime ideal (x). The restriction of .%, to one of
Uy and Uy is identified with Ogpec [y identically, say Ui, and the other is twisted by this
automorphism. In fact, considering .Z_,, switches the roles of Uy and Us, so we can assume
that n > 0. The global section of X is k[z], and taking a set of generators for it will generate
U; at the stalk of (x). However, for any set of global sections of k[z] that we take, their
images in the stalk of the prime ideal corresponding to (z) in Us will be multiplied by z",
and thus cannot generate, because for example, we don’t get x, and the stalk is the ring
k[x](z). So we have the claim.

Now let .F = % be a generator of Pic X, and let .Z be an invertible sheaf. Then .7 is
coherent, but .# @ Z®" is not generated by its global sections from the discussion above.
Thus, X admits no ample invertible sheaves.

8. Exercise. Let X be a Noetherian scheme, let & be a coherent locally free sheaf on X, and let
m: P(&) — X be the corresponding projective space bundle. Show that there is a natural 1-1
correspondence between sections of 7w and quotient invertible sheaves & — . — 0 of &.

Solution. Let f: Y — X be the identity map with Y = X. Then to give a section of , it is
equivalent to give a morphism Y — P(&) over X, which is equivalent to an invertible sheaf .&
on Y together with a surjection f*& — £ (Proposition 7.12). Since f is the identity, this is
exactly a quotient invertible sheaf & — . — 0. O

8 Differentials

3. (a) From the following fiber diagram

Xxs Y2 oy

o

X S

and Proposition 8.10, we have Qx . y/y = pi{x/s. By Proposition 8.11, there is an exact
sequence of sheaves on X xgY

P38y — Qxwgy/s — Qxxgy)y —=0.

We claim that the first map is injective and that this sequence splits naturally, which will
give the desired isomorphism

Qxxsy/s = Uxxgyy ©P3Qyys 2 piQx/s © p3Qyys-

To see this, it is enough to construct natural splittings locally, so choose SpecA C X,
Spec B C Y, and SpecC' C S. Then we have ring homomorphisms C — B and B — AQ¢ B,
so by Proposition 8.3A, there is an exact sequence of C-modules

Qp/c ®@B (A®c B) — Qageop/c — Qage/B —0 .

The first map has a left inverse if and only if any derivation d of B over C into any (A®¢ B)-
module T' can be extended to a derivation A®c B — T by the universal property of 2. But
this is clear because we can define A ®c B — T by a ® b +— d(b) and extend linearly. Thus
the exact sequence splits naturally, so we are done.
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(b) From (a), we have the isomorphism

Qxs,y/e Z P10k G Poy i

By (Ex. 5.16(d)) and (Ex. 5.16(e)), we have an isomorphism

’ n// nl

A Losve 2 A\ piQxn ® A5y =07 \ Qe @5 \ Qv

of their highest exterior powers. The canonical sheaf is defined to be the highest exterior
power of the sheaf of differentials, so this translates to the desired isomorphism

17

~ %k *
WX x,Y = Dwx & pawy .

(c) By Example 8.20.3, wy = Oy(d — n — 1) where d = 3 is the degree of Y and n = 2 is

the dimension of the ambient space. This means that wy = Oy is trivial. Let p; and po
be the projections X =Y xY — Y. By (Ex. 6.8(a)), p; and pj are homomorphisms
PicY — Pic X, so pjwy and plwy are also trivial, which means that wx is trivial by (b).
This means that pg(X) = dimy, I'(X,wx) = 1.
Since Y is a plane cubic curve, it has degree 3 by Proposition 1.7.6(d). Using (I, Ex.
7.2(b)), we see that p,(Y) = £(3 — 1)(3 = 2) = 1. Now by (I, Ex. 7.2(e)), pa(Y x Y) =
Pa(Y)? + 2(=1)"p,(Y) where r is the dimension of Y. Since Y is a curve, and hence has
dimension 1, and thus p,(Y x Y) = —1.

8. Let X and X’ be two birationally equivalent nonsingular projective varieties, and consider the
rational map X — X’. Let V C X be the largest open set for which there is a morphism
f:V — X' representing this rational map. Proposition 8.11 gives a map I Qxrn — Qyyg
Since they are both locally free sheaves of the same rank, there is an induced map on their
highest exterior powers f*wx/ — wy, and also for any arbitrary exterior power f *ng, e Q“I/ Ik
by (Ex. 5.16(e)). Using that f* commutes with ® gives a map f*w$) — w{". Then we have
induced maps on global sections

DXL W) — T(V,wi™)

and

fr: F(X/, Qg(,/k) — IT(V, Q?//k)'

By Corollary 1.4.5, there is an open set U C V such that f(U) is open in X’ and f induces an
isomorphism from U to f(U). A nonzero global section of a locally free sheaf .# cannot vanish on
a dense open set. To see this, let U be a dense open set and suppose a global section s vanishes on
it. Then for any open affine V' on which .% is free, we can take a distinguished open of V in UNV,
call it W. But the map on modules I'(V, #) — I'(W,.%) is injective because X is an integral
scheme and this map is just localization, so s = 0 to start with. So the first maps of vector
spaces above are injective. The proof that the natural restriction map I'(X, w?é") — I(V, w%") is
a bijection is similar to the one presented in the proof of Theorem 8.19 with n = 1, as is the proof
that T(X, Q% ) — T(V,Qf, ;) is a bijection. Thus, P,(X') < P,(X) and h?0(X") < h?0(X). By
symmetry, we get the other inequalities, which means P,(X) = P,(X’) and h9%(X') = h?9(X).
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2 Cohomology of Sheaves

3. (a) We first check that I'y (X, —) is a functor. Let ¢:.% — ¢ be a morphism of sheaves on

X. Pick s € I'y(X,.#) and P € Supp(p(s)). Then ¢(s)p # 0 implies that sp # 0, so
Supp(p(s)) € Supp(s) C Y, which means that we have a map I'y (X, #) — I'y(X,¥9). Tt
is immediate that I'y (X, —) is left exact because I'(X, —) is.

Let U = X \ Y. Pick s € Ty (X,.Z"). By (Ex. IL1.16(b)), there is 3 € I'(X,.7) that
maps to s. We know that s|y = 0, so s|y € T'(U,.#'). Since #' is flasque, there exists
t € I'(X,.#') such that t|y = $|y. Then (§—t)|y =0,s05—t € I'y (U, %), and this element
maps to s because t € I'(X, . #’).

Let .% be flasque and embed it in an injective sheaf .#. Then .# is flasque by Lemma
2.4, and 4 = F /.7 is flasque by (Ex. IL.1.16(c)). Since .# is injective and Hi (X, —)
is a derived functor, H{(X,#) = 0 for i > 0. Hence H'(X,.#) is the cokernel of
I'y(X,.#) — I'v(X,¥), which is 0 by (b). The long exact sequence on cohomology then
gives H(X,.7) = H1(X,%) for all i > 2, so by induction and the fact that ¢ is flasque,
we conclude that H'(X,.%) = 0 for all i > 0.

*by Robin Hartshorne
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(d) Denote U = X \ Y. Let ¢ and v denote the maps I'y (X,.#) — I'(X, .#) and I'(X, #) —
(U, ), respectively, where ¢ is an inclusion and 1 is the restriction map. Since .#
is flasque, we get that ¢ is surjective. Pick s € I'y(X,.#). Then Supp(¢(s)) C Y,
which means that for any P € U, there is a neighborhood V C U containing P such that
¥ (s)|y = 0. This implies by the sheaf property that ¥ (s) = 0. Hence ¢»¢ = 0. On the
other hand, suppose s € kert. Then ¢(s)p = 0 for all P € U, which means that sp =0
for all P € U, and hence s € T'y (X, .%).

(e) Let .#° be a flasque resolution for .#. Then .#°|y is a flasque resolution for .#|y. That it
is a resolution can be checked at the stalk level, and this is clear because (Z|y)p = Fp
forall P e U, and (Z|y)p =0 for P ¢ U (for a general sheaf .#). Then by (d),

0—Iy(X,s*)—T(X,7°) —T(U, 7 ly) —=0

is a short exact sequence of cochain complexes; the fact that the maps are given by inclu-
sion and restriction give that the appropriate squares commute. The long exact sequence
induced on cohomology is the desired long exact sequence of cohomology groups.

(f) The restriction map of .%# induces a map I'y(X,.#) — I'y(V,.Z|y) which is a natural
isomorphism of functors. To see this, if s € I'y(X,.#), then its image in I'(V, Z|y) will
have support in Y NV =Y. Conversely, if t € I'y(V, Z|v), we know that t|;y = 0 where
W =V N (X\Y). Hence we can lift ¢ to an element ¢’ € T'(X,.%) such that t'|,y = ¢ and
t|x\y = 0. The functor on the left is a universal -functor. The functor on the right is also
a d-functor by virtue of being a derived functor. Furthermore, the functor on the right is
effaceable. Given a sheaf .# on X, we can embed . into a flasque sheaf, and the restriction

of a flasque sheaf to an open set remains flasque, which means its cohomology vanishes on
V.

4. Let .#° be a flasque resolution for .#. Then we define

OﬂrylﬂYQ(ij.)Lryl(Xa'ﬂ.)@FYQ(X)’%.)LFXGUYQ(X)VJ.)HO

where ¢ is the inclusion s — (s, —s) and 1 is the map (s,t) — s+ ¢. It is immediate that ¢ is
injective and that we have exactness in the middle.

For surjectivity, pick o € T'y;uy, (X, #"). The sections a|x\y, € ['(X \ Ya, #") and 0 € I'(X \
Y1,.#7) agree on overlaps, so lift to a section o € T'(X \ (Y1 NY2),#"). Since .#7 is flasque,
we can lift this to an element o € T'(X,.#"). Now the stalk of o” outside of Y7 is 0, so
" €Ty, (X, #7), and the stalk of o’ and « agree outside of Y, so a — " € T'y, (X, .#"), so we
see that 1 is surjective.

It is not hard to see that ¢ and v define maps of cochain complexes, and hence the long exact
sequence on cohomology gives the desired Mayer—Vietoris sequence.

3 Cohomology of a Noetherian Affine Scheme

1. If X is affine, say X = Spec A4, then X,oq = Spec A;eq Where A..q is A modulo its nilpotent
elements. Suppose conversely that X,.q is affine. Let .4 be the sheaf of nilpotent elements on
X. Pick any coherent sheaf .# on X. If we can show that H'(X,.#) = 0, then X is affine by
Theorem 3.7. Note that we have a filtration

FON - FON? FD...,
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3.

and that for some r, 47 -.% = 0 because .%# is coherent. More precisely, we can look at a finite
open covering and pick a high enough r such that each finite generating set of .% on each open
set is annihilated by .#7. Also note that

N TN T (F N V(TN F),

and that /AN . F = F R0 (’)g(red, so each quotient in the filtration is a quasi-coherent
sheaf on X,eq. In particular, their first cohomology vanishes on X,.q. But X and X,.q are
homeomorphic, and sheaf cohomology depends only on the topology of the scheme, so in fact
these quotients have vanishing first cohomology group on X as well. Now working by induction,
we can show that H'(X,.#) = 0 by knowing that .47 -.% = 0 for sufficiently large r.

Every irreducible component of X is a scheme via the reduced closed subscheme structure. If
X = Spec A is affine, each closed subscheme looks like Spec A/I for some ideal I C A, so each
irreducible component is affine.

Conversely, suppose each irreducible component is affine. By putting the reduced structure on
each irreducible component and using induction, it is enough to prove that if X =Y U Z where
Y and Z are reduced closed subschemes such that Y and Z are affine, then X is affine. Let .
and _# be the sheaves of ideals of Y and Z, respectively, and let .7 be a coherent sheaf of ideals
on X. Since & N _Z is the sheaf of ideals associated to a closed subscheme whose topological
space is X, and X is assumed to be reduced, .# N _¢ = 0 and hence .# - # = 0. Then .%# - ¥ is
annihilated by _# so is a coherent sheaf on Z, which means that H'(Z,.# - .#) = 0. Similarly,
F |F - . is annihilated by .#, so is a coherent sheaf on Y and H*(Y,.% /% - .#) = 0. The short
exact sequence
0—F - F—>F —=F|F - —0

gives
Hl(X,ﬁ-f)HHl(X,ﬁ)HHl(X,ﬁ/LQZ-ﬂ) .

We can compute sheaf cohomology of .% - .# in Z and similarly, we can compute sheaf cohomol-
ogy of Z#/F - .7 in Y, so the vanishing of the two cohomology groups on the outside implies
HY(X,.#) =0, which gives that X is affine.

(a) Let f: M — N be a map of A-modules. To see that I'q(—) is a functor, it is enough to
show that f(I'q(M)) C I'q(N). But this is obvious: if there is an n > 0 such that am = 0
for all @ € a” and m € M, then af(m) = f(am) =0, so f(m) € ['q(N). The left exactness
is also obvious.

(b) We first find an isomorphism for i = 0. In this case, HO(M) = I'q(M) and H{.(X, M) =
I'y (X, M). Since these can both be thought of as submodules of M, we just need to check
that they contain the same elements. Given m € T'q(M), it is killed by some power of

a. If a prime ideal p does not contain a, then it does not contain any power of a, so
in the localization My, m is killed. Hence p € V(a) implies p ¢ Suppm, which means

m € Ty (X, M).
Conversely, if m € T'y (X, M), then m is in the kernel of the localization map M — M,
for all primes p which do not contain a. Let x1,...,x, be generators for the ideal a. Then

{D(z;)} is an open cover of X \ Y. The image of m in each D(z;) is 0 because of the sheaf

property of M, which means that m is annihilated by z¥ for N sufficiently large and all 4.
Hence m € I'q(M).
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Since H, g(—) is a universal d-functor on the category of A-modules, to show the isomorphism,
it is enough to show that Hi (X, ~) is an effaceable functor for all i. To do this, let N be
any A-module and embed it into an injective A-module I. Then I is flasque (Proposition
3.4), and hence Hi (X, I) =0 for all i (Ex. 2.3(c)).

Let M — I°® be an injective resolution of M. Then
Hi(M) = (image(Ta(I'™") — Fa(1")/(ker(Ta(I") — Ta(I"*1)),

and being a quotient of modules consisting of elements which are annihilated by some power
of a, it itself also has that property.

If depth, M > 1, then there exists an element f € a such that the map M — M given by
multiplication by f is injective. Hence we cannot have am = 0 for any nonzero m € M,
so depth, M > 1 implies that T'q(M) = 0.

Now assume that M is finitely generated and that I'y(M) = 0. Then a is not contained in
any associated prime of M. Indeed, if p O a is an associated prime, then p annihilates some
nonzero element m € M, and hence so does a. If depth, M = 0, then every element of a
annihilates some nonzero element of M. Hence a is contained in the union of the associated
primes of M, and so must be contained in at least one of them by prime avoidance. We
conclude from this that if M is finitely generated and I'q(M) = 0, then depth, M > 1.

Let Ty, be the statement that depth, M > n if and only if Hi{(M) = 0 for all i < n. We
prove by induction on n that T), is true for all n. The case n = 0 is (a), so suppose it
true for n and choose M with depth, M > n + 1. Let z1,...,2p4+1 € a be an M-regular
sequence; we get a short exact sequence

T

0 M M M/z1M ——0

which gives rise to a long exact sequence on cohomology
= Hy (M /xy M) — Hi(M) — Hg(M) — -

The first term vanishes since depth, M/xz1M > n. Also, the map HJ (M) — HZ(M) is
multiplication by x, which is not injective (Ex. 3.3(c)) if HJ (M) # 0, so we conclude that
H(M) = 0. So depth, M > n + 1 implies that H:(M) = 0 for all i < n + 1.

Conversely, suppose that H:(M) = 0 for all i < n + 1. Then the long exact sequence on
cohomology gives that Hi(M /x4 M) = 0 for all i < n. By induction, depth, M/z; M > n—1,
so depth, M > n. Hence T),; is also true.

5. First suppose that depthOp > 2. By (Ex. 2.3(e)) and (Ex. 2.3(f)), there is a long exact
sequence

H(F)’<U7 O’U) - F(Uv O’U) - F<U \ P, O‘U) - H}’(Uv O|U)

By (Ex. 2.5), we have natural isomorphisms

Hp(U,0ly) = Ho(Up, j*O|v)

where Up is the local space of P in U and j: Up — U is the inclusion. But j*O|y is a quasi-

coherent sheaf which locally on a neighborhood of @) € Up looks like @5 Replacing Up with
an affine neighborhood X of P relative to Up, we get

Hb(Up,*0ly) = Hp(X, Op)
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(Ex. 2.3(f)). Now (Ex. 3.4(b)) shows that
Hp(U,0ly) = Hp(U,Oly) =0,
which implies that the restriction map I'(U, O|y) — T'(U \ P, O|y) is an isomorphism.

Conversely, pick U to be an open affine neighborhood of P. Then the long exact sequence
becomes

0— HY(U,Oly) —=T(U,0|y) —=T(U \ P,O|ly) — H5(U,Oly) —=0

because higher cohomology vanishes for affine schemes. So if I'(U,O|y) — I'(U \ P,O|y) is an
isomorphism, then we know that

HR (U, Oly) = Hp(U, Oly) = 0.
Using the above, we see that this is equivalent to depth Op > 2.

6. (a) We appeal to the general fact that a functor that has an exact left adjoint preserves injective
objects. Since the ~ and I'(Spec A;, —) functors are an equivalence of categories between
the category of A;-modules and Qco(Spec 4;), we get that I; is an injective object in
Qco(Spec 4;). For an open immersion f: U; — X, the functor f is right adjoint to the
exact functor f~1, so also preserves injectives, which means f.(I;) is injective in Qco(X).
Finally, finite direct sums are the same as finite products, which is the categorical product,
and a product of injectives is injective, so we conclude that ¢ is an injective object in
Qco(X).

(b) Let .# be an injective object of Qco(X). We can embed .# in a sheaf ¢ as in (a). Since
# is injective, this inclusion splits, so . is a direct summand of 4. We know that ¥ is
flasque (Corollary 3.6), and a direct summand of a flasque sheaf is flasque, so .7 is flasque.

(c) We have just shown that the forgetful functor from Qco(X) to Mod(X) is effaceable. It
is obvious that the global sections functor is unaffected by an application of the forgetful

functor, so we conclude that sheaf cohomology of quasi-coherent sheaves can be computed
within Qco(X).

4 Cech Cohomology

1. Let 4 be an open affine cover of Y. Since f,.Z is quasi-coherent (Proposition I1.5.8(c)), we have
an isomorphism

HP (4, f.7) = HP(Y, foF)

for all p > 0 (Theorem 4.5). By definition, the Cech cohomology groups are the homology of
the cochain complex with groups

W L) = ] 70U Ui,
i< <ip
which is equal to CP(f~(4),.#) where f~1(l) is the inverse images of all open affines in 4. So
we have isomorphisms
HP (U, f.7) = HP(f~H(4L), F)
for all p > 0, and using Theorem 4.5 on f~1({) and .#, we conclude that
H'(X,Z) = H'(Y, f.F)

for all ¢ > 0.
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2.

(a)

The function field K (X) is a finite field extension of K(Y) (cf. (Ex. I1.3.7)). Let r =
dimg(yy K(X), and choose a basis {x1,...,2,} of K(X) as a K(Y)-vector space. Now let
A be the Ox-submodule of K(X) (as a constant sheaf) generated by {z1,..., 2}, ie.,
on each open affine Spec A of X, A |speca = ]\7; where M4 is the submodule of K(X)
generated over A with generators {1, ...,x,}. Then .# is coherent. Since .# is generated
by the global sections {z1,...,z,}, sois f.#, so we get a morphism a: O}, — fy.#. Since
f is surjective, the generic point of X maps to the generic point of Y. At the generic point
of Y, OF is an r-dimensional vector space over K(Y), as is f,.#. From our description,
the map at the stalk of the generic point is surjective, and hence an isomorphism.

Let a: O} — fsl be the morphism from (a). Apply the functor s#om(—,.#) to this map
to get B: Hom(f M, F) — F". The sheaf Hom(f..#,F) is a coherent f,Ox-module
and f is an affine morphism, so Zom(f..#, F) = f.& for some coherent sheaf ¥4 on X
(Ex. 11.5.17(e)) (though the statement is for quasi-coherent sheaves, we can insert “finitely
generated” within the proof to get the desired result).

Let f: X — Y be a finite surjective morphism of Noetherian separated schemes with X
affine. There is an induced morphism freq: Xred — Yied (Ex. 11.2.3), and X,eq is affine
(Ex. 3.1). If we can show that Yieq is affine, then Y is also affine (Ex. 3.1). By the fact
the construction of f,eq, it is surjective. It is not hard to see that if A is a finite B-module,
then Aeq is a finite Byeq-module, o freq is also a finite morphism. Finally, the reduced
structure preserves the Noetherian and separated properties (Ex. 11.4.8), so we may reduce
to the case that both X and Y are reduced.

Now let X’ be an irreducible component of X. Then f(X’) is closed in Y (Ex. I1.3.5(b)).
Since f is surjective, f(X') is also irreducible, and every irreducible component of Y is of the
form f(X’) for some irreducible component X’ of X. Hence, we get a map f: X' — f(X')
which is also finite, surjective, and between Noetherian separated schemes. So we may
reduce to the case that X and Y are also irreducible (Ex. 3.2). Combined with the above,
we may assume that both X and Y are integral schemes.

Now let .# be a coherent sheaf of ideals on Y. By (b), there exists 4 € Coh(X) and a
morphism 3: f,.¢9 — 7 for some r > 0 such that § is an isomorphism at the generic point
of Y. Then HY(Y, f,4) = 0 for all i > 0 by (Ex. 4.1) and (Theorem 3.7). We have short

exact sequences

0 ker 3 19 f+4 | ker  ——0

and
00— fi¥9/ker  —— g7 —— coker f ——0) .

Note that f,¢ € Coh(Y) (Ex. I1.5.5(c)), so ker 3 and coker 3 are coherent sheaves on Y
(Proposition I1.5.7). Since (3 is an isomorphism at the generic point, both ker 5 and coker 3
vanish at the generic point, so there exists some nonempty open set containing the generic
point for which ker 8 and coker 8 are not supported, let Z be the complement of this open
set. Then we can compute sheaf cohomology of ker § and coker  as sheaves on Z and get the
same result (Ex. 2.3(e)), so by Noetherian induction, H'(X, ker 3) = H(X, coker 3) = 0
for all i > 0. Since H (Y, f.%4) = H'(X,¥4) = 0 (Ex. 4.1) and (Theorem 3.7), the long
exact sequence on cohomology gives H'(Y, .4 /ker 3) = 0, and hence H'(Y,.#7) = 0.
Finally, direct sum commutes with cohomology (Proposition 2.9), so H(Y, .#)" = 0, which
implies that H!(Y,.#) = 0. Therefore, Y is affine (Theorem 3.7).
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and the restriction maps are the natural inclusions. Hence the image of C°(4,U) in C*(U, U) is
generated as a k-vector space by monomials x'y/ where at least one of ¢ and j is nonnegative.
Since H'(U, Oy) = H*(U,U) (Theorem 4.5), we conclude that it is isomorphic to the k-vector
space spanned by {z'y’ | i,j < 0}.

To check exactness, it is enough to check at the stalks, so pick z € X. Then we get

00— LO;{,(E v O;{Q,[L’ 0

and ¢ is given by a — 1+ a, which is a homomorphism because .#2 = 0, and is clearly injective.
This is also well-defined because the multiplicative inverse of 1 + a is 1 — a. Now we check
exactness in the middle. The image of ¢ is contained in the kernel of ¢ because (1 4+ a) = 1.
Conversely, if ¢(b) =1 for b € O ,, then we can write b =1+ (1 —b) where 1 —b € .7,.

Finally, we need to check surjectivity of ¢. Pick b € O , with inverse c. Then we can find lifts

b and € in Ox, and bc — 1 under the projection Ox , — Ox, . So 1 — b¢ = a for some a € 7
Hence we have bc(a — 1) = (1 4+ a)(1 — a) = 1, which means b € O%.

The exact sequence of Abelian groups
+——HYX, ) —=Pic X —=PicXg —= H*(X,.9) — -
is an immediate consequence of the long exact sequence of cohomology groups and (Ex. 4.5).

(a) Let N be the least integer such that H*(X,¥) = 0 for all coherent sheaves ¥ and i > N.
Now let .# be an arbitrary quasi-coherent sheaf. We can write % as the union of its
coherent subsheaves (Ex. I1.5.15(e)), or in other words, as a direct limit of its coherent
subsheaves. Since direct limits commute with cohomology (Proposition 2.9), we conclude
that H(X,.%#) =0 for i > N, which means N = cd(X).

(b) If X is quasi-projective over k, then we can find an open immersion X — Y with YV
projective over k. Let N be the least integer such that H*(X,%) = 0 for all locally free
coherent sheaves ¢4 and i > N. Now pick .# € Qco(X). We can find %’ € Qco(Y) such
that Z'|x =2 .% (Ex. 11.5.15). Then we can write .#’ as the quotient of a sheaf & which is
the direct sum of twisted structure sheaves O(n;) for some integers n; (Corollary 11.5.18);
let # be the kernel. Since exactness of sheaves is a local property, we get a short exact
sequence

0— X |x E|x F 0.
Also, a sheaf ¢ is locally free if and only if its stalks ¥, are free O, -modules for all z € X
(Ex. I1.5.7(b)), so £ | x is a coherent sheaf. We get a long exact sequence
- — H{(X,&|x) — H (X, %) — HY (X, X |x) —= HTYX,&|x) — -,

and if i > N, then the terms on the outside vanish, and hence H'(X, %) = H'""Y(X, | x).
Applying Grothendieck vanishing and descending induction, we get that H*(X,.%#) = 0 for
alli > N, so cd(X) = N.
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()

(d)
()

Since Cech cohomology agrees with sheaf cohomology when X is a Noetherian separated
scheme and the open covering 4 consists of open affines, and .% is a quasi-coherent sheaf
(Theorem 4.5), we have H(X,.7) = H'(4,.F). Tt is obvious that H(4,.#) =0 for i > r
if 4 consists of r 4+ 1 open affines, so cd(X) < r.

5 The Cohomology of Projective Space

1. The short exact sequence

7.

0 F' F F 0

induces a long exact sequence on cohomology

0—>H0(X, F') 4>HO(X, F) 4>H0(X, F) — - 4>Hd(X, T 0

where d = dim X. Then the cohomology groups are finitely-generated k-vector spaces (Theorem

5.2).,

(a)

so the alternating sum of their dimensions is 0. This is equivalent to saying that
X(F) =x(F) + x(F").

Choose .# € Coh(Y). Then i..# € Coh(X) (Ex. IL.5.5(c)). We know that
HIY, Z @ (i"2)") = HI(X,i.(F © (i"Z2)"))

for all ¢ > 0 (Ex. 4.1). Also, (¢".2)" = *(Z") (Ex. 11.6.8(a)), and i (# ® i"(L")) =
i« @ L™ (Ex. 11.5.1(d)), so we get

HUY, 7 @ (i*2)") 2 HU(X,i,F ©.2").

By Proposition 5.3, . is ample.

Let f: X;eq — X be the canonical map. Then f*% = f~1.& ®f-105 OX,0q = ZLred; S0 by
(a), if £ is ample, then S0 is ZLeq.

Conversely, suppose that Z.q is ample. Let .4 be the sheaf of nilpotent elements on X.
Then there exists r such that .4/ = 0 since X is Noetherian. Choose .# € Coh(X). Then
N F | NFL F € Coh(Xyeq) since it is the quotient of two coherent sheaves. Then there
is an integer N; such that

Hq(Xredaf/Vi : g/‘/VH_l - F ®OXred rgd) =0

for all n > N; and ¢ > 0 (Proposition 5.3). Let ng = max{Ny,..., Ny_1}. Since Zeq =
Z R0y Ox,.,, it follows that

red’
N TN F oy Lo N FN T F 0o, L

The latter is a sheaf on X, and since sheaf cohomology depends only on the topological
space X = X,.q, we conclude that

HY(Xyea, V' - F N F @0 L) =0
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for n > ng and ¢ > 0. We have a short exact sequence
04>in+1.y4>:/yi_94>wi.y/(/1/i+1 F——>
which becomes
0— /. Zosm—s 4. Zof"— N FINT. TR L"—0

because locally free sheaves are flat. To finish, we take the long exact sequence on coho-
mology and use descending induction on ¢ to get that

HY(X, 7 ®.%") =0

for all n > ng and ¢ > 0 (the base case is i > r), so .£ is ample (Proposition 5.3).

One direction follows from (a): if .# is an ample sheaf on X, then for the inclusion j;: X; —
X where X, is an irreducible component of X, j/¥ = ¥ ® Oy, is ample on Xj.

Suppose conversely that j7.Z is ample for each inclusion j;: X; — X where the X; are the
irreducible components of X. To show that .Z is ample on X, we can proceed by induction
on the number of irreducible components of X by putting the reduced structure on the
irreducible components. Hence we need only prove that if X = Y U Z with f: Y — X
and g: 7 — X and f*.Z and ¢g*.Z are ample, then .Z is ample. Let .# and _# be the
sheaves of ideals of Y and Z, respectively. The sheaf .# N ¢ is the sheaf of ideals of a
closed subscheme of X with the same underlying topological space as X. Since we assume
X is reduced, # N _# =0, and hence .# - ¢ = 0. Choose .# € Coh(X). Then .# - .7 is
killed by ¢, so is a coherent sheaf on Z. Hence there is some /N1 such that

HYZ,(F - I)@(g"Z)") =0

for all ¢ > 0 and n > Nj. Now consider the sheaf ¥ = .7 /% - .. It is killed by .#, so is a
coherent sheaf on Y, so there is a Ny such that

HY(Y.9  (f*2)") =0

for all ¢ > 0 and n > N,. Now take ng = max(N1, N2). The short exact sequence

00— .7 F g 0
gives rise to a long exact sequence on cohomology
o ——HI(X, 7 I QRL")—HI(X,7%L") —HI(X,9L") —---.

The terms on the outside can be computed over Z and Y (using f*.¢ and ¢*.Z instead of
Z), respectively (Lemma 2.10), so they vanish for ¢ > 0 and n > ng. Hence the same is
true for the middle term, and we conclude that ¥ is ample on X.

The proof of (a) shows that if . is ample on Y, then f*.# is ample on X.

Suppose conversely that f*.Z is ample on X. By (b) and (c), we may assume that X and
Y are integral schemes: f finite implies that it is closed, so an irreducible component of
X maps to a closed subset of Y. In fact, this closed subset of Y is irreducible because
f is also surjective. Let .# € Coh(Y). Then there exists 4 € Coh(X) and a morphism
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B: f«4 — F" where r is the dimension of K(X) over K(Y) and [ is an isomorphism at
the generic point (Ex. 4.2(b)). Then as in (a),

HI(X, 9 & (f*2)") = HI(Y, £.4 @ £"),

and in particular, there exists ng such that both sides vanish for n > ng and ¢ > 0
(Proposition 5.3). Since f,¥ € Coh(Y) (Ex. I1.5.5(c)), we conclude that ker 3, f,.¥/ ker 3,
and coker 3 are coherent sheaves on Y (Proposition 11.5.7). Since 3 is an isomorphism at
the generic point, it an isomorphism on some open set containing the generic point, so ker
and coker 3 are supported on proper closed subsets. By Noetherian induction and using
the long exact sequence on cohomology of the two exact sequences

0 ker 8 % image 3 ——(

and
0 —— image f —— " ——coker f —— 0,

we conclude that
HIY,F " L") =0

for n > ng and ¢ > 0. Finally, we use that tensor product and cohomology commute with
direct sums (Proposition 2.9) to get

HYWY, 72" =0
for n > ng and ¢ > 0. Therefore, .£ is ample on Y (Proposition 5.3).
10. For each i, we get a short exact sequence
0 —image(F'~! — F') —— pi —— F"*l /image(F' — F'tl) ——0

where we say that FO = F™*! = 0. By Theorem 5.2(b), we can find an ng such that for all
n > ng, higher cohomology of the nth twists of each term above vanishes. Thus,

[(X, 7 (n) —= (X, Z%n)) —> - —> (X, F"(n))

is exact for all n > ng.

6 Ext Groups and Sheaves

4. Choose .# € Coh(X). By assumption, there exists a surjection .2 — . where .Z is a locally
free sheaf on X. Then ' '
Ext' (L, 9z = Exto, (Lo, %)

for all x € X and ¢ > 0 (Proposition 6.8). The right hand side is 0 since .Z; is a free Ox ;-module
(Ex. IL5.7(b)). So &xt' (L, 9) = 0 for all i > 0. Hence &xt'(—,9) is coeffaceable for all i > 0,
which means that (&zt'(—,%));>0 is a universal -functor Coh(X)°? — Mod(X).

7. We first show that the functors Ext’ (]\7 ,—) and Ext’y (M, —) agree. For i = 0, this follows from
Corollary I1.5.5. Given an injective A-module I, the quasi-coherent sheaf I is injective in the
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category Qco(X). Hence & thX(M ,I) = 0 for i > 0, which means the first functor is effaceable,
so we get the desired claim. In particular, this implies that for M and N finitely generated,

Exth (M, N) = Ext’y (M, N).

Now we consider the functors éoxth(M, ~) and Ext% (M, —)~. Again for i = 0, both are isomor-
phic to Hom4 (M, —)~ (Corollary 11.5.5). The second functor is effaceable since Ext’ (M, I) =0
for i > 0 whenever I is injective. Using Lemma 6.1, &xt’ (]Tf, I) =0 for i > 0 and I injective,
so the first functor is also effaceable. So we get an isomorphism

Extsy (M, N) = Extiy (M, N)™.

7 The Serre Duality Theorem

3. If r = 0, then the statement is true because the higher cohomology of the structure sheaf
vanishes. For n > r > 0, first consider the short exact sequence of Theorem I1.8.13:

0 Qx/k Ox(-1)"! —=0O0x ——0.

Taking the rth exterior power we get a filtration (Ex. 11.5.16(d))

r

/\OX(_l)n+1:F02F1 O... QFTQFT+1:0

whose quotients are
r—p

p
Fp/Fp+1 = /\QX/k® /\ Ox.

Since Ox is rank 1, this quotient is 0 when r — p > 2, or equivalently, p < r — 2. Hence the
filtration looks like

I
/\Ox(—1>n+1 = FO = Fl —_ .. = FT—l D FT D FT-H _ 07
so we have a short exact sequence
OHFTHFT*IHFT—l/FT 0

which translates to

0 ——> Y/, —> \" Ox ()" —= Q) —>0.

The term in the middle has vanishing ith cohomology for 0 < i < n (Theorem 5.1(b,c)) and
also for ¢ = 0 because it has no global sections, so by considering the long exact sequence on
cohomology, we get

HTH X, Q) = HI(X, QY )

for all 1 < ¢ < n. So by induction, Hq(X,QS(/k) isOifr#£qgand kifr=qfor 0 <qg<n.
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8 Higher Direct Images of Sheaves

2. By Corollary 3.6, we can embed % into a flasque, quasi-coherent sheaf &4. The short exact
sequence

0 F % G| F ——0

gives the long exact sequence

0 [F [ f4)F)—R'f.F —=0

and that R'f,. 7 = R"=1f,(9/F) for all i > 1 (Corollary 8.3). Since ¥/.F is quasi-coherent,
by induction it will suffice to show that R'f,.# = 0, or equivalently, that f,4 — f.(9/.%)
is surjective. Pick an open set U C Y. Then to check surjectivity, we need only check local
surjectivity in the sense of (Ex. I1.1.3(a)), so we may as well assume that U is affine. Then the
map ['(U, f,9) — T(U, f«(4 /%)) can be rewritten as I'(f~}(U),9) — I'(f~1(U),9/%). By
assumption, f~1(U) = Spec A is affine, so surjectivity of this map follows from Corollary I1.5.5
and Proposition I1.5.6 because it is equivalent to the projection of modules M — M/N where
M and N are A-modules such that M = %\fﬂ(U) and N = ﬁ\fﬂ(m.

3. We consider the functors R'f,(— ® f*&) and R'f.(—) ® &. That the two agree for i = 0 is the
content of (Ex. I1.5.1(d)). Pick an open affine U C Y such that &y is free. It is enough to find
natural isomorphisms on U (replacing X with f~1(U)) and then glue them together to get an
isomorphism on Y. So we may assume that & = Oy for some n. Then f*& = f*Oy = O%.
Tensoring with O} is exact, so R'f.(—) @ & is a d-functor. Also, the first functor becomes
F s Rif.(F"), so is also a d-functor because .# +— .F" is an exact functor. If .# is flasque,
then RY(Z#)® & = 0 for i > 0 (Corollary 8.3), and R'f.(.#") = 0 for i > 0 because .#" will also
be flasque. Hence both functors are effaceable, so are isomorphic functors. Thus we conclude
the projection formula

Rf(F@fEZR(F)DE
on U, and since this isomorphism is natural (given by natural isomorphism of functors), it
globalizes to all of Y.

9 Flat Morphisms

1. Let U be an open set in X. Then f(U) is a constructible set in ¥ (Ex. 11.3.19). To see that
f(U) is open, it is enough to show that it is stable under generization (Ex. I1.3.18(c)), i.e.,
if y € f(U) and y € {y'}, then 3/ € f(U) where Z denotes the closure of Z. A generization
y" of y is nothing more than a prime ideal in Spec Oy, since {y'} = V(y) in the affine case.
Pick x € f~1(y), then to see that f(U) is closed under generization, it is enough to show that
there exists 2’ € Spec Ox , such that f(2’) = y'. So we may assume that X = Spec Ox , and
Y = Spec Oy, and the surjectivity of Spec Ox ; — Spec Oy, is a consequence of the going-down
property of flat maps.

10. (a) Let X = P} and Jx = %”omox(ﬂﬁ(/k, Ox) be the tangent sheaf on X. We have an exact
sequence

0 Oy Ox(-1) ® Ox(~-1) —=O0x —=0

(Theorem I1.8.13), so applying the functor s#ome, (—, Ox), we get a short exact sequence

OHOXHOX(I)@O)((UHQXHO.
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By Grothendieck vanishing (Theorem 2.7), the long exact sequence on cohomology gives a
surjection

HY(X,0x(1)® 0x(1)) — HY(X, Ix).

We claim that H'(X,Ox (1) ® Ox(1)) = 0. Since cohomology commutes with direct sums
(Proposition 2.9), it is enough to compute H'(X,Ox(1)). Using the Cech complex, one
can deduce in general that H'(X,Ox(n)) is the space of monomials of S, (the ring S
with 2 and y inverted, where S = k[x,y]) of degree n modulo the monomials 2%y” where
a+b=n and either @ > 0 or b > 0. In the case n = 1, we get H*(X,Ox(1)) = 0. Hence
HY(X, Zx) =0, so P} has no infinitesimal deformations (Example 9.13.2), so is rigid.
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1 Riemann—Roch Theorem

1. Let g be the genus of X. If n > 2g—2, then dimy H°(X, .Z(nP)) = n+1—g, so for n sufficiently
large, H'(X,.#(nP)) has nonzero sections. Also,

HO(X, 2(nP) = {f € K(X) |vp(f) > —n. vo(f) > 0 for Q # P},
which can be seen from the bijection between effective divisors linearly equivalent to nP and
the projective space on H°(X,.Z (D)) (cf. Proposition I1.7.7). So we can pick nonconstant
f € H°(X,Z(nP)) so that f has a pole at P and poles nowhere else. To ensure that f is
nonconstant, we can take n so that dimy, H°(X,.Z(nP)) > 1.

2. For each P;, by (Ex. 1.1), we can find a nonconstant rational function f; € K(X) which is
regular everywhere except at P, i.e., for every point @ # P, we have vg(f;) > 0 and vp(f;) <0
where vg denotes the discrete valuation of local ring at Q. Let f = f; +--- 4 f,. For any
Q¢ {P,..., P}, we have vg(f) > min{vg(f1),...,vo(fr)} > 0. Suppose that vp,(f) > 0 for
some %, i.e., f € Ox p,. By assumption, f; € Ox p, for j # i, so subtracting them from f implies
that f; € Ox p,, which is a contradiction. So we see that vp,(f) < 0 for all 7.

3. Embed X as an open set in a proper curve X. For example, we know by Remark 11.4.10.2(e) that

X can be embedded as an open subset of a complete variety, so Proposition 1.6.7 and Proposition
1.6.9 show that X can be embedded as an open subset of a complete curve, which we call X. The
complement of X in X is closed, and hence a finite set of points, call them Pj,..., P,.. By (Ex.

1.2), we can find a rational function f € K(Y') such that f has poles at each P; and is regular

*by Robin Hartshorne
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elsewhere. This function gives a morphism f: X — P} such that f~!({cc}) = {P,..., P }.
Hence f_l(Allg) = X. By Proposition I1.6.8, f is a finite morphism, so X is affine.

. By definition, dim |D| = ¢(D) — 1. So by Riemann-Roch,

dim |D| — (K — D) =degD — g.

We wish to show that
(K — D) < g =dim H(X, Z(K)).

By Proposition 11.6.13(b), we know that
(K — D) = dim; H'(X, Z(K — D)) = dim;, H*(X, Z(K) ® Z(-D)).

Since D is effective, £ (—D) is a subsheaf of Ox (cf. Proposition I1.6.18). Tensoring with .2 (K)
is an exact functor because .Z(K) = wx is an invertible sheaf (this can be reduced to checking
locally, in which case this is the statement that free modules are flat). Hence £ (K) ® Z(—D)
is a subsheaf of Z(K) ® Ox = Z(K), which means that

dimy, H'(X, Z(K) ® £(-D)) < dim H)(X, Z(K)) = g.

Thus the inequality dim |D| < deg D holds.

Equality holds if and only if /(K — D) = g. Suppose this equality holds. In the case that g > 0,
we see that Z(K) ® Z(—D) = Z(K), which means that £ (—D) = Ox. We see that D ~ 0
(Corollary 11.6.14), and since D is effective, we conclude that D = 0.

Conversely, if D = 0, then {(K — D) = ¢(K) = g by definition. If ¢ = 0, then deg(K — D) =
—2 —deg D (Example 1.3.3). Since D is effective, deg D > 0, so deg(K — D) < 0, which implies
/(K —D)=0=g (Lemma 1.2).

Pick g + 1 distinct points Pi,..., Py41, and let D = P + P> + --- + Py41. By Riemann-Roch,
we have

UD)=degD+1—-g+ (K —-D)=2+(K — D),
so (D) > 2, which means that there is some nonconstant rational function f € I'(X,.Z (D))
such that f has poles at some nonempty subset of {P,..., P11}, and is regular elsewhere.

Then f defines a nonconstant morphism X — P,lg, which is finite by Proposition I1.6.8. So the
preimage of oo in P,lC has < g + 1 points, which means deg f < g + 1.

(a) We know that deg K = 2g —2 = 2 (Example 1.3.3) and dim |K| =¢(K)—1=g—1=1by
definition. Suppose that K is not base point free. Let P be a point for which sp € mpwp
for all s € I'(X,w). Let w(—P) be the kernel of the surjection w — wp/mpwp. We get an
exact sequence

0—TI'(X,w(=P)) —I'(X,w) —wp/mpwp ,
and by assumption on P, I'(X,w(—P)) = I'(X,w), so has dimension g = 2. Being a nonzero
subsheaf of w, w(—P) is an invertible sheaf. Let s,¢ € I'(X, w(—P)) be linearly independent

sections. Both s and ¢ define divisors of zeroes of degree 1 since

degw(—P) = degw — degwp/mpwp =1
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(Ex. 11.6.12 and Proposition 11.7.7). In particular, s and ¢ both vanish at a single point,
and these points are different because we have assumed that they are linearly independent.
Thus, w(—P) is base point free, so defines a morphism ¢: X — P} (Remark 11.7.8.1). By
(Ex. 11.6.8), ¢* £ (D) = £ (p*D) for a divisor D on P}, so

deg ¢ - deg O(1) = degw(—P),

hence degy = 1 (Proposition I11.6.9). But this means that the function field K(X) is a
degree 1 extension of the function field of P}, i.e., they are the same. This implies that
X = P} (Corollary 1.6.12). But genus is a birational invariant, and the genus of P} is 0,
so this is a contradiction. Thus, K is base point free.

Since dimy H%(X,wy) = 2, we can give two vectors that span it, and hence a morphism
f: X — Pj. In fact, f is finite (Proposition 11.6.8). By (Ex. 11.6.8), f*£(D) = .Z(f*D)
for a divisor D on Pi,, SO

deg f - deg O(1) = degwx

(Proposition 11.6.9). Since O(1) has degree 1 and we have just shown that degwy = 2, we
conclude that deg f = 2, and hence X is hyperelliptic.

Let Q = P,lC X P,1g denote the quadric surface xy = zw in P%, and let p; and po be
projections onto the two components. As in Example 11.6.6.1, they induce homomorphisms
pi.ps: CIP} — ClQ where the maps are given by D = > n;V; — anpj_l(YZ) So if we
take a curve X whose type is (¢ + 1,2) in @ and restrict ps to X, then p3(pt) is a divisor
of degree 2. The map not constant and hence finite (Proposition I1.6.8). The preimage of
a point in P,lC under po is then two points, so po is a morphism of degree 2.

Let f: X — X be the normalization map. We start with the exact sequence
04>OX 4>f*0)} HZPeX 513/013 —0

where (51:/ Op denotes the skyscraper sheaf at P with value (513/ Op. Then apply the
functor I to get the long exact sequence

0

g

HI(X, Ox) *>H1(X, f*ofg) *)Hl(XazéP/OP)

I'X,Ox)

I'(X,>0p/Op) >

0

of O(X)-modules. Skyscraper sheaves are flasque, so H (X, > Op/Op) = 0 (Proposition
I11.2.5). Since X is integral, I'(X, Ox) is a finite integral k-algebra, and hence a finite field

extension of k since an integral Artinian ring is a field. So because k is algebraically closed,
I'(X,Ox) = k. Also,

I(X, f.05)=T(f(X),05) =T(X,05) =k

for similar reasons. Since f is a finite morphism (Ex. IL1.3.8), f.Og is a coherent Ox-

module (Ex. I1.5.5(c)), and so the cokernel 3~ Op/Op is also coherent (Proposition I1.5.7).
Hence the long exact sequence is of k-vector spaces. The alternating sum of the dimensions
on this long exact sequence is zero:

1—1+dimy HO(X, Y Op/Op) — dimy, H' (X, Ox) + dimy H'(X, f.05) =0. (1)
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The map f: X — X is an affine morphism of Noetherian separated schemes, so we have
H'(X,0%) = H'(X, £.05)
(Ex. 1I1.4.1). So
pa(X) = dimy H'(X, Ox)
and B
pa(X) = dimy, H'(X, £.0%)
(Ex. II1.5.3(a)), which turns (1) into

Pa(X) = pa(X) + dimy H() ~ Op/Op).

Finally, note that dimy H°(>" Op/Op) = > dp, and we're done.

Suppose that p,(X) = 0. Since pa()?) = dimg Hl()?,O;() >0,and ép >0 for all P € X,
we conclude that pa()? ) =0 and 6p = 0 for all P € X by part (a). This implies that
(51: = Op for all P € X, so each local ring of X is integrally closed. In dimension one, a
Noetherian local ring is integrally closed if and only if it is regular, so X is nonsingular.
Thus X is a curve, 50 py(X) = pa(X) = 0 (Proposition 1.1), which means X = P} (Example
1.3.5).

2 Hurwitz’s Theorem

2. (a)

Let f: X — P} be the finite morphism determined by |K|. The genus of P} is 0, so
plugging in the values for Hurwitz’s theorem (Corollary 2.4) gives

PeX

which simplifies to

> length(Qy/ps1)p - P = 6. (2)
Pex
If Q € P} is a closed point, then deg f*Q = 2 where f*Q = Zf(P):Q vp(t) - P and tis a
uniformizer for Og (Proposition 11.6.9). The valuations vp(t) are nonnegative because f*
is a map of local rings, so either ) has two points in its preimage, or it has one which is
ramified with ramification index 2. Combining this with (2) shows that f has exactly 6
ramification points each with ramification index 2.

The field extension K/k(x) is Galois of degree 2, so the corresponding morphism of curves
f: X — P}. has degree 2. We can write K = k(x)[z]/(2* — (z — a1) -+ (z — ag)). Since
f has degree 2, either a point in P,1€ has two points in its preimage, in which case it is
unramified, or it has one point in its preimage with ramification index 2. Restricting
to A,lﬁ, the points with 1 point in its preimage correspond to the values of z for which
22—(x—aq) - - - (r—ag) has a double root. In particular, this happens at = ;. To check the
point at infinity, we do a change of coordinates z +— 1/ to get 22 = (1/z—aq) -+~ (1/x—ag),
or 2922 = (1 — ayz)--- (1 — agr). Then x = 0 has two solutions for z, so this point is

unramified. Using Hurwitz’s theorem gives (we have tame ramification because char k # 2)
2gx —2=2(-2)+6 =2,

so gx = 2.
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4.

5.

(c) By (Ex. 1.6.6(a)), we need only find a linear fractional transformation sending P, P», Ps
to 0,1, 0o, respectively. The function

z2—P Ph—-P
. fP,Ps, P
=P, p_p TTuP 3 7 00
P, — P .
7P 1fP1:OO
ple) = 22 p
lfPQIOO
=
- if Px = 0o
(P, — Py 3

does exactly this.

(d) To check that this is a group action, pick g, h € &¢. There are three indices for which those
elements are mapped to 0, 1, 0o, respectively. Whether we apply g and then normalize and
apply h and normalize, or just apply hg and normalize, these three indices are the same at
the end. Thus, by the uniqueness of linear fractional transformations (they are determined
by three values), both of these actions are the same.

(e) By (a) and (b), the map f: X — P} is determined by its canonical linear system |K|.
These are in bijection with triples of distinct elements (1, 82, 83 of k, # 0,1, modulo the
action of g, by (c) and (d).

To show that X is nonsingular, we cover Pz by the affines given by x =1, y = 1, and z = 1
and show that in each affine, the Jacobian of X has rank 2 — 1 = 1. These cases are symmetric,
so we just treat z = 1. Then our polynomial is f(z,y) = 23y + v + 2, and 9f/0x = 1 while
df /0y = x2®. At every point in the affine given by z = 1, this has rank 1, so X is nonsingular.
From the computations of the first partial derivatives, it is immediate that all of the second
partial derivatives vanish, so every point of X is an inflection point.

Now we return to P%. The tangent line to X at (zo, Yo, 20) is

of of of B

896(@“ o) + 8y(y Yo) + 92 (z—20)=0

where f(x,y,2) = 23y + 33z + 232. We compute these: f/0x = 23, 0f /Oy = x3, and Of /0z =
23, so the above equation becomes

23(x — w0) + 23 (y — o) + i (2 — 20) = 0,

but zg’xo + x%yo + ygzo = 0 because (g, Yo, 20) is a point on X. We see that the natural map
X — X* given by P+ Tp(X) can be described as (x,v,2) — (23,23, y3). The function fields of
X and X* are the quotient fields of k[z,y, 2]/(z3y+y>2+23x), and this map induces a Frobenius
map on the function fields up to a permutation of the variables, and hence is purely inseparable.
The Frobenius map is finite, so by Proposition 2.5, X and X* are isomorphic (though not by
the natural map).

(a) The field extension K(X)/L is Galois since L is defined as a fixed field of a finite group.
In particular, it is separable, so there is some element « such that K(X) = L(«). Hence
we can write K(X) = L[z]/p(z) for some irreducible polynomial p of degree n. Also, L is
a finite field extension of k(x), so p also involves the variable x. If P € X is a ramification
point and ep = 7, then this means that plugging in f(P) as z into p gives a root of z with
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multiplicity . In fact, all roots must have multiplicity  because G permutes them. Hence
any point Q € f~(f(P)) has ramification index r, which means that f~'(f(P)) is a finite
set consisting of n/r points. With this fact, we know that

S S

Y (ep—1)= Z%(ri ~1) =Y (n—n/r),

Pex i=1"" i=1
so Hurwitz’s theorem implies (characteristic 0 implies all ramification is tame)

29—-2
— =

29(Y)—2+ % Z(n —n/ri) =29(Y) -2+ Z(l —1/r).
i=1 i=1

(b) Suppose we have
29(Y) =2+ (1—1/r;) >0,
i=1

If g(Y) > 1, then the left hand side is > 1 and hence at least 1/42. If g(Y) = 1, then the
smallest the sum » > (1 —1/r;) can be is 1/2 since r; > 2. In the case ¢g(Y) = 0, we must
have s > 2. If we are to minimize the left hand side, we need to minimize the sum, and
since 1 — 1/r; > 0, we need only to consider s = 3.

In this case, the left hand side is 1 — 1/r; — 1/r3 — 1/r3. So we are interested in positive
integers ri, 79,73 such that the sum 1/r; 4+ 1/r9 + 1/r3 < 1 is maximized. We see that
if all 7, > 3, then at best this sum is 3/4, and one can do better, and if all r; < 3,
then the sum is 3/2 > 1, so we may assume r; = 3. If 7o > 2 and r3 > 2, then at
best the sum is 1/3 +1/3 4+ 1/4 = 11/12. If we set o = 2 and r3 = 7, then the sum is
1/3+1/2+1/7 =41/42 > 11/12, so the maximum must have 7o = 2. But then 1/r3 < 1/6,
so we see that rg = 7 is optimal. Hence, we conclude that the left hand side is at least
1/42. Putting this all together gives

29-2 1
n 42’

which translates to n < 84(g — 1).

3 Embeddings in Projective Space

1. Since linearly equivalent divisors give rise to isomorphic invertible sheaves, we assume without

loss of generality that D is effective. The Riemann-Roch formula gives dim |D| —dim |K — D| =
deg D — 1. If deg D < 5, we show in each case that D cannot be a very ample divisor. In the
case that deg D = 0, dim|D| = 0, so the induced map to projective space is X — P9, which
cannot be a closed immersion. If deg D = 1, then by (Ex. 1.5), dim |D| < 1 and hence we are in
the same situation.
In the case degD = 2, deg(K — D) = 0, so dim|K — D| = 0, and so by Riemann-Roch,
dim |D| = 1 and the induced map X — P} cannot be a closed immersion because X is a
curve of genus 2. If deg D = 3, then deg(K — D) = —1, so Riemann—Roch gives dim |D| = 1,
and we are in the same situation. Finally, for deg D = 4, choose two points P and (). Then
deg(D — P — Q) =2, so dim|D — P — Q| = 1 from above. By Proposition 3.1(b), we see that
D cannot be very ample.

Of course if deg D > 5, we know already that D is very ample by Corollary 3.2(b).
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3. Let f1,..., fn—1 be homogeneous polynomials defining hypersurfaces Hy,...,H,—1 C P" such
that X is their scheme-theoretic intersection, and let dy,...,d,_1 be their respective degrees.
Let r =Y di—n—1. By (Ex. I1.8.4(¢e)), wx = Ox(r), and we know that r > —2 because d; > 0
for all i. If » < 0, then g = dim H°(X,wx) = dim H°(X,O(r)) < 1. Since we are assuming
g > 2, we must have r > 0. Note that wx = Ox(r) is very ample via the inclusion of X in P"
followed by the r-uple embedding of P" (cf. (Ex. I1.5.13)). Finally, the canonical divisor K
has degree 2g — 2 = 2, so is not very ample by (Ex. 3.1). Hence a genus 2 curve cannot be a
complete intersection in any P”.

6.

11.

(a)

(b)

Recall from (Ex. 1.5) that if D is an effective divisor, then dim |D| < deg D, and equality
holds if and only if g = 0 or D = 0. In our case, take D to be O(1), the hyperplane section
of X. Then dim|D| < 4, and in the case g = 0, we see that dim |D| =4, so X C P4 If X
is not contained in a P? via this embedding, then X is the rational normal quartic up to
an automorphism of P* (Ex. 3.4(b)). Otherwise, if X is contained in some P3, then it is
a rational quartic curve.

If g > 0, then X C P3. If X is contained in a plane, then g = 1(d — 1)(d — 2) = 3.
Otherwise, g < 3 (Ex. 3.5(b)). Since D is very ample, (Ex. 3.1) says that deg D > 5 if
g = 2, so this is not a possibility. Hence g = 1 in this case.

The exact sequence
0—=Ix —>0Ops—=0O0x —0

gives rise to a long exact sequence by twisting by 2 and taking cohomology:
00— HO(P?, 7x(2)) — HO(P?,0ps(2)) — H(P?,0x(2)) —> -

We know that dim HO(P3, Ops(2)) = (3) = 10, and dim H(P?, 0x(2)) = dim [2D| + 1 <
8 +1 (Ex. 1.5). So dim H°(P3, #x(2)) > 2, which means that X is contained in at least
two irreducible quadric surfaces. The intersection of two quadrics is a variety of degree 4,
so we conclude that X is the complete intersection of two irreducible quadric surfaces in
the case g = 1.

As in the proof of Proposition 3.4, one can show that projection from a point O onto P?~!
is a closed immersion if and only if O is not on any secant line of X and O is not on
any tangent line of X. Locally, the secant variety of X can be seen as the image of the
morphism (X x X \ A) x P! — P" which sends (P, Q,t) to the point ¢ on the secant line
of P and (). This has dimension < r+7r+ 1 < n, so is not all of P™. Similarly, the tangent
variety has dimension <7+ 1 < n, so we can find an O not on any secant or tangent line.

4 Elliptic Curves

7.

(a)

(b)
()

The homomorphism f*: Pic X’ — Pic X preserves degree, so induces a map f*: Pic® X’ —
Pic® X. By Theorem 4.11, we can identify (X, Py) and (X', P}) with their Jacobian varieties,
and by Remark 4.10.4, the closed points of X and X’ can be identified (as groups) with
Pic° X and Pic® X', respectively. Hence we get a dual morphism f: (X7, Py) — (X, Py).

The equality (go f)"= f o g follows from (a) and the functoriality of pullback.
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(d)

(e) The morphism nx is the n-fold sum of the identity morphism on X, so nx = nx follows
from (d) by taking X’ = X. If m is the degree of ny, then nx onyxy = mx by (c¢), but
ny ony is n? iterations of the u(P) = P + P, so m = n?.

(f) From (c), we get that fof =nx where n = deg . Since degree is multiplicative, this
means that deg f - deg f = (deg f)? by (9), so deg f = deg f as long as deg f # 0. In the
case deg f = 0, f is an isomorphism, so f is as well, and deg f = 0.

14. Let f(x,y,2) = 2% + y> — 23. The Hasse invariant of X(p) is 0 if and only if the coefficient
of (zyz)P~! in fP~!is 0 (Proposition 4.21). It is immediate that if p = 2 (mod 3), then the
coefficient of (zyz)?~! in fP~! must be 0. Otherwise, for p = 1 (mod 3), an application of
the binomial expansion shows that the coefficient of (zyz)P~! in fP~! is (pgl) (p_llg_k) where
k = (p—1)/3. Tt is clear that this coefficient is not divisible by p, hence is nonzero. So the
Hasse invariant of X(,) is 0 if and only if p = 2 (mod 3), and appealing to Dirichlet’s theorem

for arithmetic progressions, the set B has density 1/2.

6 Classification of curves in P3

1. Let X be a rational curve of degree 4 in P3. Then we the short exact sequence

0 % Ops Ox 0
gives rise to a long exact sequence
0 —= HO(Ix(2)) —= H%(Ops(2)) —= H(Ox(2)) —= -

The dimension of H%(Ops(2)) is 10, and the dimension of H%(Ox(2)) is dim [2D| + 1 where
D is the hyperplane section corresponding to O(1), and this latter number is 9 because g = 0
(Ex. 1.5). Hence dim H°(#x(2)) > 1, so X is contained in at least one quadric surface. If X
is contained in two distinct quadric surfaces, then it is contained in the complete intersection of
them, which has degree 4 and genus 1 (Ex. I1.8.4(g)). But this is impossible, so X is contained
in a unique quadric surface.

Up to isomorphism, there is one singular quadric surface in P3, which is the quadric cone. By
Remark 6.4.1(d), we see that if X lies on the quadric cone, then the genus of X must be 1, so
this possibility is ruled out. Hence the quadric surface is nonsingular.

6. Let X be a projectively normal curve in P? which is not contained in any plane. This means
that the natural map H°(Ops(k)) — H°(Ox(k)) is surjective for all k& > 0 (Ex. 11.8.4(c)). Let
D be the hyperplane section of X.
Suppose d = 6. If O(1) is special, then g = 4 (Proposition 6.3). Otherwise, if O(1) is nonspecial,
then dim H°(Ox (1)) = degD — g+ 1 = 7 — g. By surjectivity, 7 — g < 4, which means g > 3.
Furthermore, g < 4 by Theorem 6.4.
Now suppose d = 7. We know that ¢ < 6 by Theorem 6.4. If O(1) is special, then g > 5. If
O(1) is nonspecial, then as before, we can show that 8 — g < 4; equivalently, g > 4. But if g = 4,
then since O(2) is nonspecial, we have dim H°(Ox(2)) = dim [2D| + 1 = 2degD — g + 1 = 11.
However, dim H°(Ops(2)) = 10, so this contradicts surjectivity. Hence g = 5 or g = 6.



