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1 A�ne Varieties

1. Exercise.

(a) Let Y be the plane curve y = x2. Show that A(Y ) is isomorphic to a polynomial ring in
one variable over k.

(b) Let Z be the plane curve xy = 1. Show that A(Z) is not isomorphic to a polynomial ring
in one variable over k.

(c) Let f be any irreducible quadratic polynomial in k[x, y], and let W be the conic de�ned by
f . Show that A(W ) is isomorphic to A(Y ) or A(Z). Which one is it when?

Solution.

(a) The coordinate ring A(Y ) is k[x, y]/(y−x2). We have a map k[z]→ A(Y ) given by z �→ x.
This is clearly injective and surjective, so k[z] ∼= A(Y ).

(b) The coordinate ring A(Z) is k[x, y]/(xy − 1). If A(Z) → k[z] is a map, then x and y are
both mapped to units, and hence elements of k. Thus no such map can be surjective.

(c) Given an irreducible quadratic polynomial P = ax2 + bxy + cy2 + dx + ey + f , we may
assume without loss of generality that either a �= 0 or b �= 0. Note that performing invertible
changes of coordinates preserve the property that P is irreducible.

In the �rst case, we complete the square for x2 + (by + d)x and do a change of coordinates
so that we may write the polynomial as x2 + cy2 + ey + f for some new values of c, e, f . If
c = 0, then we must have e �= 0 because of the irreducibility, so doing a linear change of
coordinates gives x2 − y. If c �= 0, then again completing the square and doing a change

∗by Robin Hartshorne
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of coordinates gives x2 + y2 + f for some new (nonzero) value of f . We may use a linear
change x �→ αx+ βy and y �→ γx+ δy in order to cancel the resulting x2 and y2 terms, so
we are left with something of the form xy + f where f �= 0.
In the second case, we can assume that a = c = 0 or else we are in the previous case, so
we have xy + dx + ey + f . Then writing it as x(y + d) + ey + f and doing y �→ y − d
gives y(x+ e) + (f − de), and again doing x �→ x− e gives xy + f − de and f − de �= 0 by
irreducibility, so we can scale our coordinates to get xy − 1.

2. Exercise (The twisted cubic curve). Let Y ⊆ A3 be the set Y = {(t, t2, t3) | t ∈ k}. Show
that Y is an a�ne variety of dimension 1. Find generators for the ideal I(Y ). Show that A(Y ) is
isomorphic to a polynomial ring in one variable over k. We say that Y is given by the parametric

representation x = t, y = t2, z = t3.

Solution. The ideal I(Y ) is generated by the polynomials z − x3 and y − x2. We have a map
k[t] → A(Y ) de�ned by t �→ x which is injective and surjective. Since this is an isomorphism,
A(Y ) has dimension 1, so Y has dimension 1. Also, k[t] is a domain, so I(Y ) is a prime ideal,
and hence Y is an a�ne variety.

3. Exercise. Let Y be the algebraic set in A3 de�ned by the two polynomials x2− yz and xz− x.
Show that Y is a union of three irreducible components. Describe them and �nd their prime
ideals.

Solution. The intersection of Y with the plane z = 1 is de�ned by x2 = y. The intersection
of Y with the plane z = 0 is de�ned by x = 0. On the rest of Y , the equation xz = x has no
solution except x = 0, and the equation x2 − yz becomes yz = 0, so we also have y = 0. Hence
we see that Y is the union of the a�ne varieties de�ned by the prime ideals (z−1, x2−y), (x, y),
and (x, z).

4. Exercise. If we identify A2 with A1 ×A1 in the natural way, show that the Zariski topology
on A2 is not the product topology of the Zariski topologies on the two copies of A1.

Solution. The zero locus of y = x2 is a closed subset in the Zariski topology of A2, but cannot
be a closed subset in the product topology on A1×A1 because a basis for the topology is U ×V
where U and V are both complements of �nite sets of points in A1, and there is no way to write
the complement of y − x2 as a union of such sets.

5. Exercise. Show that a k-algebra B is isomorphic to the a�ne coordinate ring of some algebraic
set in An, for some n, if and only if B is a �nitely generated k-algebra with no nilpotent elements.

Solution. Since B is �nitely generated, we can write B ∼= k[x1, . . . , xn]/a for some n and some
ideal a. The condition that B have no nilpotents is equivalent to a being a radical ideal. So B
is the coordinate ring of the algebraic set Z(a) (Corollary 1.4).

6. Exercise. Any nonempty open subset of an irreducible topological space is dense and irre-
ducible. If Y is a subset of a topological space X, which is irreducible in its induced topology,
then the closure Y is also irreducible.

Solution. Let X be an irreducible space, and let U ⊆ be a nonempty open subset. Then
X = U ∪ (X \ U), where U denotes the closure of U , so either X = U or X = X \ U . The
latter is ruled out since U is nonempty, so U is dense in X. Also, if U is the union of two closed
subsets U1 ∪ U2, then there exist X1 and X2 such that X1 ∩ U = U1 and X2 ∩ U = U2. Hence
X = X ′

1 ∪X ′
2 where X

′
i = Xi ∪ (X \U). If U1 �= U2, then X ′

1 �= X ′
2, which contradicts that X is

irreducible, so U is irreducible.
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Now let Y ⊆ X be some subset which is irreducible with respect to its subspace topology.
Suppose we can write its closure Y as a union of proper closed subsets Y = Y1 ∪ Y2. Then Y1
and Y2 are both closed in X, so Y1 ∩ Y and Y2 ∩ Y are closed in Y . Then either Y = Y1 ∩ Y
or Y = Y2 ∩ Y , or equivalently, Y ⊆ Y1 or Y ⊆ Y2. In the �rst case, this implies that Y1 = Y ,
which is a contradiction, and similarly in the second case. Thus Y is also irreducible.

7. Exercise.

(a) Show that the following conditions are equivalent for a topological space X: (i) X is
Noetherian; (ii) every nonempty family of closed subsets has a minimal element; (iii) X
satis�es the ascending chain condition for open subsets; (iv) every nonempty family of open
subsets has a maximal element.

(b) A Noetherian topological space is quasi-compact, i.e., every open cover has a �nite subcover.

(c) Any subset of a Noetherian topological space is Noetherian in its induced topology.

(d) A Noetherian space which is also Hausdor� must be a �nite set with the discrete topology.

Solution.

(a) The equivalence of (i) and (iii) is trivial, as is the equivalence of (ii) and (iv). We show
that (i) is equivalent to (ii). Assuming (i), any nonempty family of closed subsets must
have a minimal element. For instance, pick any closed subset Z0. If it is not minimal,
pick Z1 contained in it. If that is not minimal, pick Z2 contained in it. Eventually, this
must terminate because we get a descending chain of closed subsets Z0 ⊇ Z1 ⊇ Z2 ⊇ · · · .
Assuming (ii), let Z0 ⊇ Z1 ⊃ Z2 ⊇ · · · be a descending chain of closed subsets. Then this
is a family of closed subsets which has a minimal element, say Zr. So Zr = Zt for t ≥ r,
which means X is Noetherian.

(b) Let {Uα} be an open cover of a Noetherian space X. Pick any open set U1. Inductively
if U1 ∪ · · ·Ui−1 �= X, we pick Ui to be any open subset not contained in U1 ∪ · · · ∪ Ui−1,
otherwise, let Ui = Ui−1. Then setting Zi = X \ (U1 ∪ · · · ∪ Ui), we get a descending chain
of closed subsets Z1 ⊇ Z2 ⊇ · · · , which must terminate, so there exists r such that Zr = Zt

for t ≥ r. This implies that at the rth step, U1 ∪ · · · ∪ Ur = X, so X is quasi-compact.

(c) This is an immediate consequence of characterization (iv) of (a).

(d) Let X be a Noetherian Hausdor� space, and suppose X has in�nitely many points. Then
pick x1, y1 ∈ X, we can �nd disjoint open sets U1 ∋ x1 and V1 ∋ y1. Then either X \ U1

is in�nite or X \ V1 is in�nite. Without loss of generality, X \ U1 is in�nite. Since X \ U1

is Hausdor�, we can �nd U2 ⊆ X \ U1 which is open relative to X \ U1 and such that
X \ (U1 ∪U2) is also in�nite. In this way, we can continue to �nd Ui for all i > 0 such that
Ui ⊆ X \ (U1 ∪ · · · ∪ Ui−1) is open relative to X \ (U1 ∪ · · · ∪ Ui−1) and X \ (U1 ∪ · · · ∪ Ui)
is in�nite. For each Ui, there is an open set U

′
i ⊆ X such that U ′

i ∩ (X \ (U1 ∪ · · · ∪ Ui−1))
is open relative to X \ (U1 ∪ · · · ∪ Ui−1). Setting Zi = U ′

1 ∪ · · · ∪ U ′
i , we get an ascending

chain of open sets Z1 ⊆ Z2 ⊆ · · · , which must terminate by (a), and which contradicts the
in�nitude of X. Hence X must be a �nite set. Since the points of a Hausdor� space are
closed, we conclude that X has the discrete topology.

8. Exercise. Let Y be an a�ne variety of dimension r in An. Let H be a hypersurface in An,
and assume Y �⊆ H . Then every irreducible component of Y ∩H has dimension r − 1.

Solution. Let f be the irreducible polynomial de�ning H . Since Y � H , the image of f under
the quotient map k[x1, . . . , xn] → A(Y ) is nonzero. The irreducible components of H ∩ Y are
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precisely the a�ne varieties de�ned by the minimal primes of A(Y ) which contain f . Hence
they have dimension dimY − 1 by Theorem 1.11A.

9. Exercise. Let a ⊆ A = k[x1, . . . , xn] be an ideal which can be generated by r elements. Then
every irreducible component of Z(a) has dimension ≥ n− r.

Solution. The irreducible components Zi of Z(a) correspond to prime ideals pi of A/a. Hence
by Theorem 1.8A(b), dimZi = dimA/pi = n − height pi. Using Theorem 1.11A, we see that
the height of a prime ideal is bounded above by its minimal number of generators, so dimZi ≥
n− r.

10. Exercise.

(a) If Y is any subset of a topological space X, then dimY ≤ dimX.

(b) If X is a topological space which is covered by a family of open subsets {Ui}, then dimX =
supdimUi.

(c) Give an example of a topological space X and a dense open subset U with dimU < dimX.

(d) If Y is a closed subset of an irreducible �nite-dimensional topological space X, and if
dimY = dimX, then Y = X.

(e) Give an example of a Noetherian topological space of in�nite dimension.

Solution.

(a) Let Y be a subset of topological space X. If Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · is an ascending chain
of closed irreducible subsets of Y with strict inclusions, then Y 0 ⊂ Y 1 ⊂ Y 2 ⊂ · · · is an
ascending chain of closed irreducible subsets of X with strict inclusions, so dimY ≤ dimX.

(b) From (a), we get that dimX ≥ sup dimUi. Let X0 ⊂ X1 ⊂ · · · be a chain of closed
irreducible subsets of X with maximal length. We can �nd some Ui such that X ′

0 =
X0∩Ui �= ∅. Then X ′

0 is open relative to X0 and hence is dense (Ex. 1.6). Since X1 \X0 is
a nonempty open subset of X1, it intersects X

′
0, so intersects Ui. Continuing this reasoning,

Ui∩Xj properly contains Ui∩Xj−1 for all j, which means that dimUi ≥ dimX, and hence
dimX = sup dimUi.

(c) Let X = {a, b} be a two point space whose open sets are {∅, {a}, {a, b}}. Then dimX = 1
by the chain {b} ⊂ X, but U = {a} has dimension 0 and is dense in X.

(d) Suppose that r = dimY and Y �= X. If Y0 ⊂ · · · ⊂ Yr is a chain of irreducible closed
subsets of Y , then Y0 ⊂ · · · ⊂ Yr ⊂ X is a chain of irreducible closed subsets of X, so
dimX ≥ r + 1. Hence if dimY = dimX, then Y = X.

(e) Let Xn be a Noetherian space of dimension n. Then the disjoint union X =
�

n≥0Xn is
Noetherian, but is in�nite-dimensional.

2 Projective Varieties

1. Exercise. Prove the “homogeneous Nullstellensatz,” which says that if a ⊆ S is a homogeneous
ideal, and if f ∈ S is a homogeneous polynomial with deg f > 0, such that f (P ) = 0 for all
P ∈ Z(a), then f q ∈ a for some q > 0.

Solution. Let a ⊆ S be a homogeneous ideal and f ∈ S a homogeneous polynomial with
deg f > 0, such that f (P ) = 0 for all P ∈ Z(a) in Pn. Then f vanishes for all representatives
for points in Z(a), so in particular, f r ∈ a when thinking of Z(a) as being in An+1 (Theorem
1.3A).
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2. Exercise. For a homogeneous ideal a ⊆ S, show that the following conditions are equivalent:

(i) Z(a) = ∅;

(ii)
√
a = either S or the ideal S+ =

�
d>0 Sd;

(iii) a ⊇ Sd for some d > 0.

Solution. First suppose (i) holds. By (Ex. 2.1), every polynomial f ∈ S with deg f > 0 satis�es
f r ∈ a for some r, so S+ ⊆

√
a. If

√
a contains any element of S0, then it contains them all by

virtue of being an ideal, so either
√
a = S+ or

√
a = S.

Now suppose that (ii) holds. Then for each xi, there is an integer ri such that x
ri
i ∈ a. So for

N = max ri, we have xNi ∈ a, and hence for d su�ciently large (d ≥ (n + 1)(N − 1) + 1 where
S = k[x0, . . . , xn]), every monomial of degree d contains a multiple of x

N
i for some i, so Sd ⊆ a.

Finally, suppose that (iii) holds. Then a contains xdi for i = 0, . . . , n, which means that Z(a)
consists of those points which are 0 for all xi, and hence is empty.

3. Exercise.

(a) If T1 ⊆ T2 are subsets of S
h, then Z(T1) ⊇ Z(T2).

(b) If Y1 ⊆ Y2 are subsets of P
n, then I(Y1) ⊇ I(Y2).

(c) For any two subsets Y1, Y2 of P
n, I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

(d) If a ⊆ S is a homogeneous ideal with Z(a) �= ∅, then I(Z(a)) =
√
a.

(e) For any subset Y ⊆ Pn, Z(I(Y )) = Y .

Solution.

(a) If P ∈ Z(T2), then f (P ) = 0 for all f ∈ T2, so in particular, this is true for all f ∈ T1, so
P ∈ Z(T1).

(b) If f ∈ I(Y2), then f (P ) = 0 for all P ∈ Y2, so in particular, f (P ) = 0 for all P ∈ Y1, which
means that f ∈ I(Y1).

(c) We have f ∈ I(Y1 ∪ Y2) if and only if f (P ) = 0 for all P ∈ Y1 ∪ Y2 if and only if f ∈ I(Y1)
and f ∈ I(Y2).

(d) The inclusion I(Z(a)) ⊆
√
a follows from (Ex. 2.1) because constant polynomials are not

contained in a if Z(a) �= ∅. Conversely, if f r ∈ a for some r, then for P ∈ Z(a), f r(P ) = 0,
so f (P ) = 0.

(e) For this we can pass to the a�ne case using Corollary 2.3.

4. Exercise.

(a) There is a 1-1 inclusion-reversing correspondence between algebraic sets in Pn, and homo-
geneous radical ideals of S not equal to S+, given by Y �→ I(Y ) and a �→ Z(a).

(b) An algebraic set Y ⊆ Pn is irreducible if and only if I(Y ) is a prime ideal.

(c) Show that Pn itself is irreducible.

Solution.

(a) We know that Z(I(Y )) = Y = Y (Ex. 2.3(e)) and that I(Z(a)) =
√
a = a (Ex. 2.3(d)) for

a �= S+ (Ex. 2.2). The inclusion-reversing part is the content of (Ex. 2.3(a,b)).
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(b) This is the same as the proof of Corollary 1.4 by using the fact that a homogeneous ideal a
is prime if for any two homogeneous elements f and g, fg ∈ a implies either f ∈ a or g ∈ a.

(c) The ideal I(Pn) is the zero ideal, which is prime in S, so Pn is irreducible (Ex. 2.4(b)).

5. Exercise.

(a) Pn is a Noetherian topological space.

(b) Every algebraic set in Pn can be written uniquely as a �nite union of irreducible algebraic
sets, no one containing another. These are called its irreducible components.

Solution.

(a) Let Y1 ⊇ Y2 ⊇ · · · be a descending chain of closed subsets of Pn. Then I(Y1) ⊆ I(Y2) ⊆ · · ·
is an ascending chain of ideals in S, which terminates because S is Noetherian, so using
the fact Yi = Z(I(Yi)), we get that P

n is Noetherian.

(b) A closed subset of a Noetherian space is Noetherian, so an algebraic set in Pn is Noetherian,
and hence can be expressed uniquely as a �nite union of irreducible algebraic sets, no one
containing another (Proposition 1.5).

6. Exercise. If Y is a projective variety with homogeneous coordinate ring S(Y ), show that
dimS(Y ) = dimY + 1.

Solution. Let Y ⊆ Pn be a projective variety with homogeneous coordinate ring S(Y ), and
let Ui be the standard open a�nes of P

n with homeomorphisms ϕi : Ui → An. Let Yi be the
a�ne variety ϕi(Y ∩ Ui) with a�ne coordinate ring A(Yi) = k[x1, . . . , xn]/I(Yi). We claim
that A(Yi) is isomorphic to the degree 0 part of the localization S(Y )xi . If we think of Ui

as having coordinates (a0/ai, . . . , an/ai) where ai/ai is omitted, then the polynomials of A(Yi)
are equivalent to homogeneous polynomials of S(Y )xi of degree 0 via homogenization (i.e., the
map β used in the proof of Proposition 2.2). Then it follows that S(Y )xi

∼= A(Yi)[xi, x
−1
i ]. By

Theorem 1.8A(a), the dimension of A(Yi)[xi, x
−1
i ] is dimA(Yi) + 1, which is equal to dimYi + 1

by Proposition 1.7. Using (Ex. 1.10(b)), we see that dimY = supdimYi. Finally, for Yi �= ∅,
dimYi + 1 = dimS(Y )xi , and dimS(Y )xi = dimS(Y ) by Theorem 1.8A(a). In conclusion,
dimY + 1 = dimS(Y ).

7. Exercise.

(a) dimPn = n.

(b) If Y ⊆ Pn is a quasi-projective variety, then dimY = dimY .

Solution.

(a) This is a direct consequence of (Ex. 2.6) because the coordinate ring of Pn is k[x0, . . . , xn].

(b) Following the proof of (Ex. 2.6), we see that it is enough to know that the dimension
of a quasi-a�ne variety is the same as its closure, and this is the content of Proposition
1.10.

8. Exercise. A projective variety Y ⊆ Pn has dimension n − 1 if and only if it is the zero set of
a single irreducible homogeneous polynomial f of positive degree. Y is called a hypersurface in
Pn.

Solution. Using (Ex. 2.6), this statement follows as it does in the proof of Proposition 1.13.
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9. Exercise (Projective closure of an a�ne variety). If Y ⊆ An is an a�ne variety, we
identify An with an open set U0 ⊆ Pn by the homeomorphism ϕ0. Then we can speak of Y , the
closure of Y in Pn, which is called the projective closure of Y .

(a) Show that I(Y ) is the ideal generated by β(I(Y )), using the notation of the proof of
Proposition 2.2.

(b) Let Y ⊆ A3 be the twisted cubic of (Ex. 1.2). Its projective closure Y ⊆ P3 is called
the twisted cubic curve in P3. Find generators for I(Y ) and I(Y ), and use this example
to show that if f1, . . . , fr generate I(Y ), then β(f1), . . . , β(fr) do not necessarily generate
I(Y ).

Solution.

(a) Choose f ∈ I(Y ). Note that I(Y ) and I(Y ) have the same coordinate rings by (Ex. 2.3(e))
and (Ex. 2.4(a)). Then f vanishes on all (a1/a0, . . . , an/a0) where (a0, . . . , an) ∈ Y . Hence
f is a multiple of a polynomial of degree e of the form xe0g(x1/x0, . . . , xn/x0), and so f is
in the ideal generated by β(I(Y )).

(b) The polynomials f = z − x3 and g = y − x2 are generators for I(Y ). Generators for I(Y )
are {wz2 − x3, wy − x2, wz2 − y3}. Note that wz2 − y3 is not generated by the �rst two
generators because there is no way to get the y3.

10. Exercise (The cone over a projective variety). Let Y ⊆ Pn be a nonempty algebraic set,
and let θ : An+1 \ {(0, . . . , 0)} → Pn be the map which sends the point with a�ne coordinates
(a0, . . . , am) to the point with homogeneous coordinates (a0, . . . , am). We de�ne the a�ne cone

over Y to be
C(Y ) = θ−1(Y ) ∪ {(0, . . . , 0)}.

(a) Show that C(Y ) is an algebraic set in An+1, whose ideal is equal to I(Y ), considered as an
ordinary ideal in k[x0, . . . , xn].

(b) C(Y ) is irreducible if and only if Y is.

(c) dimC(Y ) = dimY + 1.

Sometimes we consider the projective closure C(Y ) of C(Y ) in Pn+1. This is called the projective
cone over Y .

Solution.

(a) Pick f ∈ I(Y ). Then f is homogeneous and hence vanishes at the origin. Also, f vanishes
at every point in θ−1(Y ) because the vanishing of f at a point P ∈ Pn is independent of
the choice of its representative. Finally, if g ∈ I(C(Y )), then g must be homogeneous since
it vanishes at the origin, and it vanishes at each representative of P ∈ Y , and hence is a
polynomial in I(Y ).

(b) We know that C(Y ) is irreducible in An+1 if and only if I(Y ) is a prime ideal (Corollary
1.4) and this is if and only if Y irreducible in Pn (Ex. 2.4(b)).

(c) Let A = k[x0, . . . , xn]. We have dimC(Y ) = dimA/I(Y ) (Proposition 1.7), and dimY +1 =
dimA/I(Y ) (Ex. 2.6), so dimC(Y ) = dimY + 1.

11. Exercise (Linear varieties in Pn). A hypersurface de�ned by a linear polynomial is called a
hyperplane.
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(a) Show that the following two conditions are equivalent for a variety Y in Pn:

(i) I(Y ) can be generated by linear polynomials.

(ii) Y can be written as an intersection of hyperplanes.

In this case we say that Y is a linear variety in Pn.

(b) If Y is a linear variety of dimension r in Pn, show that I(Y ) is minimally generated by
n− r linear polynomials.

(c) Let Y,Z be linear varieties in Pn, with dimY = r, dimZ = s. If r + s − n ≥ 0, then
Y ∩ Z �= ∅. Furthermore, if Y ∩ Z �= ∅, then Y ∩ Z is a linear variety of dimension
≥ r + s− n.

Solution.

(a) First suppose that I(Y ) can be generated by linear polynomials, I(Y ) = (f1, . . . , fr). Then
Y = V (f1)∩· · · V (fr), so Y can be written as an intersection of hyperplanes. Conversely, if
Y can be written as an intersection of hyperplanes Y = H1∩· · ·∩Hs, then write I(Hi) = fi;
we have I(Y ) = (f1, . . . , fs).

(b) Let Y be a linear variety of dimension r in Pn, and write I(Y ) = (f1, . . . , fs) where the
fi are linear polynomials and s ≥ n − r. We induct on n − r. If r = n − 1, then we
can take s = 1 by (Ex. 2.8). Otherwise, up to reordering, we can assume that Y ′ =
V (f1) ∩ · · · ∩ V (fs−1) is a linear variety properly containing Y such that Y ′ ∩ V (fs) = Y
because a linear variety of dimension r + 1 is isomorphic to Pr+1, which can be seen by
the isomorphism k[x0, . . . , xn]/(f1, . . . , fn−r−1) ∼= k[y0, . . . , xr+1] (since by induction, I(Y

′)
can be generated by n − r − 1 linear polynomials f1, . . . , fn−r−1). So Y is a codimension
one linear variety in Pr+1, so we are done.

(c) Now let Y,Z be linear varieties in Pn with dimY = r and dimZ = s. Consider the
projection π : An+1 \ 0 → Pn and let Y ′ = π−1(Y ) ∪ 0 and Z ′ = π−1(Z) ∪ 0. Then
Y ∩ Z = π(Y ′ ∩ Z ′), and Y ′ ∩ Z ′ is a linear subspace of An+1 (considering it as a k-vector
space) which has dimension ≥ r+ s− n by basic linear algebra, so Y ∩Z �= ∅. Conversely,
if Y ∩ Z �= ∅, then dimY ∩ Z = dimY ′ ∩ Z ′ ≥ r + s− n.

12. Exercise (The d-uple embedding). For given n, d > 0, let M0,M1, . . . ,MN be all the
monomials of degree d in the n+1 variables x0, . . . , xn, whereN =

�n+d
n

�
−1. We de�ne a mapping

ρd : P
n → PN by sending the point P = (a0, . . . , an) to the point ρd(P ) = (M0(a), . . . ,MN (a))

obtained by substituting the ai in the monomials Mj . This is called the d-uple embedding of Pn

in PN . For example, if n = 1, d = 2, then N = 2, and the image Y of the 2-uple embedding of
P1 in P2 is a conic.

(a) Let θ : k[y0, . . . , yN ]→ k[x0, . . . , xn] be the homomorphism de�ned by sending yi toMi, and
let a be the kernel of θ. Then a is a homogeneous prime ideal, and so Z(a) is a projective
variety in PN .

(b) Show that the image of ρd is exactly Z(a).

(c) Now show that ρd is a homeomorphism of Pn onto the projective variety Z(a).

(d) Show that the twisted cubic curve in P3 is equal to the 3-uple embedding of P1 in P3, for
suitable choice of coordinates.

Solution.
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(a) Since the image of θ is a subring of k[x0, . . . , xn], it must be a domain, so a is a prime ideal.
Also, if p1M1 + · · ·+ pNMN is any polynomial relation among the monomials of degree N ,
then deg p1 = · · · = deg pN , so a is also homogeneous.

(b) It is immediate that the image of ρd is contained in Z(a). Note that a is a binomial ideal
generated by elements of the form yiyj − ykyℓ where the subscripts are chosen so that
MiMj =MkMℓ. This shows that any point that satis�es all of these equations must be in
the image of ρd.

(c) Given (M0(a), . . . ,MN (a)) ∈ Z(a), we can recover (a0, . . . , an) up to multiplication by
an nth root of unity as follows: some Mji is the monomial x

n
i , so set ai =

n

�
Mji(a). By

examining other monomials such as xix
n−1
j , x2i x

n−2
j , etc., we can determine which nth roots

of unity to take, but we can still always scale all ai by a common nth root of unity. Since
(a0, . . . , an) ∈ Pn, this is su�cient, so θ is bijective. Also note that θ(Z(T )) = Z(T )∩Z(a),
so θ is a closed map, and hence is a homeomorphism.

(d) The 3-uple embedding of P1 in P3 is parameterized by (t3, t2s, ts2, s3). Identifying A3

with the open subset of P3 de�ned by x0 �= 0, we see that this is a parameterization of the
twisted cubic curve.

14. Exercise (The Segre embedding). Let ψ : Pr × Ps → PN be the map de�ned by sending
the ordered pair (a0, . . . , ar) × (b0, . . . , bs) to (. . . , aibj, . . . ) in lexicographic order, where N =
rs+ r+ s. Note that ψ is well-de�ned and injective. It is called the Segre embedding. Show that
the image of ψ is a subvariety of PN .

Solution. Note that ψ(λ1a, λ2b) = λ1λ2ψ(a, b), so it is well-de�ned. If ψ(a, b) = ψ(a′, b′), we
can show b = b′ by �nding some nonzero ai and looking at the images aibj for j = 0, . . . , s and
also by �nding some nonzero a′k and looking at the images a

′
kb

′
j . Similarly, one can show that

a = a′.

Let a be the kernel of the map k[{zij}] → k[x0, . . . , xr, y0, . . . , ys] (here the zij are indexed by
i = 0, . . . , r and j = 0, . . . , s) de�ned by zij �→ xiyj . Then imageψ ⊆ Z(a). It is not hard to see
that a set of generators for a is the set {zijzkℓ − zkjziℓ | 0 ≤ i, k ≤ r, 0 ≤ j, ℓ ≤ s}. From this,
the other inclusion Z(a) ⊆ imageψ follows.

3 Morphisms

2. Exercise. A morphism whose underlying map on the topological spaces is a homeomorphism
need not be an isomorphism.

(a) For example, let ϕ : A1 → A2 be de�ned by t �→ (t2, t3). Show that ϕ de�nes a bijective
bicontinuous morphism of A1 onto the curve y2 = x3, but that ϕ is not an isomorphism.

(b) For another example, let the characteristic of the base �eld k be p > 0, and de�ne a map
ϕ : A1 → A1 by t �→ tp. Show that ϕ is bijective and bicontinuous but not an isomorphism.
This is called the Frobenius morphism.

Solution.

(a) It is clear that ϕ is injective. Any point (x, y) that satis�es y2 = x3 can be written as
(t2, t3) where t is a square root of x, and the sign is chosen so that t3 = y, so ϕ is also
surjective. The inverse image of a closed point of the curve y2 = x3 is a closed point of
A1, so ϕ is a continuous map. Since ϕ maps closed points of A1 to closed points of the
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curve y2 = x3, ϕ−1 is a continuous map. Now let f : V → k be a regular function where V
is an open set of the curve y2 − x3. Then f ◦ ϕ : ϕ−1(V ) → k is obtained by substituting
t2 and t3 into f , so f ◦ ϕ is a regular function; the denominator of this substitution does
not vanish on ϕ−1(V ) since the denominator of f does not vanish on V . However, using
Corollary 3.7, ϕ cannot be an isomorphism because A(A1) = k[t], whereas the coordinate
ring of the curve y2 = x3 is k[x, y]/(y2 − x3), which is not a UFD.

(b) If tp = sp, then (t − s)p = tp − sp = 0, so t = s, so ϕ is injective. Since k is algebraically
closed, ϕ is also surjective. Bicontinuity follows from the fact that closed points are mapped
to closed points. Veri�cation that ϕ is a morphism follows as in (a). However, the inverse
map t �→ t1/p is not a morphism because substitution of t1/p into a rational function need
not yield another rational function.

3. Exercise.

(a) Let ϕ : X → Y be a morphism. Then for each P ∈ X, ϕ induces a homomorphism of local
rings ϕ∗P : Oϕ(P ),Y → OP,X .

(b) Show that a morphism ϕ is an isomorphism if and only if ϕ is a homeomorphism, and the
induced map ϕ∗P on local rings is an isomorphism, for all P ∈ X.

(c) Show that if ϕ(X) is dense in Y , then the map ϕ∗P is injective for all P ∈ X.

Solution.

(a) Given f ∈ Oϕ(P ),Y , we de�ne ϕ
∗
P (f ) = f ◦ϕ. This is clearly a map of rings, and if f vanishes

on ϕ(P ), then ϕ∗P (f ) vanishes on P , so ϕ∗P maps the maximal ideal to the maximal ideal,
and hence is a homomorphism of local rings.

(b) If ϕ is an isomorphism, then it is certainly a homeomorphism, and its inverse induces
inverses for ϕ∗P for all P ∈ X. Conversely, suppose that ϕ is a homeomorphism and that
ϕ∗P is an isomorphism for all P ∈ X. Then ψ = ϕ−1 is a morphism because for any regular
function f in a neighborhood of Q ∈ Y , f ◦ ψ ∈ Oψ(Q),X → OQ,Y , so is regular.

(c) Suppose that ϕ∗P (f ) = 0 for some regular function f on Y . Then f ◦ϕ = 0, and hence f is
0 on a dense subset of Y , which means f = 0, so ϕ∗P is injective.

6. Exercise. There are quasi-a�ne varieties which are not a�ne. For example, show that X =
A2 \ {(0, 0)} is not a�ne.

Solution. The map α : k[x, y]→ O(X) given by interpreting a polynomial as a rational function
on X is injective because any vanishing polynomial on X would also vanish at the origin by
continuity. Any rational function with a nonconstant denominator has a zero somewhere other
than the origin, so a rational function on X must be polynomial. Hence α is also surjective, and
O(X) ∼= k[x, y]. If X were a�ne, then Theorem 3.2(a) implies that I(X) = 0, but this is not
the case.

9. Exercise. The homogeneous coordinate ring of a projective variety is not invariant under
isomorphism. For example, let X = P1, and let Y be the 2-uple embedding of P1 in P2. Then
X ∼= Y (Ex. 3.4). But show that S(X) �∼= S(Y ).

Solution. First, S(X) ∼= k[x, y]. By (Ex. 2.12(b)), S(Y ) is isomorphic to the image of
θ : k[x, y, z] → k[x, y] given by x �→ x2, y �→ xy, and z �→ y2. However, the ring k[x2, xy, y2] is
not a UFD, so S(X) �∼= S(Y ).
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11. Exercise. Let X be any variety and let P ∈ X. Show there is a 1-1 correspondence between
the prime ideals of the local ring OP and the closed subvarieties of X containing P .

Solution. If X is a�ne, then by Theorem 3.2(c), OP
∼= A(X)mP , so the prime ideals of OP are

in bijection with the prime ideals of A(X) contained in mP . These prime ideals are in bijection
with the closed subvarieties of X that contain P . If X is quasi-a�ne, then embed Y as an open
subset of an a�ne variety X ′. Then the same reasoning holds, just noting that for a closed
subvariety Y of X ′, Y ∩X is a closed subvariety of X. The analogous argument for projective
and quasi-projective varieties follows from Theorem 3.4(b).

12. Exercise. If P is a point on a variety X, then dimOP = dimX.

Solution. If X is an a�ne variety, then this follows from Theorem 3.2(c). If X is a projective
variety, then we use (Ex. 2.6) to conclude that S(X) = dimX +1. Then Theorem 3.4(b) shows
that OP = S(X)(mP ), so dimOP = dimS(X) − 1 (Theorem 1.8A). In the case that X is quasi-

a�ne, we use Proposition 1.10 to get dimX = dimX . Since X is dense in X, OP,X = OP,X ,
so we can still conclude that dimOP = dimX. Finally, the case for quasi-projective varieties
follows from the quasi-a�ne case.

13. Exercise (The local ring of a subvariety). Let Y ⊆ X be a subvariety. Let OY,X be the set
of equivalence classes �U, f � where U ⊆ X is open, U ∩ Y �= ∅, and f is a regular function on
U . We say that �U, f � is equivalent to �V, g�, if f = g on U ∩ V . Show that OY,X is a local ring,
with residue �eld K(Y ) and dimension = dimX − dimY . It is the local ring of Y on X. Note
if Y = P is a point we get OP , and if Y = X we get K(X). Note also that if Y is not a point,
then K(Y ) is not algebraically closed, so in this way, we get local rings whose residue �elds are
not algebraically closed.

Solution. The set of all functions which vanish at Y forms the unique maximal ideal of OY,X .
To see this, note that if f (P ) �= 0 for some P ∈ Y , then there is a neighborhood U of P for
which f is nowhere zero, so its inverse is given by �U, 1/f �, so it is a unit. We de�ne a function
OY,X → K(Y ) by interpreting an element f ∈ OY,X as a rational function on Y via restriction.
The kernel is the set of all f that vanish on Y , i.e., the maximal ideal, so K(Y ) is the residue
�eld of OY,X .

Using an argument similar to (Ex. 2.6), we can assume that Y and X are a�ne if we just
want to compute the dimension of OY,X . Then as in the proof of Theorem 3.2, let pY ⊂ A(X)
be the prime ideal of functions vanishing on Y . Then A(X)/pY ∼= A(Y ), so by Theorem
1.8A, dimA(X) = height p + dimA(Y ). Finally, height p = dimOY,X since OY,X

∼= A(X)pY
(this is similar to Theorem 3.2), so we conclude that dimOY,X = dimA(X) − dimA(Y ) =
dimX − dimY .

15. Exercise (Products of a�ne varieties). Let X ⊆ An and Y ⊆ Am be a�ne varieties.

(a) Show that X × Y ⊆ An+m with its induced topology is irreducible. The a�ne variety
X × Y is called the product of X and Y . Note that its topology is in general not equal to
the product topology.

(b) Show that A(X × Y ) ∼= A(X)⊗k A(Y ).

(c) Show that X × Y is a product in the category of varieties.

(d) Show that dimX × Y = dimX + dimY .

Solution.
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(a) Suppose that X × Y = Z1 ∪ Z2 with Zi closed and proper. Then de�ne Xi = {x ∈ X |
x× Y ⊂ Zi}. If x ∈ X \ (X1 ∪X2), de�ne Yi = (x× Y ) ∩ Zi. Then x× Y = Y1 ∪ Y2, and
both are closed in Y by virtue of being the intersections of closed subsets. So without loss
of generality, x × Y = Y1, which implies x ∈ X1, a contradiction. Hence X = X1 ∪ X2,
and both are closed in X (we can write down equations for Xi given equations for Zi), so
without loss of generality, X = X1. This means that X × Y = Z1, so X × Y is irreducible.

(b) Let I(X) ⊂ k[x1, . . . , xn] and I(Y ) ⊂ k[y1, . . . , ym] be the ideals of X and Y . Then
identifying k[x1, . . . , xn] and k[y1, . . . , ym] as subrings of k[x1, . . . , xn, y1, . . . , ym], we see
that I(X × Y ) = I(X)I(Y ). The conclusion follows from

A(X × Y ) ∼= k[x1, . . . , xn, y1, . . . , ym]/I(X)I(Y )
∼= k[x1, . . . , xn]/I(X) ⊗k k[y1, . . . , ym]/I(Y )
∼= A(X) ⊗k A(Y ).

(c) The fact that the projections X × Y → X and X × Y → Y are morphisms follows from
the fact that the maps A(X) → A(X) ⊗k A(Y ) and A(Y ) → A(X) ⊗k A(Y ) given by
x �→ x ⊗ 1 and y �→ 1 ⊗ y are k-algebra homomorphisms. The fact that X × Y is a
categorical product follows from Proposition 3.5, Corollary 3.8, and the fact that tensor
product is the coproduct in the category of k-algebras.

(d) The formula dimX × Y = dimX + dimY follows from (b).

21. Exercise (Group varieties). A group variety consists of a variety Y together with a morphism
µ : Y × Y → Y , such that the set of points of Y with the operation given by µ is a group, and
such that the inverse map y �→ y−1 is also a morphism of Y → Y .

(a) The additive group Ga is given by the variety A
1 and the morphism µ : A2 → A1 de�ned

by µ(a, b) = a+ b. Show it is a group variety.

(b) The multiplicative group Gm is given by the variety A
1 \{(0)} and the morphism µ(a, b) =

ab. Show it is a group variety.

(c) If G is a group variety, and X is any variety, show that the set Hom(X,G) has a natural
group structure.

(d) For any variety X, show that Hom(X,Ga) is isomorphic to OX as a group under addition.

(e) For any variety X, show that Hom(X,Gm) is isomorphic to the group of units in O(X),
under multiplication.

Solution.

(a) Given a rational function f (t), substituting a + b and −a for t results in another rational
function, so Ga is a group variety.

(b) Given a rational function f (t) whose denominator does not vanish, substituting ab and a−1

for t results in another rational function whose denominator does not vanish, so Gm is a
group variety.

(c) Given f, g ∈ Hom(X,G), de�ne fg to be the function x �→ µ(f (x), g(x)). And de�ne the
inverse by f−1(x) = f (x)−1. Then Hom(X,G) has a natural group structure from G.

(d) By Proposition 3.5, we have a bijection of sets

α : Hom(X,Ga)→ Hom(k[t],O(X)).
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A k-algebra homomorphism k[t] → O(X) is determined by the image of t, so the second
set is in bijection with O(X). Looking through the proof of Proposition 3.5, we see that
a map h : k[t] → O(X) is mapped to the function α−1(h) : X → Ga de�ned by P �→
h(t)(P ). Given another map h′ : k[t] → O(X), we have h + h′ : k[t] → O(X) de�ned by
t �→ h(t)+h′(t). Then α−1(h+h′) is the function X → Ga de�ned by P �→ (h(t)+h′(t))(P ),
which is the same as h(t)(P ) + h′(t)(P ), so in fact, α is a group homomorphism. So
Hom(X,Ga) ∼= O(X) as groups.

(e) This follows as in the discussion of (d).

4 Rational maps

7. Exercise. Let X and Y be two varieties. Suppose there are points P ∈ X and Q ∈ Y such that
the local rings OP,X and OQ,Y are isomorphic as k-algebras. Then show that there are open sets
P ∈ U ⊆ X and Q ∈ V ⊆ Y and an isomorphism of U to V which sends P to Q.

Solution. Since this is a local question, we may assume without loss of generality that X and Y
are a�ne varieties. Let A = O(X) and B = O(Y ) be the coordinate rings of X and Y , and p ⊂ A
and q ⊂ Q the prime ideals corresponding to the points P and Q. The assumption that X and
Y are varieties implies that A and B are domains. By assumption, we can �nd an isomorphism
ϕ : Bq → Ap. Since this is an isomorphisms of local rings, we necessarily have ϕ−1(p) = q.
Let {f1, . . . , fr} be generators for A as a k-algebra. Since A is a domain, we can identify A
as a subring of Ap, so let {g1, . . . , gr} ⊂ Bq be such that ϕ(gi) = fi. By �nding a common
denominator, the subring of Bq generated by B and {g1, . . . , gr} is contained in some B[g−1]
since B is a domain. Then ϕ(B[g−1]) = A[ϕ(g)−1], and the restriction ϕ : B[g−1] → A[ϕ(g)−1]
is an isomorphism, and hence the induced maps D(ϕ(g)) → D(g) is an isomorphism of open
neighborhoods of P and Q, which sends P to Q by a previous remark.
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1 Sheaves

1. Exercise. Let A be an Abelian group, and de�ne the constant presheaf associated to A on the
topological space X to be the presheaf U �→ A for all U �= ∅, with restriction maps the identity.
Show that the constant presheaf A de�ned in the text is the sheaf associated to this presheaf.

Solution. This will follow from the proof of (1.2). Let A denote the constant presheaf. The
stalks AP for all P ∈ X are equal to A, so the shea��cation of A on an open set U is de�ned
to be the set of all maps to A that are continuous, and this is precisely the de�nition of the
constant sheaf.

2. Exercise.

(a) For any morphism of sheaves ϕ : F → G , show that for each point P , (kerϕ)P = ker(ϕP )
and (imageϕ)P = image(ϕP ).

(b) Show that ϕ is injective (respectively, surjective) if and only if the induced map on the
stalks ϕP is injective (respectively, surjective) for all P .

(c) Show that a sequence

· · ·F i−1
ϕi−1

//
F i

ϕi
//
F i+1 // · · ·

of sheaves and morphisms is exact if and only if for each P ∈ X the corresponding sequence
of stalks is exact as a sequence of Abelian groups.

Solution. Choose x ∈ (kerϕ)P . Then there is an open set U � P such that x is the class
of x� ∈ (kerϕ)(U). Then ϕP (x

�) is represented by 0 in GP , so x� ∈ ker(ϕP ). Conversely, pick
x ∈ ker(ϕP ). Then there is an open set U � P such that x is represented by x� ∈ F (U),
∗by Robin Hartshorne
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and ϕ(x�) is represented by 0 in GP . This means that there is an open set V ⊆ U such that
ϕ(x�)|V = 0, so x ∈ (kerϕ)P . Hence (kerϕ)P = ker(ϕP ).

Now pick x ∈ (imageϕ)P . Since the stalk of a presheaf at P is the same as the stalk of its
shea��cation at P , we see that there exists an open set U � P and y ∈ F (U) such that
ϕ(y) = x. Then ϕ(yP ) = xP , so x ∈ image(ϕP ). Now suppose x ∈ image(ϕP ). Then there is an
open set U � P and x� ∈ G (U) representing x such that there exists y ∈ F (U) with ϕ(y) = x�,
so ϕ(yP ) = x. Thus (imageϕ)P = image(ϕP ), which �nishes (a).

For (b), note that ϕ is injective if and only if kerϕ = 0, which is equivalent to (kerϕ)P = 0 for
all P ∈ X. By (a), this is equivalent to ϕP being injective for all P ∈ X. Surjectivity of ϕ is
similar.

Now (c) is a direct consequence of (a) since kernels and images are preserved by taking stalks.

3. Exercise.

(a) Let ϕ : F → G be a morphism of sheaves on X. Show that ϕ is surjective if and only if
the following condition holds: for every open set U ⊆ X, and for every s ∈ G (U), there is
a covering {Ui} of U , and there are elements ti ∈ F (Ui), such that ϕ(ti) = s|Ui for all i.

(b) Give an example of a surjective morphism of sheaves ϕ : F → G , and an open set U such
that ϕ(U) : F (U)→ G (U) is not surjective.

Solution. Let ϕ : F → G be a morphism of sheaves. By (Ex. 1.2(b)), ϕ is surjective if and
only if ϕP is surjective for every point P ∈ X. Suppose ϕP is surjective for every P ∈ X. Let
U ⊆ X be an open set and s ∈ G (U). There exists an element tP ∈ FP such that ϕP (tP ) = sP ,
which means there is some neighborhood UP of P such that ϕ(t|UP ) = s|UP . Then {UP } is a
covering of U , and the condition holds. Conversely, suppose that the condition holds and let
s ∈ G (X). For any point P ∈ X, there is an open covering {Ui} of X and elements ti ∈ F (Ui)
such that ϕ(ti) = s|Ui for all i. There is some i such that P ∈ Ui, which gives ϕP (t

i
P ) = sP . So

each ϕP is surjective, and thus ϕ is surjective, which gives (a).

As for (b), let F be the sheaf on C with the usual topology that sends an open set U to the
group of all analytic functions on U with the obvious restriction maps. Let D : F → F be
di�erentiation; that is, for an open set U , D(U) sends f to its derivative, which is also analytic.
We use the fact that an analytic function f on an open set U has an antiderivative if and only if
the integral of f over any closed contour in U is 0. In particular, the integral of f over a closed
contour C is 0 if f is analytic in the region bounded by C. For any open set U and analytic
function f on U , there exists an open covering {Ui} of U such that each Ui is simply connected
(take a small enough neighborhood around each point). Thus the integral of f along any contour
in Ui is 0, so f has an antiderivative, which is of course analytic. Using part (a), this means that
D is a surjective morphism of sheaves. However, let U = C \ {0}. The function f(z) = 1/z is
analytic on U , but has no antiderivative since the integral of 1/z going counterclockwise along
the unit circle is 2πi, so D(U) : F (U)→ F (U) is not surjective.

4. Exercise.

(a) Let ϕ : F → G be a morphism of presheaves such that ϕ(U) : F (U) → G (U) is injective
for each U . Show that the induced map ϕ+ : F+ → G+ of associated sheaves is injective.

(b) Use part (a) to show that if ϕ : F → G is a morphism of sheaves, then imageϕ can be
naturally identi�ed with a subsheaf of G , as mentioned in the text.
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Solution. Part (a) follows from the fact that the shea��cation process does not change stalks.
Namely, if ϕ is an injective map of presheaves, then the stalks are all injective functions, so this
implies that the map of shea��cations is also injective by (Ex. 1.2(b)).

Let I be the presheaf U �→ image(ϕ(U)). It is enough to show that I is a sheaf since
image(ϕ(U)) ⊆ G (U) for all U . Let {Ui} be a covering of U , and suppose there is an ele-
ment s ∈ image(ϕ(U)) such that s|Ui = 0 for all i. There is an element t ∈ F (U) such that
ϕ(U)(t) = s. Since s|Ui ∈ image(ϕ(Ui)), there exists ti ∈ F (Ui) such that ϕ(Ui)(ti) = s|Ui , and
ti = 0 since ϕ(Ui) is injective. Since ϕ(Ui) ◦ ρFU,Ui = ρGU,Ui ◦ϕ(U) for all i, t|Ui = ti = 0, so t = 0,
and thus s = 0.

Now suppose there are elements si ∈ image(ϕ(Ui)) such that for all i and j, si|Ui∩Uj = sj |Ui∩Uj .
Since ϕ is injective, there are unique ti and tj such that ϕ(Ui ∩ Uj)(ti) = si|Ui∩Uj and ϕ(Ui ∩
Uj)(tj) = sj |Ui∩Uj . Again by the commutative relation mentioned earlier, ti|Ui∩Uj = tj |Ui∩Uj ,
so there is a t such that t|Ui = ti for all i. Setting s = ϕ(U)(t), one gets s|Ui = si, so I is a
sheaf. The isomorphism is a consequence of the universal property of shea��cation. This �nishes
(b).

5. Exercise. Show that a morphism of sheaves is an isomorphism if and only if it is both injective
and surjective.

Solution. A morphism of sheaves is an isomorphism if and only if the induced maps on stalks
are isomorphisms (1.1). This is equivalent to the induced maps on stalks being injective and
surjective, which in turn is equivalent to the morphism of sheaves being both injective and
surjective (Ex. 1.2(b)).

6. Exercise.

(a) Let F � be a subsheaf of a sheaf F . Show that the natural map of F to the quotient sheaf
F/F � is surjective, and has kernel F �. Thus there is an exact sequence

0 //
F � // F // F/F � // 0 .

(b) Conversely, if 0 → F � → F → F �� → 0 is an exact sequene, show that F � is isomorphic
to a subsheaf of F , and that F �� is isomorphic to the quotient of F by this subsheaf.

Solution. Let F � be a subsheaf of the sheaf F . There is an inclusion F �(U) → F (U) for all
open sets U , which gives an injective morphismF � → F . For all open sets U , there is a canonical
projection F (U)→ F (U)/F �(U), which gives a morphism of presheaves. Composing this with
the canonical morphism from the quotient presheaf to its shea��cation gives a morphism of
sheaves ϕ : F → F/F �. For any point P ∈ X, one has ϕP : FP → (F/F �)P , and from the
de�nition of direct limit, (F/F �)P = FP /F

�
P , so ϕP is canonical projection. By (Ex. 1.2(b)),

ϕ is surjective. In each case, ker(ϕP ) = F
�
P , so by (Ex. 1.2(a)), (kerϕ)P = F

�
P , which gives

kerϕ = F �. This gives (a).

For (b), let ϕ denote the injective morphism F � → F , and let I be the presheaf U �→
image(ϕ(U)). By (Ex. 1.4(b)), I is a subsheaf of F . The morphism F � → I , where
F �(U)→ image(ϕ(U)) is induced by ϕ(U) for all U , is an isomorphism, so F � is isomorphic to
a subsheaf of F . Let ψ be the surjective morphism F → F ��. By exactness, imageϕ = kerψ.
By (Ex. 1.7(a)), imageψ ∼= F/ kerψ, which means F �� ∼= F/ kerψ. Since F � can be identi�ed
with kerψ via isomorphism, F �� ∼= F/F �.

7. Exercise. Let ϕ : F → G be a morphism of sheaves.
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(a) Show that imageϕ ∼= F/ kerϕ.

(b) Show that cokerϕ ∼= G / imageϕ.

Solution. LetI be the presheaf U �→ image(ϕ(U)). Letting ϕ�(U) : image(ϕ(U))→ F (U)/ ker(ϕ(U))
be the canonical map for all open sets U de�nes a morphism of presheaves. This gives a mor-
phism I → F/ kerϕ by composing with the canonical morphism from the quotient presheaf to
its shea��cation, and this induces a morphism of sheaves ψ : imageϕ → F/ kerϕ. For any point
P , the induced map ψP : (imageϕ)P → (F/ kerϕ)P can be rewritten, using (Ex. 1.2(a)), as
ψP : image(ϕP )→ FP / ker(ϕP ), and is the canonical isomorphism. Thus ψ is an isomorphism,
so imageϕ ∼= F/ kerϕ.

Let C be the presheaf U �→ coker(ϕ(U)). The canonical map I → imageϕ induces a homomor-
phism

G (U)/ image(ϕ(U))→ G (U)/(imageϕ)(U)

since there is a natural embedding image(ϕ(U)) ⊆ (imageϕ)(U). Composing this with the
identity map

coker(ϕ(U))→ G (U)/ image(ϕ(U))

induces a morphism ψ : cokerϕ→ G / imageϕ as in (a). For any point P , the induced map

ψP : (cokerϕ)P → (G / imageϕ)P

can be rewritten, using (Ex. 1.2(a)), as

ψP : GP / image(ϕP )→ GP / image(ϕP ),

and is the identity. Thus ψ is an isomorphism, so cokerϕ ∼= G / imageϕ.

8. Exercise. For any open subset U ⊆ X, show that the functor Γ(U, ·) from sheaves on X to
Abelian groups is a left exact functor, i.e., if 0 → F � → F → F �� is an exact sequence of
sheaves, then 0→ Γ(U,F �)→ Γ(U,F )→ Γ(U,F ��) is an exact sequence of groups.

Solution. Let ϕ : F � → F and ψ : F → F �� be the morphisms in the sequence. Since kerϕ = 0,
ker(ϕ(U)) = 0, so ϕ(U) : F �(U) → F (U) is injective. By (Ex. 1.4(b)), U �→ image(ϕ(U)) is a
sheaf isomorphic to imageϕ. Since imageϕ = kerψ, the isomorphism image(ϕ(U)) ∼= ker(ψ(U))
follows, so Γ(U, ·) is left exact.

9. Exercise (Direct Sum). Let F and G be sheaves on X. Show that the presheaf U �→
F (U)⊕G (U) is a sheaf. It is called the direct sum of F and G , and is denoted by F ⊕G . Show
that it plays the role of direct sum and of direct product in the category of sheaves of Abelian
groups on X.

Solution. Let {Ui} be an open cover of U . Given (si, ti) ∈ F (Ui)⊕G (Ui) such that for all i, j,
we have (si, ti) = (sj , tj) on Ui ∩ Uj , then there exists a unique (s, t) ∈ F (U)⊕ G (U) such that
(s, t) = (si, ti) on Ui. Namely, we take s to be the gluing of the {si} and t to be the gluing of
the {ti}. Hence F ⊕ G is a sheaf.

That F ⊕G plays the role of direct sum and direct product in the category of sheaves of Abelian
groups on X follows immediately from its description and the fact that direct sum plays this
role in the category of Abelian groups.
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14. Exercise (Support). Let F be a sheaf on X, and let s ∈ F (U) be a section over an open set
U . The support of s, denoted Supp s, is de�ned to be {P ∈ U | sP �= 0}, where sP denotes the
germ of s in the stalk FP . Show that Supp s is a closed subset of U . We de�ne the support of
F , SuppF , to be {P ∈ X | FP �= 0}. It need not be a closed subset.

Solution. We show that the set T = {P ∈ U : sP = 0} is an open set of U to get the desired
conclusion. Pick P ∈ T . Then there exists an open neighborhood V of P such that s|V = 0.
For any other point Q ∈ V , this means that sQ = 0, so T is open.

Now let X = R with the standard topology. For every open set U , de�ne F (U) to be the group
of all functions f : U → R subject to f(0) = 0 if 0 ∈ U where the group operation is pointwise
addition. For V ⊆ U , the restriction map F (U)→ F (V ) is just restriction of domain. If {Ui}
is a covering of U , and we have functions in F (Ui) for all i such that they agree on overlaps,
then they uniquely determine a function in F (U), so F is a sheaf. Note that FP �= 0 means
that there is some f ∈ F (X) and some open neighborhood UP of P such that f |UP is nonzero
on all of UP . It is clear then that FP = 0 if P = 0 and FP �= 0 otherwise, so the support of F
is R \ {0}, which is not a closed set.

15. Exercise (Sheaf H om). Let F , G be sheaves of Abelian groups on X. For any open set
U ⊆ X, show that the set Hom(F |U ,G |U ) of morphisms of the restricted sheaves has a natural
structure of Abelian group. Show that the presheaf U �→ Hom(F |U ,G |U ) is a sheaf. It is called
the sheaf of local morphisms of F into G , “sheaf hom” for short, and is denoted H om(F ,G ).

Solution. For two morphisms ϕ, ψ ∈ Hom(F |U ,G |U ), we de�ne ϕ+ψ to be the map such that
for every open set V ⊆ U ,

(ϕ+ ψ)(V ) = ϕ(V ) + ϕ(V ).

For any inclusion of open sets W ⊆ V , the equality

(ϕ(W ) + ψ(W )) ◦ ρF |UV,W = ρ
G |U
V,W ◦ (ϕ(V ) + ψ(V )),

where the ρ are the restriction maps, holds because composition of homomorphisms distributes
with respect to addition for Abelian groups, so ϕ + ψ is a morphism of sheaves. The identity
element is the morphism 0 such that 0(V ) is the zero map for all open sets V , and the inverse
of ϕ is the morphism that sends an open set V to the map −ϕ(V ). Commutativity follows
from commutativity of adding homomorphisms of Abelian groups. This gives Hom(F |U ,G |U ) a
natural Abelian group structure induced by the Abelian group structure from Hom(F (V ),G (V ))
for all V ⊆ U .

Now let H om be the presheaf U �→ Hom(F |U ,G |U ). The restriction map ρU,V : H om(U) →
H om(V ) is de�ned as follows. For any open set W ⊆ U , (F |V )(W ∩ V ) = F (W ∩ V ), and
(F |U )(W ) = F (W ), so ρU,V is the family of restriction maps F (V )→ F (V ∩W ). Let {Ui} be
an open covering of U and choose ψ ∈H om(U) such that ψ|Ui = 0 for all i. Then for any open
set W ⊆ U , the map ψ(W ∩ Ui) is 0. Since {W ∩ Ui} is a covering of W , for any x ∈ F (W ),
ψ(x|W∩Ui) = 0. Since G is a sheaf, ψ(x) = 0, so this means that ψ(W ) = 0 for all W ⊆ U , so
ψ = 0 in the �rst place.

Now suppose there are elements ψi ∈ H om(Ui) such that for all i and j, ψi|Ui∩Uj = ψj |Ui∩Uj .
For any open setW ⊆ U , the compatibility of the ψi gives rise to a map ψ ∈H om(U) such that
ψ|Ui = ψi for all i because G is a sheaf. Therefore, H om satis�es the additional sheaf axioms,
so is a sheaf.

16. Exercise (Flasque Sheaves). A sheaf F on a topological space X is �asque if for every
inclusion V ⊆ U of open sets, the restriction map F (U)→ F (V ) is surjective.
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(a) Show that a constant sheaf on an irreducible topological space is �asque.

(b) If 0 → F � → F → F �� → 0 is an exact sequence of sheaves, and if F � is �asque, then for
any open set U , the sequence 0 → F �(U) → F (U) → F ��(U) → 0 of Abelian groups is
also exact.

(c) If 0→ F � → F → F �� → 0 is an exact sequence of sheaves, and if F � and F are �asque,
then F �� is �asque.

(d) If f : X → Y is a continuous map, and if F is a �asque sheaf on X, then f∗F is a �asque
sheaf on Y .

(e) LetF be any sheaf onX. We de�ne a new sheaf G , called the sheaf of discontinuous sections
of F as follows. For each open set U ⊆ X, G (U) is the set of maps s : U →

�
P∈U FP

such that for each P ∈ U , s(P ) ∈ FP . Show that G is a �asque sheaf, and that there is a
natural injective morphism of F to G .

Solution. Let X be an irreducible topological space, let A be an Abelian group, and let A be
the constant sheaf on X determined by A. We claim that every open set U ⊆ X is connected. If
U = X or U = ∅, this is clear. Otherwise, if U �= X is nonempty and not connected, then there
is a nonempty proper subset U1 ⊆ U such that both U1 and U \U1 are closed relative to U . This
means that there are closed subsets X1, X2 ⊆ X such that U1 = U ∩X1 and U \ U1 = U ∩X2.
Since U �= X, X1 and X2 are both proper subsets of X. It must be that X �= X1 ∪X2, or else
X is reducible. But X \ U is closed, so we can write X = (X \ U) ∪ (X1 ∪ X2) as the union
of two closed proper subsets, which is a contradiction. Now let V ⊆ U be an inclusion of open
sets. Then any f ∈ A (V ) is a constant map since V is connected. Thus f can be extended to
U , so ρU,V : A (U)→ A (V ) is surjective, and A is �asque. This gives (a).

Now we show (b). Let ϕ be the map F → F �� and ψ be the map F � → F . By (Ex. 1.8),
the functor Γ(U, ·) is left exact, so it remains to show that ϕ(U) : F (U)→ F ��(U) is surjective.
Pick s ∈ F ��(U). Consider the set S of pairs (V, t) with V ⊆ U open and t ∈ F (V ) such that
ϕ(t) = s|V . This is nonempty because for each point P ∈ X, ϕP is surjective by (Ex. 1.2(b)). We
partially order such pairs by (V, t) ≤ (V �, t�) if V ⊆ V � and t = t�|V . It is clear that for any chain
{(Vi, ti)}, the element (

�
i Vi, t) is a maximal element, where t is the element such that t|Vi = ti

for all i (which exists because F is a sheaf). By Zorn’s lemma, there is a maximal element of
S, which we denote (W,x). Suppose W �= U . Then pick P ∈ U \W . By the surjectivity of ϕP ,
there is a neighborhood W � containing P and an element y ∈ F (W �) such that ϕ(y) = s|W � .
Then ϕ(x|W∩W � − y|W∩W �) = 0, so by exactness, there is an element a ∈ F �(W ∩W �) such that
ψ(a) = x|W∩W � − y|W∩W � . Since F is �asque, ρF

�

W,W∩W � : F �(W ) → F �(W ∩W �) is surjective,
so we can lift a to an element b ∈ F �(W ). Then

(y + ψ(b)|W �)|W∩W � = y|W∩W � + ψ(b)|W∩W � = x|W∩W � ,

where the second equality follows because ψ(W ∩ W �) ◦ ρF
�

W,W∩W � = ρFW,W∩W � ◦ ψ(W ). Since
{W,W �} is a cover of W ∪W �, there is an element c ∈ F (W ∪W �) such that c|W � = y+ψ(b)|W
and c|W = x. This implies that ϕ(c) = s|W∪W � , which contradicts the maximality of (W,x), so
in fact W = U , and thus ϕ(U) is surjective.

Let V ⊆ U be an inclusion of open sets. Then by (b), since F � is �asque, F (V ) → F ��(V ) is
surjective. Since F is �asque, F (U)→ F (V ) is also surjective. Their composition is surjective,
and is the same map asF (U)→ F ��(U)→ F ��(V ). This impliesF ��(U)→ F ��(V ) is surjective,
so F �� is �asque, so we have (c).



1 SHEAVES 7

If f : X → Y is continuous and F is a �asque sheaf on X, then for any inclusion of open sets
V ⊆ U , ρU,V : (f∗F )(U)→ (f∗F )(V ) is exactly the restriction map F (f−1(U))→ F (f−1(V )),
which is surjective since F is �asque, so f∗F is �asque. This gives (d).

Finally, we prove (e). The restriction maps of G are restriction in the usual sense. Let {Ui}
be a covering of U , and choose s ∈ G (U) such that s|Ui = 0 for all i. This means that
s|Ui : Ui →

�
P∈Ui

FP is just the zero map. Since {Ui} is a covering, each P ∈ U is mapped
to 0, so s = 0. Now suppose we have elements si ∈ G (Ui) such that for any two i and j,
si|Ui∩Uj = sj |Ui∩Uj . De�ne s ∈ G (U) in the obvious way. That is, for a point P , there is an i
such that P ∈ Ui, so let s(P ) = si(P ). Since the si agree on their overlaps, s is well-de�ned,
and s|Ui = si for all i, so G is a sheaf. Now let V ⊆ U be an inclusion of open sets. For any
s ∈ G (V ), we can extend s to an element t ∈ G (U) by setting t(P ) = 0 if P ∈ U \ V , and
t(P ) = s(P ) if P ∈ U , so G is �asque.

For an open set U ⊆ X, de�ne F (U) → G (U) by x �→ (P �→ xP ). It is immediate that this
de�nes a morphism F → G . Suppose P �→ xP is the zero map for x ∈ F (U). Then for every
point P ∈ U , there is an open neighborhood UP such that x|UP = 0. Since {UP } is a cover of U ,
and F is a sheaf, x = 0. Thus F (U)→ G (U) is injective for all U , so F → G is injective.

17. Exercise (Skyscraper Sheaves). Let X be a topological space, let P be a point, and let A be
an Abelian group. De�ne a sheaf iP (A) on X as follows: iP (A)(U) = A if P ∈ U , 0 otherwise.
Verify that the stalk of iP (A) is A at every point Q ∈ {P}−, and 0 elsewhere, where {P}−

denotes the closure of the set consisting of the point P . Hence the name “skyscaper sheaf.”
Show that this sheaf could also be described as i∗(A), where A denotes the constant sheaf A on
the closed subspace {P}−, and i : {P}− → X is the inclusion.

Solution. If Q is in the closure of P , then every open set containing Q contains P , so the
stalk at Q of iP (A) is A. If Q is not in the closure of P , then there is some open set of Q not
containing P , and its value under iP (A) is 0, so the stalk of iP (A) at Q is also zero.

Since every open set of {P}− contains P , the constant presheaf A on {P}− is a sheaf. By
de�nition, i∗(A) is A on every open set of X containing P , so is exactly the sheaf described
above.

19. Exercise (Extending a Sheaf by Zero). Let X be a topological space, let Z be a closed
subset, let i : Z → X be the inclusion, let U = X \ Z be the complementary open subset, and
let j : U → X be its inclusion.

(a) Let F be a sheaf on Z. Show that the stalk (i∗F )P of the direct image sheaf on X is FP if
P ∈ Z, 0 if P /∈ Z. Hence we call i∗F the sheaf obtained by extending F by zero outside
Z. By abuse of notation we will sometimes write F instead of i∗F , and say “consider F
as a sheaf on X,” when we mean “consider i∗F .”

(b) Now let F be a sheaf on U . Let j!(F ) be the sheaf on X associated to the presheaf
V �→ F (V ) if V ⊆ U , V �→ 0 otherwise. Show that the stalk (j!(F ))P is equal to FP if
P ∈ U , 0 if P /∈ U , and show that j!F is the only sheaf on X which has this property,
and whose restriction to U is F . We call j!F the sheaf obtained by extending F by zero

outside U .

(c) Now let F be a sheaf on X. Show that there is an exact sequence of sheaves on X,

0 // j!(F |U ) // F // i∗(F |Z) // 0 .
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Solution. If F is a sheaf on Z, then for any open set V ⊆ X, (i∗F )(V ) = F (i
−1(V )) =

F (V ∩Z). For any point P ∈ Z, (i∗F )P is the direct limit of the groups (i∗F )(V ) for all open
sets V ⊆ X containing P . Equivalently, this is the direct limit of the groups F (V ∩ Z) for all
open sets V ⊆ X containing P . On the other hand, FP is the direct limit of F (W ) for all open
sets W of Z containing P . The open sets of Z are exactly those of the form V ∩ Z for some
open set V of X, so these direct limits are the same, and hence (i∗F )P = FP . For any point
P /∈ Z, there is a neighborhood W containing P such that W ∩ Z = ∅ since Z is closed. Then
(i∗F )(W ) = 0, so every germ of (i∗F )P is 0, and (i∗F )P = 0. This gives (a).

Let F be a sheaf on U = X \ Z, and let I be the presheaf V �→ F (V ) if V ⊆ U and V �→ 0
otherwise. For any P ∈ X, (j!(F ))P = IP . If P ∈ U , then IP = FP since F is the restriction
of I on U . If P /∈ U , then IP = 0 because any neighborhood W of P is not contained in U ,
which means I (W ) = 0. Suppose G is another sheaf on X whose restriction to U is F and such
that GP = 0 for all P /∈ U . Then we can de�ne a morphism I → G by letting I (V ) → G (V )
be the identity for V ⊆ U and letting 0 → G (V ) be the zero map otherwise. This induces a
morphism ψ : j!(F ) → G . If P ∈ U , ψP is a map FP → GP = FP , which is an isomorphism,
and similarly, if P /∈ U , then ψP : 0 → 0 is also an isomorphism, so ψ is an isomorphism. This
gives that j!(F ) is the unique sheaf up to isomorphism subject to the properties described. So
(b) is proven.

Let I be the presheaf V �→ (F |U )(V ) = F (V ) if V ⊆ U and V �→ 0 otherwise. Then there
is a natural map I → F where for V ⊆ U , I (V ) = F (V ) → F (V ) is the identity, and
I (V ) = 0→ F (V ) is the zero map otherwise. This induces a unique morphism j!(F |U )→ F .
For any open set V ⊆ X, (i∗(F |Z))(V ) = (F |Z)(V ∩ Z), which is equal to the direct limit of
F (W ) over all open sets W ⊆ X containing V ∩Z, but we lose nothing by only taking the limit
over those W that are also contained in V . Using the restriction maps of F gives a map of
F (V ) to this direct limit, and also gives a natural morphism F → i∗(F |Z) by composing with
the canonical morphism from the direct limit presheaf to its shea��cation. By (Ex. 1.2(c)), it
is enough to show that for every P ∈ X,

0→ (j!(F |U ))P → FP → (i∗(F |Z))P → 0

is exact. If P ∈ U , then (j!(F |U ))P = (F |U )P = FP and (i∗(F |Z))P = 0, and in this
case, (j!(FP |U ))P → FP is an isomorphism since this is the identity map. If P /∈ U , then
(j!(F |U ))P = 0 and (i∗(F |Z))P = (F |Z)P = FP , and FP → (i∗(F |Z))P is an isomorphism
because these two sheaves behave the same on open sets of X contained in Z, so again it is the
identity map. In both cases the corresponding sequence is exact.

20. Exercise (Subsheaf with Supports). Let Z be a closed subset of X, and let F be a sheaf on
X. We de�ne ΓZ(X,F ) to be the subgroup of Γ(X,F ) consisting of all sections whose support
is contained in Z.

(a) Show that the presheaf V �→ ΓZ∩V (V,F |V ) is a sheaf. It is called the subsheaf of F with
supports in Z, and is denoted by H 0

Z (F ).

(b) Let U = X \ Z, and let j : U → X be the inclusion. Show there is an exact sequence of
sheaves on X

0 // H 0
Z (F )

// F // j∗(F |U ) .

Furthermore, if F is �asque, the map F → j∗(F |U ) is surjective.
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Solution. Let V ⊆ X be an open set with a covering {Vi}. Choose s ∈ ΓZ∩V (V,F |V ) such that
s|Vi = 0 for all i. This means that the support of s|Vi in Vi is empty. Since {Vi} covers V , the
support of s in V is also empty since sP = (s|Vi)P for all i. Then sP = 0 for all P ∈ V , which
means that s = 0 since F is a sheaf. Now suppose we have elements si ∈ ΓZ∩Vi(Vi,F |Vi) such
that for all i and j, si|Vi∩Vj = sj |Vi∩Vj . Since F is a sheaf, there is a unique element s ∈ F (V )
such that s|Vi = si. We wish to show that s ∈ ΓZ∩V (V,F |V ). For any P ∈ V \ Z, P ∈ Vi for
some i, so sP = (s|Vi)P = (si)P . Since the support of si in Vi is contained in Vi ∩ Z, (si)P = 0,
so the support of s is contained in Z ∩ V , and thus H 0

Z (F ) is a sheaf.

For every open set V ⊆ X, (H 0
Z (F ))(V ) is a subgroup of F (V ), so de�ne ϕ : H 0

Z (F ) → F

by inclusion, which is injective. Also, (j∗(F |U ))(V ) = (F |U )(j−1(V )) = (F |U )(U ∩ V ) =
F (U ∩ V ), so let ψ : F → j∗(F |U ) be given by the restriction maps of F . If F is �asque,
then by de�nition, ψ is surjective on each open set and thus surjective. Since ϕ is injective,
the presheaf V �→ image(ϕ(V )) is a sheaf by (Ex. 1.4(b)), and it is enough to show that
image(ϕ(V )) = ker(ψ(V )) for all V to show that imageϕ = kerψ. If x ∈ ker(ψ(V )), then
x|U∩V = 0, which means its support in V must be contained in Z ∩ V , so x ∈ image(ϕ(V )). On
the other hand, if x ∈ image(ϕ(V )), then for every Q ∈ V \Z = U ∩V , xQ = 0, so there is some
neighborhood VQ ⊆ U ∩V containing Q such that x|VQ = 0. Since {VQ} is a cover of U ∩V and
j∗(F |U ) is a sheaf, ψ(V )(x) = x|U∩V = 0, so x ∈ ker(ψ(V )).

22. Exercise (Gluing Sheaves). Let X be a topological space, let U = {Ui} be an open cover
of X, and suppose we are given for each i a sheaf Fi on Ui, and for each i, j an isomorphism
ϕij : Fi|Ui∩Uj → Fj |Ui∩Uj such that (1) for each i, ϕii = id, and (2) for each i, j, k, ϕik =
ϕjk ◦ϕij on Ui∩Uj ∩Uk. Then there exists a unique sheaf F on X, together with isomorphisms
ψi : F |Ui → Fi such that for each i, j, ψj = ϕij ◦ ψi on Ui ∩ Uj . We say loosely that F is
obtained by gluing the sheaves Fi via the isomorphisms ϕij .

Solution. For every open set V ⊆ X, {V ∩Ui} is a covering. Consider the group
�

iFi(V ∩Ui),
and for an element s, let si be the component of s in Fi(V ∩ Ui). De�ne F (V ) to be the
subgroup of components s such that for all i and j, one has ϕi,j(si|V ∩Ui∩Uj ) = sj |V ∩Ui∩Uj . For
W ⊆ V , there is a map F (V ) → F (W ) induced by each Fi(V ∩ Ui) → Fi(W ∩ Ui), which is
well-de�ned because of the compatibility of the ϕ on each triple intersection. We let these be
the restriction maps of F , so it is clear that F is a presheaf. Now let {Vj} be a covering of V ,
and suppose that s ∈ F (V ) is such that s|Vj = 0 for all j. More precisely, for each component
si ∈ Fi(V ∩Ui) of s, si|Vj = 0 for all j. For any given i, {Ui∩Vj} is a covering of Ui∩V , and Fi

is a sheaf, so this implies si = 0 for all i, and hence s = 0. Now suppose there are s
j ∈ F (Vj)

such that for all j and k, sj |Vj∩Vk = sk|Vj∩Vk . For �xed i, {Ui ∩ Vj} is a covering of Ui ∩ V , and

sji |Vj∩Vk = ski |Vj∩Vk . Since Fi is a sheaf, there is an element si such that si|Vj = sji for all j.
Furthermore, these elements satisfy the condition ϕi,j(si|V ∩Ui∩Uj ) = sj |V ∩Ui∩Uj , so they are the
components of some s ∈ F (V ), and therefore F is a sheaf.

For every inclusion of open sets V ⊆ Ui, (F |Ui)(V ) = F (V ), so there is a morphism ψi(V ) : (F |Ui)(V )→
Fi(V ) by s �→ si. To see this is injective, suppose there is t such that the component of t in
Fi(V ) is si. Then for any j, ϕj,i(tj |V ∩Uj ) = ti|V ∩Uj = si|V ∩Uj . Since ϕj,i is an isomorphism,
tj |V ∩Uj = sj |V ∩Uj , so t = s. For surjectivity, we can de�ne sj = ϕi,j(si|V ∩Ui), which is an
element of V ∩ Uj , and by de�nition this gives an element of F (V ). The map s �→ si gives rise
to an isomorphism ψi : F |Ui → Fi. That ψj = ϕi,j ◦ψi on Ui∩Uj for all i and j is a consequence
of the de�nition of the elements in F (X). Finally, suppose there is another sheaf G on X such
that there are isomorphisms ψ�i : G |Ui → Fi satisfying ψ�j = ϕi,j ◦ ψ�i on Ui ∩ Uj for all i and j.

This gives isomorphisms FUi → GUi via (ψ
�
i)
−1 ◦ψi. By (Ex. 1.15), H om(F ,G ) is a sheaf, and
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{Ui} is a covering, so there is a morphism θ : F → G such that θ|Ui = (ψ
�
i)
−1 ◦ ψi. By the same

reasoning we get a morphism θ� : G → F such that θ�|Ui = ψ−1i ◦ ψ�i. Since (θ ◦ θ
�)|Ui restricts

to the identity map, we conclude θ ◦ θ� is the identity. Thus F and G are isomorphic, so F is
unique up to isomorphism.

2 Schemes

1. By de�nition, D(f) is the set of prime ideals of A not containing f . Let ϕ : A → Af be the
natural map a �→ a/1. The map I �→ ϕ−1(I) is an inclusion preserving injection from the
set of ideals of Af and the set of ideals of A, and is also a bijection between the set of prime
ideals Af and the primes of A that don’t contain f , so the map ψ : D(f) → SpecAf given by
this bijection preserves closed sets and hence is a homeomorphism. We wish to de�ne a map
ψ# : OSpecAf

→ ψ∗OX |D(f). For each open set U ⊆ SpecAf , we need

ψ#(U) : OSpecAf
(U)→ OX |D(f)(ψ

−1(U)).

But we can identify ψ−1(U) with U via the homeomorphism, and since D(f) is an open set,
OX |D(f)(U) = OX(U). We also remark that for any prime p ∈ D(f), (Af )p ∼= Ap in a natural
way via ϕ; call this isomorphism ϕ�. By the construction of O, we can give an isomorphism
OSpecAf

(U) → OX |D(f)(ψ
−1(U)). That is, for a function s : U →

�
p∈U (Af )p in OX |D(f)(U),

map it to

ψ−1(U)→
�

ϕ−1(p)∈ψ−1(U)

ϕ�((Af )p),

which is de�ned by composing s with the appropriate maps. This is an element in OX |D(f)(U);

the condition of being locally a quotient of elements follows because it is true of s, and ψ#(U)(s) is
nothing more than a renaming of variables of s. Thus we have given the desired isomorphism ψ#.
The stalk at any point is then also an isomorphism, so is automatically a local homomorphism.
Thus, (ψ, ψ#) is an isomorphism of locally ringed spaces (D(f),OX |D(f))→ (SpecAf ,OSpecAf

).

3. (a) We will show that OX,P has no nilpotent elements for all P ∈ X if and only if OX(U) has
no nilpotent elements for all open sets U ⊆ X. Suppose that there exists P ∈ X such that
OX,P has a nilpotent element fP �= 0. Let f ∈ OX(X) be a representative of fP . There
exists n and an open neighborhood V ⊆ X containing P such that fn|V = 0, which means
(f |V )n = 0. If f |V = 0, then fP = 0, contrary to hypothesis, so f |V is a nilpotent element
in OX(V ).

Conversely, suppose that there is some open set U ⊆ X such that OX(U) has a nilpotent
element f �= 0. If fP �= 0, then it is a nilpotent element of OX,P . Suppose that fP = 0
for all P ∈ U . Then for all P ∈ U , there exists a neighborhood VP ⊆ U of P such that
f |VP = 0. Since {VP } is a covering of U , this implies f = 0, contrary to hypothesis, so
OX,P has a nilpotent element.

(b) For every point P ∈ X, there is a neighborhood UP such that (UP ,OX |UP ) is isomorphic
to (SpecAP ,OSpecAP ) for some ring AP . Also, ((OX)red)P is the direct limit of OX(U)red
over all open sets U containing P . Each such ring is OX(U)/I(U) where I(U) is the ideal
of nilpotent elements of OX(U), so ((OX)red)P = (OX)P /I where I is the ideal of nilpotent
germs of (OX)P (this follows because by (a) we know that a representative of a germ is
nilpotent if and only if that germ is nilpotent). Dividing by an ideal I preserves inclusions
of ideals containing I, so ((OX)red)P is local since (OX)P is, and (X, (OX)red) is a locally
ringed space.
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Let Y P = SpecAP
red. We claim that (U

P , (OX)red|UP ) is isomorphic as a locally ringed space
to (Y P ,OY P ). Any prime ideal of AP must contain the ideal of its nilpotent elements I, so
there is a bijection of ideals of AP containing I and ideals of AP

red given by projection which
preserves inclusions and primes, and this bijection induces a homeomorphism f : Y P →
SpecAP . For an open set U ⊆ SpecAP = UP , de�ne

OX |UP (U)→ OY P (f−1(U))

in the following way. An element of OX |UP (U) is a function s →
�

p∈U AP
p
with s(p) ∈ AP

p

and that locally is a quotient of elements of AP . We can describe OY P (f−1(U)) in a
similar way. Localization preserves quotients; that is, (A/I)p is canonically isomorphic to
Ap/(IAp). Thus, an element of OX |UP (U) can be mapped naturally to an element of OY P

by composing with
AP
p
→ (AP

p
)red → (AP

red)p.

If a function s ∈ OX |UP (U) is nilpotent, this means that s(p) is nilpotent for all p ∈ U ,
which means that its image in OY P (U) is 0, so we have a map OX(U)red → OY P (f−1(U)).
This de�nes a map of presheaves, which induces a morphism of sheaves f# : (OX)red|UP →
f∗OY P . Taking the stalk at a prime p ∈ Y P , we get from our description above that

((OX)red|UP )f(p) = ((OX)red)f(p) = ((OX)f(p))red = (A
P
f(p))red,

and we get the map of stalks f#p : (A
P
f(p))red → (A

P
red)p, which is the canonical isomorphism

described above, and therefore a local homomorphism. This also implies that f# is an
isomorphism of sheaves, so (f, f#) is an isomorphism of locally ringed spaces, and thus
(X, (OX)red) is a scheme.

Since X and Xred have the same underlying topological space, the identity f : Xred →
X is a homeomorphism. For every open set U ⊆ X, there is a projection OX(U) →
OX(U)red, which de�nes a morphism of presheaves OX → (U �→ OX(U)red). Composing
this with the shea��cation morphism (U �→ OX(U)red) → (OX)red gives a morphism of

sheaves f# : OX → f∗(OX)red. For any point P ∈ X, the stalk at P gives f#P : OX,f(P ) →
((OX)red)P . Note that ((OX)red)P = (OX,P )red, and that f

#
P is projection. Projection of a

local ring is a local homomorphism by the ideal inclusion preserving property of division, so
(f, f#) gives a morphism of schemes Xred → X that is a homeomorphism on the underlying
spaces.

(c) Let f : X → Y be a morphism of schemes whereX is a reduced scheme, and let ϕ : Yred → Y
be the natural map described in (b). We wish to de�ne a morphism g : X → Yred such that
f = ϕ ◦ g. Since ϕ is a homeomorphism on the underlying topological spaces, there is no
choice but to de�ne the map of topological spaces g : X → Yred to be ϕ

−1 ◦f . For any open
set U ⊆ Y , we have a ring homomorphism f# : OY (U)→ OX(f

−1(U)). Since OX(f
−1(U))

is reduced, any nilpotent element of OY (U) must be in the kernel of f
#. By the universal

property of the kernel, this induces a unique homomorphism OY (U)red → OX(f
−1(U))

which commutes with the projection OY (U) → OY (U)red. This gives a morphism of
presheaves (U �→ OY (U)red) → f∗OX . Since the preimage of ϕ

−1(U) under g is the same
as the preimage of U under f , and by the universal property of shea��cation, this induces
a unique morphism of sheaves g# : (OY )red → g∗OX such that g

# ◦ ϕ# = f#. Finally, for

any point P ∈ X, the stalk at P induces maps f#P : OY,f(P ) → OX,P and

OY,ϕ(g(P ))

ϕ#
g(P )−−−→ ((OY )red)g(P )

g#
P−−→ OX,P
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which are equal. Since f#P and ϕ#
ϕ(g(P )) are local homomorphisms, g

#
P is also local. If not,

then the preimage of the maximal ideal in OX,P under g#P would not be maximal, and

in turn gives that the preimage under the composition g#P ◦ ϕ#
ϕ(g(P )) isn’t maximal, which

contradicts that f#P is local since it is equal to the composition of those two maps. Thus,
(g, g#) is a morphism of schemes such that ϕ ◦ g = f . To see that it is unique with respect
to this property, let h be another such morphism. Then h# : (OY )red → h∗OX gives a
morphism of presheaves (U �→ OY (U)red) → f∗OX by composing with the shea��cation
morphism. But this presheaf map is unique, so h and g are the same.

4. We construct an inverse map α−1 to show that α is a bijection. Let ϕ : A → Γ(X,OX) be a ring
homomorphism. For each P ∈ X, there is an open neighborhood UP ⊆ X such that (UP ,OX |UP )
is isomorphic as a locally ringed space to (SpecAP ,OSpecAP ) for some ring AP . There is a

restriction map Γ(X,OX)→ Γ(UP ,OX). Since U
P is open, Γ(UP ,OX |UP ) ∼= Γ(UP ,OX), which

is in turn isomorphic to AP , so using these isomorphisms, we get maps ϕP : A → AP . These
induce morphisms of schemes SpecAP → SpecA whose global sections A → AP are precisely
ϕP . The map of topological spaces f : X → SpecA induced by the ϕP is well-de�ned because
on any intersection SpecAP ∩ SpecAQ, the values are induced by the restriction maps of OX ,
which force compatibility. That this map is continuous follows because each map SpecAP →
SpecA is continuous. Now we need to de�ne OSpecA(V ) → OX(f

−1(V )) for an arbitrary open
set V ⊆ SpecA. We can cover V by {V ∩ UP }, so that we have maps OSpecA(V ∩ UP ) →
OSpecAP (f−1(V ∩ UP )). We claim that the images of a �xed element x ∈ OSpecA(V ∩ UP )
agree on their overlaps and hence glue to give an image of x in OX(f

−1(V )). This follows
because the restriction maps of each OSpecAP are the restriction maps of OX . This also gives
compatibility of our de�ned map with the restriction maps, so we have given a morphism of
sheaves f# : OSpecA → f∗OX . Also, for any point P ∈ X, f#P is the same as taking the stalk of
P of OSpecA → OSpecAP , so is a local homomorphism. Hence (f, f#) is a morphism of schemes.

We want that OSpecA(SpecA)→ Γ(X,OX) is ϕ after identifying OSpecA(SpecA) with A. This
map is de�ned for each AP via the restriction maps of OX and ϕP , so the images of any
s ∈ OSpecA(SpecA) under ϕP is the restriction of Γ(X,OX) to Γ(U

P ,OX |UP ), so they glue
together to ϕ(s).

Now we need to show that α−1 ◦α is also the identity. Suppose (f, f#) is a morphism of schemes
from X to SpecA. Taking global sections gives a ring homomorphism ϕ : A → Γ(X,OX). The
morphism of schemes α−1(ϕ) at agrees with f on all open sets UP by construction. Since the
rest of the ring homomorphisms are determined by these values, α−1(ϕ) = (f, f#), so we have
the desired bijection.

5. Since Z is a principal ideal domain, the topological space SpecZ consists of one point for every
prime number p, and one point for the zero ideal. Every closed set is of the form V ((n)) for
some integer n, and (n) ⊆ (p) if and only if p|n, so the closed sets of SpecZ are all �nite sets
consisting of the ideals generated by prime numbers, the whole set and the empty set. This
implies that every open set is of the form D((n)). In particular, O(D(n)) is isomorphic to the
localized ring Zn where n is any integer. For any scheme X, there is a bijection of sets

α : HomSch(X, SpecZ)→ HomRing(Z,Γ(X,OX))

by (Ex. 2.4). There is a unique morphism Z → Γ(X,OX) because 1 is sent to 1 and this
determines the image of all elements in Z, so there is a unique morphism X → SpecZ.
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7. Since K is a �eld, SpecK is a one point space, so for a morphism f : SpecK → X call the
image of this point x. There is also a morphism of sheaves f# : O → f∗OSpecK . Considering the

stalk at x, we get f#x : Ox → (f∗OSpecK)x, which is a local homomorphism by de�nition. Also,
(f∗OSpecK)x is the direct limit of OSpecK(f

−1(U)) where we range over open sets U containing

x. In each case, f−1(U) = SpecK, and OSpecK(SpecK) = K, so (f∗OSpecK)x = K. Since f#x

is a local homomorphism, (f#x )−1(0) = mx. This means the kernel of f
#
x is mx, so there is an

inclusion Ox/mx → K.

Conversely, suppose we are given a point x ∈ X and an inclusion k(x) → K. We de�ne a
continuous map f : SpecK → X by sending the one point of SpecK to x. There is a projection
Ox → Ox/mx, which we compose with the given inclusion to get a map Ox → K. We need
to de�ne a morphism of sheaves f# : O → f∗OSpecK . However, if U does not contain x, then
f∗OSpecK(U) = 0, so we only need to specify f# on open sets U containing x. On such open
sets, f∗OSpecK(U) = K. Then f# is induced by the map Ox → K since Ox is the direct limit
of O(U) for all U containing x, and since the direct limit uses the restriction maps of O, these
induced maps on O(U) de�ne a morphism of ringed spaces f#. Finally, we need to check that
f#P is a local homomorphism for all P ∈ X. If every open set of P contains x, then this property
is given by the fact that OP = Ox and that Ox → K has kernel mx. Otherwise, OP = 0, and
there is nothing to show. Thus (f, f#) is a morphism of schemes. These two processes described
are inverse to one another, so giving a morphism SpecK → X is equivalent to giving a point
x ∈ X and an inclusion k(x)→ K.

8. The ring k[ε]/ε2 has one prime ideal. To see this, note that any prime ideal contains 0 = ε2,
so must also contain ε. Since (ε) is maximal and the smallest ideal containing ε, we get the
claim. If we have a k-morphism f : Spec k[ε]/ε2 → X, let x be the image of (ε). There is also a
morphism of sheaves

f# : OX → f∗OSpec k[ε]/ε2 .

Taking the stalk at (ε), OSpec k[ε]/ε2,(ε) = k[ε]/ε2, so we get a local homomorphism

f#(ε) : OX,x → k[ε]/ε2.

Then the preimage of (ε) is mx, and k[ε]/ε = k, so composing f#(ε) with this projection gives a

map OX,x → k whose kernel contains mx and hence induces an injection i : OX,x/mx → k. Since
f is a k-morphism, the following diagram

Spec k[ε]/ε2

ϕ

��

f
// X

ψ
yytt
t
t
t
t
t
t
t
t
t

Spec k

Note that OSpec k,ϕ(x) = k, so we get local homomorphisms ψ#
x : k → OX,x and ϕ#

(ε) : k → k[ε]/ε2.

Since (ψ#
x )−1(mx) = 0, by composing with the projection OX,x → OX,x/mx, we get an injection

i� : k → OX,x/mx such that i ◦ i� = ψ#
(ε). But ψ

#
(ε) is the inclusion k → k[ε]/ε2, so OX,x/mx = k,

and hence x is rational over k. The image of m2
x under f

#
(ε)
is 0 because ε2 = 0, so this gives a

k-vector space homomorphism mx/m
2
x → (ε). Also, there is an isomorphism (ε)→ k via ε �→ 1,

so this map gives an element of Tx = Homk(mx/m
2
x, k).
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Conversely, suppose we are given a point x ∈ X such that OX,x/mx = k, and a k-vector
space homomorphism mx/m

2
x → k. This extends to a map mx → (ε), which we can further

extend to OX,x → k[ε]/ε2 by sending an element not in mx to its image under the projection
OX,x → k. Then de�ne a continuous map f : Spec k[ε]/ε2 → X by sending (ε) to x. This is a
local homomorphism because the preimage of (ε) is mx.

To de�ne f# : OX → f∗ Spec k[ε]/ε
2, we need only specify its values on open sets containing x

since otherwise f∗OSpec k[ε]/ε2(U) = 0. We already have homomorphisms compatible with the

restriction maps for all such open sets given by OX,x → k[ε]/ε2, so this gives f#. The map f#P is
the map OX,x → k[ε]/ε2 as de�ned above if every open set of P contains x; otherwise, OX,P = 0.
In either case, the map on stalks is a local homomorphism, so (f, f#) is a morphism of schemes.
We now need to check that this is a morphism over Spec k. This follows because the maps of
rings on open sets are k-algebra homomorphisms by construction. The process described here
of getting a k-morphism from a point x ∈ X rational over k and an element of Tx is inverse to
the process described in the previous paragraph, so we have the desired equivalence.

13. (a) Let X be a Noetherian topological space. Let U ⊆ X with a covering {Ui}. We will build
a sequence of open sets Vi as follows. Let V0 = ∅. Assuming that Vn has been constructed,
and that Vn �= U , choose Uj not entirely contained in Vn, and let Vn+1 = Vn ∪ Uj . If
Vn = U , then we stop. In this case, {Ui} has a �nite subcover. If not, then there is
an in�nite descending chain of closed sets of X given by U \ V1 � U \ V2 � · · · , which
contradicts that X is Noetherian. Thus, every open set U is quasi-compact.

Conversely, suppose that we have a descending chain of closed sets V1 ⊇ V2 ⊇ · · · in X.
Let U =

�
i≥0 X \ Vi. Since U is open, there is a �nite subcover {X \ Vi1 , . . . , X \ Vin}.

Then for all j, X \ Vj ⊆
�n

k=1 X \ Vik = X \
�n

k=1 Vik . This implies that
�n

i=1 Vik ⊆ Vj for
all j. If N = maxnk=1 ik, then

�n
i=1 Vik = VN , so VN = Vj for all j ≥ N , which implies that

X is Noetherian.

(b) Since X is an a�ne scheme, let A be a ring such that X = SpecA. Suppose that {Ui} is
a covering of X. Since the open sets of the form D(f), where f ∈ A, are a basis for the
topology of X, each Ui can be written as the union of D(fj). This gives a �ner covering.
If we can show that this �ner covering has a �nite subcover, it will imply that {Ui} has a
�nite subcover, so without loss of generality, assume Ui = D(fi) for some fi ∈ A. Since�

D(fi) is the set of prime ideals not containing any of the fi and X is the set of all prime
ideals of A, we get that

�
D(fi) = X if and only if the fi generate the unit ideal. Thus,

there is some �nite sum
�n

i=1 aifi = 1 for some ai ∈ A. This gives that
�n

i=1 D(fi) = X,
so X is quasi-compact.

Let k be a �eld and let R = k[x1, x2, . . . ] be the polynomial ring over k in in�nitely many
variables. The in�nite ascending chain of prime ideals (x1) � (x1, x2) � · · · in R gives an
in�nite descending chain of closed sets V (x1) � V (x1, x2) � · · · in SpecR, so this is an
example of a ring whose spectrum is not a Noetherian space.

(c) Let A be a Noetherian ring and V1 ⊇ V2 ⊇ · · · be a descending chain of closed sets in SpecA.
Each closed set is of the form V (ai) for some ideal ai ⊆ A, and V (ai) ⊇ V (aj) if and only
if
√
ai ⊆

√
aj , so this chain gives an ascending chain of ideals

√
a1 ⊆

√
a2 ⊆ · · · in A. Since

A is Noetherian, there exists a number N such that j ≥ N implies that
√
aj =

√
aN , and

this implies that Vj = VN , so SpecA is a Noetherian space.

(d) Let k be a �eld, and let A = k[x1, x2, . . . ]/(x
2
1, x

2
2, . . . ). Each xi is nilpotent, so every prime

ideal must contain xi for all i, and the smallest such ideal (x1, x2, . . . ) is maximal since
A/(x1, x2, . . . ) = k. So there is one prime ideal, and hence SpecA is Noetherian. However,
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since the xi are independent of one another, we get an in�nite ascending chain of ideals
(x1) � (x1, x2) � · · · , so A is not Noetherian.

14. (a) Suppose that some element x ∈ S+ is not nilpotent. Then form the subsetA = {x, x2, x3, . . . },
and let P be the set of homogeneous ideals not meeting A. This is nonempty because 0 ∈ P ,
and if {Pi} is a chain in P , then their union is an ideal, and it is homogeneous because it
is generated by the generators of each Pi, so by Zorn’s lemma, P has a maximal element p.
We claim that p is prime. It is enough to show that for any two homogeneous elements a
and b, ab ∈ p implies either a ∈ p or b ∈ p. Suppose a and b are homogeneous elements such
that ab ∈ p but a /∈ p and b /∈ p. Then (p, a) and (p, b) are homogeneous ideals properly
containing p, so must meet A. Then for some elements p1, p2 ∈ p and c1, c2 ∈ S, and
numbers n and m, we have p1 + c1a = xn and p2 + c2b = xm. Multiplying them together,
we get

p1p2 + c1ap2 + p1c2b+ c1ac2b = xn+m,

but the sum on the left hand side is an element of p, which is a contradiction. Then p is a
homogeneous prime ideal which does not contain all of S+, so ProjS �= ∅.
Suppose every element of S+ is nilpotent. If p is a prime ideal of S and f ∈ S is a nilpotent
element, then fn = 0 for some n. Then fn ∈ p, which implies f ∈ p, so every prime
ideal must contain the set of nilpotent elements, and hence contain S+, so in this case
ProjS = ∅.

(b) The set ProjT \ U = {p ∈ ProjT : p ⊇ ϕ(S+)} is the same set if we replace ϕ(S+) by the
ideal it generates. Any element f ∈ S can be expressed as a sum f1 + · · · + fn where the
fi are homogeneous, so ϕ(f) = ϕ(f1) + · · · + ϕ(fn) where each ϕ(fi) is homogeneous, so
the ideal generated by ϕ(S+) is generated by homogeneous elements. Thus ProjT \U is a
closed set, so U is an open set.

As a map of topological spaces, de�ne f : U → ProjS by p �→ ϕ−1(p). Since p � ϕ(S+),
ϕ−1(p) � S+, so this is well-de�ned. Consider the localized map ϕ(p) : S(ϕ−1(p)) → T(p)
where T(p) is the ring of elements of degree zero in the localized ring A−1T where A is the
multiplicative system consisting of all homogeneous elements of T not in p, as de�ned in
Hartshorne. Note that S(ϕ−1(p)) is a local ring whose maximal ideal is the image of ϕ

−1(p),
and similarly with T(p). From this, we see that ϕ(p) is a local homomorphism. Now we need

to de�ne a morphism of sheaves f# : OProjS → f∗U . If V ⊆ ProjS is an open set, then
OProjS(V ) consists of functions s : V →

�
q∈V S(q) such that s(q) ∈ S(q) and s is locally a

quotient of elements of S. By composing with the localized maps, we can turn each such
function into a function t : f−1(V )→

�
q∈f−1(V ) T(q) such that t(q) ∈ T(q) and t is locally a

quotient of elements of T . The restriction maps of OProjS and OU are restriction of domain,
so the map just de�ned gives a morphism of sheaves. The stalk at any point p ∈ U is the
map ϕ(p), which is local, so f is a morphism of schemes.

(c) Let p be any homogeneous prime ideal of T , and suppose that p contains ϕ(S+). Let x ∈ T
be a homogeneous element of degree α > 0. For some n, nα ≥ d0, so x

n ∈ Tnα = ϕ(Snα) ⊆
p, so x ∈ p. This implies that T+ ⊆ p, so U = ProjT . The induced map of topological
spaces f : ProjT → ProjS is given by p �→ ϕ−1(p). Suppose that ϕ−1(p) = ϕ−1(q) for two
ideals p, q ∈ ProjT . Then pd = qd for all d ≥ d0. For any homogeneous element x ∈ q

of positive degree, some large power xn has degree ≥ d0, so xn ∈ p, which implies x ∈ p.
By symmetry, pd = qd for all d > 0. If x ∈ p0, then since p ∈ ProjT , there exists some
homogeneous element y /∈ p with deg y > 0. This means that deg xy > 0, so xy ∈ q. Since
y /∈ q, we have x ∈ q, so by symmetry, p0 = q0, and f is injective.
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Now we show that f is surjective. Let {αi} be a set of homogeneous generators for T+.
Then {D+(αi)} is a cover of ProjT . For any prime p ∈ ProjT , αd0

i ∈ p if and only if αi ∈ p,
so we may assume that degαi ≥ d0 for all i. We claim that {D+(ϕ

−1(αi))} forms a cover of
ProjS. If not, then there exists p such that ϕ−1(αi) ∈ p for all i. However, the αi generate�

d≥d0
Td, so its preimage is contained in p. However, this preimage at least contains S+

because ϕd is an isomorphism for d ≥ d0, so S+ ⊆ p, which contradicts that p ∈ ProjS.
Then we have maps fαi : D+(αi) → D+(ϕ

−1(αi)) for all i. This map can be rewritten as
SpecT(αi) → SpecS(ϕ−1(αi)), which is induced by the localized map ψ : S(ϕ−1(αi)) → T(αi).
We claim that this localized map ψ is an isomorphism. If ψ(a/u) = 0, then

ψ(ϕ−1(αi)a/ϕ
−1(αi)u) = 0,

which gives
ϕ(ϕ−1(αi)a)/ϕ(ϕ

−1(αi)u) = 0

in T(αi). This means that

αn
i ϕ(ϕ

−1(αi)a) = ϕ(ϕ−1(αi)aα
n
i ) = 0

for some n, and we may take n large enough so that the degree is higher than d0, so
ϕ−1(αi)aα

n
i = 0, which means a = 0 in S(ϕ−1(αi)). For surjectivity, choose b/αn

i ∈ T(αi).

Then for some m, deg bαm
i ≥ d0, so there is an element ϕ

−1(bαm
i )/ϕ

−1(αn+m
i ) in S(ϕ−1(αi)),

which maps to b/αn
i by ψ. Thus, ψ is an isomorphism, so f# is an isomorphism of sheaves

because the D+(αi) form a cover. Then f is a homeomorphism because inverse image
preserves ideal inclusion and hence closed sets, so (f, f#) is an isomorphism of schemes.

An example of such a ϕ : S → T is given by letting T be a polynomial ring in n variables
where each variable has degree 1, letting S be T except the degree 1 part is replaced by 0,
and letting ϕ be the inclusion. Then ϕ is degree preserving and an isomorphism for d ≥ 2,
but is not surjective, so is not an isomorphism.

16. (a) We write U ∩ Xf as the set of p ∈ SpecB for which fp /∈ mp in the local ring Op. Also,
D(f̄) is the set of prime ideals of B not containing f , which is the set of prime ideals
p of B for which f is invertible in Bp = Op. Notice that Op \ mp is the set of units of
Op. It is clear that every unit of Op is not in mp. For the converse, an element x /∈ mp

generates an ideal not contained in mp, so must be the unit ideal since Op is local, so is a
unit. Thus, U ∩ Xf is the set of elements p ∈ SpecB for which fp is invertible in Op, so
U ∩ Xf = D(f̄). Now cover X with open a�ne subschemes SpecAi. Then SpecAi ∩ Xf

is an open set since it equals D(fi) where fi is the restriction of f to Γ(SpecAi,OSpecAi
),

and
�
(SpecAi ∩Xf ) = Xf , so Xf is an open subset of X.

(b) Since X is quasi-compact, let U1, . . . , Uk be a covering of X such that Ui
∼= SpecAi for some

ring Ai. Let ρi be the restriction map Γ(X,OX) → Γ(Ui,OX |Ui). Since the restriction of
a to Xf is 0, the restriction of a in Ui ∩ Xf is 0 for all i. If fi is the restriction of f to
Ai = Γ(Ui,OX |Ui), then Ui ∩ Xf = D(fi) by (a). By (Ex. 2.1), D(fi) ∼= (Ai)fi , so there
exists ni > 0 such that f

ni
i ρi(a) = 0. If n = max

k
i=1 ni, then fn

i ρi(a) = 0 for all i, and each
such element is the restriction of fna. Since the Ui form a cover, this implies f

na = 0.

(c) Write Ui = SpecAi for the �nite cover of X, and let fi be the restriction of f in Ui.
For each i, let bi be the restriction of b in Ui ∩ Xf . By (a), Ui ∩ Xf = D(fi), so we
can write bi = ci/f

ni
i for some ci ∈ Ai and integer ni. On each intersection Ui ∩ Uj , let

Ni,j = max(ni, nj). Then fN
i bi−fN

j bj restricts to 0 in Ui∩Uj ∩Xf , so by (b), there is some
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ni,j so that f
Ni,j+ni,j
i bi = f

Ni,j+ni,j
j bj . Letting N = max{Ni,j + ni,j} (which is over a �nite

set), the elements fN
i bi ∈ Ui all agree on overlaps, so lift to an element x of A. Since the

restriction of x is fNbi on each Ui ∩Xf , its restriction is f
N b on Xf because f

Nbi − x|Xf

restricts to 0 on each Ui ∩Xf .

(d) With the hypothesis of (c), cover X with open a�nes Ui = SpecAi. Let fi be the restriction
of f in Γ(Ui,OX). By (a), Ui ∩ Xf = D(fi). Since D(fi) = Spec(Ai)fi , f

−1
i exists in

Γ(Ui ∩Xf ,OX). They are all restrictions of the same element, so they agree on overlaps.
The Ui∩Xf coverXf , so they lift to an element g. Then fg|Ui∩Xf

= 1 for all i, so fg|Xf
= 1,

and f |Xf
is invertible. Thus, the map A → Γ(Xf ,OXf

) induces a ring homomorphism
Af → Γ(Xf ,OXf

). The injectivity follows from part (b); in that proof we only needed that
X has a �nite cover by open a�nes. The surjectivity follows from part (c), so we conclude
that Af

∼= Γ(Xf ,OXf
).

17. (a) For x, x� ∈ X, if f(x) = f(x�), then f(x) ∈ Ui for some Ui, so x, x� ∈ f−1(Ui). Since f
induces a homeomorphism f−1(Ui) → Ui, we have x = x�. Also, for any y ∈ Y , y ∈ Ui

for some i, and there is a homeomorphism f−1(Ui) → Ui which means y has a preimage,
so f is bijective. To see that f is a homeomorphism, consider an open set V ⊆ X. Then
V is covered by V ∩ f−1(Ui), which are open sets in f−1(Ui). By the homeomorphism
f−1(Ui) → Ui, each V ∩ f−1(Ui) is mapped to an open set by f , so V is mapped to their
union, so f is a homeomorphism.

Now let V ⊆ Y be an open set. We get a map f# : OY (V ) → OX(f
−1(V )), which we

claim is an isomorphism. Since the induced map f−1(Ui) → Ui is an isomorphism, we
have OUi(V ∩ Ui) → Of−1(Ui)(f

−1(V ∩ Ui)) is an isomorphism, which we can rewrite as
OY (V ∩ Ui) → OX(f

−1(V ∩ Ui)). Note that the f
−1(V ∩ Ui) form a cover for f

−1(V ). If
a ∈ OY (V ) maps to 0, then f#(a) restricts to 0 in OX(f

−1(V ∩Ui)), so must come from 0
in OY (V ∩Ui). But then this implies that a restricts to 0 in each OY (V ∩Ui) so a = 0, and
f# is injective. For any b ∈ OX(f

−1(V )), let bi be the restriction of b in OX(f
−1(V ∩Ui)).

For each bi, there is a corresponding ai ∈ OY (V ∩ Ui) that maps to it. The ai agree on
overlaps because their images in OX(f

−1(V ∩ Ui)) do (and their overlaps are isomorphic),
so they lift to an element a ∈ OY (V ), and f#(a) = b, so f# is surjective. Thus f# is an
isomorphism on all open sets, so is an isomorphism of sheaves, and f is an isomorphism of
schemes.

(b) If X = SpecA is an a�ne scheme, then the identity 1 generates the unit ideal, and X1 = X
since 1x is the multiplicative identity for any point x ∈ X, so cannot be in the maximal
ideal mx of Ox.

Conversely, suppose there are elements f1, . . . , fr ∈ A = Γ(X,OX) such that the open
subsets Xfi are a�ne, and f1, . . . , fr generate the unit ideal in A. This means that for
any x ∈ X, (f1)x, . . . , (fr)x generate the unit ideal of Ox, so there is some i such that
(fi)x /∈ mx. Then x ∈ Xfi , so the Xfi cover X. By (Ex. 2.16(d)), Γ(Xfi ,OXfi

) ∼= Afi , so
since Xfi is a�ne, Xfi

∼= SpecAfi . By (Ex. 2.4), the identity A → Γ(X,OX) induces a
morphism of schemes ϕ : X → SpecA. The map ϕ of topological spaces is given by taking
an a�ne covering of X, say Xfi , and mapping SpecAfi → SpecA by the induced map of

A
=−→ Γ(X,OX)

ρi−→ Γ(Xfi ,OXfi
)
∼−→ Afi .

That is, if we call the above map ρi, then SpecAfi → SpecA is de�ned by p �→ ρ−1i (p).
Now consider D(fi) ⊆ SpecA. Its preimage under ϕ is the set

�r
j=1{p ∈ SpecAfj :
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fi /∈ ρ−1j (p)}. Certainly, this set contains SpecAfi because fi is invertible in Afi . If this
set contains p ∈ SpecAfj , then p ∈ Xfj , which means fp /∈ mp in Op = (Afj )p. Since

fi /∈ ρ−1j (p), we also have fp is not contained in the maximal ideal of (Afi)p, so p ∈ Xfi .

Then ϕ−1(D(fi)) = SpecAfi , and the induced map SpecAfi → D(fi) is an isomorphism.
Then ϕ is an isomorphism by (a) because the D(fi) cover SpecA since the fi generate the
unit ideal. Therefore, X is an a�ne scheme.

18. (a) The intersection of all prime ideals of A is equal to the nilradical of A. Thus f is nilpotent if
and only if f is contained in every prime ideal, which is equivalent to saying that D(f) = ∅.

(b) Suppose that ϕ is injective, and let f : Y → X be the induced morphism of schemes. Taking

the stalk at a point p ∈ X, we get f#p : OX,p → (f∗OY )p. We know that OX,p = Ap and
(f∗OY )p is the colimit of OY (f

−1(U)) over all open sets U containing p, which is the same as
considering just basic open sets D(f) containing p. Since OY (f

−1(D(f))) = OY (D(ϕ(f))),

this colimit is equal to B localized at p (thinking of B as an A-module). To see that f#p
is injective, suppose that a/u maps 0. Then there exists s /∈ ϕ−1(p) such that sϕ(a) = 0,
which means that ϕ(sa) = 0. Since ϕ is injective, sa = 0, so a/u = 0.

If f# : OX → f∗OY is injective, then taking global sections, Γ(X,OX) → Γ(Y,OY ) is
injective, but this is ϕ by the correspondence of induced maps.

To see that f(Y ) is dense in X, we show that the intersection of all closed sets containing
f(Y ) is X, which is acheived by showing that any closed set containing f(Y ) is X. This is
further reduced to showing that if a is an ideal contained in

�
p∈Y ϕ−1(p), then V (a) = X.

For any x ∈ a, ϕ(x) is contained in all prime ideals of B, so ϕ(x) is nilpotent and there
exists n such that ϕ(x)n = 0. Since ϕ is injective, this means that xn = 0, so x is contained
in every prime ideal of A, which gives that V (a) = X.

(c) The map f : Y → X is de�ned by p �→ ϕ−1(p), which we claim is injective. Suppose
ϕ−1(p) = ϕ−1(q) for two prime ideals p, q ∈ Y . If p �= q, then choose x ∈ q \ p. Since ϕ
is surjective, ϕ−1(x) is nonempty. If ϕ−1(x) ⊆ p, then ϕ(ϕ−1(p)) is strictly bigger than
p, which is a contradiction, so f is injective. We now claim that f(Y ) = V (a) where
a =
�
p∈Y ϕ−1(p). Suppose q contains a, and let q� be the inverse image of ϕ(q). Note that

ϕ(q) is a prime ideal of B because ϕ is surjective. That is, if ab ∈ ϕ(q), then both a and b
have preimages whose product is contained in q, which means that at least one of a and b
is contained in ϕ(q). By de�nition, q� ⊇ q. If the inclusion is proper, then pick x ∈ q� \ q.
There is some y ∈ q such that ϕ(x) = ϕ(y). But then x − y ∈ q� \ q and ϕ(x − y) = 0.
However, 0 is contained in every prime ideal of B, and hence x− y is contained in a, which
is a contradiction, so q� = q, which proves the claim and shows that f(Y ) is a closed set.
So f is a bijection, and ϕ preserves inclusion of ideals, so f is a homeomorphism.

The proof that f# is surjective is similar to the one in (a) showing that f# is injective.
The map on stalks is the same as the localization map of A-modules ϕp : Ap → Bp, which
is surjective because ϕ is surjective.

(d) There is a canonical injective ring homomorphism ψ : A/ kerϕ → B. Letting X � =
SpecA/ kerϕ, this induces a map f : Y → X � and a map f# : OX � → f∗OY . The
prime ideals of X � are in bijection with the prime ideals of A which contain kerϕ, so
X � ∼= V (kerϕ). By assumption, f(Y ) is homeomorphic to a closed subset of X �. By (b),
f(Y ) is dense in X �, so f(Y ) is homeomorphic to V (kerϕ). For any p ∈ Y , the map on

stalks f#p : OX �,ψ−1(p) → OY,p is the same as the map on stalks OX,ϕ−1(p) → OY,p induced

by ϕ. These maps are surjective by assumption, so f#p is also surjective. By (b), f#p
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is also injective, so each is an isomorphism, which means (f, f#) is an isomorphism of
schemes. Then there is an inverse morphism of schemes, which corresponds to an inverse
ring homomorphism B → A/ kerϕ, so A/ kerϕ ∼= B, which means that ϕ is surjective.

19. If A ∼= A1×A2, let f = (1, 0) and g = (0, 1). The localization SpecAf = SpecA1 is an open set in
SpecA whose complement is SpecAg = SpecA2, so SpecA is disconnected. Conversely, suppose
U is an open set in SpecA whose complement V is also open. Then we have maps A → O(U)
and A → O(V ) with no relations because U ∩ V = ∅. In this case, A ∼= O(U) ∼= O(V ). This
establishes the equivalence of (i) and (iii).

It is obvious that (iii) implies (ii), jus ttake e1 to be f as above and e2 to be g. Given elements
e1, e2 ∈ A with the described properties, we claim that A ∼= Ae1 ⊕ Ae2. If ae1 = a�e2 for some
a, a� ∈ A, then multiplying both sides by e1 gives ae1 = 0 and similarly, multiplying by e2 gives
0 = a�e2, so Ae1 ∩ Ae2 = 0. Also, Ae1 and Ae2 generate A because e1 + e2 = 1, so (ii) implies
(iii).

3 First Properties of Schemes

If f : SpecA → SpecB is a morphism of schemes, then for any g ∈ B, one has f−1(D(g)) = D(f#g).
This follows because there is a map B → A given by the structure sheaf, and also a localization
map A → A⊗B Bg = Af#g. The composition of these maps is the same as �rst localizing B → Bg

and then using the map given by the structure sheaf.

Lemma 1. Let X be a scheme and P a property of open a�nes of X such that

(1) For any SpecA ⊆ X, if SpecA has property P , then so does D(f) = SpecAf for all f ∈ A.

(2) If f1, . . . , fn generate A and each D(fi) ⊆ SpecA has property P , then so does SpecA.

Then if there is an open a�ne covering of X such that each a�ne has property P , then every open
a�ne of X has property P .

Proof. Let SpecAi be an open a�ne covering of X such that each a�ne has property P , and let
SpecB be any open a�ne. Then SpecB∩SpecAi is an open covering of SpecB. Each intersection
can be covered with open a�nes that are localizations of both B and Ai by an element. By (1),
these localizations also have property P . Now we have a covering of SpecB as in (2), which �nishes
the proof.

1. Let f : X → Y be a morphism that is locally of �nite type. We invoke Lemma 1 where P is
the property that the preimage of an open a�ne SpecB has a covering by open a�nes SpecAi

such that each Ai is a �nitely generated B-algebra. Let SpecB ⊆ Y be an open a�ne so
that f−1(SpecB) has a covering SpecAi such that each Ai is a �nitely generated B-algebra.
Choose g ∈ B. If fi : SpecAi → SpecB is the restriction of f , then f−1i (D(g)) = Spec(Ai)g, so
f−1(D(g)) =

�
Spec(Ai)g. Each (Ai)g is a �nitely generated Bg-algebra whose generators are

the images of the generating set of Ai as a B-algebra, so this veri�es (1) of the lemma.

To verify (2), suppose g1, . . . , gn generate the unit ideal of B, and that Bgi has property P . Then
the D(gi) cover SpecB, so the f−1(SpecBgi) cover f

−1(SpecB). Notice that Bgi is a �nitely
generated B-algebra with the generating set 1/gi, so any �nitely generated Bgi-algebra is also
a �nitely generated B-algebra. Since each f−1(SpecBgi) can be covered by �nitely generated
Bgi-algebras, we take the union over all i to get a covering of f

−1(SpecB) by �nitely generated
B-algebras. We conclude that every open a�ne SpecR ⊆ Y has property P .
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The converse follows by de�nition.

2. Let f : X → Y be a quasi-compact morphism, and let Vi be an open covering by a�nes of Y such
that f−1(Vi) is quasi-compact for all i. Given an open a�ne U ⊆ Y , we can cover U ∩Vi by open
sets that are distinguished open sets in both U and Vi. Since U is a�ne and hence quasi-compact,
we can take a �nite number of such distinguished open sets. Then f−1(U) is the �nite union of the
preimages of these distinguished open sets, so it is enough to show that each distinguished open
set has a quasi-compact preimage. We reduce to the case f : X → Y where X is quasi-compact
and Y is a�ne, and showing that the preimages of distinguished opens are quasi-compact. Cover
X with �nitely many a�nes SpecAi and let Y = SpecB. Let fi : SpecAi → Y be the restriction
of f , and choose D(g) ⊆ Y . Then f−1i (D(g)) = D(f#i g). Finally, f−1(D(g)) =

�
f−1i (D(g)),

and each D(f#i g) is quasi-compact because it is isomorphic to Spec(Ai)f#i g
, so f−1(D(g)) is the

�nite union of quasi-compact spaces and hence quasi-compact.

The converse follows by de�nition.

3. (a) Suppose f : X → Y is of �nite type. By de�nition, it is locally of �nite type. Since f is of
�nite type, there is a covering by open a�nes of Y =

�
Vi such that f

−1(Vi) can be covered
by a �nite number of open a�ne subsets Uij . LetWk be an open covering of f

−1(Vi). Then
Wk ∩ Uij is an open covering for each Uij , and since a�ne schemes are quasi-compact, we
can select �nitely many of the Wk ∩ Uij to be a cover. Taking the �nite union of all such
Wk for each Uij gives a �nite cover for f

−1(Vi). Thus f
−1(Vi) is quasi-compact, so f is

quasi-compact.

Conversely, suppose that f is locally of �nite type and quasi-compact. By (Ex. 3.1), for
any covering by open a�nes Y =

�
SpecBi, f

−1(SpecBi) can be covered by open a�nes
SpecAij such that Aij is a �nitely generated Bi-algebra. By (Ex. 3.2), the f−1(SpecBi)
are quasi-compact, so we can choose �nitely many SpecAij , which means that f is of �nite
type.

(b) Let f : X → Y be of �nite type, and choose an open a�ne subset V = SpecB of Y . Using
(a), we know that f is locally of �nite type and quasi-compact. By (Ex. 3.1), f−1(V ) can
be covered by open a�nes Uj = SpecAj such that Aj is a �nitely generated B-algebra. By
(Ex. 3.2), f−1(V ) is quasi-compact, so we only need �nitely many Uj .

The converse follows from the de�nition of �nite type.

(c) Let V = SpecB be an open a�ne of Y . We use Lemma 1 on f−1(V ) with P being the
property that if SpecA ⊆ f−1(V ) is an open a�ne, then A is a �nitely generated B-
algebra. Let A be a �nitely generated B-algebra with generators {a1, . . . , ar}. For any
g ∈ A, {1/g, a1/1, . . . , ar/1} generate Ag as a B-algebra, so D(g) has property P .

Now suppose that (g1, . . . , gm) = A, and that each Agi is a �nitely generated B-algebra.
Let {ai1/gni1i , . . . , aik/g

nik
i } be a set of generators for Ai (each one is �nitely generated,

so we assume for convenience that each is generated by k elements since there are only
�nitely many algebras to consider). Choose any r ∈ A. For each gi, there is a polynomial
in the generators that makes it equal to r/1. Combining these fractions and getting a
common denominator, we can express gnii r as a polynomial in the aij with coe�cients in
B for some ni, call this polynomial pi. Let N = max

m
i=1 ni. Then (g

N
1 , . . . , gNm) = A, so we

can write c1g
N
1 + · · ·+ cmgNm = 1 for some ci ∈ B. Then c1g

N−ni
1 p1 + · · ·+ cmgN−nm

m pm =
c1g

N
1 r + · · · + cmgNmr = r. Thus, {aij} ∪ {gi} gives a �nite generating set for A as a B-

algebra. We conclude that for every open a�ne SpecA ⊆ f−1(SpecB), A is a �nitely
generated B-algebra.
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4. Suppose f : X → Y is a �nite morphism. We use Lemma 1 where SpecB has property P
if f−1(SpecB) is a�ne, equal to some SpecA, and A is a �nitely generated B-module. Let
SpecB ⊆ Y be an open a�ne with property P , so that f−1(SpecB) = SpecA where A is a
�nitely generated B-module, and choose g ∈ B. The B-module structure on A is given by the
map ϕ : B → A, which is induced by the restriction f : SpecA → SpecB. Localizing at g, we
get ϕg : Bg → Ag where Ag = A⊗B Bg. If {g1, . . . , gr} is a generating set for A as a B-module,
then {g1/1, . . . , gr/1} is a generating set for Ag as a Bg-module, so Ag is a �nitely generated
Bg-module. This gives that SpecBg has property P because f−1(SpecBg) = SpecAf#g.

Now suppose that there are elements g1, . . . , gr that generate B such that each Bgi has property
P . That is, f−1(SpecBgi) = SpecAi, where each Ai is a �nitely generated Bgi-module. By
abuse of notation, we shall use gi to also mean the image of gi under the map B → Γ(X,OX).
Note that Γ(X,OX) is generated by the gi. Let X

� = f−1(SpecB). Using the notation of (Ex.
2.16), we claim that X �

gi = Ai for all i. By (Ex. 2.16a), SpecAi ∩X �
gi is the set of primes of Ai

that do not contain gi. Since we have a map Bgi → Ai, it must be that gi is invertible in Ai, so
no primes can contain it, and SpecAi ⊆ X �

gi . For any other j, SpecBgi ∩ SpecBgj = SpecBgigj .
This gives that SpecAi ∩ SpecAj is

{p ∈ SpecAj : gi /∈ p} = {p ∈ SpecAi : gj /∈ p},

which means that Xgi ∩ SpecAj = SpecAi ∩ SpecAj , which proves the claim. By (Ex. 2.17),
this means that f−1(SpecB) is a�ne, say equal to SpecA.

Then we get a map SpecA → SpecB, which means that each Ai is a localization of A as B-
modules. In particular, Ai = Agi . Let {aij} be a �nite generating set for Ai as a Bgi-module.
Then the set {aij/1, aij/gi} is a generating set for Ai as a B-module. Then for any c ∈ A, we
can write c/1 = pi/g

ni
i in Agi where pi is some linear combination of the aij using coe�cients

from B. Then gnii c = pi for all i. Let N = max
r
k=1 nk; then there are coe�cients bi ∈ B such

that b1g
N
1 + · · ·+ brg

N
r = 1 in A. This gives b1g

N−n1
1 p1+ · · ·+ brg

N−nr
r pr = c, so {aij}∪{gki }

N
k=1

gives a �nite generating set for A as a B-module, which veri�es (2) of Lemma 1, so we’re done.

The converse follows by de�nition.

5. (a) Let f : X → Y be a �nite morphism, and y ∈ Y some point. There is an open a�ne
U = SpecB containing y, and by (Ex. 3.4), f−1(U) is an open a�ne SpecA such that the
map ϕ : B → A induced by f : SpecA → SpecB makes A a �nitely generated B-module.
Then y corresponds to a prime ideal of B, and f−1(y) is the set of prime ideals in A whose
preimage under ϕ is y. There is a bijection between the prime ideals of A whose preimage is
y and the prime ideals of A⊗BBy = Ay. Also, Ay is a �nitely-generated By-module via the
localized map ϕy : By → Ay. Now By is a local ring and we are concerned with the number
of primes of Ay whose preimage is the maximal ideal yBy. Thus, we divide by this ideal
to get By/yBy → Ay/ϕy(y)Ay. Then Ay/ϕy(y)Ay is a �nitely generated By/yBy-module.
In particular, By/yBy is a �eld, so Ay/ϕy(y)Ay is an Artinian ring, and hence has �nitely
many prime ideals. So f−1(y) is a �nite set, and thus f is quasi-�nite.

(b) Let f : X → Y be a �nite morphism. We claim that it is enough to show that f(X) is
closed to show that f(V ) is closed for any closed V ⊆ X. To see this, note that there is a
closed immersion V �→ X which is �nite because V = SpecA/I for some ideal I, and the
composition of �nite maps is �nite. Thus if we know the above fact, then the image of V
is closed under the map V �→ X → Y .

To show that f(X) is closed, it is enough to show that for any open a�ne U ⊆ Y , f(X)∩U
is closed in U . To see why, take a covering Ui of Y . Then if f(X) ∩ Ui is closed relative
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to Ui, then Ui \ f(X) is open in Y , and
�

Ui \ f(X) = Y \ f(X), so f(X) is closed.
Furthermore, f−1(U) is an open a�ne of X, V ∩f−1(U) is closed in f−1(U) and has image
Ui ∩ f(X). Let Ui = SpecB and f−1(U) = SpecA. We reduce to the case of showing
that if f : SpecA → SpecB is a �nite morphism, then f(SpecA) is closed in SpecB and
f(SpecA) = SpecB ∩ f(X).

The morphism of schemes f : SpecA → SpecB induces a ring homomorphism ϕ : B → A.
If I = kerϕ, then there is a factorization B → B/I �→ A that induces a morphism of
schemes

SpecA → SpecB/I → SpecB.

Then SpecB/I = V (I) ⊆ B, which is closed in B. Also, V (I) = f(X) ∩ SpecB because
f−1(SpecB) = SpecA. The morphism SpecA → SpecB/I is �nite because if A is a �nitely
generated B-module given by the action B → A, and the kernel of the action is I, then
A is a �nitely generated B/I-module because everything in I acts trivially on A. So if
{a1, . . . , an} is a generating set as a B-module, and a ∈ A can be written b1a1+ · · ·+ bnan,
then a = b̄1a1 + · · ·+ b̄nan where b̄i is bi modulo I. If SpecA is closed in SpecB/I, we’re
done, so we reduce to the case that B → A is an injection and f : SpecA → SpecB is
�nite.

Then B �→ A is an integral extension. Any closed set of SpecA is of the form V (a), and
the image of this set under f is {p ∩B : p ⊇ a}. We claim that f(V (a)) = V (a ∩ B). The
inclusion f(V (a)) ⊆ V (a ∩B) is clear; if p ⊇ a, then B ∩ p ⊇ B ∩ a. The reverse direction
is a consequence of the going up theorem. That is, for a prime q in B such that q ⊇ B ∩ a,
there is a prime p such that q = p ∩B. Thus f(V (a)) is closed, which �nishes the proof.

(c) Let k be a �eld, and let X be the scheme obtained by gluing two copies of A1
k at the

complement of a point P , and let Y = Spec k[x] = A1
k. We get a morphism of schemes

f : X → Y by gluing the identity morphisms A1
k → A1

k along the complement of P . Then
f is surjective and quasi-�nite because f−1(P ) is two points and f−1(x) is one point for
every x �= P . To see that f is of �nite type, note that Y is a�ne and that f−1(Y ) = X is
covered by the two copies of A1

k, each of which is equal to Spec k[x], and k[x] is a �nitely
generated k[x]-algebra. Since f−1(Y ) is not a�ne, f is not �nite by (Ex. 3.4).

6. We �rst show that any integral scheme has a unique generic point. For some SpecA ⊆ X,
we claim that the point ξ corresponding to the 0 ideal of A is the desired generic point. By
ξ̄, we mean the closure of the set {ξ}. Note �rst that ξ̄ ⊇ SpecA because every prime ideal
of A contains 0. Then we can write X = ξ̄ ∪ (X \ SpecA) as a union of closed sets. Since
X is an irreducible space, it must be that ξ̄ = X, so ξ is a generic point. Now we show that
ξ is independent of A. Choose two open a�nes SpecA, SpecB ⊆ X. Since X is irreducible,
SpecA ∩ SpecB is nonempty. Then there is an open set SpecC in SpecA ∩ SpecB that is a
distinguished open in both SpecA and SpecB. This means that the point corresponding to 0
in A is the same as the point corresponding to 0 in C since C is a localization of A. Likewise
for B, so the points corresponding to 0 in A and B are the same, so we have shown uniqueness.
Then for any SpecA, Oξ = (O|SpecA)ξ, which is isomorphic to A(0), the quotient �eld of A, so
Oξ is a �eld.

7. Let f : X → Y be a dominant, generically �nite morphism of �nite type of integral schemes.
Let ξ be the generic point of X and η be the generic point of Y . We claim that f(ξ) = η. The
closure of f(ξ) is the intersection of all closed sets containing f(ξ). The preimage of each such
closed set is a closed set of X containing ξ, and hence is all of X. Then any closed set containing
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f(ξ) contains f(X). Since f(X) is dense, any closed set containing f(ξ) must be Y . This means
that f(ξ) is a generic point for Y ; by uniqueness, f(ξ) = η.

Choose SpecB ⊆ Y whose preimage is nonempty, and choose SpecA ⊆ f−1(SpecB). Then A is
a �nitely-generated B-algebra, so A is also a �nitely-generated B(0)-algebra, and B(0) = K(Y ),
the function �eld of Y by (Ex. 3.6). By Noether normalization, there exists n such that A is
an integral extension of K(Y )[x1, . . . , xn]. If n > 0, then there are in�nitely many primes in
K(Y )[x1, . . . , xn], each of which lies over 0 in K(Y ). By the going up theorem, each of these
primes corresponds to a prime in A that lies over 0 in K(Y ), but this contradicts that the �ber
of η is �nite. Thus n = 0, so A is a �nite K(Y )-module. Since K(X) = OX,ξ is the colimit
over these A (because f(ξ) = η implies ξ ∈ f−1(SpecA)), we conclude that K(X) is a �nite
K(Y )-module, which means K(X)/K(Y ) is a �nite �eld extension.

Now let {g1, . . . , gr} be a generating set for A as a B-algebra. Since K(X)/K(Y ) is a �nite
�eld extension, there exist polynomials pi(x) with coe�cients in K(Y ) such that pi(gi) = 0.
Multiplying denominators, we can assume these coe�cients are in B. Let bi be the leading
coe�cient of each pi. Let b = b1 · · · br and localize to get Ab as a �nitely generated Bb-algebra.
Then the generating set is {g1/1, . . . , gr/1}, and they satisfy the localized versions of pi. However,
each bi/1 is now invertible, so we have that each gi/1 satis�es a monic polynomial with coe�cients
in Bb. Thus, Ab is a �nitely generated Bb-module.

It remains to be shown that there is some open a�ne in SpecB whose preimage is an open
a�ne. We can cover f−1(SpecB) by open a�nes SpecA1, . . . ,SpecAn such that each Ai is a
�nitely generated B-algebra. By localizing, and the comments above, we can assume without
loss of generality that each Ai is a �nitely generated B-module. If n = 1, then we’re done, so
assume otherwise. Let V be the intersection of the SpecAi. There exists ai ∈ Ai for each i such
that D(ai) ⊆ V . Since each Ai is a �nitely generated B-module, ai satis�es a monic polynomial
with coe�cients in B. The maps B → Ai are injective because f(ξ) = η, and B is an integral
domain, so we may assume that the constant term of each polynomial is nonzero; call these
constant terms ci. Let c = c1 · · · cn−1. Each ci is a multiple of ai, so any prime ideal of Ai that
contains ai also contains c. Thus Spec(Ai)ai ⊇ Spec(Ai)c for i < n. This means that for i < n,

Spec(Ai)c ⊆ V ∩ f−1(SpecBc) ⊆ SpecAn ∩ f−1(SpecBc) = Spec(An)c.

We also have f−1(SpecBc) =
�n

i=1 Spec(Ai)c, but by the previous computation, this union
is just Spec(An)c. Finally, by previous remarks, (An)c is a �nitely generated Bc-module, so
f−1(SpecBc) → SpecBc is a �nite morphism. Also, SpecBc is nonempty because ci �= 0, and
B is an integral domain, which means c �= 0. Since Y is an irreducible space, this gives that
SpecBc must be dense.

8. For any two open a�nes SpecA and SpecB of X, we show how to glue together Spec �A and
Spec �B. The inclusions A �→ �A and B �→ �B induce morphisms of schemes f : Spec �A →
SpecA and g : Spec �B → SpecB. If SpecA ∩ SpecB = ∅, there is no gluing to do, so assume
otherwise. We can cover SpecA ∩ SpecB by open sets that are distinguished open sets in
both. Consider one such open set SpecC ⊆ SpecA ∩ SpecB. Then both f−1(SpecC) and
g−1(SpecC) are distinguished opens in Spec �A and Spec �B, respectively, and we claim they are
isomorphic. Both of these rings can be thought of as localizations of normalizations. However,
normalization commutes with localization [2, Proposition 4.13], so f−1(SpecC) and g−1(SpecC)
can be obtained by �rst localizing A and B, and then taking the normalization. By our choice
of SpecC, the localizations are equal, so we get the isomorphism. These isomorphisms glue to
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give an isomorphism of schemes

f−1(SpecA ∩ SpecB)→ g−1(SpecA ∩ SpecB),

and we use this isomorphism to glue Spec �A and Spec �B together. The last thing to verify is that
if we have a third scheme Spec �D, then it is irrelevant in which order we glue it to Spec �A and
Spec �B. But this follows because we are gluing along intersections using localization to identify
isomorphic pieces (i.e., if we localize three times, it’s irrelevant in which order it is done). Thus,
we have speci�ed a gluing along intersections that is compatible along triple intersections, so we
glue all the normalizations to get �X. Any local ring of �X is a localization of some open a�ne
in �X. All such a�nes are integrally closed domains, and hence remain integrally closed under
localization, so �X is a normal scheme.
To get a morphism ϕ : �X → X, we glue the morphisms Spec �A → SpecA induced by the inclusion
A �→ �A for all open a�nes SpecA ⊆ X. Let Z be a normal integral scheme with a dominant
morphism f : Z → X. Then for SpecA ⊆ X, and SpecB ⊆ f−1(SpecA), we have an injective
ring homomorphism A �→ B where B is integrally closed. The injectivity follows because f
being dominant means it maps the generic point of Z to the generic point of X, so the preimage
of 0 is 0. Then B is the integral closure of A in some �eld extension L of K(A), the quotient
�eld of A. Since we have speci�ed an embedding of A in L, there is a unique way to extend this
embedding to K(A). Restricting this map to �A, we get a factorization A → �A → B, which gives

SpecB → Spec �A → SpecA.

The maps SpecB → Spec �A are compatible on overlaps (since we can cover them with distin-
guished opens) so glue together to give a morphism Z → �X, and f factors uniquely through
�X.
Now suppose X is of �nite type over a �eld k. For any SpecA ⊆ X, we have ϕ−1(SpecA) =
Spec �A by construction. Then A is an integral domain that is a �nitely generated k-algebra and
�A is the integral closure of A in K(A). A theorem of Noether [2, Theorem 4.14] then says that
�A is a �nitely generated A-module, so ϕ is a �nite morphism. This result is also the content of
Theorem I.3.9A in Hartshorne.

12. (a) If ϕ : S → T is surjective and degree preserving, then ϕ(S+) = T+. By de�nition, U = {p ∈
ProjT : p � ϕ(S+)}, so we see that U = ProjT . The map f : ProjT → ProjS is de�ned
by p �→ ϕ−1(p), which we claim is injective. Suppose ϕ−1(p) = ϕ−1(q) for p, q ∈ ProjT . If
p �= q, then choose x ∈ q\ p. Since ϕ is surjective, ϕ−1(x) is nonempty. If ϕ−1(x) ⊆ p, then
ϕ(ϕ−1(p)) is strictly bigger than p, which is a contradiction, so f is injective. We now claim
that f(ProjT ) = V (a) where a =

�
p∈ProjT ϕ−1(p). Suppose q ⊇ a, and let q� be the inverse

image of ϕ(q). Note that ϕ(q) is a homogeneous prime ideal of B because ϕ is surjective.
That is, if ab ∈ ϕ(q), where both a and b are homogeneous, then a and b have homogeneous
preimages whose product is contained in q, which means that at least one of a and b is
contained in ϕ(q). By de�nition, q� ⊇ q. If the inclusion is proper, then pick x ∈ q� \ q.
There is some y ∈ q such that ϕ(x) = ϕ(y). But then x − y ∈ q� \ q and ϕ(x − y) = 0.
However, 0 is contained in every prime ideal of B, and hence x− y is contained in a, which
is a contradiction, so q� = q, which proves the claim and shows that f(ProjT ) is a closed
set. So f is a bijection, and ϕ preserves inclusion of ideals, so f is a homeomorphism.
Finally, the map on stalks is the same as the localization map ϕ(p) : S(p) → T ⊗S S(p), which
is surjective because ϕ is surjective. Thus, f is a closed immersion.



3 FIRST PROPERTIES OF SCHEMES 25

(b) There is a commutative diagram of graded rings where the maps are projection.

S //

��

S/I �

||zz
z
z
z
z
z
z

S/I

This induces a commutative diagram of schemes.

ProjS ProjS/I �oo

ProjS/I

OO 88
q
q
q
q
q
q
q
q
q
q

The map S/I � → S/I is an isomorphism on the degree d part for d ≥ d0, so by 2.14c, the
map ProjS/I → ProjS/I � is an isomorphism. The commutative diagram above shows that
I and I � determine the same closed subscheme.

13. (a) Let f : X → Y be a closed immersion. Then we identify X with a closed subset V ⊆ Y .
Cover Y by open a�nes Ui = SpecAi. Locally on each Ui, we have a closed immersion
f−1(V ∩ Ui) → Ui which looks like Ai → Ai/Ii for some ideal Ii ⊆ Ai. Then Ai/Ii is a
�nitely generated Ai-algebra, so f is a morphism of �nite type.

(b) Let f : X → Y be a quasi-compact open immersion. Then we identify X with an open
a�ne U ⊆ Y . For any open a�ne V ⊆ Y , f−1(V ) = U ∩ V . We can cover this intersection
with open sets that are distinguished in both U and V , and since f is quasi-compact, we
can choose �nitely many to cover. If V = SpecA, then each such distinguished open in
U ∩ V is SpecAf for some f ∈ A, and Af is a �nitely generated A-algebra with generating
set {1/f}, so f is of �nite type.

(c) Let f : X → Y and g : Y → Z be two morphisms of �nite type, and let h = g ◦ f . Let
U = SpecC be an open a�ne of Z. By (Ex. 3.3(b)), g−1(U) can be covered by �nitely
many SpecBi such that Bi is a �nitely generated C-algebra. Then f−1(SpecBi) can be
covered by �nitely many SpecAij such that Aij is a �nitely generated Bi-algebra. Then we
have C → Bi → Aij , so Aij is a �nitely generated C-algebra. To see this, it is enough to
note that for some n and m, there are surjective homomorphisms Bi[x1, . . . , xn]→ Aij and
C[y1, . . . , ym] → Bi, so this gives a surjective homomorphism C[x1, . . . , xn, y1, . . . , ym] →
Aij . Since h

−1(U) is the union of the SpecAij , we see that h is a morphism of �nite type.

(d) Let f : X → S and g : S� → S be morphisms such that f is of �nite type. Let f � be the
morphism X � → S� where X � = X ×S S�. Choose an open a�ne U = SpecA ⊆ S with
g−1(U) nonempty, and U � = SpecA� ⊆ g−1(U) such that f �−1(U �) is nonempty. We can
cover f−1(U) (which is nonempty) by �nitely many open a�nes Vi = SpecBi such that
Bi is a �nitely generated A-algebra. By the comments in Hartshorne’s construction of the
�ber product, f �−1(U �) is covered by Vi ×U U � = Spec(Bi ⊗A A�). If {b1, . . . , br} is a �nite
generating set for Bi as an A-algebra, then {b1 ⊗A 1, . . . , br ⊗A 1} is a �nite generating
set for Bi ⊗A A� as an A�-algebra. We can cover S with open a�nes Ui, and g−1(Ui) is
a cover for S�. We have just showed that we can cover each g−1(Ui) with open a�nes
Vij = SpecA

�
ij whose preimage under f

� can be covered by �nitely many Wijk = SpecB
�
ijk

such that each B�
ijk is a �nitely generated A�

ij-algebra, so f � is a morphism of �nite type.
Therefore, morphisms of �nite type are stable under base extension.
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(e) The morphism X ×S Y → S can be factored X ×S Y → Y → S. The �rst map is of �nite
type since X → S is of �nite type and by (d), and the second map is of �nite type by
assumption. Part (c) gives that their composition X ×S Y → S is of �nite type.

(f) Let f : X → Y be a quasi-compact morphism, and let g : Y → Z be a morphism such
that h = g ◦ f is of �nite type. Pick SpecC ⊆ Z, SpecB ⊆ g−1(SpecC), and SpecA ⊆
f−1(SpecB) (assuming these are nonempty; there’s nothing to do in the case of empty
preimage). Then SpecA ⊆ h−1(SpecC), so by (Ex. 3.3(c)), A is a �nitely generated C-
algebra, and we have ring homomorphisms C → B → A. If {a1, . . . , an} are the generators
for A as a C-algebra, then there is a surjective homomorphism C[x1, . . . , xn] given by the
map C → A and mapping each xi to ai. Then this factors through a map B[x1, . . . , xn]→ A
where each xi maps to ai and B → A is given. Since

C[x1, . . . , xn]→ B[x1, . . . , xn]→ A

is equal to C[x1, . . . , xn] → A and hence surjective, this implies that B[x1, . . . , xn] → A is
surjective, so A is a �nitely generated B-algebra. Finally, if SpecCi is a cover of Z, then
we can �nd a cover SpecBj of Y such that SpecBj ⊆ g−1(SpecCi) for some i, and such
that by the above remarks, f−1(SpecBj) can be covered by �nitely many SpecAjk such
that Ajk is a �nitely generated Bj-algebra, so f is locally of �nite type. By assumption, f
is also quasi-compact, so f is of �nite type by (Ex. 3.3(a)).

(g) Since Y is Noetherian, it is quasi-compact, so we can cover it with �nitely many open a�nes
SpecBi. Then each f−1(SpecBi) can be covered by �nitely many open a�nes SpecAij

each of which is quasi-compact, and the f−1(SpecBi) cover X. So X is a �nite union of
quasi-compact open sets, which means X is quasi-compact. Also, each Aij is a �nitely
generated Bi-algebra. Then Aij

∼= Bi[x1, . . . , xn]/I for some n and some ideal I. Since
Y is Noetherian, Bi is a Noetherian ring, so by the Hilbert basis theorem, Bi[x1, . . . , xn]
is Noetherian, and homomorphic images of Noetherian rings are Noetherian. Thus we
have covered X by Noetherian rings and shown it is quasi-compact, which means X is a
Noetherian scheme.

14. We show that every open subset of X contains a closed point of X. Let U = SpecA ⊆ X be an
open a�ne, and p ∈ U a point corresponding to a maximal ideal in A. Then p is closed relative
to U . We claim that p is closed in X. Let V = SpecB be any other open a�ne that contains
x. Then we can cover U ∩ V by an open set containing x that is distinguished in both U and
V . Call it SpecAf = SpecBg. If p is the ideal corresponding to p, then pAf is maximal in Af ,
and corresponds to a maximal ideal in Bg of the form qBg. We wish to show that q ⊆ B is
maximal. Note that Bg/qBg = (B/q)g. We know that B is a �nitely generated k-algebra by
(Ex. 3.3(c)), so B/qB is also a �nitely generated k-algebra. It is also an integral domain, so
the Krull dimension of B/qB is the same as the transcendence degree of its quotient �eld over
k. However, its quotient �eld is (B/q)g = Bg/qBg, which is a �nitely generated k-algebra also,
so the Krull dimension of Bg/qBg is the same as its transcendence degree over k. However, the
Krull dimension of Bg/qBg is 0 because it is a �eld, so the Krull dimension of B/q is 0, which
means 0 is a maximal ideal and hence B/q is a �eld, and implies that q ⊆ B is a maximal ideal
as desired.

We have thus shown that p is closed relative to any open a�ne Ui that contains p. This means
that (X \Ui)∪{p} is a closed set of X for all U , and their intersection is (X \U)∪{p} where U
is the union of the Ui, so no point of Ui that is not p can be a limit point of p. Also, if x ∈ X \U ,
then no open a�ne containing x contains p, so x is also not a limit point of p. We conclude that
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the closure of p in X is just p, so it is a closed point. Finally, any open set can be covered by
open a�nes, so contains a closed point of X. Thus, the set of closed points of X is dense.

To see that this is not true for an arbitrary scheme, let k be a �eld, and consider Spec k[x](x),
which contains two elements corresponding to the 0 ideal and (x). Then (x) is a closed point
and 0 is not, so the set of closed points is not dense in this case.

16. Let S be the set of nonempty closed subsets V ⊆ X such that V does not have property
P . If S is nonempty, it has a minimal element Y with respect to inclusion; if not, then we
would have an in�nite descending chain of closed sets that never stabilized. Then Y must have
proper nonempty closed subsets or else Y would vacuously have property P . But each proper
nonempty closed subset must then have propertyP by minimality, so Y has propertyP , which
is a contradiction. Thus S is empty and X has property P .

17. (a) If X is a Noetherian scheme, then X can be covered by �nitely many open a�nes SpecAi

such that each Ai is a Noetherian ring. By (Ex. 2.13(c)), each SpecAi is a Noetherian
topological space, so by (Ex. 2.13(a)), each open subset of SpecAi is quasi-compact. We
can intersect any open subset U ⊆ X with each SpecAi to write it as the �nite union of
quasi-compact open sets, which means U is quasi-compact. Using (Ex. 2.13(a)) again, X
is a Noetherian topological space.

Let V ⊆ X be a closed irreducible subset. Giving V the structure of a closed subscheme, it
is enough to show that an irreducible scheme has a unique generic point. First note that an
irreducible a�ne scheme SpecA has a unique generic point corresponding to the nilradical
nilA. That nilA is prime follows because SpecA is homeomorphic to Spec(A/ nilA) since
every prime of A contains nilA, so Spec(A/nilA) is irreducible. It is also reduced, and
hence integral, so nilA is prime. That this is a generic point follows because every other
prime ideal contains nilA, and this also gives that it is unique. If X is an irreducible
scheme, then any open a�ne is also irreducible (if U = U1 ∪ U2 with U1 and U2 proper
closed subsets relative to U , then U1 ∪ (X \U) and U2 ∪ (X \U) are proper closed subsets
of X). For any two open a�nes SpecA and SpecB of X, they have nonempty intersection
since X is irreducible. We can �nd an open set in their intersection that is distinguished
in both SpecA and SpecB, call it SpecAf = SpecBg. Then note that (nilA)Af = nilAf

and also (nilB)Bg = nilBg, so the nilradical in A and B correspond to the same point in
X. Also, the closure of this point contains both A and B. Since A and B were arbitrary,
this means this same point corresponds to the nilradical of any open a�ne, and hence is a
generic point for X. Finally, it is unique because any other generic point must be a generic
point relative to any open a�ne that contains it, where we know that it is unique. So X is
a Zariski space.

(b) Let V ⊆ X be a minimal nonempty closed subset. Then V is irreducible, and the closure
of any point of V is V , which means each point is a generic point of V . Since X is a Zariski
space, V has a unique generic point, so V contains only one point.

(c) Choose x, y ∈ X, and assume that an open set contains x if and only if it contains y. Since
X is Noetherian, we can �nd a closed set Y minimal among those that contain x and y.
Then Y is irreducible; if not, then write Y = Y1 ∪ Y2 where Y1 and Y2 are proper closed
subsets of Y . Then neither can contain both x and y by the minimality of Y , so say x ∈ Y1
and y ∈ Y2. Then X \Y2 is an open set that contains x but not y, which is a contradiction,
so Y is irreducible. Then x̄ = ȳ = Y . However, this means that both x and y are generic
points of Y , which contradicts that X is a Zariski space. So either there is an open set
containing x but not y or vice versa, which means that X satis�es the T0 separation axiom.
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(d) Since the closure of the generic point is X, every other point of X is a limit point of it.
Thus if U is a nonempty open set of X, then U either contains the generic point or another
point that is a limit point of the generic point; either way U contains the generic point.

(e) Let x̄ denote the closure of {x}. For a point x ∈ X, the set of points y ∈ x̄ is the set of y
such that x� y, so x is a closed point if and only if x is minimal with respect to �.

Now suppose x is a generic point of an irreducible component X � ⊆ X. If y � x, then
x ∈ ȳ. This means that ȳ ⊇ X �. If y ∈ X �, then ȳ ⊆ X � since X � is a closed set containing
y. Then y = x since X is a Zariski space, so closed irreducible subsets have unique generic
points. If y /∈ X �, then there is some closed irreducible subset X �� containing y. If z is the
generic point of X ��, then y ∈ z̄, so z � y. This implies z � x, which means x ∈ z̄. Then
X � ⊆ X ��, which contradicts that X � is an irreducible component of X. We conclude that
x is maximal with respect to �.

Conversely, suppose x is maximal with respect to �. Then Y = x̄ is irreducible because
no proper closed subset of Y can contain x. So x is a generic point of Y . Now we claim
that Y is an irreducible component of X. Write X = X1 ∪ · · · ∪ Xs where each Xi is a
closed irreducible set such that Xi � Xj . If Y ⊆ Xi for some i, and ξi is the generic point
of Xi, then x ∈ ξ̄i, which means ξi � x and thus ξi = x, which implies Y = Xi. So if
Y � Xi for all i, then Y = (Y ∩X1) ∪ · · · ∪ (Y ∩Xs) gives Y as a union of proper closed
subsets, contradicting that Y is irreducible. We conclude that x is the generic point of an
irreducible component of X.

Finally, let Y ⊆ X be a closed set and choose x ∈ Y . If y is a specialization of x, then
y ∈ x̄ ⊆ Y , so every closed set contains the specializations of all of its points. Dually, if
U ⊆ X is an open set, x ∈ U , and y is a generization of x, then x is a limit point of y, so
y ∈ U .

(f) Suppose X is a Noetherian topological space. Any descending chain of closed sets in t(X)
is of the form t(V1) ⊇ t(V2) ⊇ · · · where the Vi are closed sets in X. Then this gives a
descending chain of closed sets in X: V1 ⊇ V2 ⊇ · · · . Since X is Noetherian, this chain
stabilizes, so the chain in t(X) also stabilizes, which means t(X) is Noetherian.

If V is reducible, say V = V1 ∪ V2 where V1 and V2 are proper closed subsets, then t(V ) =
t(V1) ∪ t(V2) and t(V1) and t(V2) are proper closed subsets, so t(V ) is reducible. If t(V ) is
reducible, then t(V ) = t(V1) ∪ t(V2) where t(V1) and t(V2) are proper closed subsets since
every closed set in t(X) is of the form t(U) for some closed U ⊆ X. Then V = V1 ∪ V2
and Vi �= V because otherwise t(Vi) = t(V ). So a closed set V ⊆ X is irreducible if and
only if t(V ) ⊆ t(X) is irreducible. Let V ⊆ X be a closed irreducible subset. The set
t(V ) is the set of closed irreducible subsets of V ⊆ X. We claim that the point pV in t(V )
corresponding to V is the unique generic point of t(V ). That it is a generic point follows
because any closed set containing pV is a closed irreducible subset of V containing V , and
the only such one is V . So the closure of pV is t(V ). Any other point of t(V ) corresponds
to a proper closed subset of V ⊆ X, so cannot have t(V ) as its closure. This gives the
claim, so t(X) is a Zariski space.

If X is not a Zariski space, then there is some closed irreducible subset V ⊆ X that either
has no generic point, or more than one. In the �rst case, the point in t(X) associated to
V has an empty preimage under α, and in the second case its preimage has more than one
element under α. Either way, α is not bijective, so is not a homeomorphism. Conversely,
suppose X is a Zariski space. If α(x) = α(y), this means that the closure of x and y are
the same. However, the closure of a point is an irreducible set, so by uniqueness of generic
points, x = y, and α is injective. Also, α is surjective because every closed irreducible
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set has a generic point. Every closed set of t(X) is of the form t(V ) for some closed
subset V ⊆ X. The closure of a point p ∈ X is contained in V if and only if p ∈ V , so
α−1(t(V )) = V . Also, for any closed subset U ⊆ X, we can write U = U1 ∪ · · · ∪ Ur as a
union of irreducible closed subsets. Then α(U) = t(U1) ∪ · · · ∪ t(Ur) because the closure
of any point in U is an irreducible closed subset of some Ui. Each t(Ui) is a closed set by
de�nition, so α takes closed sets to closed sets. Thus, α is a homeomorphism.

18. (a) Let F0 be the set of open sets of X. Inductively, de�ne Fn to be the union of Fn−1 and
the set of subsets that are �nite intersections or complements of subsets in Fn−1. Then
F =

�∞
n=0 Fn because this is the smallest such family of subsets satisfying (1), (2), and

(3). Thus, any constructible set can be obtained by a �nite number of operations involving
�nite intersections and complements.

Suppose U is a constructible set. Then U is obtained by using a �nite number of operations
of �nite intersection and taking complements. We induct on the number n of such steps to
show that U is a disjoint union of locally closed subsets. If n = 0, then U is an open set ofX,
and thus locally closed. Otherwise, let n be the minimal number of operations needed. Then
either U was obtained as the intersection of �nitely many subsets of Fn−1 or X \U ∈ Fn−1.
In the �rst case, we have U = U1 ∩ · · · ∩Ur where Ui ∈ Fn−1 and each Ui is a �nite disjoint
union of locally closed subsets. To show U is a disjoint union of locally closed subsets, we
can assume r = 2 and use induction. So write U1 = V1 ∪ · · · ∪ Vs and U2 = W1 ∪ · · · ∪Wt

where the Vi and Wi are locally closed subsets. Then U = U1 ∩ U2 =
�

Vi ∩Wj , so U is a
�nite union of locally closed subsets. In fact this union is disjoint since the Vi are disjoint
as are the Wi.

In the second case, X \U is a �nite disjoint union of locally closed subsets V1, . . . , Vr. Then
U = (X \ V1) ∩ · · · ∩ (X \ Vr). We have Vi = Oi ∩ Ci for some open set Oi and closed set
Ci, so

X \ Vi = X \ (Oi ∩ Ci) = (Oi \ Ci) ∪ (Ci \Oi) ∪X \ (Oi ∪ Ci).

Since X \ (Oi ∪Ci) = (X \Oi)∩ (X \Ci), we have written X \ Vi as a �nite disjoint union
of locally closed subsets, which reduces to the �rst case, so U is a �nite disjoint union of
locally closed subsets. This �nishes our inductive step, so we conclude all constructible sets
can be written as a �nite disjoint union of locally closed subsets.

Now suppose U is a �nite disjoint union of locally closed subsets U1, . . . , Un. Then each Ui

is constructible, as is X \ Ui. So
�n

i=1 X \ Ui = X \ U is constructible, which means U is
constructible.

(b) Suppose U is a dense constructible set. By (a), U is a �nite disjoint union of locally closed
subsets Ui. Then the closure of U , which is X, is equal to the union of the closures of the
Ui. Since X is irreducible, there is some Ui whose closure is X. Then Ui = Oi∩Ci where Oi

is open and Ci is closed. Since the closure of Ui is X, we get Ci = X, so Ui is an open set
of X. Then Ui contains the generic point, so U does too. This also shows that U contains
a nonempty open subset of X. If a constructible set contains the generic point of X, then
it is dense because every open set contains that generic point.

(c) If S is closed then it is the complement of an open set and hence constructible, and by (Ex.
3.17(e)), it is stable under specialization. Now suppose S is constructible and stable under
specialization. By (a), S is the �nite disjoint union of locally closed subsets S1, . . . , Sr.
Then Si is the intersection of an open set Oi and a closed set Ci. For any irreducible
component Z of Ci, Si ∩ Z is an open set of Z, so contains the generic point of Z. Since
S is stable under specialization, it contains the closure of this generic point, so contains
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Z. Thus, each Si is closed because X is Zariski and hence Ci can be written as a union
of �nitely many irreducible components. So S is a �nite union of closed sets and therefore
closed.

If T is open, then it is constructible, and by (Ex. 3.17(e)), it is also stable under gener-
ization. Now suppose T is constructible and stable under generization. Then X \ T is
constructible. We claim that X \T is stable under specialization. If not, then there is some
x0 /∈ T such that some x1 ∈ T is a specialization of x0. Since T is stable under generization,
this cannot happen. By what we have shown above, X \ T is closed, so T is open.

(d) Let f : X → Y be a continuous map of Zariski spaces, and let U be a constructible subset
of Y . By (a), we can write U = U1 ∪ · · · ∪ Ur where each Ui is a locally closed subset, so
write Ui = Oi ∩ Ci where Oi is an open subset of Y and Ci is a closed subset of Y . Since
preimage preserves unions and intersections, we get

f−1(U) = (f−1(Oi) ∩ f−1(Ci)) ∪ · · · ∪ (f−1(Or) ∩ f−1(Cr)).

Then each f−1(Oi) is open and each f−1(Ci) is closed. Finally,

(f−1(Oi) ∩ f−1(Ci)) ∩ (f−1(Oj) ∩ f−1(Cj)) = f−1(Ui ∩ Uj) = ∅

for i �= j since Ui ∩ Uj = ∅, so f−1(U) is a �nite disjoint union of locally closed subsets,
and hence constructible by (a).

19. (a) Suppose we can show that f(X) is constructible under the given hypotheses. If U is a
constructible subset of X, then using (Ex. 3.18(a)), write U = U1 ∪ · · · ∪ Ur where Ui is
a locally closed subset. Write Ui = Oi ∩ Ci where Oi is open and Ci is closed. Then Ui

has a closed subscheme structure in Oi. We have a restriction Ui → Y , and this morphism
is locally of �nite type since Oi is Noetherian, so for any SpecB ⊆ Y , f−1(SpecB) ∩ Ci

locally looks like quotients of �nitely-generated B-algebras by (Ex. 3.11(b)), and are hence
�nitely-generated. Since X is Noetherian, so is U , and closed subsets of quasi-compact
sets are themselves quasi-compact. Then the restricted morphism is of �nite type between
Noetherian schemes, so f(Ui) is constructible by our assumption. Then f(U) = f(U1) ∪
· · · ∪ f(Ur) and Y \ f(U) = (Y \ f(U1)) ∩ · · · ∩ (Y \ f(Ur)), so f(U) is constructible. Thus
we reduce to showing that f(X) is constructible.

We may also assume that X is a�ne because we can cover X by �nitely many open a�nes
Vi, so f(U ∩ Vi) is constructible implies f(U) is constructible. Similarly, we may assume
that Y is a�ne because if we cover Y by �nitely many open a�nes Wi, then we have maps
U ∩ f−1(Wi) → f(U) ∩Wi. Then the union of the images of U ∩ f−1(Wi) in f(U) ∩Wi

is f(U) and constructibility preserves �nite unions. In addition, an open subscheme of a
Noetherian scheme is locally Noetherian by Proposition 3.2, and is quasi-compact by (Ex.
3.17(a)) and (Ex. 2.13(a)), so is Noetherian. Also, a closed set of an a�ne scheme SpecA
looks like SpecA/I for some ideal I, and A being Noetherian implies A/I is Noetherian,
so we may assume that both X and Y are also Noetherian.

By (Ex. 2.3(b)), there is a morphismXred → X that is a homeomorphism on the underlying
spaces. Since constructibility is a topological property, we can replace X with Xred and get
a map Xred → X → Y . By (Ex. 2.3(c)), we can also replace Y with Yred and get a map
Xred → Yred. So we may assume that both X and Y are reduced schemes. Also, since X
and Y are Noetherian, we can focus on the irreducible components of X and Y by similar
reasoning as above, so we may further assume that X and Y are irreducible schemes.
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By Proposition 3.1, this means we may assume that X and Y are integral schemes. If
X = SpecA and Y = SpecB, then we have a morphism (which is of �nite type because
each of the reductions thus far have preserved this) f : X → Y which is equivalent to a
ring homomorphism ϕ : B → A. Then the map B/ kerϕ → A is an inclusion which gives
a dominant morphism f � : X → Spec(B/ kerϕ) ⊆ SpecB. Thus proving that f �(X) ⊆
Spec(B/ kerϕ) is constructible gives that f(X) is constructible in Y because Spec(B/ kerϕ)
is a closed subset of Y .

Therefore, we have reduced to showing that f(X) is constructible in the case that f : X → Y
is a dominant morphism of �nite type of integral Noetherian a�ne schemes.

(b) Let n be the number of generators of B as an A-algebra. We split the proof of the algebraic
result into two cases when n = 1 and when n > 1. This proof is a rewording of the one
found in [1].

If n = 1, write B = A[t] where t ∈ B generates B as an A-algebra. Pick nonzero b ∈ B,
and write it as b = cdt

d + cd−1t
d−1 + · · · + c0 where cd �= 0 and ci ∈ B. We consider two

subcases (1) when t has no relations (i.e., B is the polynomial ring in one variable over
A) and (2) when t satis�es some relation, so that t ∈ K(B) is algebraic over K(A) where
K(A) means the quotient �eld of A.

In the �rst case, let a = ad. Let K be an algebraically closed �eld and ϕ : A → K such
that ϕ(a) �= 0. The polynomial ϕ(ad)xd + · · · + ϕ(a0) has d roots and K is in�nite since
it is algebraically closed (if K were �nite and equal to {k1, . . . , kr}, then the polynomial
(x − k1) · · · (x − kr) + 1 has no roots in K), so there is some r ∈ K such that ϕ(ad)r

d +
· · ·+ ϕ(a0) �= 0. Extend ϕ to ϕ� : A[t]→ K by mapping t to r.

Now suppose that t is algebraic over K(A). Then there are equations

adt
d + ad−1t

d−1 + · · ·+ a0 = 0

and
a�e(b

−1)e + a�e−1(b
−1)e−1 + · · ·+ a�0 = 0

where ai, a
�
i ∈ K(A) and ad �= 0 and a�e �= 0. Let a = ada

�
e. Let K be an algebraically closed

�eld and ϕ : A → K such that ϕ(a) �= 0. We �rst extend ϕ to Aa → K in the obvious way
by sending 1/a to 1/ϕ(a). We can next extend ϕ to some valuation ring R containing Aa

[1, Theorem 5.21]. From the equations we know that t and b−1 are both integral over Aa.
Since the integral closure of Aa is the intersection of all valuation rings of K(Aa) containing
it, this means t and b−1 are elements of R. Since t ∈ R, so is b, so b is a unit of R, which
means our extension R → K maps b to something nonzero. Since R contains t and A, we
can restrict it to B to get a map ϕ� : B → K that maps b to something nonzero.

If n > 1, we use induction on n. Suppose B is a �nitely-generated A-algebra with generators
b1, . . . , bn. Pick any nonzero b ∈ B. Note that B is a �nitely-generated A[b1]-algebra
with generators b2, . . . , bn and that A[b1] is a Noetherian domain. By induction, there
is a nonzero c ∈ A[b1] such that for all homomorphisms ϕ : A[b1] → K where K is an
algebraically closed �eld such that ϕ(c) �= 0, ϕ extends to a homomorphism ϕ� : B → K
with ϕ�(b) �= 0. Now note that A[b1] is a �nitely-generated A-algebra so we apply induction
again to get an element a ∈ A such that for any homomorphism ψ : A → K where K is an
algebraically closed �eld such that ψ(a) �= 0, ψ extends to a homomorphism ψ� : A[b1]→ K
with ψ�(c) �= 0. Putting this together, we get the following: if K is algebraically closed and
ϕ : A → K is any homomorphism such that ϕ(a) �= 0, then ϕ extends to a homomorphism
ϕ� : B → K such that ϕ�(b) �= 0. This �nishes the proof of the algebraic result.
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Let X = SpecB and Y = SpecA. In our case, f : SpecB → SpecA is a dominant
morphism of �nite type of integral Noetherian a�ne schemes, so the induced map A → B
is injective and makes B a �nitely-generated A-algebra, and both A and B are Noetherian
domains. So we can use the algebraic result above on 1 ∈ B, to get an element a ∈ A
with the appropriate properties. We claim that D(a) ⊆ f(SpecB). Choose p ∈ D(a),
i.e., a /∈ p. Then A/p is an integral domain, so we can take the algebraic closure of its
quotient �eld, call it k. Then we have a map A → A/p �→ K(A/p) �→ k which maps a to
something nonzero and has kernel p, call it ϕ. Then ϕ extends to a map ϕ� : B → k such
that ϕ�(1) �= 0, so we have the following commutative diagram of schemes

SpecB
f

// SpecA

Spec k

OO 99
s
s
s
s
s
s
s
s
s

where Spec k → SpecAmaps the one point of Spec k to p and Spec k → SpecB maps the one
point to kerϕ�. This means that f(kerϕ�) = p, so p ∈ f(SpecB) implies D(a) ⊆ f(SpecB)
as claimed. Thus f(SpecB) contains a nonempty open subset of Y .

(c) By (b), there exists a ∈ A such that D(a) ⊆ f(X). We will show that f(X) ∩ V (a) is
constructible in Y . If this intersection is empty, there is nothing to do, so assume otherwise.
Note that V (a) = SpecA/(a), so consider the map f � : SpecB/aB → SpecA/(a) induced
by f , whose image is f(X) ∩ V (a). Since A → B is injective, we have A/(a) → B/aB
injective also, so f � is dominant. Also, both are Noetherian rings. We know that (a)
has a primary decomposition because A is a Noetherian ring, so we can write (a) as the
intersection of some primary ideals. Furthermore, the radicals of these primary ideals are
prime, call these primes p1, . . . , pn. Then

�
(a) =

�
pi, so V (a) =

�
i V (pi) as topological

spaces since V (a) = V (
�
(a)) as topological spaces. For each piB, we can do the same thing

since B is Noetherian, so we have maps SpecB/qj → SpecA/pi for primes qj ∈ SpecB,
and the union of their images is f(X)∩V (a). While the scheme structure may be di�erent,
constructibility is a topological property and we are preserving the underlying topological
spaces. These maps now involve integral domains, so each image contains a nonempty
open subset by (b), and hence is constructible in V (pi) by Noetherian induction. A locally
closed subset of V (pi) is also a locally closed subset of SpecB, so in fact the images of
SpecB/qj → SpecA/pi are constructible in SpecB. Since constructibility is closed under
�nite unions, we conclude that f(X) ∩ V (a), and therefore f(X), are constructible.

(d) Let f : A1
k → P2

k be the morphism given by x �→ (x, 1, 0). Then f(A1
k) is neither open nor

closed because (x, 1, 0) is not the zero set of any ideal of homogeneous polynomials, and
neither is its complement.
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4 Separated and Proper Morphisms

1. Let f : X → Y be a �nite morphism of schemes. Then we can cover Y with open a�nes Ui such
that f−1(Ui)→ Ui is a map of a�ne schemes. By Proposition 4.1, each morphism f−1(Ui)→ Ui
is separated. Then

∆: f−1(Ui)→ f−1(Ui)×Ui f
−1(Ui)

is a closed immersion for all i, so ∆: X → X ×Y X is also, which means f is separated. Now
let g : X � → Y be a morphism. Choose an open a�ne SpecA ⊆ Y , let f−1(SpecA) = SpecB,
and choose an open a�ne SpecC ⊆ g−1(SpecA). Then the preimage of SpecC in X ×Y X � is
Spec(B⊗A C), which is a �nitely generated C-module since B is a �nitely generated A-module.
We can cover X � with such open a�nes, so �nite morphisms are stable under base change. By
(Ex. 3.5(b)), �nite morphisms are closed, so f is universally closed. Finally, �nite implies �nite
type, so f is proper.

2. Let U be the dense open subset such that f |U = g|U . The maps f : X → Y and g : X → Y are
S-morphisms, so they induce a morphism h : X → Y ×S Y . Let p1 and p2 be the projection
maps Y ×S Y → Y given by the �ber product. The product of the morphisms f |U and g|U is
h|U because h|U = h ◦ i where i is the inclusion U �→ X, and this is the unique morphism such
that p1 ◦ h|U = f |U and p2 ◦ h|U = g|U . By the same reasoning, h|U = f |U ◦ ∆, or we could
∗by Robin Hartshorne

1
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appeal to the following diagram

U
f |U

//

f |U

))

f |U

��h|U ++

Y
∆

##H
HH

HH
HH

HH =

&&

=

��

Y ×S Y
p2 //

p1

��

Y

��

Y // S

and note that everything clearly commutes except maybe h|U = f |U ◦∆, but this follows from the
de�nition of �ber product. This means that h(U) ⊆ ∆(Y ) ⊆ Y ×S Y . Since Y → S is separated,
∆(Y ) is closed, so h−1(∆(Y )) is a closed subset containing U . We are given that U is dense, so we
conclude that h(X) ⊆ ∆(Y ). Now consider the image subscheme of h, which we call image(h).
By (Ex. 3.11(d)), since X is reduced, image(h) is h(X) with the reduced induced subscheme
structure. By (Ex. 3.11(c)), there is a factorization X → image(h) → image(h) ∩ ∆(Y ) →
Y ×S Y . In particular, this gives a map X → Y since ∆ is a closed immersion, so we can factor

h as X → Y
∆−→ Y ×S Y ; call this �rst map h�. By de�nition, p1 ◦∆ and p2 ◦∆ are the identity

morphism on Y . Since f = p1◦h and g = p2◦h, we get f = p1◦∆◦h� = h and g = p2◦∆◦h� = h,
so f = g.

(a) Let R = C[x, y]/(x2, xy), let S = SpecC and let X = Y = SpecR. Since Y is a�ne, Y → S
is separated. The set U = D(y) is dense because it contains the nilradical (x), which is the
generic point. Let f : X → Y be the map corresponding to the identity R → R, and let
g : X → Y be the map corresponding to the map R→ R de�ned by x �→ 0, y �→ y. Since f
and g do not give the same map on global sections, f �= g. However, we claim that f and
g agree on U . Note that D(y) = SpecRy = SpecC[y, y

−1], where the last equality follows
because x = 0 since xy = 0 and y becomes invertible. Since our ring homomorphisms only
di�ered in where they sent x, and now x is gone, it is clear that f and g agree on U .

(b) Let X = SpecC[x] and let Y be two copies of X glued along the complement of the point
P = (x − 1). Write Y = U1 ∪ U2 where both U1 and U2 are isomorphic copies of X. Let
f : X → U1 and g : X → U2 be the respective isomorphisms. Then X is reduced over Spec k
and f and g agree on Spec k[x] \ {P}, which is open because (x − 1) is maximal by the
Nullstellensatz. This set is dense because it contains the generic point, but f �= g.

3. Let X be a separated scheme over S = SpecA, and let U = SpecB and V = SpecC be open
a�nes of X. The �ber product U ×S V is equal to ∆(U ∩ V ) ⊆ X ×S X. Since X is separated,
∆ is a closed immersion, and in particular, this implies that U ∩ V and U ×S V are isomorphic
as schemes. Finally, U ×S V = Spec(B ⊗A C), so U ∩ V is a�ne.

Let k be a �eld, and let X1 and X2 be copies of A
2
k. Let Ui ⊆ Xi be the open set A

2
k \{(x, y)} =

D(x) ∪ D(y), and let X be the result of gluing U1 to U2 via the identity morphism. Then X
is a nonseparated scheme over Spec k, and X1 and X2 are open a�nes of X. However, their
intersection is isomorphic to D(x) ∪D(y), which is not an a�ne scheme.

4. Let Z be a closed subscheme of X which is proper over S. The diagram

Z //

��@
@@

@@
@@

@ X //

��

Y

~~}}
}}
}}
}}

S
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commutes. Since Z → S is proper and Y → S is separated, we get that Z → X → Y is proper
by Corollary 4.8e. Proper implies closed, so f(Z) is closed in Y . Now put the image subscheme
structure on f(Z). Then f(Z) �→ Y is a closed immersion and hence a �nite type morphism by
(Ex. 3.13(a)). Since Y is Noetherian, f(Z) is Noetherian by (Ex. 3.13(g)). Closed immersions
are separated by Corollary 4.6a, so by Corollary 4.6b, f(Z)→ S is separated.

Now we show that f(Z) → S is universally closed. Let V → S be any morphism. We get the
following commutative diagram

V ×S Z //

��

Z

��

V ×S f(Z) //

��

f(Z)

��

V // S

.

We �rst show that V ×S Z → V ×S f(Z) is surjective. Pick any x ∈ V ×S f(Z), and let y be its
image in f(Z). Since Z → f(Z) is surjective, let y� ∈ Z be an element in its preimage. Then we
have maps of residue �elds k(y)→ k(x) and k(y)→ k(y�). Then let L be some �eld containing
both k(x) and k(y�). The inclusions k(x) �→ L and k(y�) �→ L give the following diagram

SpecL

&&M
M

M
M

M
M

((

""

V ×S Z //

��

Z

��

V ×S f(Z) // f(Z)

.

The image of SpecL in V ×S Z then maps to x, which shows the surjectivity. To see that
V ×S f(Z)→ V is closed, let U be a closed subset of V ×S f(Z). Its preimage U � in V ×S Z is
closed, and we know that the composite map V ×S Z → V is closed because Z → S is proper,
so the image of U � in V is closed. Since V ×S Z → V ×S f(Z) is surjective, the image of U � in
the composite map V ×S Z → V is the same as the image of U in the map V ×S f(Z) → V .
Thus, f(Z)→ S is universally closed, so is proper.

5. (a) Let R be some valuation ring of K/k. Since X is an integral scheme over a �eld, it is
Noetherian and irreducible, so has a generic point ξ. By Lemma 4.4, a point x such that
R dominates OX,x is equivalent to a morphism SpecR → X that sends the maximal ideal
of R to x. Such a morphism is equivalent to a dotted arrow in the following commutative
diagram

SpecK //

��

X

��

SpecR

99s
s

s
s

s
// Spec k

where the map SpecK → X sends the point of SpecK to ξ. By the valuative criterion,
at most one such arrow exists. So if a center of a given valuation of K/k exists, then it is
unique.
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(b) This is the same as above, except that the valuative criterion now tells us that exactly one
such dotted arrow exists, so every valuation of K/k has a unique center.

(d) The map X → Spec k induces an injective map of rings k → Γ(X,OX), so identify k
as a subring of Γ(X,OX). If k �= Γ(X,OX), then choose a ∈ Γ(X,OX) \ k. Since k is
algebraically closed, k[a−1] ⊆ K is a transcendental extension of k and thus (a−1) is a
maximal ideal. Localizing at this ideal, we get a local ring A such that a−1 ∈ mA. By
Theorem I.6.1A, there exists a valuation ring R of K/k such that R dominates A. In
particular, a−1 ∈ mR because mR ∩A = mA.

We claim that the image of a is nonzero in every local ring of X. First suppose that X
is a�ne, say X = SpecA. To compute the local ring at a point x ∈ X, it is enough to
take limits over distinguished opens containing x. Distinguished opens are the spectra of
localizations of A, and X is integral, so the image of a is nonzero in each. Now for X
not necessarily a�ne, cover it with a�ne schemes. Suppose that the image of a under the
restriction maps is zero in some open a�ne U . Then the intersection with U and any other
open a�ne V is nonempty since X is irreducible, so cover their intersection with open sets
distinguished in both U and V . Since V is an integral a�ne, the image of a in Γ(V,OX)
must be zero, and hence the image of a is zero in all open a�nes of X. By the sheaf
property, a = 0 in the global section. This proves the claim.

Now pick any x ∈ X. If a−1 ∈ OX,x, then a−1 is a unit, since a ∈ OX,x, so a−1 /∈ mx. But
a−1 ∈ R ∩ OX,x, which means x is not a center for R. If a−1 /∈ OX,x, then a is not a unit,
so a ∈ mx. However, a /∈ R, so R∩OX,x �= mx, so x is not a center for R in this case either.
This means R has no center, which contradicts (b). We conclude that k = Γ(X,OX).

6. If X and Y are a�ne varieties over k, we can write X = SpecA and Y = SpecB where A and
B are �nitely generated k-domains. Let f : X → Y be a proper morphism. Let ϕ : B → A be
the induced map of rings, which we can factor as B → B/ kerϕ→ A. This gives a factorization
X → Spec(B/ kerϕ) → Y . The second map is �nite and a composition of �nite maps is �nite,
so to show that f is �nite, it is enough to show that X → Spec(B/ kerϕ) is �nite. Also, by
Corollary 4.8(e), X → Spec(B/ kerϕ) is proper. Thus, we may assume that ϕ is injective.

In this case, to show that f is �nite means to show that A is a �nitely generated B-module.
Let K be the fraction �eld of A. Then it is enough to show that A is contained in the integral
closure of B in K. By Lemma 4.4, there is a morphism SpecK → X that sends the one point
of SpecK to the generic point of X. Now let R be any valuation ring of K that contains B, and
let SpecR→ Y be any morphism such that the following diagram

SpecK

i
��

// X

f

��

SpecR // Y

commutes, where i is the map induced by the inclusion R �→ K. By the valuative criterion, there
is a unique morphism SpecR→ X �lling in the diagram, and this corresponds to a map of rings
A → R. Then the generic point of SpecR is mapped to the generic point of X, which means
A → R is injective. Thus A is contained in the intersection of all valuation rings containing
B. By Theorem 4.11A, this intersection is the integral closure of B in K, so A is an integral
extension, as desired.

8. Let f : X → Y and f � : X � → Y � be two S-morphisms having P . De�ne Z := Y ×S Y �. The
projection map Z → Y gives a base extension X ×Y Z → Z having P and similarly, the base
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extension X � ×Y � Z → Z has P . In the �ber square

(X ×Y Z)×Z (X � ×Y � Z)
p2 //

p1

��

X � ×Y � Z

��

X ×Y Z // Z

both p1 and p2 have P . By transitivity of �ber products,

(X ×Y Z)×Z (X � ×Y � Z) ∼= X ×S X �.

Thus the composition X ×S X � → Z has property P , which is the product morphism f × f �.

Now let f : X → Y and g : Y → Z be two morphisms such that g ◦ f has P and g is separated.
The following diagram

X
Γf

$$H
H

H
H

H f

&&

idX

��

X ×Z Y
p2 //

p1

��

Y

g

��

X
g◦f

// Z

commutes by de�nition. The morphism Γf : X → X ×Z Y is a base extension of the diagonal
morphism ∆: Y → Y ×Z Y . Since g is separated, ∆ is a closed immersion and hence has P ,
and so Γf also has P. Also, p2 is a base extension of g ◦ f so has P. Thus the composition
f = p2 ◦ Γf has P .

Note that the map Xred → X is a closed immersion so has P. First we know from (Ex. 2.3(b))
that it is a homeomorphism. To see that the map of sheaves is surjective, it is enough to check on
stalks. But OXred

is de�ned as the shea��cation of U �→ OX(U)red. The presheaf that it comes
from has the same stalks as OXred

, and now it is obvious that the map on stalks is surjective
because they are colimits of maps of rings OX(U) → OX(U)red, which are surjective. So the
composition Xred → X → Y has P and is equal to Xred → Yred → Y . But Yred → Y is a closed
immersion and hence separated, so Xred → Yred has P .

9. Let f : X → Y and g : Y → Z be projective morphisms. Let PnY denote P
n
Z
× Y . Then we have

X

f �

��

f
// Y

g�

��

g
// Z

PnY

pf

==zzzzzzzz

PmZ

pg

>>}}}}}}}}

for some n and m where f � and g� are closed immersions and pf and pg are projections. The
projection PnZ → Z and g : Y → Z give a projection α : PnZ ×Z Y → PnZ , and note that
PnZ ×Z Y ∼= PnY . So the following diagram

PnY
β

%%K
K

K
K

K

pf
//

α

!!

Y
g�

%%K
KK

KK
KK

KK
KK

PnZ ×Z P
m
Z
pZ //

��

PmZ

��
PnZ

//// Z
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commutes. Now note that (PnZ×ZP
m
Z )×PmZ Y ∼= PnZ×Z Y ∼= PnY , so in fact, β is a base extension

of g� and hence a closed immersion.

Now we show that there is a closed immersion γ : PnZ ×Z P
m
Z → PNZ where N = nm + n +m.

First suppose that Z is a�ne, say Z = SpecA. Write R = A[x0, . . . , xn] and S = A[y0, . . . , yn].
Then PnZ = ProjR, P

m
Z = ProjS, and we can write P

N
Z = ProjA[x0y0, . . . , xiyj , . . . , xnym]. We

claim that PnZ ×Z P
m
Z = ProjB where B =

�∞
i=0Ri ⊗A Si, and Ri denotes the degree i part

of a graded ring R. This follows because for any homogeneous element r ⊗ s in B+, one has an
isomorphism B(r⊗s)

∼= R(r)⊗AS(s). Then we have a surjection A[x0y0, . . . , xiyj , . . . , xnym]→ B,
which gives the desired closed immersion. In the case that Z is not a�ne, we can cover it with
open a�nes and give a closed immersion on the preimage of each open a�ne in PnZ ×Z P

m
Z , and

our construction of the map is compatible on overlaps.

Thus, the composition X → PnY → PnZ ×Z P
m
Z → PNZ is a closed immersion. Combining all of

the above information, the following diagram

X

f �

��

f
// Y

g�

��

g
// Z

PnY

pf

99rrrrrrrrrrr

β

��

PmZ

pg

>>||||||||

PnZ ×Z P
m
Z

pZ

99tttttttttt γ
// PNZ

pN

OO

commutes where pN is a projection map. To see that the triangle involving pN commutes, it is
enough to consider open a�nes and to think of the map of rings (which commutes because pZ
and pN become inclusions), so gf is projective.

Now say that a morphism has propertyP if that morphism is projective. To see thatP satis�es
(a)-(f) of (Ex. 4.8), it is enough to check (a)-(c). We have done (b) above. For (a), let f : X → Y
be a closed immersion. Since P0

Y
∼= Y , we can factor f as X → P0

Y → Y , and hence closed
immersions are projective. For (c), let f : X → Y be a projective morphism, and g : Y � → Y be
any other morphism. For some n, we can factor f as X → PnY → Y where the �rst map is a
closed immersion and the second is a projection. Then the following diagram

X ×Y Y �

��

h

&&N
N

N
N

N
N f �

''
X

&&M
MM

MM
MM

MM
MM

MM

f

**UU
UUU

UUU
UUU

UUU
UUU

UUU
UUU

UUU PnY ×Y Y � //

��

Y �

g

��
PnY

// Y

commutes. First note X ×Pn
Y
(PnY ×Y Y �) ∼= X ×Y Y �, so h is a base extension of X → PnY , and

hence is a closed immersion. Finally, PnY ×Y Y � ∼= PnY � , so f
� is a projective morphism.

5 Sheaves of Modules

1. Let E ∗ denote the dual sheaf H omOX (E ,OX). Since E is locally free, let U be an open a�ne
such that E |U is free. We will de�ne canonical isomorphisms in the following problems. Hence



5 SHEAVES OF MODULES 7

they will agree on overlaps (since they are independent of a choice of basis), so it is enough to
de�ne canonical isomorphisms and assume that E is free to begin with.

(a) Let U be an open set. We will exhibit an isomorphism E (U) ∼= E ∗∗(U). Pick x ∈ E (U).
We de�ne x̂ ∈ E ∗∗(U) by mapping f ∈ E ∗(U) to f(x) ∈ OX(U). If x �= 0, then since E (U)
is free, there exists a basis of E (U) that contains x, so there is a homomorphism f ∈ E ∗

that sends x to something nonzero. Hence x �→ x̂ is injective. Furthermore, x �→ x̂ is an
isomorphism because the double dual of a module has the same rank as the module. Thus
the map E → E ∗∗ given by E (U)→ E ∗∗(U) for all open sets U as above is an isomorphism.

(b) We have HomOX (U)(E (U),F (U)) ∼= HomOX (U)(E (U),OX(U)) ⊗OX (U) F (U) by the uni-
versal property of the tensor product of modules and this isomorphism is canonical. This
gives an isomorphism HomOX (E ,F )

∼= (HomOX (E ,OX)⊗OX F ) where by the right hand
side we mean tensor presheaf. Now we use the universal property of shea��cation to get a
(canonical) isomorphism of sheaves.

(c) For modules, E (U)⊗OX (U)− is the left adjoint of HomOX (U)(E (U),−), so for OX -modules
F and G , we get the canonical isomorphism

HomOX (U)(E (U)⊗OX(U) F (U),G (U)) ∼= HomOX (U)(F (U),HomOX (U)(E (U),G (U))),

which by the above comments gives the desired isomorphism with the tensor presheaf in
place of the tensor sheaf. We �nish by using the fact that shea��cation is left adjoint to
the forgetful functor from the category of sheaves to the category of presheaves.

(d) Write E ∼= OnY (from above comments we may assume E is free). We remark that direct
sum acts as the product and coproduct in the category of OX -modules, and thus commutes
with functors that are either left or right adjoints. Then we have

f∗(F )⊗OY O
n
Y
∼= (f∗(F )⊗OY OY )

n ∼= (f∗(F ))n ∼= f∗(F
n).

Now we compute the other expression

f∗(F ⊗OX f∗OnY ) ∼= f∗(F ⊗OX (f
−1OnY ⊗f−1OY OX))

∼= f∗(F ⊗OX (f
−1OY ⊗f−1OY OX)

n)
∼= f∗(F ⊗OX O

n
X)

∼= f∗(F
n),

where the isomorphism OX ∼= f∗OY follows from the fact that f∗ is a left adjoint of f∗ and
using Yoneda’s lemma. Thus, we have shown the desired isomorphism.

2. (a) Let F be an OX -module. Since R is a DVR, X has two points, t0 and t1, where t0 corre-
sponds to the zero ideal and t1 corresponds to the maximal ideal. Let M = F (X), which
is a module over Γ(X,OX) = R, and L = F ({t0}), which is a module over OX({t0}) = K,
and hence a vector space. Finally, the restriction map F (X) → F ({t0}) gives the homo-
morphism ρ : M ⊗R K → L.

Conversely, suppose we are given an R-module M , a K-vector space L, and a homo-
morphism ρ : M ⊗R K → L. Let F (X) = M and F ({t0}) = L. Then the map
ρ : F (X) → F ({t0}) makes F an OX -module, and it is clear that we have just de�ned a
bijection of data.
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(b) Use the notation from (a). If F is quasi-coherent, then by Proposition 5.4, F ∼= �M .
Since R is a DVR, the maximal ideal is generated by an element m, and we can write
{t0} = D(m). By Proposition 5.1(c), F ({t0}) ∼=Mm ∼=M ⊗R K, so ρ is an isomorphism.

Conversely, if ρ is an isomorphism, thenF is given byF (X) =M andF ({t0}) =M⊗RK,
so F ∼= �M and is hence quasi-coherent.

4. Let F be an OX -module where X is a scheme. Suppose that F is quasi-coherent and pick a
point x ∈ X. Then there exists an open set U � x such that U = SpecA is a�ne and F |U ∼= �M
where M is an A-module. Let E → G → M → 0 be a presentation of M . Write E = AI and
G = AJ for indexing sets I and J , and let E = (OX |U )I and G = (OX |U )J where we mean a
direct sum of OX |U with one copy for each element of I and J , respectively. The map E → G
induces a morphism of sheaves E → G whose cokernel is F |U , which can be seen by looking at
stalks. Conversely, suppose every point x ∈ X has a neighborhood such that F |U is isomorphic
to a cokernel of a morphism E → G of free sheaves on U . If M = G (U)/E (U), then F |U ∼= �M
because we can de�ne a map of presheaves induced by the identityM → G (U)/E (U) and appeal
to the fact that stalks are the same after shea��cation. So F is quasi-coherent.

If instead we assume that X is Noetherian and F is coherent, then we can �nd a �nite presenta-
tion E → G→M → 0, which shows that F is locally a cokernel of a morphism of free sheaves
of �nite rank. Conversely, if we know that X is Noetherian and F is locally a cokernel of a
morphism of free sheaves of �nite rank, then M = G (U)/E (U) is a �nitely generated A-module,
so F is coherent.

5. (a) Let k be a �eld, let X = Spec k[x], and let Y = Spec k. The inclusion k �→ k[x] induces a
morphism f : X → Y of varieties over k. Let F = OX , which is a coherent sheaf on X.

However, f∗F is not a coherent sheaf on Y because f∗F (Y ) = F (X) = �k[x], and k[x] is
not a �nitely generated k-module.

(b) Let f : X → Y be a closed immersion. Then we identify X with a closed subset V ⊆ Y .
Cover Y by open a�nes Ui = SpecAi. Locally on each Ui, we have a closed immersion
f−1(V ∩ Ui) → Ui which looks like Ai → Ai/Ii for some ideal Ii ⊆ Ai. Then Ai/Ii is a
�nitely generated Ai-module, so f is a �nite morphism.

(c) Let f : X → Y be a �nite morphism of Noetherian schemes, and letF be a coherent sheaf on
X. Let Ui = SpecAi be a covering by open a�nes of Y . For any i, f∗F (Ui) = F (f

−1(Ui)),
and f−1(Ui) = SpecBi where Bi is a �nitely generated Ai-module by (Ex. 3.4). By

Proposition 5.4, F |f−1(Ui)
∼= �Mi where Mi is a �nitely generated Bi-module, hence is also

a �nitely generated Ai-module. Thus f∗F is a coherent sheaf on Y .

6. (a) By de�nition, Suppm = {p ∈ X : mp �= 0} where mp denotes the germ of m in Fp = Mp

(the equality follows by Proposition 5.1(b)). We have p ∈ Suppm if and only if the image
of m is nonzero in the localized module Mp. This is equivalent to Annm ⊆ p, which is
equivalent to p ∈ V (Annm). We conclude that Suppm = V (Annm).

(b) By de�nition, SuppF = {p ∈ X : Fp �= 0}. It is clear that if p ∈ SuppF , then AnnM ⊆ p

because Fp =Mp. Conversely, suppose p /∈ SuppF , so that Mp = 0. Let {m1, . . . ,mr} be
a generating set for M . Then each mi is annihilated by some ai ∈ A \ p, so in particular,
M is annihilated by a1 · · · ar, so AnnM � p. Thus SuppF = V (AnnM) if M is �nitely
generated.

(c) Let X be a Noetherian scheme and let F be a coherent sheaf on X. Cover X with �nitely

many open a�nes Ui = SpecAi. By Proposition 5.4, we know that F |Ui ∼= �Mi where Mi
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is a �nitely generated Ai-module. Since the stalks of F and F |Ui agree at any p ∈ Ui, we
see that SuppF ∩ Ui = SuppF |Ui . By (b), each SuppF |Ui is closed relative to Ui. Since
the intersection of SuppF with every Ui is closed, SuppF is a closed subset of X.

(d) By (Ex. 1.20(b)), we have an exact sequence

0 // H 0
Z (F )

// F // j∗(F |U )

where U = X \ Z and j : U �→ X is inclusion. Since F is quasi-coherent, so is F |U . Also,
X is Noetherian, so by Proposition 5.8, j∗(F |U ) is quasi-coherent. Then H 0

Z (F ) is the
kernel of a morphism of quasi-coherent sheaves, so is itself quasi-coherent by Proposition
5.7. The global section of H 0

Z (F ) is ΓZ(F ), which is the submodule of Γ(X,F ) = M
consisting of all sections whose support is contained in Z = V (a). By (a), this is the set of
m ∈ M such that V (Annm) ⊆ V (a), or equivalently

√
Annm ⊇

√
a. This also describes

Γa(M), so we have Γa(M) ∼= ΓZ(F ), which means that Γa(M)∼ ∼=H 0
Z (F ).

(e) If F is a quasi-coherent OX -module, cover X with open a�nes Ui = SpecAi such that

F |Ui ∼= �Mi where Mi is an Ai-module. Then F |Ui is a quasi-coherent OUi-module. From
(d), we know thatH 0

Z∩Ui
(F |Ui) ∼= Γai(Mi)

∼ where Z∩Ui = V (ai) (the V taken in SpecAi).
Furthermore, we have H 0

Z (F ) ∩ Ui = H
0
Z∩Ui

(F |Ui), so H
0
Z (F ) is quasi-coherent. If in

addition we know that F is coherent, then we can take each Mi to be a �nitely generated
Ai-module. Since X is Noetherian, Ai is Noetherian, so Γai(Mi) is a submodule of a
Noetherian module and hence Noetherian. This gives that H 0

Z (F ) is coherent.

7. (a) Let V � x be an open a�ne SpecA such that F |V ∼= �M where M is a �nitely generated
A-module. Since (F |V )x = Fx and (O|V )x = Ox, x corresponds to some prime ideal p ⊆ A,
and we know that Mp is a free Ap-module.

Let a1, . . . , an be a basis for Mp as a Ap-module. Clearing denominators, we may assume
that ai ∈ M . Now let b1, . . . , bm be a generating set for M as an A-module. Then we can
write bi =

�
ci,jaj for all i, and after clearing denominators, we see that some multiple

of bi is generated by the aj with coe�cients in A. Denote this multiple dibi, then di /∈ p

because none of the denominators of the ci,j are in p. Now let e = d1 · · · dm be their product.
Then M is contained in the Ae-module generated by a1, . . . , an, which implies that Me is
generated by a1, . . . , an as an Ae-module. Since the ai have no relations as an Ap-module,
they have no relations as an Ae-module since e /∈ p. Thus Me is a free Ae-module. By
Proposition 5.1(c), F |D(e)

∼= (Me)∼, which gives the desired result since D(e) is open in X
and contains x.

(b) If F is locally free, then cover X with open a�nes U such that F |U is a free O|U -module.
Then for any x ∈ U , (F |U )x is a free (O|U )x-module because localization commutes with
direct sums (because tensor product does). Using the fact that (F |U )x = Fx and (O|U )x =
Ox, we see that Fx is a free Ox-module for all x ∈ X.

Conversely, suppose that Fx is a free Ox-module for all x ∈ X. By (a), for every x ∈ X,
there is an open neighborhood Ux � x such that F |Ux is free. Then by de�nition, F is
locally free.

(c) First suppose that F is invertible. Then let G = H omOX (F ,OX), the dual sheaf of F .
For every open set V , we can de�ne Γ(V,F ⊗ G ) → OX(V ) by de�ning it on the presheaf
F (V )⊗ Hom(F (V ),OX(V )) and using the universal property of shea��cation. De�ne the
presheaf morphism by x⊗ f �→ f(x). This is a morphism because it is compatible with the
restriction maps.
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By (b), Fx is a free Ox-module for every x ∈ X, and by (a), there is a neighborhood Ux � x
such that F |Ux is free, so F is free when restricted to a distinguished open set of an open
a�ne of X. To show that F ⊗ G → OX is an isomorphism, it is enough to do so on these
distinguished opens. Then we need to show for a ring R that the map R⊗Hom(R,R)→ R
given by r ⊗ f �→ f(r) is an isomorphism. Letting f be the identity homomorphism shows
that this is surjective. If f(r) = 0, then f(1) = 0, which means f is the zero map, and hence
r ⊗ f = 0, which shows injectivity.

Conversely, suppose that there exists G and ϕ such that ϕ : F⊗G → OX is an isomorphism.
Write ϕ(f1⊗g1+ · · ·+fn⊗gn) = 1. Then ϕx : Fx⊗OX,x Gx → OX,x is an isomorphism for all
x ∈ X. Let mx denote the maximal ideal of OX,x. Then for some i, we have ϕx(fi⊗gi) /∈ mx.
Since OX,x is a local ring, ϕx(fi ⊗ gi) is a unit, so de�ne f = (ϕx(fi ⊗ gi))

−1fi. Then
Fx

∼= OX,xf , so Fx is a free OX,x-module of rank 1. Using (b), F is locally free of rank 1.

8. (a) Cover X with �nitely many open a�nes Ui = SpecAi such that F |Ui ∼= �Mi where Mi is a
�nitely generated Ai-module. For any x ∈ Ui, we have (F |Ui)x ∼= Fx and (O|Ui)x ∼= Ox,
so ϕ(x) can be computed in either X or Ui. If we can show that for all n ∈ Z, {x ∈ Ui :
ϕ(x) ≥ n} is a closed subset of Ui, then {x ∈ X : ϕ(x) ≥ n} is a closed subset of X, so we
can reduce to the case that X is a�ne. For notation, let X = SpecA and F ∼= �M with M
a �nitely generated A-module.

Now pick x ∈ X and let p ⊆ A be the prime corresponding to x. We have

Fx ⊗OX k(x) =Mp⊗Ap
Ap/pAp =Mp/pMp,

which is a k(x)-vector space with dimension ϕ(x) =: n. Let a1, . . . , an be a basis forMp/pMp

over Ap/pAp. Clearing denominators, we may assume that ai ∈ Ap. Since Ap is a local ring,
by Nakayama’s lemma, a1, . . . , an is a generating set for Mp as an Ap-module. Now let
m1, . . . ,mr be a generating set of M as an A-module. We can write mi =

�
ci,jaj where

ci,j ∈ Ap. Clearing denominators, some multiple of mi, say dimi, is a linear combination of
the ai with coe�cients in A. Let e = d1 · · · dr be their product, then e /∈ p, so x ∈ D(e).
Now choose any other x� ∈ D(e) and let q be the prime ideal corresponding to x�. Since
e /∈ q, we see that Mq/qMq is generated by the images of the ai as a k(x�)-vector space,
so ϕ(x�) ≤ n. Therefore, for all n, the set {x ∈ X : ϕ(x) < n} is open, which means its
complement is closed.

(b) By (Ex. 5.7(b)), Fx is a free Ox-module for all x ∈ X. The rank of Fx is the rank
of F |U where U is some open set of X containing x such that F |U is free. Since X is
connected, these ranks are the same for all x ∈ X. Write Fx = Onx for some n. Then
Fx ⊗Ox k(x) = (Ox/mx)n, so the rank of Fx as a free Ox-module is the same as the
dimension of Fx ⊗Ox k(x) as a k(x)-vector space, which means that ϕ(x) is a constant
function.

(c) Since F being locally free is a local criterion, we can reduce to the case that X = SpecA is

a�ne, F ∼= �M with M a �nitely generated A-module, and Af = OX(D(f)) is reduced for
all f ∈ A. Choose p ∈ X. As in part (a), we can choose m1, . . . ,mn ∈ Mp such that they
form a basis for Mp/pMp as a k(p)-vector space and generate Mp as an Ap-module.

We claim that Mp is a free Ap-module. To show this, it is enough to show that the mi are
linearly independent. Suppose we have a relation

� ai
bi
mi = 0 where ai ∈ A and bi /∈ p

in Mp. Then there is an element a /∈ p such that a(
�
i(
�
j�=i bj)mi) = 0. Since the mi

are linearly independent over Ap/pAp, we see that ai ∈ p for all i. We can choose e ∈ A
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as in (a) such that if q ∈ D(e), then Mq/qMq is generated by the images of the mi. Now
let f = aeb1 · · · bn. From our choice of e, if q ∈ D(f), then the images of m1, . . . ,mn in
Mq/qMq are generators. Since ϕ is a constant function, this implies that the images are
in fact a basis. This implies that the relation

� ai
bi
mi = 0 holds in Mq, which means that

ai ∈ q. Therefore, ai ∈
�
q�f q, and this intersection is the nilradical of f , which is 0. Thus

the ai = 0, which gives the desired claim.

Then Fx is a free Ox-module for all x ∈ X, so by (Ex. 5.7(b)), F is locally free.

15. (a) Let X = SpecA be a Noetherian a�ne scheme, and let F ∼= �M be a quasi-coherent sheaf
on X. We can write M =

�
S⊆M AS where AS is the A-submodule of M generated by S

and where the union is taken over all �nite subsets S of M , so M is the union of its �nitely
generated submodules. We claim that F is the union of (AS)∼. Let U be any open subset
of X, and pick any m ∈ F (U). If U = D(f) for some f ∈ M , then F (U) = Mf , and it is
clear that Mf is the union of (AS)f . Otherwise, cover U with �nitely many distinguished
opens D(fi). If mi is the image of m in Mfi , then there is some subset Si ⊆ M such
that mi ∈ Γ(D(fi), (ASi)∼). Let S =

�
Si. Then mi ∈ Γ(D(fi), (AS)∼), so by the sheaf

property, m ∈ Γ(U, (AS)∼). Note that S is a �nite set, so (AS)∼ is a coherent sheaf. We
conclude that F is the union of its coherent subsheaves.

(b) Let i : U → X be the inclusion morphism. An open subset of a Noetherian scheme is
Noetherian, so by Proposition 5.8(c), i∗F is a quasi-coherent sheaf on X. By (a), i∗F is
the union of its coherent subsheaves Fα. Then F (U) is the union of the Fα(U). Since F
is coherent, F (U) is a Noetherian module, there exists �nitely many αi such that F (U) is
the union of Fαi(U), or else we could build an in�nite ascending chain of submodules. Then
the union of their �nite generating sets is �nite, so there exists α such that Fα(U) = F (U).
Let F � = Fα. Since F

�|U and F are both coherent and have the same global section,
F �|U ∼= F .

(c) Let i : U → X be inclusion, and let ρ : G → i∗(G |U ) be the morphism such that for every open
set V ⊆ X, the map G (V )→ Γ(V, i∗(G |U )) is given by the restriction map G (V )→ G (U∩V ).
Let ρ−1(i∗F ) ⊆ G be the set-theoretic inverse image of i∗F in i∗(G |U ). Then ρ−1(i∗F ) is
a subsheaf of a quasi-coherent sheaf and hence is a quasi-coherent sheaf. Now we proceed
as in (b) to �nd a coherent subsheaf of ρ−1(i∗F ), which we call F

�, such that F �|U ∼= F .
We see that F � is a subsheaf of G necessarily.

(d) Cover X with �nitely many open a�nes V1, . . . , Vr. Then U ∩ V1 is an open subset of V1,
and F |U∩V1 is a coherent sheaf and G |V1 is a quasi-coherent sheaf. By (c), we can �nd a
subsheaf F1 ⊆ G |V1 on V1 such that F1|U∩V1 ∼= F |U∩V1 . Now we consider the open subset
(U ∪ V1) ∩ V2 ⊆ V2. By construction, F and F1 agree on (U ∪ V1) ∩ V2, so glue to give a
sheaf. Using (c) again, we may �nd a subsheaf F2 ⊆ G |V2 on V2 such that its restriction
to (U ∪ V1) ∩ V2 is the same as our glued together sheaf. Again, we can glue F2 and F1

together because they agree on overlaps by our choice. Now it is clear how to repeat this
process, and since there are only �nitely many Vi, at the end we are left with a coherent
subsheaf F � ⊆ G such that F �|U ∼= F .

(e) Let U be an open set of X, and choose s ∈ F (U). Let G be the coherent subsheaf of
F |U generated by s. By (d), there exists a coherent subsheaf of F , denote it Gs such that
Gs|U ∼= G . Hence we can write F as the union of the Gs where s ranges over all sections
over all open sets of F .

16. (a) For any x ∈ X, we have T r(F )x = (F ⊗OX · · · ⊗OX F )x = F
⊗Oxr
x and similarly for Sr(F )

and
�r(F ) because stalks commute with quotients (and the stalk of a presheaf and of its



5 SHEAVES OF MODULES 12

shea��cation are the same). So we have reduced to the case of showing that for a free
module M of rank n, T r(M), Sr(M), and

�r(M) are free of rank nr,
�n+r−1
n−1

�
, and

�
n
r

�
,

respectively.

Write M = Rn. Then T r(M) = Rn ⊗ · · · ⊗Rn. Since tensor product commutes with direct
sum, we can expand this to get T r(M) = Rn

r

. SinceM is a free module, S(M) is isomorphic
to the polynomial ring over R in n variables, and the degree r part is freely generated by the
monomials of degree r. The number of such monomials is the number of ways to choose r
things from a collection, without order, of n things allowing repetition, and this is given by�
n+r−1
n−1

�
. Now choose a basis e1, . . . , en ofM . Then

�r(M) is freely generated by alternating
forms of length r of the form ei1 ∧ · · · ∧ eir where i1 < · · · < ir. This follows by considering
the basis for T r(M), and then noting that the relations of the exterior algebra show that if
ij = ik for some j and k, then ei1 ∧ · · · ∧ eir = 0, and also that if the ij are not in increasing
order, then one can anticommute them and get the same element, with the ij in increasing
order, up to a sign. So the number of basis elements is

�
n
r

�
.

(b) From (Ex. 5.1(b)), H omOX (
�n−r

F ,
�n
F ) ∼= (

�n−r
F )∗ ⊗OX

�n
F . The multiplication

map
�r
F ⊗

�n−r
F →

�n
F induces a map

�r
F → H omOX (

�n−r
F ,
�n
F ) in the

obvious way. We claim that this is an isomorphism. From (a) and the isomorphism above,
both are locally free and have the same rank, so it is enough to show that this induced map
is injective. To check this we pass to stalks. Choose x ∈ X. If f ∈ (

�r
F )x induces the

0 map on stalks, then f = 0 because it kills any basis of (
�n−r

F )x, so we get the desired
claim.

(e) We proceed by induction on n, the case n = 0 being clear. For n > 0,

Tn(f∗(F )) = f∗(F )⊗OX Tn−1(f∗(F ))

= (f−1(F )⊗f−1OY OX)⊗OX f∗(Tn−1(F ))

∼= f−1(F )⊗f−1OY f∗(Tn−1(F ))

= f−1(F )⊗f−1OY (f
−1(F⊗n−1)⊗f−1OY OX)

∼= f−1(F⊗n)⊗f−1OY OX
= f∗(Tn(F )),

where the last isomorphism follows because f−1 is de�ned as a colimit, which commutes
with left adjoints (in this case ⊗).
Let I be the degree n part of the sheaf ideal such that T (F )/I = S(F ). Since f∗ is a left
adjoint, it is right exact, so

f∗I // f∗(Tn(F )) // f∗(Sn(F )) // 0

is exact. In fact, for sections x, y of I , one has f∗(x⊗y) = f∗x⊗f∗y since tensor commutes
with f∗, so we can write an exact sequence

0 // f∗I // Tn(f∗(F )) // Sn(f∗(F )) // 0 .

We have already shown that Tn(f∗(F )) = f∗(Tn(F )), so we deduce that Sn(f∗(F )) =
f∗(Sn(F )). Showing that

�
commutes with f∗ proceeds in the same way.

17. (a) Let U = SpecA ⊆ Y be an open a�ne. We claim that f−1(U)→ U is an a�ne morphism.
Since f : X → Y is a�ne, there exists a covering of open a�nes Ui = SpecAi ⊆ Y such that
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f−1(Ui) = SpecBi is a�ne. We can cover U ∩ Ui with open sets Vij that are distinguished
in both U and Ui. Write Vij = D(gij) where gij ∈ Ai, and let hij be the image of gij under
the map Ai → Bi. Then f−1(D(gij)) = Spec(Bi)hij . Since the D(gij) cover U , f

−1(U)→ U
is an a�ne morphism as desired.

So it is enough to show that if f : X → Y is an a�ne morphism and Y = SpecA is a�ne,
then X is also a�ne. So there is a covering of Y by open a�nes such that their preimages are
a�nes. By the above comments, we may assume that these open sets are in fact distinguished
opens, and we can take �nitely many, say D(g1), . . . , D(gn). Let hi be the image of gi under
the map A→ Γ(X,OX). Write f−1(D(gi)) = SpecBi. Then we claim that Xhi = SpecBi.

By (Ex. 2.16(a)), SpecBi ∩ Xhi is the set of primes of Bi that do not contain hi. Since
we have a map Agi → Bi, it must be that gi is invertible in Bi, so no primes can contain
it, and SpecBi ⊆ Xhi . For any other j, SpecAgi ∩ SpecAgj = SpecAgigj . This gives that
SpecBi ∩ SpecBj is {p ∈ SpecBj : hi /∈ p} = {p ∈ SpecBi : hj /∈ p}. This means that
Xhi ∩ SpecBj = SpecBi ∩ SpecBj , which proves the claim. Finally, h1, . . . , hn generate
Γ(X,OX), and each Xhi is a�ne, so by (Ex. 2.17(b)), X is a�ne.

(b) Let f : X → Y be an a�ne morphism. There is a covering Ui of Y by open a�nes such
that f−1(Ui) is a�ne. Since an a�ne scheme is quasi-compact, this means that f is quasi-
compact. Since the maps f−1(Ui) → Ui are between a�ne schemes, they are separated
by Proposition 4.1. Then by Corollary 4.6f (note that the Noetherian condition is not
necessary), f is separated. That a �nite morphism is a�ne follows from the de�nition of
�nite.

(c) We wish to glue together the schemes SpecA (U) as U ranges over all open a�nes of Y .
Let U = SpecA and V = SpecB be two open a�nes. If U ∩ V is empty, there is nothing
to do. Otherwise, cover U ∩ V with open sets that are distinguished in both U and V . Let
W = SpecC be a distinguished open in U ∩ V . Also, let A� = A (U), B� = A (V ), and
C � = A (W ). Since A is an OY -module,

A (U)
ρUW // A (W )

OY (U) //

OO

OY (W )

OO

is an OY (U)-module homomorphism where ρUW is the restriction map given by A . As C
is a localization of both A and B, we also have that C � is a localization of both A� and B�

since A is quasi-coherent, and hence we can identify A� and B� along C �. There are maps
A → A� and B → B� given by the OY -algebra structure of A , and they induce morphisms
g : SpecA (U)→ U and h : SpecA (V )→ V .

In fact, the isomorphisms given by the distinguished covering of U ∩V patch together to give
an isomorphism g−1(U ∩V )→ h−1(U ∩V ). Since these isomorphisms come from restriction
maps of a sheaf, it is clear that they agree on triple overlaps, so this gives a gluing, call the
scheme X. The maps A (U) → U for all open a�nes are compatible on overlaps, so glue
together to give a morphism f : X → Y . For an inclusion U ⊆ V of open a�nes of Y , the
morphism f−1(U)→ f−1(V ) is given by the restriction homomorphism A (V )→ A (U) by
construction above.

If there is an X � and f � : X � → Y with the same properties of X, then we can de�ne a
morphism X → X � by gluing together morphisms on open a�nes SpecA (U) where U is an
open a�ne of Y . Then this morphism will be an isomorphism, so we see that X is unique.
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(d) By construction, for every open a�ne U ⊆ Y , f−1(U) ∼= SpecA (U), so f is a�ne. Also,
for every open set U ⊆ Y , we have f∗OX(U) = OX(f−1(U)) ∼= A (U). The isomorphism is
clear if U is a�ne, or if U is contained in some open a�ne. In the general case, cover Y
with open a�nes Ui, and for each U ∩ Ui, we have OX(f−1(U ∩ Ui)) ∼= A (U ∩ Ui), which
follows from the construction. Since these isomorphisms are canonical, they patch together
to give the isomorphism for U .

Conversely, suppose that f : X → Y is an a�ne morphism, and set A = f∗OX . For every
open set U ⊆ Y , A (U) = OX(f−1(U)), so there is a morphism OY (U) → OX(f−1(U)),
which gives A (U) the structure of OY (U)-module. For an inclusion V ⊆ U , it is clear that
the restriction map OX(f−1(U)) → OX(f−1(V )) is an OX(U)-module homomorphism. So
A is an OY -module.
In particular, for every open a�ne U = SpecA ⊆ Y , f−1(U) = SpecB is a�ne by (a).
Considering B as an A-module, A |U ∼= �B, so A is a quasi-coherent sheaf of OY -algebras.
Now if V ⊆ U is an open a�ne, the morphism on spectra f−1(V )→ f−1(U) is induced by
the map of rings A (U) = OX(f−1(U)) → OX(f−1(V )) = A (V ). From the uniqueness of
SpecA in (c), we conclude that X ∼= SpecA .

(e) LetM be a quasi-coherentA -module. We glue together theOX(f−1(U))-modules (M (U))∼

as U ranges over all open a�nes of Y . Given two open a�nes U and V of Y , we can cover
their intersection with open sets that are distinguished in both. The sections of these
distinguished open sets are given by localizing modules, and since they are the same in both
M (U) and M (V ), there is an isomorphism on their intersection. These isomorphisms are
compatible with triple overlaps because they are given by localization. So we can glue these
sheaves by (Ex. 1.22) to get an OX -module which we call �M .

We claim that � and f∗ give an equivalence of categories between the category of quasi-
coherent OX -modules and the category of quasi-coherent A -modules. Let F be a quasi-
coherent OX -module. Then (f∗F )∼ is naturally isomorphic to F because they are isomor-
phic on open a�nes and using Corollary 5.5. Similarly, ifM is a quasi-coherent A -module,
then f∗ �M is naturally isomorphic to M .

18. (a) Pick two open a�nes U1 = SpecA1 and U2 = SpecA2 such that E |U1 and E |U2 are free
of rank n, and pick an open a�ne subset V = SpecB ⊆ U1 ∩ U2. Let ψ = ψ2 ◦ ψ−11 ,
which is an automorphism of AnV = SpecB[x1, . . . , xn], and let θ1, θ2, and θ be the induced
automorphisms from ψ1, ψ2, and ψ, respectively. The diagram

AnU1
ψ−1

1 // f−1(U1)

AnV
ψ−1

1 //

OO

f−1(V )
ψ2 //

��

OO

AnV

��

f−1(U2)
ψ2 // AnU2

commutes, where the unlabeled arrows are the ones induced by the ring homomorphisms
Ai → B, and their linear extensions Ai[x1, . . . , xn] → B[x1, . . . , xn]. The identi�cation of
S(E (Ui)) with O(Ui)[x1, . . . , xn] �xes the coe�cients of O(Ui), and hence the automorphism
of B[x1, . . . , xn] induced by ψ−11 �xes B by the commutativity of the above diagram, and
similarly with ψ2. Let e1, . . . , en be the chosen basis for E (U2). By the diagram, we see that
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θ−11 (xi) is the image of ei under the map S(E (U2))→ S(E (V )), so θ2(θ
−1
1 (xi)) = θ(xi) = xi.

This shows that (X, f, {U}, {ψ}) is a vector bundle of rank n over Y . A di�erent choice of
bases for the E (U) would result in di�erent maps ψ�, but (X, f, {U}, {ψ}) is isomorphic to
(X, f, {U}, {ψ�}) via the identity morphism X → X.

(b) First assume that Y = SpecA is a�ne. Since f : X → Y is a vector bundle of rank
n, X = AnY . The sections s ∈ Γ(Y,S (X/Y )) are in natural bijection with A-algebra
homomorphisms θs : A[x1, . . . , xn] → A, which are themselves in natural bijection with n-
tuples (θs(x1), . . . , θs(xn)), namely the images of xi. The set of all n-tuples (a1, . . . , an) ∈ An

has a natural A-module structure, so we use this to determine an OY -module structure on
S (X/Y ). Namely, for two sections s and t, let s + t be the section determined by the A-
algebra homomorphism θs+t : A[x1, . . . , xn]→ A de�ned by xi �→ θs(xi) + θt(xi). For a ∈ A,
de�ne as to be the section determined by the A-algebra homomorphism θas : A[x1, . . . , xn]→
A de�ned by xi �→ aθs(xi). From these constructions, it is clear that S (X/Y ) ∼= OnY , and
hence is free of rank n. It is also clear that if Y is not necessarily a�ne, then this local
construction glues together to give a global OY -module structure on S (X/Y ) that makes
it locally free of rank n.

(c) Let V ⊆ Y be an open set. De�ne a map E ∗(V ) → S (V ) in the following way. Any
s ∈ E∗(V ) is an element of Hom(E |V ,OV ). This determines an OV -algebra homomorphism
S(E |V ) → OV , which in turn determines a morphism SpecOV → SpecS(E |V ). Since
SpecOV = V and SpecS(E |V ) = f−1(V ), this is an element of S (V ). To show that this
is an isomorphism, we can show that it is an isomorphism on stalks. Since S and E ∗ are
both locally free of rank n, Sy and E

∗
y are both free Oy-modules of rank n for all y ∈ Y , so

it is enough to check that the map given is injective on stalks.

The only part in question is getting an OV -algebra homomorphism S(E |V ) → OV from an
element of Hom(E |V ,OV ) since the rest of the operations are clearly invertible. On the
level of stalks, (E |V )y is a free Oy-module of rank n, and S(E |V ) ∼= Oy[x1, . . . , xn]. Some
basis of (E |V )y has been chosen for the given vector bundle structure on Y . The Oy-algebra
homomorphism Oy[x1, . . . , xn] → Oy is determined by the images of xi, which are in turn
determined by the images of the basis elements of (E |V )y. Now it is clear that a nonzero
map Hom(E |V ,OV ) gives a nonzero map S(E |V )→ OV , so we get the desired isomorphism.

(d) By (b), for every vector bundle f : X → Y of rank n, we have an associated sheaf of sections
S (X/Y ). It is clear from construction that two isomorphic vector bundles give isomorphic
sheaves of sections. Also by (b), the sheaf of sections arising from a vector bundle of n is
a locally free sheaf of rank n. Every locally free sheaf has an associated geometric vector
bundle, and part (c) implies that two locally free sheaves are isomorphic if and only if they
admit isomorphic vector bundles. Finally, part (a) says that the geometric vector bundle
associated to a locally free sheaf is in fact a vector bundle. These comments give the following
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injections

�
�
isomorphism classes
of vector bundles
of rank n over Y

�
� �→

�
isomorphism classes of
sheaves of sections on Y

�

�→

�
�

isomorphism classes
of locally free sheaves
of rank n on Y

�
�

�→

�
�

isomorphism classes
of associated vector

bundles of rank n over Y

�
�

�→

�
�
isomorphism classes
of vector bundles
of rank n over Y

�
� ,

which shows that there is a bijection between isomorphism classes of locally free sheaves of
rank n on Y , and isomorphism classes of vector bundles of rank n over Y .

6 Divisors

1. Let X be a scheme satisfying (∗), that is, X is a Noetherian integral separated scheme which is
regular in codimension one. The projection X × Pn → Pn is a base extension of X → SpecZ
and hence separated. The map Pn → SpecZ is projective and thus also separated, so the
composition X ×Pn → SpecZ is separated. Also there is a �nite covering of X by Noetherian
open a�nes, and the same for Pn, so their pairwise �ber products give a �nite covering of X×Pn

of Noetherian open a�nes, which means X ×Pn is Noetherian.

Let π : X × Pn → X be canonical projection and suppose that there are two generic points η1
and η2 of X × Pn. Then both map to ηX , the generic point of X. Choose some open a�ne
U = SpecA of X containing ηX . Then π−1(U) = PnA which contains η1 and η2. We know
that AnA is a dense open subset of P

n
A, and that it is irreducible, so this implies that P

n
A is also

irreducible, and is a contradiction. Hence X ×Pn is integral.

Now let x ∈ X×Pn be a point of codimension one, and put y = π(x) Then either y is a point of
codimension one, or y is the generic point of X. In the �rst case, x̄ = π−1(y) = Spec k(y)×Pn,
which we can write as the union of open a�nes isomorphic to Ank(y). This implies that Ox is
isomorphic to a localization of Oy[t1, . . . , tn]. By assumption, Ox is dimension one. Since Oy is
a DVR, it is integrally closed, and hence so is Oy[t1, . . . , tn]. So Ox is integrally closed and also
a DVR. In the second case that y is the generic point of X, we see that Ox is a localization of
K[t1, . . . , tn] where K is the function �eld of X. By the same reasons as above, this means Ox
is a DVR. So we see that X ×Pn is regular in codimension one and therefore X ×Pn satis�es
(∗).

Now we can de�ne maps p∗1 : ClX → Cl(X × Pn) and p∗2 : ClP
n → Cl(X × Pn) coming from

the projection maps. Both are injective and p∗1 comes from case 1 mentioned above, and p∗2
comes from case 2 mentioned above. If H is a hyperplane that generates ClPn ∼= Z, then p∗2 is
de�ned by H �→ X ×H. Finally, these two maps induce a map ϕ : ClX ⊕ClPn → Cl(X ×Pn),
which is surjective because the prime divisors of X ×Pn must be of either case 1 or case 2. The
injectivity of ϕ follows because Pnk(y) and X × H have di�erent images when projected under
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the appropriate maps, and these are what come from p∗1 and p∗2. Thus, ϕ is an isomorphism, so
Cl(X ×Pn) ∼= ClX × Z.

4. From the choice of f , z2 − f is an irreducible polynomial. Since k[x1, . . . , xn, z] is a UFD, this
means that (z2 − f) is prime, and hence A is a domain. Let K denote the quotient �eld of A.
Then K = k(x1, . . . , xn)[z]/(z

2 − f) because z−1 = zf−1. Let A� = k(x1, . . . , xn).

Every element α ∈ K can be written α = g + hz with g, h ∈ A�. If g, h ∈ k[x1, . . . , xn], then the
equation α2 − 2gα + (g2 − h2f) = 0 shows that α is integral over k[x1, . . . , xn]. On the other
hand, if α = g + hz is integral over k[x1, . . . , xn], then there is a monic polynomial F (X) such
that F (α) = 0. Since X2−2gX+(g2−h2f) is the minimal polynomial of α, it divides F (X). In
particular, the coe�cients −2g and g2−h2f are integral over k[x1, . . . , xn]. Since −2g, g2−h2f ∈
A�, and k[x1, . . . , xn] is a UFD, it must be that −2g, g2 − h2f ∈ k[x1, . . . , xn]. In particular,
this implies that g ∈ k[x1, . . . , xn], and hence h

2f ∈ k[x1, . . . , xn]. If h ∈ A� \ k[x1, . . . , xn], then
write h = h1/h2 in reduced terms. Then f/h22 ∈ k[x1, . . . , xn], but f is square-free, so this is a
contradiction. Thus, h ∈ k[x1, . . . , xn] also.

We have thus shown that g + hz is integral over k[x1, . . . , xn] if and only if g, h ∈ k[x1, . . . , xn].
This implies that the integral closure of k[x1, . . . , xn] in K is A, and hence A is integrally closed.

5. For the change of coordinates in part (b), we must at least assume that k has a square root of
−1. For example, there can be no such change of coordinates if k = R because x20+ · · ·+x2r = 0
has one solution while x0x1 = x22 + · · ·+ x2r has in�nitely many.

(a) If r ≥ 2, f = −(x21 + · · · + x2r) is a square-free polynomial, so by (Ex. 6.4), the ring
k[x0, . . . , xn]/(x

2
0+x21+ · · ·+x2r) is integrally closed. The localization of an integrally closed

domain is again an integrally closed domain, so X is normal.

(b) Let i be a square root of −1. We do the change of coordinates x0 �→ (z0 + z1)/2, x1 �→
i(z0 − z1)/2, and xj �→ izj for j ≥ 2. Then

x20 + · · ·+ x2r = (z
2
0/4 + z0z1/2 + z21/4) + (−z

2
0/4 + z0z1/2− z21/4)− z22 − · · · − z2r

= z0z1 − z22 − · · · − z2r ,

so we have the desired change of coordinates.

(1) Let A = Spec k[x0, . . . , xn]/(x0x1−x22), and let Y be de�ned by x1 = x2 = · · · = xn = 0.
Then Y is a prime divisor, so by Proposition 6.5(c), there is an exact sequence

Z // ClX // Cl(X \ Y ) // 0

where the �rst map is 1 �→ 1 · Y . Then Y is cut out set-theoretically by the function
x1, and the divisor of x1 is 2 · Y because x1 = 0 implies x22 = 0 and x2 generates
the maximal ideal of the local ring at the generic point at Y . So X \ Y = Ax1 and
Ax1 = k[x0, x1, x

−1
1 , . . . , xn]/(x0x1− x22). Then x0 = x−1x22, so Ax1 = k[x1, x

−1
1 , . . . , xn].

Since this is a UFD, Cl(X \ Y ) = 0 by Proposition 6.2. This implies that Y generates
ClX.
Finally, we show that Y is not principal. By (Ex. 6.4), A is integrally closed, it is enough
to show that p = (x1, . . . , xn) is not a principal ideal. The su�ciency can be found in the
proof of Proposition 6.2. Let m = (x0, . . . , xn), then m/m2 is an n-dimensional vector
space over k generated by the images of the xi. Since p ⊆ m and the image of p in m/m2

contains the images of the xi, we conclude that p is not principal. Hence Y generates
ClX and has order 2, so we conclude that ClX = Z/2.
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(2) Let V be the projective variety de�ned by the equation x20 + · · · + x23 = 0. By the
comments above, there is a change of coordinates so that V is given by x0x1 = x2x3.
From Example 6.6.1, ClV ∼= Z ⊕ Z for n = 3, but the ambient space is irrelevant, i.e.,
for n > 3, we can take the �ber product of P1

k ×k P
1
k with A

1
k n− 3 times to get Q and

use Proposition 6.6. By (I, Ex. 2.10(a)), A is the a�ne cone of V , so by (Ex. 6.3(b)),
there is an exact sequence

0 // Z // ClV // ClX // 0

where Z→ ClV is given by 1 �→ V.H. The cokernel of this map is Z, so ClX ∼= Z.

(3) By Proposition 6.2, it is equivalent to show that A = k[x0, . . . , xn]/(x0x1−x22−· · ·−x2r)
is a UFD if r ≥ 4. First note that A/(x0) = k[x2, . . . , xn]/(x

2
2 + · · · + x2r) is normal by

(a), so x0 is prime in A. We now appeal to a theorem by Nagata that says that if A is
a domain and S is a multiplicative set generated by prime elements in A, then A is a
UFD if and only if S−1A is a UFD and A has the ascending chain condition for principal
ideals. Here the ascending chain condition is clear because A is Noetherian, and we take
S to be generated by x0. Then Ax0 = k[x0, x2, . . . , xn]x0 , which is a localization of a
UFD and hence a UFD. Thus A is a UFD.

(c) (1) Let X be the a�ne quadric hypersurface given by the equation x0x1 = x22. Then by
(Ex. 6.3(b)), there is a short exact sequence

0 // Z // ClQ // ClX // 0

where Z → ClQ is given by 1 �→ Q.H. From (b) part 1, the cokernel of this map is
Z/2, which means that ClQ ∼= Z or ClQ ∼= Z ⊕ Z/2. But ClQ is cyclic and generated
by the ruling of the projective quadric cone as in Example 6.5.2. So ClQ ∼= Z, and the
class of a hyperplane section Q.H is twice the generator.

(2) This was done in (b) part 2 above.

(3) Let X be the a�ne quadric hypersurface given by the equation x0x1 = x22 + · · · + x2r .
Then by (Ex. 6.3(b)), there is a short exact sequence

0 // Z // ClQ // ClX // 0

where Z → ClQ is given by 1 �→ Q.H. From (b) part 3, the cokernel of this map is 0,
which means that it is an isomorphism, so ClQ ∼= Z and it is generated by Q.H.

6. (a) If P,Q,R are three collinear points of X, then P + Q + R ∼ 3P0. Since P is associated
to the divisor P − P0 in Cl

◦X, we see that P + Q + R = 0 in the group law. Conversely,
if P + Q + R = 0 in the group law, then (P − P0) + (Q − P0) + (R − P0) is principal, or
equivalently, P + Q + R ∼ 3P0. Since 3P0 is linearly equivalent to z = 0, there is a line L
meeting X in P,Q,R.

(b) If the tangent line at P passes through P0, then P +P +P0 ∼ 3P0, which we can rewrite as
P + P ∼ 2P0. Then the image of P + P in Cl◦X is 2(P0 − P0) = 0, and thus P has order 2
in the group law. Conversely, suppose that P has order 2 in the group law. Since P0 is the
identity element in the group law, this means that P +P +P0 = 0. By part (a), this means
that P, P, P0 are collinear counting multiplicity, so the tangent line at P passes through P0.

(c) If P is an in�ection point, then there the tangent line at P passes through P with multiplicity
≥ 3, so P + P + P = 0 in the group law by (a), so P has order 3. Conversely, suppose that
P has order 3 in the group law. Then there is a line passing through P with multiplicity
≥ 3. In particular, the tangent line at P does this, so P is an in�ection point.
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(d) Because of the relation P + Q + R = 0 if P,Q,R are collinear, we need to check that if P
and Q correspond to rational points on X, then so −R also corresponds to a rational point.
Since −R and R are re�ections across the x-axis, it is enough to show that if P and Q are
rational points, then the line PQ intersects X at a rational point. If the line PQ is tangent
to either P or Q, then either P +Q+Q = 0 or P + P +Q = 0, and if PQ passes through
P0, then P +Q = 0.

If P = Q, then PQ is the tangent line at P . If this tangent line PQ passes through P0, then
by (b), P +P = 0. Otherwise, we consider the curve de�ned by y2 = x3−x in C2 and check
that the tangent line of P intersects this curve in a rational point. Let P be of the form
(a,

√
a3 − a) where a /∈ {0, 1,−1}. (If a ∈ {0, 1,−1}, this corresponds to the tangent line

passing through P0. Also, the case (a,−
√
a3 − a) is similar, so we omit it.) The derivative

of y =
√
x3 − x is

3x2 − 1
2
√
x3 − x

, so the equation of the tangent line through P is

y =
3a2 − 1
2
√
a3 − a

(x− a) +
�
a3 − a. (1)

Substituting this into y2 = x3 − x, we get (after simpli�cation via Maxima):

(x− a)2((4a3 − 4a)x− (a4 + 2a2 + 1))
4a3 − a

= 0

and the solutions are rational, so the intersection is in fact a rational point since the equation
(1) for PQ has rational coe�cients.

The last case is when P �= Q and their third point of intersection is not P , Q, or P0. Again, we
can work in the complex planeC2 and consider the curve de�ned by the equation y2 = x3−x.
Then consider two points on this curve with rational coordinates P = (a,

√
a3 − a) and

Q = (b,
√
b3 − b). There are two choices for the sign of the square root, but the other three

cases are similar. Given these two points, with a �= b (since PQ does not intersect at P0),
we have the equation for the line PQ:

y −
�
a3 − a =

√
b3 − b−

√
a3 − a

b− a
(x− a). (2)

Solving for y and substituting this into y2 = x3−x, we get (after simpli�cation via Maxima):

(x− a)(x− b)((b− a)2x+ (2
√
a3 − a

√
b3 − b− ab2 − a2b+ b+ a))

(b− a)2
= 0

The three solutions for x are all rational, and the equation (2) for PQ has rational coe�cients,
we conclude that PQ intersects the curve de�ned by y2 = x3 − x in a rational point. Thus,
the points of X with coordinates in Q form a subgroup of the algebraic group structure on
X.

There are an obvious four rational points on X, which are (0, 1, 0), (1, 0, 1), (−1, 0, 1), and
(0, 0, 1), all of which have order 2 and form the group Z/2⊕ Z/2. We claim that these are
the only rational points on X. Let (x, y, z) be a rational point with z �= 0. Then we can
work in the a�ne plane and consider a rational point (x, y).

We �rst show that |x| is the square of a rational number. Write |x| = a/b. For a prime p,
let pn be the highest power of p dividing a and pm be the highest power of p dividing b, and
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de�ne vp(x) = n −m. We claim that vp(x) is even for all primes p, which will show that
x is a square. Choose a prime p and assume vp(x) �= 0. If vp(x) > 0, then vp(x

2 − 1) = 0,
which implies that vp(y

2) = 2vp(y) = vp(x) because y2 = x(x2 − 1). If vp(x) < 0, then
vp(x

2− 1) = 2vp(x), so 2vp(y) = 3vp(x). This gives the claim. Now write |x| = u2/v2. Since
y2 = x(x2 − 1), |x2 − 1| is a square. Then |v4(x2 − 1)| = |u4 − v4| is a square, and is in fact
an integer.

Lemma. The equation u4 − v4 = ±w2 has an integer solution only if at least one of u, v, w
is zero.

Proof. Suppose u, v, w are positive and satisfy this equation, with w minimal with respect
to these properties. By symmetry, we can assume the sign of w2 is positive. Then (v2, w, u2)
is a Pythagorean triple. If z is even, then we must have u and v odd by minimality. So
v2 = p2 − q2, w = 2pq, and u2 = p2 + q2 for some odd integers p and q by the classi�cation
of Pythagorean triples. But now p4 − q4 = (uv)2, which contradicts minimality.

So it must be that w is odd, in which case v2 = 2pq, w = p2− q2, and u2 = p2+ q2 for odd p
and q. Since 2pq is a square, we can write p = r2 and q = 2s2. We can also write p = α2−β2,
q = 2αβ, and u = α2+β2 because (p, q, u) is a Pythagorean triple. Since 2s2 = 2αβ, we can
write α = A2 and β = B2. Substituting these into p = α2 − β2 gives r2 = A4 − B4. Since
w = (p+ q)(p− q), p+ q < w implies r < w, which contradicts minimality.

We cannot have v = 0 since it is a denominator. If w = 0, then u = ±v, so x = ±1. Finally,
if u = 0, then x = 0. We conclude then that the four rational points mentioned above are
the only ones.

7. We let X be the nodal cubic curve y2z = x3+x2z in P2
k for some �eld k with char k �= 2, 3. The

proof that the Cartier divisors of X of degree 0, CaCl◦X, are in bijection with the nonsingular
closed points of X is similar to Example 6.11.4, so we omit it.

The nontrivial part is providing an isomorphism of algebraic groups Gm → X \ Z where Z is
the singular point (0, 0, 1). Let P0 = (0, 1, 0) be the identity of X \ Z. Imitating the proof

of Example 6.11.4, we might try t �→
�
t, 1,

t3

1− t2

�
. However, we know that (−1, 0, 1) is the

unique point on X whose tangent line passes through P0, so −1 must map to (−1, 0, 1). Also,
1 must map to P0, so this map does not work. We see that 0 �→ (0, 1, 0). Restricting to z = 1,

we get the curve t �→
�
−1 +

1

t2
,
1

t3
−
1

t2
, 1

�
. Thinking of this as a map P1

k → P2
k, we see that

∞ �→ (1, 0, 1) and 1 �→ (0, 0, 1).

To �x the map, we should use a linear fractional transformation S such that S(0) = 1, S(1) = 0,

S(−1) =∞. Such an S is given by t �→
1− t

1 + t
. If we compose our original map with S, then we

get

t �→
�
1− t

1 + t
, 1,

(1− t)3

4t(1 + t)

�
.

However, this isn’t de�ned at t = −1, so we �x this by clearing denominators to get

t �→ (4t(1− t), 4t(1 + t), (1− t)3).

Now this de�nes a morphism of varieties f : Gm → X \ Z, which is clearly an isomorphism.
Finally, we need to check that f is a morphism of algebraic groups. Given two points P =
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(4t(1 − t), 4t(1 + t), (1 − t)3) and Q = (4u(1 − u), 4u(1 + u), (1 − u)3), there are a few cases
to check. Since P0 is the identity in the group law, we can assume that t and u are di�erent
from 1. So in fact, we may assume that both P and Q live in A2

k, so treat them as points

P =

�
4t

(1− t)2
,
4t(1 + t)

(1− t)3

�
and Q =

�
4u

(1− u)2
,
4u(1 + u)

(1− u)3

�
.

If t = u = −1, then P = Q = (−1, 0, 1), and the tangent line at PQ passes through P0, so
P +Q = 0, which agrees with the fact that −1 has order 2 in Gm. If t = u �= −1, then assume
that P lies on the curve y =

√
x3 + x2 (By curve we mean the set of points (x, y) for which the

square root exists. Also, the case y = −
√
x3 + x2 is similar). The derivative of this function

is
3x2 + 2x

2
√
x3 + x2

. The computation of the third point on PQ is too messy to include, but it is

R =

�
4t2

(1− t2)2
,−
4t2(1 + t2)

(1− t2)3

�
, so P + P = −R, which means f(t2) = f(t) + f(t).

The last case is when t �= u. In this case, the equation for the line PQ is

y −
4t(1 + t)

(1− t)3
=

4t(1+t)
(1−t)3

− 4u(1+u)
(1−u)3

4t
(1−t)2

− 4u
(1−u)2

�
x−

4t

(1− t)2

�
. (3)

Substituting this into y2 = x3 + x2 and simplifying with Maxima, we get

((t− 1)2x− 4t)((u− 1)2x− 4u)((tu− 1)2x− 4tu) = 0

so the third point has x-coordinate
4tu

(1− tu)2
. Plugging this into (3), we get that P +Q = −R

where R =

�
4tu

(1− tu)2
,−
4tu(1 + tu)

(1− tu)3

�
. Therefore, f(ut) = f(u) + f(t), so we have the desired

isomorphism.

8. (a) If L is an invertible sheaf on Y , then we claim that f∗L is an invertible sheaf on X. The
question is local, so we can assume X = SpecA and Y = SpecB are a�ne, and that L ∼= �B.
Using Proposition 5.2(e) and Corollary 5.5, f∗L ∼= (A⊗B B)∼ ∼= �A, which gives the claim.
It is clear that if L ∼= M , then f∗L ∼= f∗M because functors preserve isomorphisms, so
f∗ : PicY → PicX is a well-de�ned function. To see that it is a group homomorphism, we
need to show that f∗(L ⊗OY M ) ∼= f∗L ⊗OX f∗M where L andM are invertible sheaves
on Y . This is illustrated in the following steps:

f∗L ⊗OX f∗M = (f−1L ⊗f−1OY OX)⊗OX (f
−1
M ⊗f−1OY OX)

∼= (f−1L ⊗f−1OY f−1M )⊗f−1OY OX
∼= f−1(L ⊗OY M )⊗f−1OY OX
= f∗(L ⊗OY M )

where the second isomorphism follows because f−1 is de�ned as a shea��cation of a colimit,
and thus commutes with ⊗ as presheaves because it is a left adjoint. Using the universal
property of shea��cation gives the desired result.

(b) Since f : X → Y is a �nite morphism of nonsingular curves, from Proposition 6.11 and
Proposition 6.15, we have the following diagram

ClY
αY //

f∗

��

CaClY
βY // PicY

f∗

��

ClX
αX // CaClX

βX // PicX
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where the horizontal arrows are isomorphisms. We claim that this diagram commutes.
Denote the function �elds of X and Y by K(X) and K(Y ).

We �rst de�ne a map f∗ : CaClY → CaClX induced by f∗ : PicY → PicX. For any Cartier
divisor D ∈ CaClY represented by {(Ui, ai)}, let f∗(D) be represented by {(f−1(Ui), bi)}
where bi is the image of ai in the inclusion of function �elds K(Y ) �→ K(X). It is clear that
L (f∗(D)) = f∗(L (D)) because we can de�ne canonical isomorphisms on f−1(Ui) and Ui
since f∗ is de�ned with a colimit over open sets containing f(f−1(Ui)) = Ui (which is open).
Also, this map is a homomorphism because it is equal to β−1X f∗βY .

Using the isomorphisms αY and αX , the homomorphism f∗ : CaClY → CaClX induces a
homomorphism ClY → ClX, which we claim is the same de�ned in the text. Pick a Cartier
divisor D ∈ CaClY . By extending linearly, we can assume that under the isomorphism αY ,
D corresponds to a closed point Q ∈ Y . Under the isomorphism αX , f

∗(D) is
�

vP (bi) · P
where for each closed point P , the bi corresponds to an index i for which P ∈ f−1(Ui).
However, if P /∈ f−1(Q), then vP (bi) = 0. This follows from the fact that ϕP : OY,ϕ(P ) →
OX,P is a local homomorphism and the fact that valuation 0 corresponds to not being in
the maximal ideal of a local ring. So this sum is exactly what is described in the text on
p.137, i.e., f∗(Q) =

�
P∈f−1(Q) vP (t) · P where t ∈ K(Y ) is such that vQ(t) = 1. Thus the

diagram above commutes, so the homomorphisms f∗ correspond under the isomorphisms.

(c) Now let X be a locally factorial integral closed subscheme of Y = Pnk and f : X �→ Y be the
inclusion. As above, we have the following diagram

ClY
ϕ

//

��

PicY

f∗
��

ClX
ψ

// PicX

where ϕ and ψ are the isomorphisms of Proposition 6.16. We claim that this diagram
commutes. First note that ClY is generated by a hyperplane H, which corresponds to
OY (1) under ϕ. By Corollary 5.16(a), X = Proj k[x0, . . . , xn]/I for some homogeneous ideal
I. Then by Proposition 5.12(c), f∗(OY (1)) = OX(1) as elements of PicX. Locally, OX(1)
is generated by the the xi, which are the images of the xi, on the open sets D+(xi). This
describes the Cartier divisor D identi�ed with OX(1). The Weil divisor identi�ed with D
is
�

vY (xi) · Y ∈ ClX where Y ranges over all prime divisors of X and Y ∩D+(xi) �= ∅.
This is precisely the image H.X described in (Ex. 6.2(a)). Since the diagram commutes for
H, which is a generator of ClY , it commutes for all of ClY .

10. For notation, we let F (X) be the free Abelian group generated by all coherent sheaves on X,
and we let H(X) be the kernel of the canonical projection F (X)→ K(X).

(a) Since X is a�ne, every coherent sheaf is isomorphic to �M for some �nitely generated k[x]-
module M . By Proposition 5.2(a), Corollary 5.5, and Proposition 5.6, the sequence

0 // M � // M // M �� // 0 (4)

is exact if and only if the sequence

0 // �M � // �M // �M �� // 0

is exact. So we can think of K(X) as the quotient of the free Abelian group generated
by all the �nitely generated k[x]-modules, by the subgroup generated by all expressions
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M −M � −M �� whenever an exact sequence as in (4) exists. So we claim that k[x] generates
K(X). By induction, the direct sum of n copies of k[x] is equivalent to n · k[x] in K(X) by
the exact sequence

0 // k[x]n−1 // k[x]n // k[x] // 0 .

For a general �nitely generated module M , there exists a �nite free resolution of length ≤ 1

0 // F1
// F0

// M // 0

where F0 and F1 are �nitely generated free k[x]-modules by the structure theorem of �nitely
generated modules over a PID. Namely, M ∼= k[x]r ⊕ k[x]/a1 ⊕ · · · ⊕ k[x]/as for some r and
proper principal ideals ai. So we can take F1 to be r + s copies of k[x], and then s copies
of k[x] for F0, where the map F0 → F1 is given by multiplication by generators of the ai.
ThusM is equivalent to some multiple of k[x], and we have a surjective map f : Z→ K(X).
Suppose that ker f �= 0, and let n > 0 be in ker f . If n > 1, then k[x]n = 0 in K(X). Since
k[x]n = k[x]n−1 + k[x] and k[x]n−1 = (n− 1) · k[x] by (4), then k[x] = −(n− 1) · k[x], which
implies that k[x] = 0. So either K(X) = 0 or K(X) ∼= Z. In part (b), we will show that
there is a surjective homomorphism K(X)→ Z, so in fact K(X) ∼= Z.

(b) Let X be an integral scheme with function �eld K and generic point ξ. If the sequence

0 //
F � // F //

F �� // 0

is exact, then dimKFξ = dimKF
�
ξ+dimKF

��
ξ because the stalk functor is exact. It follows

that for any expression a1F1+· · ·+anFn ∈ H(X), we have
�

ai = 0. Thus γ(F ) = 0 if and
only if dimKFξ = 0. So there is a well-de�ned map rank: K(X) → Z de�ned by γ(F ) �→
dimKFξ and extending linearly. This map is a homomorphism because for two coherent
sheaves F and G on X, γ(F )+γ(G ) = γ(F ⊕G ), and dimKF +dimK G = dimK(F ⊕G )ξ
(we can extend linearly to see that rank preserves addition of arbitrary linear combinations
of coherent sheaves). Finally, rank is surjective because n · OX �→ n for all n.

(c) Let i : Y → X be the given closed immersion, and let Z = X \ Y . Let α : K(Y ) → K(X)
be de�ned by γ(F ) �→ γ(i∗F ) where F is a coherent sheaf on Y , and extending linearly,
and let β : K(X) → K(Z) be de�ned by γ(F ) �→ γ(F |Z) where F is a coherent sheaf on
X, and extending linearly.

We �rst claim that α and β are well-de�ned homomorphisms. The map α de�nes a homo-
morphism F (Y )→ F (X) by (Ex. 5.5(b)) and (Ex. 5.5(c)). Composing with the projection
F (X) → K(X), we get a homomorphism F (Y ) → F (X). To see that α is a well-de�ned
homomorphism, it is enough to check that if γ(F ) = 0 where F is a coherent sheaf on Y ,
then γ(i∗F ) = 0. This follows because an exact sequence of coherent sheaves on Y remains
exact after applying the functor i∗. We can check this by passing to stalks and using (Ex.
1.2(c)). By (Ex. 1.19(a)), if P ∈ Y , then FP = (i∗F )P , and if P /∈ Y , then (i∗F )P = 0.

Similarly, to see that β is a well-de�ned homomorphism, it is enough to check that if F is
a coherent sheaf on X and γ(F ) = 0, then γ(F |Z) = 0. This follows from the fact that an
exact sequence of coherent sheaves on X remains exact after restricting to Z, which we can
check by passing to stalks.

Next we claim that kerβ = imageα and that β is surjective. By (Ex. 1.19(a)) and (Ex.
1.19(b)), the stalk of the coherent sheaf that β(α(γ(F ))) represents, where F is a coherent
sheaf on Y , at any point is 0. Extending linearly, we see that imageα ⊆ kerβ.



6 DIVISORS 24

Now suppose that F is a coherent sheaf on X and that β(γ(F )) = 0, i.e., that the support
of F is contained in Y . We wish to show that γ(F ) ∈ imageα. We can reduce to the a�ne
case, so that X = SpecA, F = �M , Y = V (I) for some ideal I ⊆ A, and IY = �I. We shall
show that InM = 0 for some n. Since M is �nitely generated, we can show that there is
some n so that In annihilates each of the generators, and then take the maximum of all such
n, so reduce to the case that M is cyclic, i.e., so that M = A/AnnM . From (Ex. 5.6(b)),
SuppF = V (AnnM). This implies that V (I) ⊇ V (AnnM), so

√
I ⊆

√
AnnM . Since A is

Noetherian, this implies that In ⊆ AnnM for some n, which gives the claim. So then we
have a �nite �ltration

F = F0 ⊇ F1 ⊇ F2 ⊇ · · · ⊇ Fn−1 ⊇ Fn = 0

where Fi = I
i
YF . Also,

I
i
YF/I i+1

Y F ∼= I iYF ⊗OX OX/IY = I
i
YF ⊗OX OY ,

so Fi/Fi+1 is an OY -module for all i. Now suppose that γ(Fi+1) ∈ imageα. First, the
Fi are subsheaves of F and hence coherent OX -modules. Since Fi/Fi+1 is an OY -module,
which is coherent, we have γ(Fi/Fi+1) ∈ imageα, so γ(Fi) = γ(Fi+1) + γ(Fi/Fi+1) ∈
imageα. By induction, we see that γ(F ) ∈ imageα.
A general element of K(X) is of the form

�
γ(Fi) −

�
γ(Gi). Taking F =

�
Fi and

G =
�
Gi, this element is equal to γ(F ) − γ(G ). For notation, let U = X \ Y . If γ(F ) −

γ(G ) ∈ kerβ, then γ(F |U )− γ(G |U ) = 0 in K(U). We �rst prove the following lemma:

Lemma. If F is a coherent sheaf on U and F � and F �� are two coherent sheaves on X
which are extensions of F , then γ(F �)− γ(F ��) ∈ K(Y ).

Proof. Let j : U �→ X be the open immersion. Consider the exact sequence

0 // H 0
Y (F

�) //
F � // j∗j

∗(F �) // H 1
Y (F

�) // 0 ,

where we are taking H 1
Y (F

�) to be the cokernel of the previous map. By the exactness of
j∗, we get the exact sequence

0 // H 0
Y (F

�)|U // F // F // H 1
Y (F

�)|U // 0

where the map F → F is the identity since j∗ and j
∗ form an adjoint pair. This means that

Supp(H 0
Y (F

�)) and Supp(H 1
Y (F

�)) are contained in Y , so (F �/H 0
Y (F

�))|U ∼= F , which
means that F �/H 0

Y (F
�) is coherent and H 0

Y (F
�/H 0

Y (F
�)) = 0.

Replacing F � with F �/H 0
Y (F

�), we can assume H 0
Y (F

�) = 0, and get an exact sequence

0 //
F � // j∗F // H 1

Y (F
�) // 0 .

Now let F � +F �� be the image of F � ⊕F �� → j∗F , which is coherent. Replacing j∗(F ) by
F � +F ��, we get a short exact sequence

0 //
F � // F � +F �� // (F � +F ��)/F � // 0 (5)

Then (F � + F ��)/F � ⊆ H 1
Y (F

�) and Supp(F � + F ��)/F � ⊆ Y implies that γ((F � +
F ��)/F �) ∈ K(Y ), and similarly we get γ((F � +F ��)/F ��) ∈ K(Y ). By the exact sequence
(5), we have

γ(F �) + γ((F � +F ��)/F �) = γ(F � +F ��)
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and
γ(F ��) + γ((F � +F ��)/F ��) = γ(F � +F ��),

so γ(F �)− γ(F ��) ∈ K(Y ).

Returning to the proof, we write

F |U +
n�
i=1

(−S�i − S��i + Si) = G |U +
n�
i=1

(−R�i −R��i +Ri)

as formal symbols where we have short exact sequences of coherent sheaves on U

0 // S�i
// Si // S��i

// 0

and

0 // R�i
// Ri // R��i

// 0 .

Without loss of generality, we can assume that F |U = R1 and G |U = S1, and can take
extensions to coherent sheaves on X to get exact sequences

0 // R̄�i
// F // R̄��i

// 0

and

0 // S̄�i
// G // S̄��i

// 0 .

Then we can write
F − S̄�1 − S̄��1 + S̄1 = G − R̄�1 − R̄��1 + R̄1

as sheaves on X. The sheaves R̄�1 and S̄�1 restrict to the same sheaf on U , and so do R̄��1 and
S̄��1 , so we can write

γ(F )− γ(G ) = γ(R̄�1)− γ(S̄�1) + γ(R̄��1)− γ(S̄��1 ).

By the lemma above, this implies that γ(F )−γ(G ) ∈ K(Y ). So kerβ = imageα as claimed.

The surjectivity of β follows from (Ex. 5.15) because Z is an open subset of X. Therefore,
the sequence

K(Y )
α // K(X)

β
// K(X \ Y ) // 0

is exact.

11. (d) Since nγ(OX) = γ(OnX), and the rank of O
n
X is n, rank ◦f is the identity on Z. This implies

that f : Z→ K(X) de�ned by 1 �→ γ(OX) is an injection. Now identify PicX = ClX. We
claim that ψ : PicX → K(X) is an injection. Indeed, by (b), det ◦ψ is the identity on PicX
because any divisor D is identi�ed with L (D) under the identi�cation PicX = ClX.

Now we show that image f ∩ imageψ = 0. Since any divisor D is linearly equivalent to an
e�ective divisor, imageψ consists of elements of the form γ(OD) where D is an e�ective
divisor. Since OD is the structure sheaf of a subscheme of X of codimension one, we cannot
have γ(OD) = γ(OX), which gives the claim. Finally, we show that their images generate
K(X). By (c), for any coherent sheaf F of rank r, we have γ(F ) − rγ(OX) ∈ imageψ.
By de�nition, rγ(Ox) ∈ image f , so we see that γ(F ) is generated by image f and imageψ.
The elements γ(F ) are generators for K(X), so we have the claim.

From the above comments, we can identify PicX and Z as subgroups of K(X) such that
PicX + Z = K(X) and PicX ∩ Z = 0, so we conclude that K(X) ∼= PicX ⊕ Z.
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12. Consider K(X) → PicX → Z where the �rst map is projection via the isomorphism K(X) ∼=
PicX⊕Z, and for the second map, we write an invertible sheaf as a Weil divisor

�
niPi and map

it to
�

ni. Let deg be the composition K(X)→ Z where degF = deg γ(F ). It is immediately
clear from the de�nition of K(X) that condition (3) is satis�ed. From the de�nition of degree
of a divisor, it is also clear that condition (1) is satis�ed.

If F is a torsion sheaf, then γ(F ) = γ(OD) for some e�ective divisor D =
�

niPi. The stalk of
OD at Pi is kni , whose length as a k-module is ni. We claim that this is also the length of kni as
an OPi-module. Since k is algebraically closed, we have an embedding k �→ OPi and the residue
�eld of OPi is k. So a �ltration of k

ni as an OPi-module can be extended to a k-�ltration. On
the other hand, a maximal k-�ltration of kni has simple quotients, and we claim that such a
�ltration remains simple over OPi . To see this, let M ∼= �a� be a simple nonzero module. Then
it is isomorphic to OPi/Ann a. Since OPi is local, Ann a ⊆ mP , which means that mP /Ann a
must be 0 since it is a submodule of M . Hence, M ∼= mP /Ann a ∼= k, which gives the claim.
Thus, deg(F ) =

�
ni =

�
P∈X length(FP ), so this function also satis�es condition (2).

Finally, the degree function must be unique. To see why, we can check by induction on the rank
of a sheaf. If a sheaf has rank 0, then it is a torsion sheaf, and condition (2) forces uniqueness of
degree. For invertible sheaves of rank 1, condition (1) forces uniqueness. For all other sheaves,
we can �nd an exact sequence as in (Ex. 6.11(c)) and then condition (3) forces uniqueness by
induction.

7 Projective Morphisms

1. Let P ∈ X be a point. The map on stalks fP : LP →MP is surjective. By assumption, L and
M are invertible sheaves, so LP and MP are isomorphic to OX,P as OX,P -modules. Then fP
is given by multiplication by an element x ∈ OX,P . If x belongs to the maximal ideal of OX,P ,
then the image of fP is the maximal ideal and hence cannot be surjective. Hence x is a unit, so
fP is an isomorphism. We conclude that f is an isomorphism.

4. (a) Suppose there is an invertible sheaf L on X such that L is ample. Then by Theorem 7.6,
Lm is very ample over SpecA for some m > 0. In particular, this means that there is an
immersion i : X → PrA that factors through the map X → A such that i∗(O(1)) ∼= Lm. By
de�nition, i factors as X → Y → PrA where Y is a closed subscheme of PrA and X → Y is
an open immersion. This means that the morphism X → SpecA is quasi-projective, so by
Theorem 4.9, X is separated over A.

(b) Let U1 and U2 be the two copies of the a�ne line glued together to form X, and choose
L ∈ PicX. Then L restricted to each Ui is also an invertible sheaf, and hence must be
trivial by Proposition 6.2. So every invertible sheaf on X is the result of taking the structure
sheaf on U1 and U2 and gluing on their intersection. We know that U1∩U2

∼= Spec k[x, x−1],
so again by Proposition 6.2 the restriction of L to U1 ∩ U2 is trivial. Thus, we are asking
about automorphisms of the structure sheaf of Spec k[x, x−1]. By Corollary 5.5, these are
equivalent to the k[x, x−1]-module automorphisms of k[x, x−1], namely the automorphisms
of the free module on one generator. These are all given by multiplication by a unit, and
the units of k[x, x−1] are of the form axn where a ∈ k∗ and x ∈ Z. It is immediate that
two sheaves obtained by the automorphisms axn and bxm are not isomorphic if n �= m. If
n = m, however, the sheaves di�er by multiplication of a unit in k[x], so there are natural
isomorphisms on open sections of the sheaves. Thus, PicX ∼= Z. To �x notation, let Ln be
the invertible sheaf given by the automorphism that is multiplication by xn.
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We claim that Ln is not generated by global sections if n �= 0. In U1 and U2, we have
two di�erent points corresponding to the prime ideal (x). The restriction of Ln to one of
U1 and U2 is identi�ed with OSpec k[x] identically, say U1, and the other is twisted by this
automorphism. In fact, considering L−n switches the roles of U1 and U2, so we can assume
that n > 0. The global section of X is k[x], and taking a set of generators for it will generate
U1 at the stalk of (x). However, for any set of global sections of k[x] that we take, their
images in the stalk of the prime ideal corresponding to (x) in U2 will be multiplied by xn,
and thus cannot generate, because for example, we don’t get x, and the stalk is the ring
k[x](x). So we have the claim.

Now let F = L1 be a generator of PicX, and let L be an invertible sheaf. Then F is
coherent, but F ⊗L ⊗n is not generated by its global sections from the discussion above.
Thus, X admits no ample invertible sheaves.

8. Exercise. Let X be a Noetherian scheme, let E be a coherent locally free sheaf on X, and let
π : P(E ) → X be the corresponding projective space bundle. Show that there is a natural 1-1
correspondence between sections of π and quotient invertible sheaves E → L → 0 of E .

Solution. Let f : Y → X be the identity map with Y = X. Then to give a section of π, it is
equivalent to give a morphism Y → P(E ) over X, which is equivalent to an invertible sheaf L
on Y together with a surjection f∗E → L (Proposition 7.12). Since f is the identity, this is
exactly a quotient invertible sheaf E → L → 0.

8 Di�erentials

3. (a) From the following �ber diagram

X ×S Y
p2 //

p1

��

Y

��

X // S

and Proposition 8.10, we have ΩX×SY/Y
∼= p∗1ΩX/S . By Proposition 8.11, there is an exact

sequence of sheaves on X ×S Y

p∗2ΩY/S // ΩX×SY/S // ΩX×SY/Y // 0 .

We claim that the �rst map is injective and that this sequence splits naturally, which will
give the desired isomorphism

ΩX×SY/S
∼= ΩX×SY/Y ⊕ p∗2ΩY/S

∼= p∗1ΩX/S ⊕ p∗2ΩY/S .

To see this, it is enough to construct natural splittings locally, so choose SpecA ⊆ X,
SpecB ⊆ Y , and SpecC ⊆ S. Then we have ring homomorphisms C → B and B → A⊗CB,
so by Proposition 8.3A, there is an exact sequence of C-modules

ΩB/C ⊗B (A⊗C B) // ΩA⊗CB/C // ΩA⊗CB/B // 0 .

The �rst map has a left inverse if and only if any derivation d of B over C into any (A⊗CB)-
module T can be extended to a derivation A⊗C B → T by the universal property of Ω. But
this is clear because we can de�ne A⊗C B → T by a⊗ b �→ d(b) and extend linearly. Thus
the exact sequence splits naturally, so we are done.
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(b) From (a), we have the isomorphism

ΩX×kY/k
∼= p∗1ΩX/k ⊕ p∗2ΩY/k.

By (Ex. 5.16(d)) and (Ex. 5.16(e)), we have an isomorphism

n�
ΩX×kY/k

∼=
n��

p∗1ΩX/k ⊗
n���

p∗2ΩY/k
∼= p∗1

n��
ΩX/k ⊗ p∗2

n���
ΩY/k

of their highest exterior powers. The canonical sheaf is de�ned to be the highest exterior
power of the sheaf of di�erentials, so this translates to the desired isomorphism

ωX×kY
∼= p∗1ωX ⊗ p∗2ωY .

(c) By Example 8.20.3, ωY ∼= OY (d − n − 1) where d = 3 is the degree of Y and n = 2 is
the dimension of the ambient space. This means that ωY ∼= OY is trivial. Let p1 and p2
be the projections X = Y × Y → Y . By (Ex. 6.8(a)), p∗1 and p∗2 are homomorphisms
PicY → PicX, so p∗1ωY and p∗2ωY are also trivial, which means that ωX is trivial by (b).
This means that pg(X) = dimk Γ(X,ωX) = 1.

Since Y is a plane cubic curve, it has degree 3 by Proposition I.7.6(d). Using (I, Ex.
7.2(b)), we see that pa(Y ) =

1
2(3 − 1)(3 − 2) = 1. Now by (I, Ex. 7.2(e)), pa(Y × Y ) =

pa(Y )
2 + 2(−1)rpa(Y ) where r is the dimension of Y . Since Y is a curve, and hence has

dimension 1, and thus pa(Y × Y ) = −1.

8. Let X and X � be two birationally equivalent nonsingular projective varieties, and consider the
rational map X → X �. Let V ⊆ X be the largest open set for which there is a morphism
f : V → X � representing this rational map. Proposition 8.11 gives a map f∗ΩX �/k → ΩV/k.
Since they are both locally free sheaves of the same rank, there is an induced map on their
highest exterior powers f∗ωX � → ωV , and also for any arbitrary exterior power f

∗ΩqX�/k → ΩqV/k
by (Ex. 5.16(e)). Using that f∗ commutes with ⊗ gives a map f∗ω⊗nX� → ω⊗nV . Then we have
induced maps on global sections

f∗ : Γ(X �, ω⊗nX� )→ Γ(V, ω⊗nV )

and
f∗ : Γ(X �,ΩqX �/k)→ Γ(V,ΩqV/k).

By Corollary I.4.5, there is an open set U ⊆ V such that f(U) is open in X � and f induces an
isomorphism from U to f(U). A nonzero global section of a locally free sheafF cannot vanish on
a dense open set. To see this, let U be a dense open set and suppose a global section s vanishes on
it. Then for any open a�ne V on whichF is free, we can take a distinguished open of V in U∩V ,
call it W . But the map on modules Γ(V,F ) → Γ(W,F ) is injective because X is an integral
scheme and this map is just localization, so s = 0 to start with. So the �rst maps of vector
spaces above are injective. The proof that the natural restriction map Γ(X,ω⊗nX )→ Γ(V, ω⊗nV ) is
a bijection is similar to the one presented in the proof of Theorem 8.19 with n = 1, as is the proof
that Γ(X,Ωq

X/k
)→ Γ(V,Ωq

V/k
) is a bijection. Thus, Pn(X

�) ≤ Pn(X) and h
q,0(X �) ≤ hq,0(X). By

symmetry, we get the other inequalities, which means Pn(X) = Pn(X
�) and hq,0(X �) = hq,0(X).
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2 Cohomology of Sheaves

3. (a) We �rst check that ΓY (X,−) is a functor. Let ϕ : F → G be a morphism of sheaves on
X. Pick s ∈ ΓY (X,F ) and P ∈ Supp(ϕ(s)). Then ϕ(s)P �= 0 implies that sP �= 0, so
Supp(ϕ(s)) ⊆ Supp(s) ⊆ Y , which means that we have a map ΓY (X,F ) → ΓY (X,G ). It
is immediate that ΓY (X,−) is left exact because Γ(X,−) is.

(b) Let U = X \ Y . Pick s ∈ ΓY (X,F ��). By (Ex. II.1.16(b)), there is �s ∈ Γ(X,F ) that
maps to s. We know that s|U = 0, so �s|U ∈ Γ(U,F �). Since F � is �asque, there exists
t ∈ Γ(X,F �) such that t|U = �s|U . Then (�s−t)|U = 0, so �s−t ∈ ΓY (U,F ), and this element
maps to s because t ∈ Γ(X,F �).

(c) Let F be �asque and embed it in an injective sheaf I . Then I is �asque by Lemma
2.4, and G = F/I is �asque by (Ex. II.1.16(c)). Since I is injective and H i

Y (X,−)
is a derived functor, Hi

Y (X,I ) = 0 for i > 0. Hence H1(X,F ) is the cokernel of
ΓY (X,I ) → ΓY (X,G ), which is 0 by (b). The long exact sequence on cohomology then
gives Hi(X,F ) ∼= H i−1(X,G ) for all i ≥ 2, so by induction and the fact that G is �asque,
we conclude that Hi(X,F ) = 0 for all i > 0.

∗by Robin Hartshorne

1
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(d) Denote U = X \ Y . Let ϕ and ψ denote the maps ΓY (X,F )→ Γ(X,F ) and Γ(X,F )→
Γ(U,F ), respectively, where ϕ is an inclusion and ψ is the restriction map. Since F
is �asque, we get that ψ is surjective. Pick s ∈ ΓY (X,F ). Then Supp(ψ(s)) ⊆ Y ,
which means that for any P ∈ U , there is a neighborhood V ⊆ U containing P such that
ψ(s)|V = 0. This implies by the sheaf property that ψ(s) = 0. Hence ψϕ = 0. On the
other hand, suppose s ∈ kerψ. Then ψ(s)P = 0 for all P ∈ U , which means that sP = 0
for all P ∈ U , and hence s ∈ ΓY (X,F ).

(e) Let I • be a �asque resolution for F . Then I •|U is a �asque resolution for F |U . That it
is a resolution can be checked at the stalk level, and this is clear because (F |U )P = FP

for all P ∈ U , and (F |U )P = 0 for P /∈ U (for a general sheaf F ). Then by (d),

0 // ΓY (X,I •) // Γ(X,I •) // Γ(U,I •|U ) // 0

is a short exact sequence of cochain complexes; the fact that the maps are given by inclu-
sion and restriction give that the appropriate squares commute. The long exact sequence
induced on cohomology is the desired long exact sequence of cohomology groups.

(f) The restriction map of F induces a map ΓY (X,F ) → ΓY (V,F |V ) which is a natural
isomorphism of functors. To see this, if s ∈ ΓY (X,F ), then its image in Γ(V,F |V ) will
have support in Y ∩ V = Y . Conversely, if t ∈ ΓY (V,F |V ), we know that t|W = 0 where
W = V ∩ (X \ Y ). Hence we can lift t to an element t� ∈ Γ(X,F ) such that t�|V = t and
t|X\Y = 0. The functor on the left is a universal δ-functor. The functor on the right is also
a δ-functor by virtue of being a derived functor. Furthermore, the functor on the right is
e�aceable. Given a sheaf F on X, we can embed F into a �asque sheaf, and the restriction
of a �asque sheaf to an open set remains �asque, which means its cohomology vanishes on
V .

4. Let I • be a �asque resolution for F . Then we de�ne

0 // ΓY1∩Y2(X,I •)
ϕ

// ΓY1(X,I •)⊕ ΓY2(X,I •)
ψ

// ΓY1∪Y2(X,I •) // 0

where ϕ is the inclusion s �→ (s,−s) and ψ is the map (s, t) �→ s+ t. It is immediate that ϕ is
injective and that we have exactness in the middle.

For surjectivity, pick α ∈ ΓY1∪Y2(X,I r). The sections α|X\Y2 ∈ Γ(X \ Y2,I r) and 0 ∈ Γ(X \
Y1,I r) agree on overlaps, so lift to a section α� ∈ Γ(X \ (Y1 ∩ Y2),I r). Since I r is �asque,
we can lift this to an element α�� ∈ Γ(X,I r). Now the stalk of α�� outside of Y1 is 0, so
α�� ∈ ΓY1(X,I r), and the stalk of α�� and α agree outside of Y2, so α− α�� ∈ ΓY2(X,I r), so we
see that ψ is surjective.

It is not hard to see that ϕ and ψ de�ne maps of cochain complexes, and hence the long exact
sequence on cohomology gives the desired Mayer–Vietoris sequence.

3 Cohomology of a Noetherian A�ne Scheme

1. If X is a�ne, say X = SpecA, then Xred = SpecAred where Ared is A modulo its nilpotent
elements. Suppose conversely that Xred is a�ne. Let N be the sheaf of nilpotent elements on
X. Pick any coherent sheaf F on X. If we can show that H1(X,F ) = 0, then X is a�ne by
Theorem 3.7. Note that we have a �ltration

F ⊇ N ·F ⊇ N 2 ·F ⊇ · · · ,
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and that for some r, N r ·F = 0 because F is coherent. More precisely, we can look at a �nite
open covering and pick a high enough r such that each �nite generating set of F on each open
set is annihilated by N r. Also note that

N i ·F/N i+1 ·F ∼= (F/N i+1 ·F )/(F/N i ·F ),

and that F/N i · F ∼= F ⊗OX
Oi
Xred

, so each quotient in the �ltration is a quasi-coherent
sheaf on Xred. In particular, their �rst cohomology vanishes on Xred. But X and Xred are
homeomorphic, and sheaf cohomology depends only on the topology of the scheme, so in fact
these quotients have vanishing �rst cohomology group on X as well. Now working by induction,
we can show that H1(X,F ) = 0 by knowing that N r ·F = 0 for su�ciently large r.

2. Every irreducible component of X is a scheme via the reduced closed subscheme structure. If
X = SpecA is a�ne, each closed subscheme looks like SpecA/I for some ideal I ⊂ A, so each
irreducible component is a�ne.

Conversely, suppose each irreducible component is a�ne. By putting the reduced structure on
each irreducible component and using induction, it is enough to prove that if X = Y ∪Z where
Y and Z are reduced closed subschemes such that Y and Z are a�ne, then X is a�ne. Let I
andJ be the sheaves of ideals of Y and Z, respectively, and let F be a coherent sheaf of ideals
on X. Since I ∩J is the sheaf of ideals associated to a closed subscheme whose topological
space is X, and X is assumed to be reduced, I ∩J = 0 and hence I ·J = 0. Then F ·I is
annihilated by J so is a coherent sheaf on Z, which means that H1(Z,F ·I ) = 0. Similarly,
F/F ·I is annihilated by I , so is a coherent sheaf on Y and H1(Y,F/F ·I ) = 0. The short
exact sequence

0 // F ·I // F // F/F ·I // 0

gives

H1(X,F ·I ) // H1(X,F ) // H1(X,F/F ·I ) .

We can compute sheaf cohomology of F ·I in Z and similarly, we can compute sheaf cohomol-
ogy of F/F · I in Y , so the vanishing of the two cohomology groups on the outside implies
H1(X,F ) = 0, which gives that X is a�ne.

3. (a) Let f : M → N be a map of A-modules. To see that Γa(−) is a functor, it is enough to
show that f(Γa(M)) ⊆ Γa(N). But this is obvious: if there is an n > 0 such that am = 0
for all a ∈ an and m ∈M , then af(m) = f(am) = 0, so f(m) ∈ Γa(N). The left exactness
is also obvious.

(b) We �rst �nd an isomorphism for i = 0. In this case, H0
a(M) = Γa(M) and H0

Y (X,�M) =

ΓY (X,�M). Since these can both be thought of as submodules of M , we just need to check
that they contain the same elements. Given m ∈ Γa(M), it is killed by some power of
a. If a prime ideal p does not contain a, then it does not contain any power of a, so
in the localization Mp, m is killed. Hence p ∈ V (a) implies p /∈ Suppm, which means

m ∈ ΓY (X,�M).

Conversely, if m ∈ ΓY (X,�M), then m is in the kernel of the localization map M → Mp

for all primes p which do not contain a. Let x1, . . . , xn be generators for the ideal a. Then
{D(xi)} is an open cover of X \ Y . The image of m in each D(xi) is 0 because of the sheaf

property of �M , which means that m is annihilated by xNi for N su�ciently large and all i.
Hence m ∈ Γa(M).
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SinceH i
a(−) is a universal δ-functor on the category of A-modules, to show the isomorphism,

it is enough to show that H i
Y (X, �−) is an e�aceable functor for all i. To do this, let N be

any A-module and embed it into an injective A-module I. Then �I is �asque (Proposition
3.4), and hence Hi

Y (X, �I) = 0 for all i (Ex. 2.3(c)).
(c) Let M → I• be an injective resolution of M . Then

H i
a(M) = (image(Γa(I

i−1)→ Γa(I
i)))/(ker(Γa(I

i)→ Γa(I
i+1))),

and being a quotient of modules consisting of elements which are annihilated by some power
of a, it itself also has that property.

4. (a) If depthaM ≥ 1, then there exists an element f ∈ a such that the map M → M given by
multiplication by f is injective. Hence we cannot have anm = 0 for any nonzero m ∈ M ,
so depthaM ≥ 1 implies that Γa(M) = 0.

Now assume that M is �nitely generated and that Γa(M) = 0. Then a is not contained in
any associated prime ofM . Indeed, if p ⊇ a is an associated prime, then p annihilates some
nonzero element m ∈ M , and hence so does a. If depthaM = 0, then every element of a
annihilates some nonzero element ofM . Hence a is contained in the union of the associated
primes of M , and so must be contained in at least one of them by prime avoidance. We
conclude from this that if M is �nitely generated and Γa(M) = 0, then depthaM ≥ 1.

(b) Let Tn be the statement that depthaM ≥ n if and only if H i
a(M) = 0 for all i < n. We

prove by induction on n that Tn is true for all n. The case n = 0 is (a), so suppose it
true for n and choose M with depthaM ≥ n + 1. Let x1, . . . , xn+1 ∈ a be an M -regular
sequence; we get a short exact sequence

0 // M
·x1

// M // M/x1M // 0

which gives rise to a long exact sequence on cohomology

· · · // Hn−1
a (M/x1M) // Hn

a (M) // Hn
a (M) // · · · .

The �rst term vanishes since depthaM/x1M ≥ n. Also, the map Hn
a (M) → Hn

a (M) is
multiplication by x1, which is not injective (Ex. 3.3(c)) if H

n
a (M) �= 0, so we conclude that

Hn
a (M) = 0. So depthaM ≥ n+ 1 implies that H i

a(M) = 0 for all i < n+ 1.

Conversely, suppose that Hi
a(M) = 0 for all i < n + 1. Then the long exact sequence on

cohomology gives thatHi
a(M/x1M) = 0 for all i < n. By induction, depthaM/x1M ≥ n−1,

so depthaM ≥ n. Hence Tn+1 is also true.

5. First suppose that depthOP ≥ 2. By (Ex. 2.3(e)) and (Ex. 2.3(f)), there is a long exact
sequence

H0
P (U,O|U )

// Γ(U,O|U ) // Γ(U \ P,O|U ) // H1
P (U,O|U ).

By (Ex. 2.5), we have natural isomorphisms

Hi
P (U,O|U ) = H i

P (UP , j
∗O|U )

where UP is the local space of P in U and j : UP → U is the inclusion. But j∗O|U is a quasi-

coherent sheaf which locally on a neighborhood of Q ∈ UP looks like�OQ. Replacing UP with
an a�ne neighborhood X of P relative to UP , we get

Hi
P (UP , j

∗O|U ) = H i
P (X, �OP )
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(Ex. 2.3(f)). Now (Ex. 3.4(b)) shows that

H0
P (U,O|U ) = H1

P (U,O|U ) = 0,

which implies that the restriction map Γ(U,O|U )→ Γ(U \ P,O|U ) is an isomorphism.

Conversely, pick U to be an open a�ne neighborhood of P . Then the long exact sequence
becomes

0 // H0
P (U,O|U )

// Γ(U,O|U ) // Γ(U \ P,O|U ) // H1
P (U,O|U )

// 0

because higher cohomology vanishes for a�ne schemes. So if Γ(U,O|U ) → Γ(U \ P,O|U ) is an
isomorphism, then we know that

H0
P (U,O|U ) = H1

P (U,O|U ) = 0.

Using the above, we see that this is equivalent to depthOP ≥ 2.

6. (a) We appeal to the general fact that a functor that has an exact left adjoint preserves injective
objects. Since the ∼ and Γ(SpecAi,−) functors are an equivalence of categories between
the category of Ai-modules and Qco(SpecAi), we get that �Ii is an injective object in
Qco(SpecAi). For an open immersion f : Ui → X, the functor f∗ is right adjoint to the
exact functor f−1, so also preserves injectives, which means f∗(�Ii) is injective in Qco(X).
Finally, �nite direct sums are the same as �nite products, which is the categorical product,
and a product of injectives is injective, so we conclude that G is an injective object in
Qco(X).

(b) Let I be an injective object of Qco(X). We can embed I in a sheaf G as in (a). Since
I is injective, this inclusion splits, so I is a direct summand of G . We know that G is
�asque (Corollary 3.6), and a direct summand of a �asque sheaf is �asque, so I is �asque.

(c) We have just shown that the forgetful functor from Qco(X) to Mod(X) is e�aceable. It
is obvious that the global sections functor is una�ected by an application of the forgetful
functor, so we conclude that sheaf cohomology of quasi-coherent sheaves can be computed
within Qco(X).

4 Čech Cohomology

1. Let U be an open a�ne cover of Y . Since f∗F is quasi-coherent (Proposition II.5.8(c)), we have
an isomorphism

Ȟp(U, f∗F ) ∼= Hp(Y, f∗F )

for all p ≥ 0 (Theorem 4.5). By de�nition, the Čech cohomology groups are the homology of
the cochain complex with groups

Cp(U, f∗F ) =
�

i0<···<ip

F (f−1(Ui0,...,ip)),

which is equal to Cp(f−1(U),F ) where f−1(U) is the inverse images of all open a�nes in U. So
we have isomorphisms

Ȟp(U, f∗F ) ∼= Ȟp(f−1(U),F )

for all p ≥ 0, and using Theorem 4.5 on f−1(U) and F , we conclude that

Hi(X,F ) ∼= H i(Y, f∗F )

for all i ≥ 0.
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2. (a) The function �eld K(X) is a �nite �eld extension of K(Y ) (cf. (Ex. II.3.7)). Let r =
dimK(Y )K(X), and choose a basis {x1, . . . , xr} of K(X) as a K(Y )-vector space. Now let
M be the OX -submodule of K(X) (as a constant sheaf) generated by {x1, . . . , xr}, i.e.,

on each open a�ne SpecA of X, M |SpecA = �MA where MA is the submodule of K(X)
generated over A with generators {x1, . . . , xr}. ThenM is coherent. SinceM is generated
by the global sections {x1, . . . , xr}, so is f∗M , so we get a morphism α : Or

Y → f∗M . Since
f is surjective, the generic point of X maps to the generic point of Y . At the generic point
of Y , Or

Y is an r-dimensional vector space over K(Y ), as is f∗M . From our description,
the map at the stalk of the generic point is surjective, and hence an isomorphism.

(b) Let α : Or
Y → f∗M be the morphism from (a). Apply the functorH om(−,F ) to this map

to get β : H om(f∗M ,F ) → F r. The sheaf H om(f∗M ,F ) is a coherent f∗OX -module
and f is an a�ne morphism, so H om(f∗M ,F ) ∼= f∗G for some coherent sheaf G on X
(Ex. II.5.17(e)) (though the statement is for quasi-coherent sheaves, we can insert “�nitely
generated” within the proof to get the desired result).

(c) Let f : X → Y be a �nite surjective morphism of Noetherian separated schemes with X
a�ne. There is an induced morphism fred : Xred → Yred (Ex. II.2.3), and Xred is a�ne
(Ex. 3.1). If we can show that Yred is a�ne, then Y is also a�ne (Ex. 3.1). By the fact
the construction of fred, it is surjective. It is not hard to see that if A is a �nite B-module,
then Ared is a �nite Bred-module, so fred is also a �nite morphism. Finally, the reduced
structure preserves the Noetherian and separated properties (Ex. II.4.8), so we may reduce
to the case that both X and Y are reduced.

Now let X � be an irreducible component of X. Then f(X �) is closed in Y (Ex. II.3.5(b)).
Since f is surjective, f(X �) is also irreducible, and every irreducible component of Y is of the
form f(X �) for some irreducible component X � of X. Hence, we get a map f : X � → f(X �)
which is also �nite, surjective, and between Noetherian separated schemes. So we may
reduce to the case that X and Y are also irreducible (Ex. 3.2). Combined with the above,
we may assume that both X and Y are integral schemes.

Now let I be a coherent sheaf of ideals on Y . By (b), there exists G ∈ Coh(X) and a
morphism β : f∗G → I r for some r > 0 such that β is an isomorphism at the generic point
of Y . Then Hi(Y, f∗G ) = 0 for all i > 0 by (Ex. 4.1) and (Theorem 3.7). We have short
exact sequences

0 // kerβ // f∗G // f∗G / kerβ // 0

and

0 // f∗G / kerβ // I r // cokerβ // 0 .

Note that f∗G ∈ Coh(Y ) (Ex. II.5.5(c)), so kerβ and cokerβ are coherent sheaves on Y
(Proposition II.5.7). Since β is an isomorphism at the generic point, both kerβ and cokerβ
vanish at the generic point, so there exists some nonempty open set containing the generic
point for which kerβ and cokerβ are not supported, let Z be the complement of this open
set. Then we can compute sheaf cohomology of kerβ and cokerβ as sheaves on Z and get the
same result (Ex. 2.3(e)), so by Noetherian induction, H i(X, kerβ) = H i(X, cokerβ) = 0
for all i > 0. Since H1(Y, f∗G ) = H1(X,G ) = 0 (Ex. 4.1) and (Theorem 3.7), the long
exact sequence on cohomology gives H1(Y, f∗G / kerβ) = 0, and hence H1(Y,I r) = 0.
Finally, direct sum commutes with cohomology (Proposition 2.9), so H1(Y,I )r = 0, which
implies that H1(Y,I ) = 0. Therefore, Y is a�ne (Theorem 3.7).
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3. Choose the open covering U given by U = D(x) ∪D(y). Then

Γ(D(x),O) ∼= k[x±, y],

Γ(D(y),O) ∼= k[x, y±],

Γ(D(x) ∩D(y),O) ∼= k[x±, y±].

and the restriction maps are the natural inclusions. Hence the image of C0(U, U) in C1(U, U) is
generated as a k-vector space by monomials xiyj where at least one of i and j is nonnegative.
Since H1(U,OU ) ∼= H1(U, U) (Theorem 4.5), we conclude that it is isomorphic to the k-vector
space spanned by {xiyj | i, j < 0}.

6. To check exactness, it is enough to check at the stalks, so pick x ∈ X. Then we get

0 // Ix
ϕ

// O∗
X,x

ψ
// O∗

X0,x
// 0

and ϕ is given by a �→ 1+a, which is a homomorphism because I 2 = 0, and is clearly injective.
This is also well-de�ned because the multiplicative inverse of 1 + a is 1 − a. Now we check
exactness in the middle. The image of ϕ is contained in the kernel of ψ because ψ(1 + a) = 1.
Conversely, if ψ(b) = 1 for b ∈ O∗

X,x, then we can write b = 1 + (1− b) where 1− b ∈ Ix.

Finally, we need to check surjectivity of ψ. Pick b ∈ O∗
X0,x

with inverse c. Then we can �nd lifts

�b and �c in OX , and bc �→ 1 under the projection OX,x → OX0,x. So 1−
�b�c = a for some a ∈ Ix.

Hence we have �b�c(a− 1) = (1 + a)(1− a) = 1, which means �b ∈ O∗
X .

The exact sequence of Abelian groups

· · · // H1(X,I ) // PicX // PicX0
// H2(X,I ) // · · ·

is an immediate consequence of the long exact sequence of cohomology groups and (Ex. 4.5).

8. (a) Let N be the least integer such that Hi(X,G ) = 0 for all coherent sheaves G and i > N .
Now let F be an arbitrary quasi-coherent sheaf. We can write F as the union of its
coherent subsheaves (Ex. II.5.15(e)), or in other words, as a direct limit of its coherent
subsheaves. Since direct limits commute with cohomology (Proposition 2.9), we conclude
that Hi(X,F ) = 0 for i > N , which means N = cd(X).

(b) If X is quasi-projective over k, then we can �nd an open immersion X → Y with Y
projective over k. Let N be the least integer such that H i(X,G ) = 0 for all locally free
coherent sheaves G and i > N . Now pick F ∈ Qco(X). We can �nd F � ∈ Qco(Y ) such
that F �|X ∼= F (Ex. II.5.15). Then we can write F � as the quotient of a sheaf E which is
the direct sum of twisted structure sheaves O(ni) for some integers ni (Corollary II.5.18);
let K be the kernel. Since exactness of sheaves is a local property, we get a short exact
sequence

0 // K |X // E |X // F // 0 .

Also, a sheaf G is locally free if and only if its stalks Gx are free Ox-modules for all x ∈ X
(Ex. II.5.7(b)), so K |X is a coherent sheaf. We get a long exact sequence

· · · // H i(X,E |X) // H i(X,F ) // H i+1(X,K |X) // H i+1(X,E |X) // · · · ,

and if i > N , then the terms on the outside vanish, and hence Hi(X,F ) ∼= H i+1(X,K |X).
Applying Grothendieck vanishing and descending induction, we get that Hi(X,F ) = 0 for
all i > N , so cd(X) = N .
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(c) Since Čech cohomology agrees with sheaf cohomology when X is a Noetherian separated
scheme and the open covering U consists of open a�nes, and F is a quasi-coherent sheaf
(Theorem 4.5), we have H i(X,F ) ∼= Ȟ i(U,F ). It is obvious that Ȟ i(U,F ) = 0 for i > r
if U consists of r + 1 open a�nes, so cd(X) ≤ r.

(d)

(e)

5 The Cohomology of Projective Space

1. The short exact sequence

0 // F � // F // F �� // 0

induces a long exact sequence on cohomology

0 // H0(X,F �) // H0(X,F ) // H0(X,F ��) // · · · // Hd(X,F ��) // 0

where d = dimX. Then the cohomology groups are �nitely-generated k-vector spaces (Theorem
5.2), so the alternating sum of their dimensions is 0. This is equivalent to saying that

χ(F ) = χ(F �) + χ(F ��).

7. (a) Choose F ∈ Coh(Y ). Then i∗F ∈ Coh(X) (Ex. II.5.5(c)). We know that

Hq(Y,F ⊗ (i∗L )n) = Hq(X, i∗(F ⊗ (i∗L )n))

for all q ≥ 0 (Ex. 4.1). Also, (i∗L )n ∼= i∗(L n) (Ex. II.6.8(a)), and i∗(F ⊗ i∗(L n)) ∼=
i∗F ⊗L n (Ex. II.5.1(d)), so we get

Hq(Y,F ⊗ (i∗L )n) ∼= Hq(X, i∗F ⊗L n).

By Proposition 5.3, L is ample.

(b) Let f : Xred → X be the canonical map. Then f∗L = f−1L ⊗f−1OX
OXred

= Lred, so by
(a), if L is ample, then so is Lred.

Conversely, suppose that Lred is ample. Let N be the sheaf of nilpotent elements on X.
Then there exists r such that N r = 0 since X is Noetherian. Choose F ∈ Coh(X). Then
N i ·F/N i+1 ·F ∈ Coh(Xred) since it is the quotient of two coherent sheaves. Then there
is an integer Ni such that

Hq(Xred,N
i ·F/N i+1 ·F ⊗OXred

L n
red) = 0

for all n ≥ Ni and q > 0 (Proposition 5.3). Let n0 = max{N0, . . . , Nr−1}. Since Lred =
L ⊗OX

OXred
, it follows that

N i ·F/N i+1 ·F ⊗OXred
L n

red
∼= N i ·F/N i+1 ·F ⊗OX

L n.

The latter is a sheaf on X, and since sheaf cohomology depends only on the topological
space X ∼= Xred, we conclude that

Hq(Xred,N
i ·F/N i+1 ·F ⊗OX

L n) = 0
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for n ≥ n0 and q > 0. We have a short exact sequence

0 // N i+1 ·F // N i ·F // N i ·F/N i+1 ·F // 0

which becomes

0 // N i+1 ·F ⊗L n // N i ·F ⊗L n // N i ·F/N i+1 ·F ⊗L n // 0

because locally free sheaves are �at. To �nish, we take the long exact sequence on coho-
mology and use descending induction on i to get that

Hq(X,F ⊗L n) = 0

for all n ≥ n0 and q > 0 (the base case is i > r), so L is ample (Proposition 5.3).

(c) One direction follows from (a): ifL is an ample sheaf on X, then for the inclusion ji : Xi →
X where Xi is an irreducible component of X, j

∗
iL = L ⊗OXi

is ample on Xi.

Suppose conversely that j∗iL is ample for each inclusion ji : Xi → X where the Xi are the
irreducible components of X. To show that L is ample on X, we can proceed by induction
on the number of irreducible components of X by putting the reduced structure on the
irreducible components. Hence we need only prove that if X = Y ∪ Z with f : Y → X
and g : Z → X and f∗L and g∗L are ample, then L is ample. Let I and J be the
sheaves of ideals of Y and Z, respectively. The sheaf I ∩J is the sheaf of ideals of a
closed subscheme of X with the same underlying topological space as X. Since we assume
X is reduced, I ∩J = 0, and hence I ·J = 0. Choose F ∈ Coh(X). Then F ·I is
killed by J , so is a coherent sheaf on Z. Hence there is some N1 such that

Hq(Z, (F ·I )⊗ (g∗L )n) = 0

for all q > 0 and n ≥ N1. Now consider the sheaf G = F/F ·I . It is killed by I , so is a
coherent sheaf on Y , so there is a N2 such that

Hq(Y,G ⊗ (f∗L )n) = 0

for all q > 0 and n ≥ N2. Now take n0 = max(N1, N2). The short exact sequence

0 // F ·I // F // G // 0

gives rise to a long exact sequence on cohomology

· · · // Hq(X,F ·I ⊗L n) // Hq(X,F ⊗L n) // Hq(X,G ⊗L n) // · · · .

The terms on the outside can be computed over Z and Y (using f∗L and g∗L instead of
L ), respectively (Lemma 2.10), so they vanish for q > 0 and n ≥ n0. Hence the same is
true for the middle term, and we conclude that L is ample on X.

(d) The proof of (a) shows that if L is ample on Y , then f∗L is ample on X.

Suppose conversely that f∗L is ample on X. By (b) and (c), we may assume that X and
Y are integral schemes: f �nite implies that it is closed, so an irreducible component of
X maps to a closed subset of Y . In fact, this closed subset of Y is irreducible because
f is also surjective. Let F ∈ Coh(Y ). Then there exists G ∈ Coh(X) and a morphism
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β : f∗G → F r where r is the dimension of K(X) over K(Y ) and β is an isomorphism at
the generic point (Ex. 4.2(b)). Then as in (a),

Hq(X,G ⊗ (f∗L )n) ∼= Hq(Y, f∗G ⊗L
n),

and in particular, there exists n0 such that both sides vanish for n ≥ n0 and q > 0
(Proposition 5.3). Since f∗G ∈ Coh(Y ) (Ex. II.5.5(c)), we conclude that kerβ, f∗G / kerβ,
and cokerβ are coherent sheaves on Y (Proposition II.5.7). Since β is an isomorphism at
the generic point, it an isomorphism on some open set containing the generic point, so kerβ
and cokerβ are supported on proper closed subsets. By Noetherian induction and using
the long exact sequence on cohomology of the two exact sequences

0 // kerβ // f∗G // image β // 0

and

0 // image β // F r // cokerβ // 0 ,

we conclude that
Hq(Y,F r ⊗L n) = 0

for n ≥ n0 and q > 0. Finally, we use that tensor product and cohomology commute with
direct sums (Proposition 2.9) to get

Hq(Y,F ⊗L n) = 0

for n ≥ n0 and q > 0. Therefore, L is ample on Y (Proposition 5.3).

10. For each i, we get a short exact sequence

0 // image(F i−1 → F i) // F i // F i+1/ image(F i → F i+1) // 0

where we say that F 0 = F r+1 = 0. By Theorem 5.2(b), we can �nd an n0 such that for all
n ≥ n0, higher cohomology of the nth twists of each term above vanishes. Thus,

Γ(X,F 1(n)) // Γ(X,F 2(n)) // · · · // Γ(X,F r(n))

is exact for all n ≥ n0.

6 Ext Groups and Sheaves

4. Choose F ∈ Coh(X). By assumption, there exists a surjection L → F where L is a locally
free sheaf on X. Then

E xti(L ,G )x ∼= Ext
i
OX,x

(Lx,Gx)

for all x ∈ X and i > 0 (Proposition 6.8). The right hand side is 0 sinceLx is a free OX,x-module
(Ex. II.5.7(b)). So E xti(L ,G ) = 0 for all i > 0. Hence E xti(−,G ) is coe�aceable for all i > 0,
which means that (E xti(−,G ))i≥0 is a universal δ-functor Coh(X)

op →Mod(X).

7. We �rst show that the functors ExtiX(
�M, �−) and ExtiA(M,−) agree. For i = 0, this follows from

Corollary II.5.5. Given an injective A-module I, the quasi-coherent sheaf �I is injective in the
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category Qco(X). Hence E xtiX(
�M, �I) = 0 for i > 0, which means the �rst functor is e�aceable,

so we get the desired claim. In particular, this implies that for M and N �nitely generated,

ExtiX(�M, �N) ∼= ExtiA(M,N).

Now we consider the functors E xtiX(
�M, �−) and ExtiA(M,−)∼. Again for i = 0, both are isomor-

phic to HomA(M,−)∼ (Corollary II.5.5). The second functor is e�aceable since ExtiA(M, I) = 0

for i > 0 whenever I is injective. Using Lemma 6.1, E xtiX(
�M, �I) = 0 for i > 0 and I injective,

so the �rst functor is also e�aceable. So we get an isomorphism

E xtiX(�M, �N) ∼= ExtiA(M,N)∼.

7 The Serre Duality Theorem

3. If r = 0, then the statement is true because the higher cohomology of the structure sheaf
vanishes. For n > r > 0, �rst consider the short exact sequence of Theorem II.8.13:

0 // ΩX/k // OX(−1)
n+1 // OX

// 0 .

Taking the rth exterior power we get a �ltration (Ex. II.5.16(d))

r�
OX(−1)

n+1 = F 0 ⊇ F 1 ⊇ · · · ⊇ F r ⊇ F r+1 = 0

whose quotients are

F p/F p+1 ∼=

p�
ΩX/k ⊗

r−p�
OX .

Since OX is rank 1, this quotient is 0 when r − p ≥ 2, or equivalently, p ≤ r − 2. Hence the
�ltration looks like

r�
OX(−1)

n+1 = F 0 = F 1 = · · · = F r−1 ⊇ F r ⊇ F r+1 = 0,

so we have a short exact sequence

0 // F r // F r−1 // F r−1/F r // 0

which translates to

0 // ΩrX/k //

�rOX(−1)
n+1 // Ωr−1

X/k
// 0 .

The term in the middle has vanishing ith cohomology for 0 < i ≤ n (Theorem 5.1(b,c)) and
also for i = 0 because it has no global sections, so by considering the long exact sequence on
cohomology, we get

Hq−1(X,Ωr−1
X/k)

∼= Hq(X,ΩrX/k)

for all 1 ≤ q < n. So by induction, Hq(X,ΩrX/k) is 0 if r �= q and k if r = q for 0 ≤ q ≤ n.
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8 Higher Direct Images of Sheaves

2. By Corollary 3.6, we can embed F into a �asque, quasi-coherent sheaf G . The short exact
sequence

0 // F // G // G /F // 0

gives the long exact sequence

0 // f∗F // f∗G // f∗(G /F ) // R1f∗F // 0

and that Rif∗F ∼= Ri−1f∗(G /F ) for all i > 1 (Corollary 8.3). Since G /F is quasi-coherent,
by induction it will su�ce to show that R1f∗F = 0, or equivalently, that f∗G → f∗(G /F )
is surjective. Pick an open set U ⊆ Y . Then to check surjectivity, we need only check local
surjectivity in the sense of (Ex. II.1.3(a)), so we may as well assume that U is a�ne. Then the
map Γ(U, f∗G ) → Γ(U, f∗(G /F )) can be rewritten as Γ(f−1(U),G ) → Γ(f−1(U),G /F ). By
assumption, f−1(U) = SpecA is a�ne, so surjectivity of this map follows from Corollary II.5.5
and Proposition II.5.6 because it is equivalent to the projection of modules M → M/N where

M and N are A-modules such that �M = G |f−1(U) and �N = F |f−1(U).

3. We consider the functors Rif∗(−⊗ f∗E ) and Rif∗(−)⊗ E . That the two agree for i = 0 is the
content of (Ex. II.5.1(d)). Pick an open a�ne U ⊆ Y such that E |U is free. It is enough to �nd
natural isomorphisms on U (replacing X with f−1(U)) and then glue them together to get an
isomorphism on Y . So we may assume that E = On

Y for some n. Then f∗E = f∗On
Y = On

X .
Tensoring with On

Y is exact, so Rif∗(−) ⊗ E is a δ-functor. Also, the �rst functor becomes
F �→ Rif∗(Fn), so is also a δ-functor because F �→ Fn is an exact functor. If F is �asque,
then Ri(F )⊗ E = 0 for i > 0 (Corollary 8.3), and Rif∗(Fn) = 0 for i > 0 because Fn will also
be �asque. Hence both functors are e�aceable, so are isomorphic functors. Thus we conclude
the projection formula

Rif∗(F ⊗ f∗E ) ∼= Rif∗(F )⊗ E

on U , and since this isomorphism is natural (given by natural isomorphism of functors), it
globalizes to all of Y .

9 Flat Morphisms

1. Let U be an open set in X. Then f(U) is a constructible set in Y (Ex. II.3.19). To see that
f(U) is open, it is enough to show that it is stable under generization (Ex. II.3.18(c)), i.e.,
if y ∈ f(U) and y ∈ {y�}, then y� ∈ f(U) where Z denotes the closure of Z. A generization
y� of y is nothing more than a prime ideal in SpecOY,y since {y�} = V (y�) in the a�ne case.
Pick x ∈ f−1(y), then to see that f(U) is closed under generization, it is enough to show that
there exists x� ∈ SpecOX,x such that f(x

�) = y�. So we may assume that X = SpecOX,x and
Y = SpecOY,y, and the surjectivity of SpecOX,x → SpecOY,y is a consequence of the going-down
property of �at maps.

10. (a) Let X = P1
k and TX =H omOX

(Ω1
X/k,OX) be the tangent sheaf on X. We have an exact

sequence

0 // Ω1
X/k

// OX(−1)⊕OX(−1) // OX
// 0

(Theorem II.8.13), so applying the functorH omOX
(−,OX), we get a short exact sequence

0 // OX
// OX(1)⊕OX(1) // TX // 0 .
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By Grothendieck vanishing (Theorem 2.7), the long exact sequence on cohomology gives a
surjection

H1(X,OX(1)⊕OX(1))→ H1(X,TX).

We claim that H1(X,OX(1)⊕OX(1)) = 0. Since cohomology commutes with direct sums
(Proposition 2.9), it is enough to compute H1(X,OX(1)). Using the Čech complex, one
can deduce in general that H1(X,OX(n)) is the space of monomials of Sx,y (the ring S
with x and y inverted, where S = k[x, y]) of degree n modulo the monomials xayb where
a + b = n and either a ≥ 0 or b ≥ 0. In the case n = 1, we get H1(X,OX(1)) = 0. Hence
H1(X,TX) = 0, so P

1
k has no in�nitesimal deformations (Example 9.13.2), so is rigid.

(b)

(c)
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1 Riemann–Roch Theorem

1. Let g be the genus of X. If n > 2g−2, then dimk H
0(X,L (nP )) = n+1−g, so for n su�ciently

large, H0(X,L (nP )) has nonzero sections. Also,

H0(X,L (nP )) = {f ∈ K(X) | vP (f) ≥ −n, vQ(f) ≥ 0 for Q �= P},

which can be seen from the bijection between e�ective divisors linearly equivalent to nP and
the projective space on H0(X,L (D)) (cf. Proposition II.7.7). So we can pick nonconstant
f ∈ H0(X,L (nP )) so that f has a pole at P and poles nowhere else. To ensure that f is
nonconstant, we can take n so that dimk H

0(X,L (nP )) > 1.

2. For each Pi, by (Ex. 1.1), we can �nd a nonconstant rational function fi ∈ K(X) which is
regular everywhere except at P , i.e., for every point Q �= P , we have vQ(fi) ≥ 0 and vP (fi) < 0
where vQ denotes the discrete valuation of local ring at Q. Let f = f1 + · · · + fr. For any
Q /∈ {P1, . . . , Pr}, we have vQ(f) ≥ min{vQ(f1), . . . , vQ(fr)} ≥ 0. Suppose that vPi

(f) ≥ 0 for
some i, i.e., f ∈ OX,Pi

. By assumption, fj ∈ OX,Pi
for j �= i, so subtracting them from f implies

that fi ∈ OX,Pi
, which is a contradiction. So we see that vPi

(f) < 0 for all i.

3. Embed X as an open set in a proper curve X. For example, we know by Remark II.4.10.2(e) that
X can be embedded as an open subset of a complete variety, so Proposition I.6.7 and Proposition
I.6.9 show that X can be embedded as an open subset of a complete curve, which we call X. The
complement of X in X is closed, and hence a �nite set of points, call them P1, . . . , Pr. By (Ex.
1.2), we can �nd a rational function f ∈ K(Y ) such that f has poles at each Pi and is regular

∗by Robin Hartshorne

1
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elsewhere. This function gives a morphism f : X → P1
k such that f−1({∞}) = {P1, . . . , Pr}.

Hence f−1(A1
k) = X. By Proposition II.6.8, f is a �nite morphism, so X is a�ne.

5. By de�nition, dim |D| = �(D)− 1. So by Riemann–Roch,

dim |D| − �(K −D) = degD − g.

We wish to show that
�(K −D) ≤ g = dimk H

0(X,L (K)).

By Proposition II.6.13(b), we know that

�(K −D) = dimk H
0(X,L (K −D)) = dimk H

0(X,L (K)⊗L (−D)).

Since D is e�ective, L (−D) is a subsheaf of OX (cf. Proposition II.6.18). Tensoring with L (K)
is an exact functor because L (K) ∼= ωX is an invertible sheaf (this can be reduced to checking
locally, in which case this is the statement that free modules are �at). Hence L (K)⊗L (−D)
is a subsheaf of L (K)⊗OX

∼= L (K), which means that

dimk H
0(X,L (K)⊗L (−D)) ≤ dimk H

0(X,L (K)) = g.

Thus the inequality dim |D| ≤ degD holds.

Equality holds if and only if �(K −D) = g. Suppose this equality holds. In the case that g > 0,
we see that L (K) ⊗L (−D) = L (K), which means that L (−D) ∼= OX . We see that D ∼ 0
(Corollary II.6.14), and since D is e�ective, we conclude that D = 0.

Conversely, if D = 0, then �(K − D) = �(K) = g by de�nition. If g = 0, then deg(K − D) =
−2− degD (Example 1.3.3). Since D is e�ective, degD ≥ 0, so deg(K −D) < 0, which implies
�(K −D) = 0 = g (Lemma 1.2).

6. Pick g + 1 distinct points P1, . . . , Pg+1, and let D = P1 + P2 + · · · + Pg+1. By Riemann–Roch,
we have

�(D) = degD + 1− g + �(K −D) = 2 + �(K −D),

so �(D) ≥ 2, which means that there is some nonconstant rational function f ∈ Γ(X,L (D))
such that f has poles at some nonempty subset of {P1, . . . , Pg+1}, and is regular elsewhere.
Then f de�nes a nonconstant morphism X → P1

k, which is �nite by Proposition II.6.8. So the
preimage of ∞ in P1

k has ≤ g + 1 points, which means deg f ≤ g + 1.

7. (a) We know that degK = 2g− 2 = 2 (Example 1.3.3) and dim |K| = �(K)− 1 = g− 1 = 1 by
de�nition. Suppose that K is not base point free. Let P be a point for which sP ∈ mPωP
for all s ∈ Γ(X,ω). Let ω(−P ) be the kernel of the surjection ω → ωP /mPωP . We get an
exact sequence

0 // Γ(X,ω(−P )) // Γ(X,ω) // ωP /mPωP ,

and by assumption on P , Γ(X,ω(−P )) = Γ(X,ω), so has dimension g = 2. Being a nonzero
subsheaf of ω, ω(−P ) is an invertible sheaf. Let s, t ∈ Γ(X,ω(−P )) be linearly independent
sections. Both s and t de�ne divisors of zeroes of degree 1 since

degω(−P ) = degω − degωP /mPωP = 1
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(Ex. II.6.12 and Proposition II.7.7). In particular, s and t both vanish at a single point,
and these points are di�erent because we have assumed that they are linearly independent.
Thus, ω(−P ) is base point free, so de�nes a morphism ϕ : X → P1

k (Remark II.7.8.1). By
(Ex. II.6.8), ϕ∗

L (D) = L (ϕ∗D) for a divisor D on P1
k, so

degϕ · degO(1) = degω(−P ),

hence degϕ = 1 (Proposition II.6.9). But this means that the function �eld K(X) is a
degree 1 extension of the function �eld of P1

k, i.e., they are the same. This implies that
X ∼= P1

k (Corollary I.6.12). But genus is a birational invariant, and the genus of P
1
k is 0,

so this is a contradiction. Thus, K is base point free.

Since dimk H
0(X,ωX) = 2, we can give two vectors that span it, and hence a morphism

f : X → P1
k. In fact, f is �nite (Proposition II.6.8). By (Ex. II.6.8), f

∗L (D) = L (f∗D)
for a divisor D on P1

k, so
deg f · degO(1) = degωX

(Proposition II.6.9). Since O(1) has degree 1 and we have just shown that degωX = 2, we
conclude that deg f = 2, and hence X is hyperelliptic.

(b) Let Q ∼= P1
k × P1

k denote the quadric surface xy = zw in P3
k, and let p1 and p2 be

projections onto the two components. As in Example II.6.6.1, they induce homomorphisms
p∗1, p

∗

2 : ClP
1
k → ClQ where the maps are given by D =

�
niYi �→

�
nip

−1
j (Yi). So if we

take a curve X whose type is (g + 1, 2) in Q and restrict p2 to X, then p∗2(pt) is a divisor
of degree 2. The map not constant and hence �nite (Proposition II.6.8). The preimage of
a point in P1

k under p2 is then two points, so p2 is a morphism of degree 2.

8. (a) Let f : �X → X be the normalization map. We start with the exact sequence

0 // OX
// f∗O eX

//
�

P∈X
�OP /OP

// 0

where �OP /OP denotes the skyscraper sheaf at P with value �OP /OP . Then apply the
functor Γ to get the long exact sequence

0 // Γ(X,OX) // Γ(X, f∗O eX
) // Γ(X,

� �OP /OP ) EDBC

GF
��

H1(X,OX) // H1(X, f∗O eX
) // H1(X,

� �OP /OP )
// 0

of O(X)-modules. Skyscraper sheaves are �asque, so H1(X,
� �OP /OP ) = 0 (Proposition

III.2.5). Since X is integral, Γ(X,OX) is a �nite integral k-algebra, and hence a �nite �eld
extension of k since an integral Artinian ring is a �eld. So because k is algebraically closed,
Γ(X,OX) = k. Also,

Γ(X, f∗O eX
) = Γ(f−1(X),O eX

) = Γ( �X,O eX
) = k

for similar reasons. Since f is a �nite morphism (Ex. II.3.8), f∗O eX
is a coherent OX -

module (Ex. II.5.5(c)), and so the cokernel
� �OP /OP is also coherent (Proposition II.5.7).

Hence the long exact sequence is of k-vector spaces. The alternating sum of the dimensions
on this long exact sequence is zero:

1− 1 + dimk H
0(X,

� �OP /OP )− dimk H
1(X,OX) + dimk H

1(X, f∗O eX
) = 0. (1)
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The map f : �X → X is an a�ne morphism of Noetherian separated schemes, so we have

H1( �X,O eX
) ∼= H1(X, f∗O eX

)

(Ex. III.4.1). So
pa(X) = dimk H

1(X,OX)

and
pa( �X) = dimk H

1(X, f∗O eX
)

(Ex. III.5.3(a)), which turns (1) into

pa(X) = pa( �X) + dimk H
0(
� �OP /OP ).

Finally, note that dimk H
0(
� �OP /OP ) =

�
δP , and we’re done.

(b) Suppose that pa(X) = 0. Since pa( �X) = dimk H
1( �X,O eX

) ≥ 0, and δP ≥ 0 for all P ∈ X,

we conclude that pa( �X) = 0 and δP = 0 for all P ∈ X by part (a). This implies that
�OP = OP for all P ∈ X, so each local ring of X is integrally closed. In dimension one, a
Noetherian local ring is integrally closed if and only if it is regular, so X is nonsingular.
ThusX is a curve, so pg(X) = pa(X) = 0 (Proposition 1.1), which meansX ∼= P1

k (Example
1.3.5).

2 Hurwitz’s Theorem

2. (a) Let f : X → P1
k be the �nite morphism determined by |K|. The genus of P1

k is 0, so
plugging in the values for Hurwitz’s theorem (Corollary 2.4) gives

2 · 2− 2 = 2 · (−2) +
�
P∈X

length(ΩX/P1

k

)P · P,

which simpli�es to
�
P∈X

length(ΩX/P1

k

)P · P = 6. (2)

If Q ∈ P1
k is a closed point, then deg f

∗Q = 2 where f∗Q =
�

f(P )=Q vP (t) · P and t is a
uniformizer for OQ (Proposition II.6.9). The valuations vP (t) are nonnegative because f∗

is a map of local rings, so either Q has two points in its preimage, or it has one which is
rami�ed with rami�cation index 2. Combining this with (2) shows that f has exactly 6
rami�cation points each with rami�cation index 2.

(b) The �eld extension K/k(x) is Galois of degree 2, so the corresponding morphism of curves
f : X → P1

k has degree 2. We can write K = k(x)[z]/(z2 − (x − α1) · · · (x − α6)). Since
f has degree 2, either a point in P1

k has two points in its preimage, in which case it is
unrami�ed, or it has one point in its preimage with rami�cation index 2. Restricting
to A1

k, the points with 1 point in its preimage correspond to the values of x for which
z2−(x−α1) · · · (x−α6) has a double root. In particular, this happens at x = αi. To check the
point at in�nity, we do a change of coordinates x �→ 1/x to get z2 = (1/x−α1) · · · (1/x−α6),
or x6z2 = (1 − α1x) · · · (1 − α6x). Then x = 0 has two solutions for z, so this point is
unrami�ed. Using Hurwitz’s theorem gives (we have tame rami�cation because char k �= 2)

2gX − 2 = 2(−2) + 6 = 2,

so gX = 2.
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(c) By (Ex. I.6.6(a)), we need only �nd a linear fractional transformation sending P1, P2, P3

to 0, 1,∞, respectively. The function

ϕ(z) =

����������
���������

z − P1

z − P3
·
P2 − P3

P2 − P1
if P1, P2, P3 �=∞

P2 − P3

z − P3
if P1 =∞

z − P1

z − P3
if P2 =∞

z − P1

P2 − P3
if P3 =∞

does exactly this.

(d) To check that this is a group action, pick g, h ∈ S6. There are three indices for which those
elements are mapped to 0, 1,∞, respectively. Whether we apply g and then normalize and
apply h and normalize, or just apply hg and normalize, these three indices are the same at
the end. Thus, by the uniqueness of linear fractional transformations (they are determined
by three values), both of these actions are the same.

(e) By (a) and (b), the map f : X → P1
k is determined by its canonical linear system |K|.

These are in bijection with triples of distinct elements β1, β2, β3 of k, �= 0, 1, modulo the
action of Σ6, by (c) and (d).

4. To show that X is nonsingular, we cover P3
k by the a�nes given by x = 1, y = 1, and z = 1

and show that in each a�ne, the Jacobian of X has rank 2− 1 = 1. These cases are symmetric,
so we just treat z = 1. Then our polynomial is f(x, y) = x3y + y3 + x, and ∂f/∂x = 1 while
∂f/∂y = x3. At every point in the a�ne given by x = 1, this has rank 1, so X is nonsingular.
From the computations of the �rst partial derivatives, it is immediate that all of the second
partial derivatives vanish, so every point of X is an in�ection point.

Now we return to P3
k. The tangent line to X at (x0, y0, z0) is

∂f

∂x
(x− x0) +

∂f

∂y
(y − y0) +

∂f

∂z
(z − z0) = 0

where f(x, y, z) = x3y + y3z + z3x. We compute these: ∂f/∂x = z3, ∂f/∂y = x3, and ∂f/∂z =
x3, so the above equation becomes

z30(x− x0) + x30(y − y0) + y30(z − z0) = 0,

but z30x0 + x30y0 + y30z0 = 0 because (x0, y0, z0) is a point on X. We see that the natural map
X → X∗ given by P �→ TP (X) can be described as (x, y, z) �→ (z3, x3, y3). The function �elds of
X and X∗ are the quotient �elds of k[x, y, z]/(x3y+y3z+z3x), and this map induces a Frobenius
map on the function �elds up to a permutation of the variables, and hence is purely inseparable.
The Frobenius map is �nite, so by Proposition 2.5, X and X∗ are isomorphic (though not by
the natural map).

5. (a) The �eld extension K(X)/L is Galois since L is de�ned as a �xed �eld of a �nite group.
In particular, it is separable, so there is some element α such that K(X) = L(α). Hence
we can write K(X) = L[z]/p(z) for some irreducible polynomial p of degree n. Also, L is
a �nite �eld extension of k(x), so p also involves the variable x. If P ∈ X is a rami�cation
point and eP = r, then this means that plugging in f(P ) as x into p gives a root of z with
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multiplicity r. In fact, all roots must have multiplicity r because G permutes them. Hence
any point Q ∈ f−1(f(P )) has rami�cation index r, which means that f−1(f(P )) is a �nite
set consisting of n/r points. With this fact, we know that

�
P∈X

(eP − 1) =

s�
i=1

n

ri
(ri − 1) =

s�
i=1

(n− n/ri),

so Hurwitz’s theorem implies (characteristic 0 implies all rami�cation is tame)

2g − 2

n
= 2g(Y )− 2 +

1

n

s�
i=1

(n− n/ri) = 2g(Y )− 2 +

s�
i=1

(1− 1/ri).

(b) Suppose we have

2g(Y )− 2 +

s�
i=1

(1− 1/ri) > 0.

If g(Y ) > 1, then the left hand side is > 1 and hence at least 1/42. If g(Y ) = 1, then the
smallest the sum

�s
i=1(1− 1/ri) can be is 1/2 since ri ≥ 2. In the case g(Y ) = 0, we must

have s > 2. If we are to minimize the left hand side, we need to minimize the sum, and
since 1− 1/ri > 0, we need only to consider s = 3.

In this case, the left hand side is 1 − 1/r1 − 1/r2 − 1/r3. So we are interested in positive
integers r1, r2, r3 such that the sum 1/r1 + 1/r2 + 1/r3 < 1 is maximized. We see that
if all ri > 3, then at best this sum is 3/4, and one can do better, and if all ri < 3,
then the sum is 3/2 > 1, so we may assume r1 = 3. If r2 > 2 and r3 > 2, then at
best the sum is 1/3 + 1/3 + 1/4 = 11/12. If we set r2 = 2 and r3 = 7, then the sum is
1/3+1/2+1/7 = 41/42 > 11/12, so the maximum must have r2 = 2. But then 1/r3 < 1/6,
so we see that r3 = 7 is optimal. Hence, we conclude that the left hand side is at least
1/42. Putting this all together gives

2g − 2

n
≥
1

42
,

which translates to n ≤ 84(g − 1).

3 Embeddings in Projective Space

1. Since linearly equivalent divisors give rise to isomorphic invertible sheaves, we assume without
loss of generality that D is e�ective. The Riemann–Roch formula gives dim |D|−dim |K−D| =
degD − 1. If degD < 5, we show in each case that D cannot be a very ample divisor. In the
case that degD = 0, dim |D| = 0, so the induced map to projective space is X → P0

k, which
cannot be a closed immersion. If degD = 1, then by (Ex. 1.5), dim |D| < 1 and hence we are in
the same situation.

In the case degD = 2, deg(K − D) = 0, so dim |K − D| = 0, and so by Riemann–Roch,
dim |D| = 1 and the induced map X → P1

k cannot be a closed immersion because X is a
curve of genus 2. If degD = 3, then deg(K − D) = −1, so Riemann–Roch gives dim |D| = 1,
and we are in the same situation. Finally, for degD = 4, choose two points P and Q. Then
deg(D − P − Q) = 2, so dim |D − P − Q| = 1 from above. By Proposition 3.1(b), we see that
D cannot be very ample.

Of course if degD ≥ 5, we know already that D is very ample by Corollary 3.2(b).
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3. Let f1, . . . , fn−1 be homogeneous polynomials de�ning hypersurfaces H1, . . . ,Hn−1 ⊂ Pn such
that X is their scheme-theoretic intersection, and let d1, . . . , dn−1 be their respective degrees.
Let r =

�
di−n−1. By (Ex. II.8.4(e)), ωX ∼= OX(r), and we know that r ≥ −2 because di > 0

for all i. If r ≤ 0, then g = dimH0(X,ωX) = dimH0(X,O(r)) ≤ 1. Since we are assuming
g ≥ 2, we must have r > 0. Note that ωX ∼= OX(r) is very ample via the inclusion of X in Pn

followed by the r-uple embedding of Pn (cf. (Ex. II.5.13)). Finally, the canonical divisor K
has degree 2g − 2 = 2, so is not very ample by (Ex. 3.1). Hence a genus 2 curve cannot be a
complete intersection in any Pn.

6. (a) Recall from (Ex. 1.5) that if D is an e�ective divisor, then dim |D| ≤ degD, and equality
holds if and only if g = 0 or D = 0. In our case, take D to be O(1), the hyperplane section
of X. Then dim |D| ≤ 4, and in the case g = 0, we see that dim |D| = 4, so X ⊂ P4. If X
is not contained in a P3 via this embedding, then X is the rational normal quartic up to
an automorphism of P4 (Ex. 3.4(b)). Otherwise, if X is contained in some P3, then it is
a rational quartic curve.

If g > 0, then X ⊂ P3. If X is contained in a plane, then g = 1
2(d − 1)(d − 2) = 3.

Otherwise, g < 3 (Ex. 3.5(b)). Since D is very ample, (Ex. 3.1) says that degD ≥ 5 if
g = 2, so this is not a possibility. Hence g = 1 in this case.

(b) The exact sequence

0 // IX
// OP3

// OX
// 0

gives rise to a long exact sequence by twisting by 2 and taking cohomology:

0 // H0(P3,IX(2)) // H0(P3,OP3(2)) // H0(P3,OX(2)) // · · · .

We know that dimH0(P3,OP3(2)) =
�5
2

�
= 10, and dimH0(P3,OX(2)) = dim |2D| + 1 <

8 + 1 (Ex. 1.5). So dimH0(P3,IX(2)) ≥ 2, which means that X is contained in at least
two irreducible quadric surfaces. The intersection of two quadrics is a variety of degree 4,
so we conclude that X is the complete intersection of two irreducible quadric surfaces in
the case g = 1.

11. (a) As in the proof of Proposition 3.4, one can show that projection from a point O onto Pn−1

is a closed immersion if and only if O is not on any secant line of X and O is not on
any tangent line of X. Locally, the secant variety of X can be seen as the image of the
morphism (X ×X \∆)×P1 → Pn which sends (P,Q, t) to the point t on the secant line
of P and Q. This has dimension ≤ r+ r+1 < n, so is not all of Pn. Similarly, the tangent
variety has dimension ≤ r + 1 < n, so we can �nd an O not on any secant or tangent line.

(b)

4 Elliptic Curves

7. (a) The homomorphism f∗ : PicX � → PicX preserves degree, so induces a map f∗ : Pic◦X � →
Pic◦X. By Theorem 4.11, we can identify (X,P0) and (X

�, P �

0) with their Jacobian varieties,
and by Remark 4.10.4, the closed points of X and X � can be identi�ed (as groups) with
Pic◦X and Pic◦X �, respectively. Hence we get a dual morphism f̂ : (X �, P �

0)→ (X,P0).

(b) The equality (g ◦ f )̂ = f̂ ◦ ĝ follows from (a) and the functoriality of pullback.

(c)
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(d)

(e) The morphism nX is the n-fold sum of the identity morphism on X, so n̂X = nX follows
from (d) by taking X � = X. If m is the degree of nX , then nX ◦ nX = mX by (c), but
nX ◦ nX is n2 iterations of the µ(P ) = P + P , so m = n2.

(f) From (c), we get that f̂ ◦ f = nX where n = deg f . Since degree is multiplicative, this
means that deg f̂ · deg f = (deg f)2 by (e), so deg f̂ = deg f as long as deg f �= 0. In the
case deg f = 0, f is an isomorphism, so f̂ is as well, and deg f̂ = 0.

14. Let f(x, y, z) = x3 + y3 − z3. The Hasse invariant of X(p) is 0 if and only if the coe�cient
of (xyz)p−1 in fp−1 is 0 (Proposition 4.21). It is immediate that if p ≡ 2 (mod 3), then the
coe�cient of (xyz)p−1 in fp−1 must be 0. Otherwise, for p ≡ 1 (mod 3), an application of
the binomial expansion shows that the coe�cient of (xyz)p−1 in fp−1 is

�p−1
k

��p−1−k
k

�
where

k = (p − 1)/3. It is clear that this coe�cient is not divisible by p, hence is nonzero. So the
Hasse invariant of X(p) is 0 if and only if p ≡ 2 (mod 3), and appealing to Dirichlet’s theorem
for arithmetic progressions, the set P has density 1/2.

6 Classi�cation of curves in P3

1. Let X be a rational curve of degree 4 in P3. Then we the short exact sequence

0 // IX
// OP3

// OX
// 0

gives rise to a long exact sequence

0 // H0(IX(2)) // H0(OP3(2)) // H0(OX(2)) // · · · .

The dimension of H0(OP3(2)) is 10, and the dimension of H0(OX(2)) is dim |2D| + 1 where
D is the hyperplane section corresponding to O(1), and this latter number is 9 because g = 0
(Ex. 1.5). Hence dimH0(IX(2)) ≥ 1, so X is contained in at least one quadric surface. If X
is contained in two distinct quadric surfaces, then it is contained in the complete intersection of
them, which has degree 4 and genus 1 (Ex. II.8.4(g)). But this is impossible, so X is contained
in a unique quadric surface.

Up to isomorphism, there is one singular quadric surface in P3, which is the quadric cone. By
Remark 6.4.1(d), we see that if X lies on the quadric cone, then the genus of X must be 1, so
this possibility is ruled out. Hence the quadric surface is nonsingular.

6. Let X be a projectively normal curve in P3 which is not contained in any plane. This means
that the natural map H0(OP3(k))→ H0(OX(k)) is surjective for all k ≥ 0 (Ex. II.8.4(c)). Let
D be the hyperplane section of X.

Suppose d = 6. If O(1) is special, then g = 4 (Proposition 6.3). Otherwise, if O(1) is nonspecial,
then dimH0(OX(1)) = degD − g + 1 = 7 − g. By surjectivity, 7 − g ≤ 4, which means g ≥ 3.
Furthermore, g ≤ 4 by Theorem 6.4.

Now suppose d = 7. We know that g ≤ 6 by Theorem 6.4. If O(1) is special, then g ≥ 5. If
O(1) is nonspecial, then as before, we can show that 8−g ≤ 4; equivalently, g ≥ 4. But if g = 4,
then since O(2) is nonspecial, we have dimH0(OX(2)) = dim |2D|+ 1 = 2degD − g + 1 = 11.
However, dimH0(OP3(2)) = 10, so this contradicts surjectivity. Hence g = 5 or g = 6.


