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Introduction
In the first section, it is shown how to introduce on an abstract category operations of tensor
products and duals having properties similar to the familiar operations on the category Veck
of finite-dimensional vector spaces over a field k. What complicates this is the necessity of
including enough constraints so that, whenever an obvious isomorphism, for example,

U ˝ .V ˝W /
'
�! .V ˝U/˝W;

exists in Veck , a unique isomorphism is constrained to exist also in the abstract setting.
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The next section studies the category Repk.G/ of finite-dimensional representations of
an affine group schemeG over k and demonstrates necessary and sufficient conditions for a
category C with a tensor product to be equivalent to Repk.G/ for some G; such a category
C is then called a neutral Tannakian category.

A fibre functor on a Tannakian category C with values in a field k0 � k is an exact k-
linear functor C! Veck0 that commutes with tensor products. For example, the forgetful
functor is a fibre functor on Repk.G/. In the third section it is shown that the fibre functors
on Repk.G/ are classified by the torsors of G. Also, the general notion of a (nonneutral)
Tannakian category is introduced and discussed.

The fourth section studies the notion of a polarization (compatible families of sesquilin-
ear forms having certain positivity properties) on a Tannakian category, and the fifth studies
the notion of graded Tannakian category.

In the sixth section, motives are defined using absolute Hodge cycles, and the related
motivic Galois groups discussed. In an appendix, some terminology from non-abelian co-
homology is reviewed.

We note that the introduction to Saavedra Rivano 1972 is an excellent summary of
the theory of Tannakian categories except that two changes are necessary: Théorème 3
only becomes correct when the condition “End.11/ D k” is added to the definition of a
Tannakian category over k; in the statement of Théorème 4 the condition that G be abelian
or connected can be dropped (see �4 below).

Notations and Terminology
Functors between additive categories are assumed to be additive. All rings have a 1, and
in general they are commutative except in �2. A morphism of functors is also called a
functorial or natural morphism. A strictly full subcategory is a full subcategory containing
with any X , all objects isomorphic to X . Isomorphisms are denoted � and canonical (or
given) isomorphisms'. The empty set is denoted by ;.

Our notations agree with those of Saavedra Rivano 1972 except for some simplifica-
tions: what would be called a ˝-widget AC unifère by Saavedra here becomes a tensor
widget, and Hom˝;1 becomes Hom˝.

Some categories:
ModR Finitely generated R-modules.
ProjR Finitely generated projective R-modules.
Repk.G/ Linear representations of G on finite-dimensional k-vector spaces.
Set Category of sets.
Veck Finite-dimensional k-vector spaces.
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1. Tensor Categories
Let C be a category and let

˝WC�C! C; .X;Y / X˝Y

be a functor. An associativity constraint for .C;˝/ is a functorial isomorphism

�X;Y;Z WX˝ .Y ˝Z/! .X˝Y /˝Z

such that, for all objects X;Y;Z;T , the diagram

X˝ .Y ˝ .Z˝T //

X˝ ..Y ˝Z/˝T /

.X˝ .Y ˝Z//˝T ..X˝Y /˝Z/˝T

.X˝Y /˝ .Z˝T /

1˝�

�

�˝1

�

�

(1.0.1)

is commutative (this is the pentagon axiom, Saavedra Rivano 1972, I, 1.1.1.1; Mac Lane
1998, p. 162). Here, as in subsequent diagrams, we have omitted the obvious subscripts
on the maps; for example, the � at top-right is �X;Y;Z˝T . A commutativity constraint for
.C;˝/ is a functorial isomorphism

 X;Y WX˝Y ! Y ˝X

such that, for all objects X;Y ,

 Y;X ı X;Y WX˝Y !X˝Y

is the identity morphism on X ˝ Y (Saavedra Rivano 1972, I, 1.2.1). An associativity
constraint � and a commutativity constraint  are compatible if, for all objects X;Y;Z, the
diagram

Z˝ .X˝Y /

.X˝Y /˝ZX˝ .Y ˝Z/

X˝ .Z˝Y /

.X˝Z/˝Y .Z˝X/˝Y

�

 

�

1˝ 

�

 ˝1

(1.0.2)
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is commutative (this is the hexagon axiom, Saavedra Rivano 1972, I, 2.1.1.1; Mac Lane
1998, p. 184). A pair .U;u/ comprising an object U of C and an isomorphism uWU !

U ˝U is an identity object of .C;˝/ ifX U ˝X WC!C is an equivalence of categories.

DEFINITION 1.1. A system .C;˝;�; /, in which � and  are compatible associativity
and commutativity constraints, is a tensor category if there exists an identity object.

EXAMPLE 1.2. The category ModR of finitely generated modules over a commutative ring
R becomes a tensor category with the usual tensor product and the obvious constraints.
(If one perversely takes � to the negative of the obvious isomorphism, then the pentagon
(1.0.1) fails to commute by a sign.) A pair .U;u0/ comprising a free R-module of rank 1
and a basis element u0 determines an identity object .U;u/ of ModR — take u to be the
unique isomorphism U ! U ˝U mapping u0 to u0˝u0. Every identity object is of this
form.

For other examples, see the end of this section.

PROPOSITION 1.3. Let .U;u/ be an identity object of the tensor category .C;˝/.

(a) There exists a unique functorial isomorphism

lX WX ! U ˝X

such that lU is u and the diagrams

X˝Y U ˝ .X˝Y /

X˝Y .U ˝X/˝Y

l

�

l˝1

X˝Y .U ˝X/˝Y

X˝ .U ˝Y / .X˝U/˝Y

l˝1

1˝l  ˝1

�

commute.
(b) If .U 0;u0/ is a second identity object of .C;˝/, then there is a unique isomorphism

aWU ! U 0 making
U U ˝U

U 0 U 0˝U 0

u

a a˝a

u0

commute.

PROOF. (a) We confine ourselves to defining lX — see Saavedra Rivano 1972, I, 2.5.1,
2.4.1, for more details. As X  U ˝X is an equivalence of categories, it suffices to define
1˝ lX WU ˝X ! U ˝ .U ˝X/; this we take to be

U ˝X
u˝1
���! .U ˝U/˝X

��1

���! U ˝ .U ˝X/:

(b) The map

U
lU
�! U 0˝U

 U 0;U
����! U ˝U 0

.lU 0 /
�1

�����! U 0

has the required properties. 2
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The functorial isomorphism

rX
def
D  U;X ı lX WX !X˝U

has analogous properties to lX . We shall often use .11;e/ to denote a (the) identity object of
.C;˝/.

REMARK 1.4. (a) There is no standard definition of “tensor category” in the literature.
Rather, authors adopt the definition most convenient for their purposes.

(b) In the language of the category theorists, our tensor categories are symmetric monoidal
categories (i.e., a monoidal categories equipped with a symmetric braiding).

(c) Our notion of a tensor category is the same as that of a “˝-catégorie AC unifère”
in Saavedra Rivano 1972 and, because of 1.3(b), is essentially the same as the notion of
“˝-catégorie ACU” defined ibid. I, 2.4.1 (cf. ibid. I, 2.4.3).

Extending˝
Let � be an associativity constraint for .C;˝/. Any functor Cn! C defined by repeated
application of ˝ is called an iterate of ˝. If F;F 0WCn ! C are iterates of ˝, then it
is possible to construct an isomorphism of functors � WF ! F 0 out of � and ��1. The
significance of the pentagon axiom is that it implies that � is unique: any two iterates of˝ to
Cn are isomorphic by a unique isomorphism constructed out of � and ��1 (Mac Lane 1963;
Mac Lane 1998, VII, 2). In other words, there is an essentially unique way of extending ˝
to a functor

Nn
iD1WC

n! C when n� 1. Similarly, when .C;˝/ is a tensor category, there
is an essentially unique way of extending ˝ to a functor

N
i2I WC

I ! C where I is any
unordered finite set: the tensor product of any finite family of objects of C is well-defined
up to a unique isomorphism (Mac Lane 1963). We can make this statement more precise.

PROPOSITION 1.5. The tensor structure on a tensor category .C;˝/ admits an extension
as follows: for each finite set I there is a functorO

i2I
WCI ! C,

and for each map ˛WI ! J of finite sets, there is a functorial isomorphism

�.˛/W
O

i2I
Xi !

O
j2J

�O
i 7!j

Xi

�
satisfying the following conditions:

(a) if I consists of a single element, then
N
i2I is the identity functor X  X ; if ˛ is

a map between single-element sets, then �.˛/ is the identity automorphism of the
identity functor;

(b) the isomorphisms defined by maps I
˛
! J

ˇ
!K give rise to a commutative diagramN

i2I Xi
N
j2J

�N
i 7!j Xi

�

N
k2K

�N
i 7!kXi

� N
k2K

�N
j 7!k

�N
i 7!j Xi

��
:

�.˛/

�.ˇ˛/ �.ˇ/

N
.�.˛jIk//

where Ik D .ˇ˛/�1.k/.
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PROOF. Apply Mac Lane 1963; 1998 VII 2. 2

By .
N
i2I ;�/ being an extension of the tensor structure on C, we mean that

N
i2I Xi D

X1˝X2 when I D f1;2g and that the isomorphisms

X˝ .Y ˝Z/! .X˝Y /˝Z

X˝Y ! Y ˝X

induced by � are equal to � and respectively. It is automatic that .
N
;Xi ;�.;!f1;2g/ is

an identity object and that �.f2g ,!f1;2g/ is lX WX! 11˝X . If .
N0
i2I ;�

0/ is a second such
extension, then there is a unique system of functorial isomorphisms

N
i2I Xi !

N0
i2I Xi

compatible with � and �0 and such that, when I D fig, the isomorphism is idXi .
Whenever a tensor category .C;˝/ is given, we shall always assume that an extension

as in (1.5) has been made. (We could, in fact, have defined a tensor category to be a system
as in (1.5).)

Invertible objects
Let .C;˝/ be a tensor category. An object L of C is invertible if

X  L˝X WC! C

is an equivalence of categories. Thus, ifL is invertible, there exists anL0 such thatL˝L0D
11; the converse assertion is also true. An inverse of L is any pair .L�1; ı/ where

ıW
O

i2f˙g
Xi

�
�! 11; XC D L; X� D L

�1:

Note that this definition is symmetric: .L;ı/ is an inverse of L�1. If .L1; ı1/ and .L2; ı2/
are both inverses of L, then there is a unique isomorphism ˛WL1! L2 such that the com-
posite

ı2 ı .1˝˛/WL˝L1! L˝L2! 11

is ı1. For example, an object L of ModR is invertible if and only if it is projective of rank 1
(Saavedra Rivano 1972, I, 0.2.2.2).

Internal Hom
Let .C;˝/ be a tensor category.

DEFINITION 1.6. If the functor

T  Hom.T ˝X;Y /WCopp
! Set

is representable, then we denote by Hom.X;Y / the representing object and by

evX;Y WHom.X;Y /˝X ! Y

the morphism corresponding to idHom.X;Y /.
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Thus, to a morphism gWT ˝X ! Y there corresponds a unique morphism f WT !

Hom.X;Y / such that evX;Y ı.f ˝ idX /D g,

T T ˝X

Hom.X;Y / Hom.X;Y /˝X Y:

g

ev

f f ˝ id (1.6.1)

In other words,
Hom.T;Hom.X;Y //' Hom.T ˝X;Y /:

For example, in ModR, Hom.X;Y / exists and equals HomR.X;Y / regarded as an R-
module, because for any R-modules X;Y;T;

HomR.T;HomR.X;Y //' HomR.T ˝RX;Y /

(Bourbaki Algèbre, II 4.1). In this case, evX;Y is

f ˝x 7! f .x/WHomR.X;Y /˝X ! Y;

whence its name.

We now assume that Hom.X;Y / exists for every pair .X;Y / of objects in C. Then there
is a composition map

Hom.X;Y /˝Hom.Y;Z/! Hom.X;Z/; (1.6.2)

corresponding to

Hom.X;Y /˝Hom.Y;Z/˝X
ev
�! Hom.Y;Z/˝Y

ev
�!Z;

and an isomorphism

Hom.Z;Hom.X;Y //! Hom.Z˝X;Y / (1.6.3)

inducing, for every object T ,

Hom.T;Hom.Z;Hom.X;Y ///
'
! Hom.T ˝Z;Hom.X;Y //
'
! Hom.T ˝Z˝X;Y /
'
! Hom.T;Hom.Z˝X;Y //.

Note that

Hom.11;Hom.X;Y //' Hom.11˝X;Y /D Hom.X;Y /: (1.6.4)

The dualX_ of an objectX is defined to be Hom.X;11/. There is therefore a map evX WX_˝
X ! 11 inducing a functorial isomorphism

Hom.T;X_/! Hom.T ˝X;11/: (1.6.5)
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The morphism X 7!X_ can be made into a contravariant functor: to f WX ! Y we attach
the unique morphism tf WY _!X_ rendering commutative

Y _˝X X_˝X

Y _˝Y 11:

tf˝id

id˝f evX

evY

(1.6.6)

For example, in ModR, X_ D HomR.X;R/ and tf is determined by the equation

h
tf .y/;xiX D hy;f .x/iY ; y 2 Y _ x 2X;

where we have written h ; iX and h ; iY for evX and evY .
When f is an isomorphism, we let f _ D .tf /�1WX_! Y _, so that

evY ı.f _˝f /D evX WX_˝X ! 11: (1.6.7)

For example, in ModR,

hf _.x0/;f .x/iY D hx
0;xiX ; x 2X_, x 2X:

Let iX WX !X__ be the morphism corresponding in (1.6.5) to evX ı WX˝X_! 11.
If iX is an isomorphism, then X is said to be reflexive. If X has an inverse .X�1; ıWX�1˝
X
�
! 11/, then X is reflexive and the map X�1 ! X_ determined by ı (see 1.6.1) is an

isomorphism.
For any finite families of objects .Xi /i2I and .Yi /i2I , there is a morphismO

i2I
Hom.Xi ;Yi /! Hom.

O
i2I

Xi ;
O

i2I
Yi / (1.6.8)

corresponding in (1.6.1) to�O
i2I

Hom.Xi ;Yi /
�
˝

�O
i2I

Xi

�
'
�!

O
i2I

.Hom.Xi ;Yi /˝Xi /
˝ev
��!

O
i2I

Yi :

In particular, there are morphismsO
i2I

X_i !
�O

i2I
Xi

�_
(1.6.9)

and
X_˝Y ! Hom.X;Y / (1.6.10)

obtained respectively by taking Yi D 11 all i , and X1 DX , X2 D 11D Y1, Y2 D Y .

Rigid tensor categories

DEFINITION 1.7. A tensor category .C;˝/ is said to be rigid1 if

(a) Hom.X;Y / exists for all objects X and Y ,

1There is an alternative definition of rigidity (Deligne 1990, � 2). Let .C;˝/ be a tensor category, and let
.11;e/ be an identity object for .C;˝/. If Hom.X;11/ exists, then .Hom.X;11/;evX;11/ is a dual for X (in the
sense of 1.6.5). Thus, in a rigid tensor category, all objects admit duals. Conversely, assume that all objects in
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(b) the morphisms (1.6.8)

Hom.X1;Y1/˝Hom.X2;Y2/! Hom.X1˝X2;Y1˝Y2/

are isomorphisms for all X1;X2;Y1;Y2, and
(c) all objects of C are reflexive.

In fact, these conditions imply that the morphisms (1.6.8) are isomorphisms for all finite
families.

Let .C;˝/ be a rigid tensor category. The functor

fX;f g fX_; tf gWCopp
! C

is an equivalence of categories because its composite with itself is isomorphic to the identity
functor. It is even an equivalence of tensor categories in the sense defined below — note
that Copp has an obvious tensor structure for which˝Xopp

i D .˝Xi /
opp. In particular,

f 7! tf WHom.X;Y /! Hom.Y _;X_/ (1.7.1)

is an isomorphism. There is also a canonical isomorphism

Hom.X;Y /! Hom.Y _;X_/; (1.7.2)

namely, the composite of the isomorphisms

Hom.X;Y /
1.6.10
 � X_˝Y

'
�!X_˝Y __

'
�! Y __˝X_

1.6.10
�! Hom.Y _;X_/:

For any object X of C, there is an isomorphism

Hom.X;X/
1:6:10
����!X_˝X

ev
! 11.

On applying the functor Hom.11;�/ to this, we obtain (see 1.6.4) a morphism

TrX WEnd.X/! End.11/ (1.7.3)

called the trace morphism. The rank, rank.X/, of X is defined to be TrX .idX /. There are
the following formulas (Saavedra Rivano 1972, I, 5.1.4):

TrX˝X 0.f ˝f 0/ D TrX .f / �TrX 0.f 0/
Tr11.f / D f .

(1.7.4)

In particular,
rank.X˝X 0/ D rank.X/ � rank.X 0/

rank.11/ D id11 .
(1.7.5)

C admit a dual. Then the pair .X_˝Y;evX;Y / with evX;Y the composite

X_˝Y ˝X 'X_˝X˝Y
evX˝ idY
�������! 11˝Y ' Y

is an internal Hom, Hom.X;Y /, for X and Y . The map (1.6.8) is

X_1 ˝Y1˝X
_
2 ˝Y2

'
! .X1˝X2/

_
˝Y1˝Y2:

Finally, in a symmetric monoidal category, the definition of a dual is symmetric between X and X_: X is the
dual of X_, and so is reflexive.



1 TENSOR CATEGORIES 11

Tensor functors

Let .C;˝/ and .C0;˝0/ be tensor categories.

DEFINITION 1.8. A tensor functor .C;˝/! .C0;˝0/ is a pair .F;c/ comprising a func-
tor F WC! C0 and a functorial isomorphism cX;Y WF.X/˝F.Y /! F.X ˝Y / with the
following properties:

(a) for all X;Y;Z 2 ob.C/, the diagram

FX˝ .F Y ˝FZ/ FX˝F.Y ˝Z/c F.X˝ .Y ˝Z//

.FX˝FY /˝FZ F.X˝Y /˝FZc F..X˝Y /˝Z/

id˝c

�0 F.�/

c˝id

commutes;
(b) for all X;Y 2 ob.C/, the diagram

FX˝FY F.X˝Y /

FY ˝FX F.Y ˝X/

c

 0 F. /

c

commutes.
(c) if .U;u/ is an identity object of C, then .F.U /;F.u// is an identity object of C0.

In Saavedra Rivano 1972, I, 4.2.3, a tensor functor is called a “˝-foncteur AC unifère”.
Let .F;c/ be a tensor functor .C;˝/! .C0;˝0/. The conditions (a), (b), (c) imply that,

for every finite family .Xi /i2I of objects in C, c gives rise to a well-defined isomorphism

cW
O
i2I

F.Xi /! F.
O
i2I

Xi /.

Moreover, for every map ˛WI ! J , the diagram

N
i2I F.Xi / F

�N
i2I Xi

�
N
j2J .

N
i 7!j F.Xi //

N
j2J .F.

N
i 7!j Xi // F.

N
j2J .

N
i 7!j Xi //

c

�0.˛/ F .�.˛//

c c

is commutative. In particular, .F;c/ maps inverse objects to inverse objects. If Hom.X;Y /
exists, then the morphism

F.evX;Y /WF.Hom.X;Y //˝F.X/! F.Y /

gives rise to morphisms FX;Y WF.Hom.X;Y //! Hom.FX;F Y /; in particular, if X_ def
D

Hom.X;11/ exists, then F.evX / defines a morphism FX WF.X
_/! F.X/_.

PROPOSITION 1.9. Let .F;c/W.C;˝/! .C0;˝0/ be a tensor functor of rigid tensor cate-
gories. Then FX;Y WF.Hom.X;Y /! Hom.FX;F Y // is an isomorphism for all X;Y 2
ob.C/.
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PROOF. It suffices to show that F preserves duality, but this is obvious from the following
characterization of the dual of X : it is a pair .Y;Y ˝X

ev
�! 11/ for which there exists

�W11!X˝Y such that

X ' 11˝X
�˝id
�! .X˝Y /˝X DX˝ .Y ˝X/

id˝ev
�! X

and the same map with X and Y interchanged are identity maps. 2

DEFINITION 1.10. A tensor functor .F;c/W.C;˝/! .C0;˝0/ is a tensor equivalence (or
an equivalence of tensor categories) if F WC! C0 is an equivalence of categories.

This definition is justified by the following proposition.

PROPOSITION 1.11. Let .F;c/W.C;˝/! .C0;˝0/ be a tensor equivalence. Then there
exists a tensor functor .F 0; c0/WC0 ! C and isomorphisms of functors F 0 ıF ! idC and
F ıF 0! idC0 commuting with tensor products (that is, they are isomorphisms of tensor
functors — see below).

PROOF. Saavedra Rivano 1972, I, 4.4. 2

A tensor functor F WC!C0 of rigid tensor categories induces a morphism F WEnd.11/!
End.110/. The following formulas hold:

TrF.X/F.f / D F.TrX .f //
rank.F.X// D F.rank.X//:

Morphisms of tensor functors

DEFINITION 1.12. Let .F;c/ and .G;d/ be tensor functors C! C0; a morphism of ten-
sor functors .F;c/! .G;d/ is a morphism of functors �WF ! G such that, for all finite
families .Xi /i2I of objects in C, the diagramN

i2I F.Xi / F.
N
i2I Xi /

N
i2I G.Xi / G.

N
i2I Xi /

c

N
i2I �Xi �˝i2IXi

c

(1.12.1)

is commutative.

In fact, it suffices to require that the diagram (1.12.1) be commutative when I is f1;2g
or the empty set. For the empty set, (1.12.1) becomes

110 F.11/

110 G.11/

'

�11

'

(1.12.2)

in which the horizontal maps are the unique isomorphisms compatible with the structures
of 110, F.11/, and G.11/ as identity objects of C0. In particular, when (1.12.2) commutes, �11
is an isomorphism.

We write Hom˝.F;G/ for the set2 of morphisms of tensor functors .F;c/! .G;d/.
2Or, perhaps, the class. . .
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PROPOSITION 1.13. Let .F;c/ and .G;d/ be tensor functors C!C0. If C and C0 are rigid,
then every morphism of tensor functors �WF !G is an isomorphism.

PROOF. The morphism �WG! F making the diagrams

F.X_/ G.X_/

F.X/_ G.X/_

�X_

' '

t .�X /

commutative for all X 2 ob.C/ is an inverse for �. 3
2

For any field k and k-algebra R, there is a canonical tensor functor �RWVeck!ModR,
namely, V  V ˝k R. If .F;c/ and .G;d/ are tensor functors C! Veck , then we define
Hom˝.F;G/ to be the functor of k-algebras such that

Hom˝.F;G/.R/D Hom˝.�R ıF;�R ıG/: (1.13.1)

Tensor subcategories

DEFINITION 1.14. Let C0 be a strictly full subcategory of a tensor category C. We say that
C0 is a tensor subcategory of C if it is closed under the formation of finite tensor products
(equivalently, if it contains an identity object for C and if it contains X ˝Y whenever it
contains X and Y ). A tensor subcategory of a rigid tensor category is said to be a rigid
tensor subcategory if it contains X_ whenever it contains X .

A tensor subcategory becomes a tensor category under the induced tensor structure, and
similarly for rigid tensor subcategories.

Abelian tensor categories; End.11/
Our convention, that functors between additive categories are to be additive, forces the
following definition.

DEFINITION 1.15. An additive (resp. abelian) tensor category is a tensor category .C;˝/
such that C is an additive (resp. abelian) category and˝ is a bi-additive functor.

When .C;˝/ is an abelian tensor category, we say that a family .Xi /i2I of objects C
is a tensor generating family for C if every object of C is isomorphic to a subquotient of
P.Xi / for some P.ti / 2 NŒti �i2I ; in P.Xi / multiplication is interpreted as ˝ and addition
as˚.

If .C;˝/ is an additive tensor category and .11;e/ is an identity object, thenR def
D End.11/

is a ring which acts, via lX WX
'
! 11˝X , on each object of X . The action of R on X

commutes with endomorphisms of X and so, in particular, R is commutative. If .110; e0/
is a second identity object, the unique isomorphism aW.11;e/! .110; e0/ (see 1.3(b)) defines
an isomorphism R ' End.110/. Therefore C is R-linear in the sense that each Hom-set is
endowed with the structure of an R-linear module and ı is R-bilinear, and the functor ˝ is
bilinear. When C is rigid, the trace morphism is an R-linear map TrWEnd.X/!R.

3One way to prove that � is inverse to � is to use the Yoneda lemma, which allows us to assume that we are
working with categories of sets. For another, see the discussion in mathoverflow 116104.
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PROPOSITION 1.16. Let .C;˝/ be a rigid tensor category. If C is abelian, then ˝ is bi-
additive and commutes with direct and inverse limits in each variable; in particular, it is
exact in each variable.

PROOF. The functor X  X˝Y has a right adjoint, namely, Z Hom.Y;Z/, and there-
fore commutes with direct limits and is additive. By considering the opposite category Copp,
one deduces that it also commutes with inverse limits. (In fact, Z Hom.Y;Z/ is also a
left adjoint for X  X˝Y .) 2

PROPOSITION 1.17. Let .C;˝/ be a rigid abelian tensor category. If U is a subobject of
11, then 11 D U ˚U? where U? D Ker.11! U_/. Consequently, 11 is a simple object if
End.11/ is a field.

PROOF. Let V D Coker.U ! 11/. On tensoring

0! U ! 11! V ! 0

with U ,! 11, we obtain an exact commutative diagram

U 11 V

U ˝U U V ˝U;

0

from which it follows that V ˝U D 0, and that U ˝U D U as a subobject of 11˝11D 11.
For any object T , the map T ˝U ! T obtained from U ,! 11 by tensoring with T , is

injective. This proves the first equivalence in

T ˝U D 0 ” the map T ˝U ! T is zero ” the map T ! U_˝T is zeroI

the second equivalence follows from the canonical isomorphisms

Hom.T ˝U;T /
1.6.5
' Hom.T ˝U ˝T _;1/

1.6.5
' Hom.T;U_˝T /:

Therefore, for any objectX , the largest subobject T ofX such that T ˝U D 0 is the largest
subobject T such that T ! U_˝X is zero; hence

T D Ker.X ! U_˝X/' U?˝X:

On applying this remark withX D V and using that V ˝U D 0, we find that U?˝V '
V ; on applying it withX DU and using that U ˝U DU , we find that U?˝U D 0. From
the exact sequence

0! U?˝U ! U?˝11! U?˝V ! 0

we deduce that U? ' V , and that 11' U?˚U . 2

REMARK 1.18. The proposition shows that there is a one-to-one correspondence between
subobjects of 11 and idempotents in End.11/. Such an idempotent e determines a decom-
position of tensor categories CD C0�C00 in which an object is in C0 (resp. C00) if e (resp.
1� e) acts as the identity morphism on it.
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PROPOSITION 1.19. Let C and C0 be rigid abelian tensor categories and let 11 and 110 be
identity objects of C and C0 respectively. If End.11/ is a field and 110 ¤ 0, then every exact
tensor functor F WC! C0 is faithful.

PROOF. The criterion in C,

X ¤ 0”X˝X_! 11 is an epimorphism

is respected by F . 2

A criterion to be a rigid tensor category

PROPOSITION 1.20. 4Let C be a k-linear abelian category, where k is a field, and let
˝WC�C! C be a k-bilinear functor. Suppose that there are given a faithful exact k-linear
functor F WC! Veck , a functorial isomorphism �X;Y;Z WX˝.Y ˝Z/! .X˝Y /˝Z, and
a functorial isomorphism  X;Y WX˝Y ! Y ˝X with the following properties

(a) F ı˝D˝ı .F �F /I
(b) F.�X;Y;Z/ is the usual associativity isomorphism in Veck;
(c) F. X;Y / is the usual commutativity isomorphism in Veck;
(d) there exists an identity object U in C such that k! End.U / is an isomorphism and

F.U / has dimension 1;
(e) ifF.L/ has dimension 1, then there exists an objectL�1 in C such thatL˝L�1DU .

Then .C;˝;�; / is a rigid abelian tensor category.

PROOF. For a direct proof, see Milne 2017, 9.24. We indicate a more elegant approach in
(2.18) below. 2

Examples
EXAMPLE 1.21. The category Veck of finite-dimensional vector spaces over a field k is a
rigid abelian tensor category and End.11/D k. All the above definitions take on a familiar
meaning when applied to Veck . For example, TrWEnd.X/! k is the usual trace map.

EXAMPLE 1.22. The category ModR of finitely generated modules over a commutative
ring R is an abelian tensor category and End.11/DR. In general it will not be rigid because
not all R-modules will be reflexive.

EXAMPLE 1.23. The category ProjR of finitely generated projective modules over a com-
mutative ring R is a rigid additive tensor category and End.11/DR, but, in general, it is not
abelian. The rigidity follows easily from considering the objects of ProjR as locally-free
modules of finite rank on Spec.R/. Alternatively, apply Bourbaki, Algèbre, II 4.4, II 2.7.

4In the original, it was not required that the U in (d) and (e) be an identity object. That this is necessary is
shown by the following example of Deligne:

Let C be the category of pairs .V;˛/ where V is a finite dimensional vector space over a field k
and ˛ is an endomorphism of V such that ˛2D ˛, and let F be the forgetful functor. Then .V;˛/
is a tensor category with identity object .k; id/, but it is not rigid because internal Homs and
duals don’t always exist (in fact, C is the category of (unital) representations of the multiplicative
monoid f1;0g). LetU D .k;0/. Then, (d) holds, and, for anyL of dimension 1, .L;˛/˝U �U ,
and so (e) holds with L�1 D U .
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EXAMPLE 1.24. Let G be an affine group scheme over a field k, and let Repk.G/ be the
category of finite-dimensional representations of G over k. Thus, an object of Repk.G/
consists of a finite-dimensional vector space V over k and a homomorphism g 7! gV WG!

GLV of affine group schemes over k — we sometimes refer to the objects of Repk.G/
as G-modules. Then Repk.G/ is a rigid abelian tensor category and End.11/ D k. These
categories, and more generally the categories of representations of affine groupoids (see
�3), are the main topic of study of this article.

EXAMPLE 1.25. (Vector spaces graded by Z=2Z).5 Let C be the category whose objects
are pairs .V 0;V 1/ of finite-dimensional vector spaces over k . We give C the tensor struc-
ture whose commutativity constraint is determined by the Koszul rule of signs, i.e., that
defined by the isomorphisms

v˝w 7! .�1/ijw˝vWV i ˝W j
!W j

˝V i :

Then C is a rigid abelian tensor category and End.11/D k, but it is not of the form Repk.G/
for any G because

rank.V 0;V 1/D dim.V 0/�dim.V 1/;

which need not be positive.

EXAMPLE 1.26. The rigid additive tensor category freely generated by an object T is a
pair .C;T / comprising a rigid additive tensor category C such that End.11/ D ZŒt � and an
object T having the property that

F  F.T /WHom˝.C;C0/! C0

is an equivalence of categories for all rigid additive tensor categories C0 (t will turn out to
be the rank of T ). We show how to construct such a pair .C;T /— clearly it is unique up to
a unique equivalence of tensor categories preserving T .

Let V be a free module of finite rank over a commutative ring k and let T a;b.V / be
the space V ˝a˝V _˝b of tensors with covariant degree a and contravariant degree b . A
morphism f WT a;b.V /! T c;d .V / can be identified with a tensor “f ” in T bCc;aCd .V /.
When aCd D bCc, T bCc;aCd .V / contains a special element, namely, the .aCd/th ten-
sor power of “id”2 T 1;1.V /, and other elements can be obtained by allowing an element of
the symmetric group SaCd to permute the contravariant components of this special element.
We have therefore a map

�WSaCd ! Hom.T a;b;T c;d / (when aCd D bC c/:

The induced map kŒSaCd �!Hom.T a;b;T c;d / is injective provided rank.V /� aCd . One
checks that the composite of two such maps �.�/WT a;b.V /!T c;d .V / and �.�/WT c;d .V /!
T e;f .V / is given by a universal formula

�.�/ � �.�/D .rankV /N � �.�/ (1.26.1)

with � and N depending only on a;b;c;d;e;f;� , and � .
We define C0 to be the category having as objects symbols T a;b (a;b 2 N/, and for

which Hom.T a;b;T c;d / is the free ZŒt �-module with basis SaCd if aCd D bC c and is

5Now called superspaces.
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zero otherwise. Composition of morphisms is defined to be ZŒt �-bilinear and to agree on
basis elements with the universal formula (1.26.1) with rank.V / replaced by the indeter-
minate t . The associativity law holds for this composition because it does whenever t is
replaced by a large enough positive integer (it becomes the associativity law in a category
of modules). Tensor products are defined by

T a;b˝T c;d D T aCc;bCd

and by an obvious rule for morphisms. We define T to be T 1;0.
The category C is deduced from C0 by formally adjoining direct sums of objects. Its

universality follows from the fact that the formula (1.26.1) holds in any rigid additive cate-
gory.

EXAMPLE 1.27. (GLt ) Let n be an integer, and use t 7! nWZŒt �! C to extend the scalars
in the above example from ZŒt � to C. If V is an n-dimensional complex vector space and if
aCd � n, then

Hom.T a;b;T c;d /˝ZŒt�C! HomGLV .T
a;b.V /;T c;d .V //

is an isomorphism. For any sum T 0 of T a;bs and large enough integer n, End.T 0/˝ZŒt�C is
therefore a product of matrix algebras. This implies that End.T 0/˝ZŒt�QŒt � is a semisimple
algebra.

After extending the scalars in C to Q.t/, i.e., replacing Hom.T 0;T 00/with Hom.T 0;T 00/˝ZŒt�
QŒt � and passing to the pseudo-abelian (Karoubian) envelope (formally adjoining images
of idempotents), we obtain a semisimple rigid abelian tensor category GLt . The rank of T
in GLt is t … N and so, although End.11/DQ.t/ is a field, GLt is not of the form Repk.G/
for any group scheme (or gerbe) G.6

2. Neutral Tannakian categories
Throughout this section, k is a field. Unadorned tensor products are over k.

Affine group schemes
We review the basic theory of affine group schemes and their representations. For more
details, see Waterhouse 1979, Chapters 1,3.7

Let G D SpecA be an affine group scheme over k. The maps

multWG�G!G; identityW f1g !G; inverseWG!G

induce maps of k-algebras

�WA! A˝k A; �WA! k; S WA! A

(the comultiplication, coidentity, and coinverse maps) such that

6For more on such categories, see: Deligne, P., La catégorie des représentations du groupe symétrique St ,
lorsque t n’est pas un entier naturel. Algebraic groups and homogeneous spaces, 209–273, Tata Inst. Fund.
Res. Stud. Math., Tata Inst. Fund. Res., Mumbai, 2007.

7Or Milne 2017, especially 3.7, 4.1, 4.7, 4.9, 9.8.
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.id˝�/ı�D .�˝ id/ı�WA! A˝A⇒ A˝A˝A

(coassociativity axiom),

idD .�˝ id/ı�WA! A˝A! k˝A' A

(coidentity axiom), and�
A

�
�! A˝A

.S;id/
�! A

�
D

�
A

�
�! k ,! A

�
(coinverse axiom). We define a bialgebra over k to be a k-algebra A together with maps�,
�, and S satisfying the three axioms.8

PROPOSITION 2.1. The functor A SpecA defines an equivalence of categories between
the category of k-bialgebras and the category of affine group schemes over k.

PROOF. Obvious. 2

If A is finitely generated as a k-algebra we say that G is algebraic or that it is an
algebraic group.9

A coalgebra over k is a k-vector space C together with k-linear maps�WC ! C ˝k C

and �WC ! k satisfying the coassociativity and coidentity axioms. A comodule over a
coalgebra C is a vector space V over k together with a k-linear map �WV ! V ˝k C such
that

V
�
�! V ˝C

id˝�
�! V ˝k ' V

is the identity map and

.id˝�/ı�D .�˝ id/ı�WV ! V ˝C ˝C:

For example, � defines an C -comodule structure on C .

PROPOSITION 2.2. For any affine k-group scheme G D SpecA and k-vector space V ,
there is a canonical one-to-one correspondence between the A-comodule structures on V
and the linear representations of G on V .

PROOF. Let r WG!GLV be a representation. For the “universal” element idG 2Mor.G;G/D
G.A/, r.idG/ is an A-isomorphism V ˝A! V ˝A whose restriction to V D V ˝ k �
V ˝A determines it and is an A-comodule structure � on V . Conversely, a comodule struc-
ture � on V determines a representation of G on V such that, for any k-algebra R and
g 2G.R/D Homk.A;R/, the restriction of gV WV ˝R! V ˝R to V ˝k � V ˝R is

.idV ˝g/ı�WV ! V ˝A! V ˝R.

See Waterhouse 1979, 3.2, for the details. 2

8More correctly, it is a commutative bialgebra admitting an antipode, or a commutative Hopf algebra.
9For us, an algebraic group will always mean an affine algebraic group scheme.
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The representation of G on A defined by the A-comodule structure � is called the
regular representation of G.

PROPOSITION 2.3. Let C be a k-coalgebra and let .V;�/ a comodule over C . Every finite
subset of V is contained in a sub-comodule of V having finite dimension over k.

PROOF. Let fcig be a basis for C over k (possibly infinite). For v in the finite subset, write
�.v/D

P
vi˝ci (finite sum). The k-space generated by the v and the vi is a sub-comodule

over C (Waterhouse 1979, 3.3). 2

COROLLARY 2.4. Every linear representation of an affine group scheme is a directed union
of finite-dimensional subrepresentations.

PROOF. The set of all sub-comodules of a comodule V that are finite-dimensional over k
is partially ordered by inclusion, directed (any two are contained in a third), and has union
V (see 2.3). Now apply (2.2). 2

COROLLARY 2.5. An affine group scheme G is algebraic if and only if it has a faithful
finite-dimensional representation over k.

PROOF. The sufficiency is obvious. For the necessity, let V be the regular representation
of G, and write it as a directed union V D

S
i Vi of finite-dimensional subrepresentations.

Then
T
i Ker.G!GL.Vi //D f1g because V is a faithful representation, and it follows that

Ker.G! GL.Vi0//D f1g for some i0 because G is Noetherian as a topological space. 2

PROPOSITION 2.6. Let A be a k-bialgebra. Every finite subset of A is contained in a sub-
bialgebra that is finitely generated as a k-algebra.

PROOF. According to (2.3), the finite subset is contained in a finite-dimensional k-subspace
V of A such that �.V /� V ˝k A. Let fvj g be a basis for V , and let �.vj /D

P
vi ˝aij .

The subalgebra kŒvj ;aij ;Svj ;Saij � of A is a sub-bialgebra (Waterhouse 1979, 3.3). 2

COROLLARY 2.7. Every affine k-group schemeG is a directed inverse limitGD lim
 �

Gi of
affine algebraic groups over k in which the transition maps Gi  Gj , i � j , are faithfully
flat.

PROOF. Write A as a union AD
S
Ai of finite-dimensional sub-bialgebras with Ai � Aj

for i � j . The functor Spec transforms the direct limit A D lim
�!

Ai into an inverse limit
G D lim
 �

Gi . The transition mapGi  Gj is faithfully flat because Aj is faithfully flat over
its subalgebra Ai (Waterhouse 1979, 14.1). 2

The converse to (2.7) is also true; in fact the inverse limit of any family of affine group
schemes is again an affine group scheme.

Recovering an affine group scheme from its representations

Let G be an affine group scheme over k, and let ! (or !G) be the forgetful functor
Repk.G/! Veck . For R a k-algebra, Aut˝.!/.R/ consists of the families .�X /, X 2
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ob.Repk.G//, where �X is an R-linear automorphism of X ˝R such that �X1˝X2 D
�X1˝�X2 , �11 is the identity map (on R) , and

�Y ı .˛˝1/D .˛˝1/ı�X WX˝R! Y ˝R

for all G-equivariant maps ˛WX ! Y (see 1.12). Clearly, every g 2 G.R/ defines an ele-
ment of Aut˝.!/.R/.

PROPOSITION 2.8. The natural map G ! Aut˝.!/ is an isomorphism of functors of k-
algebras.

PROOF. Let X 2 Repk.G/, and let CX be the strictly full subcategory Repk.G/ of objects
isomorphic to a subquotient of P.X;X_/ for some P 2NŒt; s� (cf. the discussion following
1.14). The map � 7! �X identifies Aut˝.!jCX /.R/ with a subgroup of GL.X ˝R/. Let
GX be the image of G in GLX ; it is a closed algebraic subgroup of GLX , and clearly

GX .R/� Aut˝.!jCX /.R/� GL.X˝R/:

If V 2 ob.CX / and t 2 V is fixed by G, then

a 7! at Wk
˛
�! V

is G-equivariant, and so

�V .t˝1/D .˛˝1/�11.1/D t˝1:

Thus Aut˝.!jCX / is the subgroup of GLX fixing all tensors in representations ofGX fixed
by GX , which implies that GX D Aut˝.!jCX / (see Deligne 1982, 3.2).

If X 0 DX˚Y for some representation Y of G, then CX � CX 0 , and there is a commu-
tative diagram

GX 0 Aut˝.!jCX 0/

GX Aut˝.!jCX /:

'

'

It is clear from (2.5) and (2.7) and G D lim
 �

GX , and so, on passing to the inverse limit over
these diagrams, we obtain an isomorphism G! Aut˝.!/. 2

A homomorphism f WG!G0 defines a tensor functor !f WRepk.G
0/!Repk.G/ such

that !G ı!f D!G
0

, namely, !f .X;rX /D .X;rX ıf /. Our next result shows that all such
functors arise in this fashion.

COROLLARY 2.9. LetG andG0 be affine k-group schemes, and letF WRepk.G
0/!Repk.G/

be a tensor functor such that !G ıF D !G
0

. Then there exists a unique homomorphism
f WG!G0 such that F D !f .

PROOF. Such an F defines a homomorphism (functorial in the k-algebra R)

F �WAut˝.!G/.R/! Aut˝.!G
0

/.R/; F �.�/X D �F.X/:

Proposition 2.8 and the Yoneda lemma allow us to identify F � with a homomorphism
G!G0. Obviously F 7! F � and f 7! !f are inverse maps. 2

REMARK 2.10. Proposition 2.8 shows thatG is determined by the triple .Repk.G/;˝;!
G/.

In fact, the coalgebra of G is already determined by .Repk.G/;!
G/ (see the proof of The-

orem 2.11 below).
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The main theorem
THEOREM 2.11. Let .C;˝/ be a rigid abelian tensor category such that k D End.11/, and
let !WC! Veck be an exact faithful k-linear tensor functor. Then,

(a) the functor Aut˝.!/ of k-algebras is represented by an affine group scheme G;
(b) the functor C! Repk.G/ defined by ! is an equivalence of tensor categories.

The proof will occupy the rest of this subsection. We first construct the coalgebra A of
G without using the tensor structure on C. The tensor structure then enables us to define an
algebra structure on A, and the rigidity of C implies that SpecA is a group scheme (rather
than a monoid scheme). The following easy observation will allow us to work initially with
algebras rather than coalgebras: for a finite-dimensional (not necessarily commutative) k-
algebra A and its dual coalgebra A_ def

D Homk-lin.A;k/, the bijections

Homk-lin.V ˝k A;V /' Homk-lin.V;Hom.A;V //' Homk-lin.V;V ˝k A
_/

determine a one-to-one correspondence between the A-module structures on a vector space
V and the A_-comodule structures on V .

We begin with some constructions that are valid in any k-linear abelian category C.
Let Vecs

k
be the full subcategory Veck whose objects are the vector spaces kn, and let

� be the inclusion functor. For each finite-dimensional vector space V over k, choose an
isomorphism ˇV Wk

dimV ! V . Then there is exactly one functor10  WVeck ! Vecs
k

such
that .V /D kdimV for all V and ˇ is a natural isomorphism  ı �! idVec.

We define a functor
˝WVeck �C! C

such that
HomC.T;V ˝X/' V ˝k HomC.T;X/;

(functorially in T ). For V D kn, we set V ˝X DXn (direct sum of n-copies of X ). For a
general V , we set V ˝X D .V /˝X . There is also an isomorphism

HomC.V ˝X;T /' Homk-lin.V;HomC.X;T //;

functorial in T . For any k-linear functor F WC! C0, F.V ˝X/Š V ˝F.X/.
We define Hom.V;X/ to be V _˝X . IfW � V and Y �X , then the transporter ofW

to Y is
.Y WW /D Ker.Hom.V;X/! Hom.W;X=Y //:

For any k-linear functorF , F.Hom.V;X//DHom.V;FX/, and ifF is exact, thenF.Y WW /D
.F Y WW /.

LEMMA 2.12. Let C be a k-linear abelian category and let !WC! Veck be a k-linear exact
faithful functor. Then, for any object X 2 ob.C/, the following two objects are equal:

(a) the largest subobject P of Hom.!.X/;X// whose image in Hom.!.X/n;Xn/ (em-
bedded diagonally) is contained in .Y W!.Y // for all Y �Xn;

10The category Vec.k/s is a skeleton of Vec.k/, and in  we are choosing an adjoint to �— see the discussion
Mac Lane 1998, IV 4, p. 93. For a way of avoiding having to choose a  , see the original article p. 131.
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(b) the smallest subobject P 0 of Hom.!.X/;X/ such that the subspace

!.P 0/� Hom.!.X/;!.X//

contains id!.X/.

PROOF. Clearly !.X/ D 0 implies End.X/ D 0, which implies X D 0. Thus, if X � Y
and !.X/D !.Y /, then X D Y , and it follows that all objects of C are both Artinian and
Noetherian. The objects P and P 0 therefore exist.

The functor ! maps Hom.V;X/ to Hom.V;!X/ and .Y WW / to .!Y WW / for all W �
V 2 ob.Veck/ and Y �X 2 ob.C/. It therefore maps

P
def
D

\
.Hom.!X;X/\ .Y W!Y //

to \
.End.!X/\ .!Y W!Y // :

This means !P is the largest subring of End.!X/ stabilizing !Y for all Y � Xn. Hence
id!X 2 !P and P � P 0.

Let V be a finite-dimensional vector space over k. There is an obvious map

Hom.!X;X/! Hom.!.V ˝X/;V ˝X/

which, after the application of !, becomes

f 7! idV ˝f WEnd.!X/! End.V ˝!.X//.

By definition, !P � End.!X/ stabilizes !Y for all Y � V ˝X . On applying this remark
to a subobject

Q � Hom.!X;X/D .!X/_˝X;

we find that !P , when acting by left multiplication on End.!X/, stabilizes !Q. Therefore,
if!Q contains id!X , then!P �!Q, andP �Q. On applying this statement withQDP 0,
we find that P � P 0. 2

Let PX � Hom.!.X/;X/ be the subobject defined in (a) (equivalently (b)) of the
lemma, and let AX D !.PX / — it is the largest k-subalgebra of End.!.X// stabilizing
!.Y / for all Y �Xn: Let hXi be the strictly full subcategory of C whose objects are those
isomorphic to a subquotient of Xn for some n 2 N. Then !jhXiW hXi ! Veck factors
through ModAX .

LEMMA 2.13. Let C;! be as in (2.12). There is a natural action of the ring AX on !.Y /,
Y 2 hXi, and ! defines an equivalence of categories hXi ! Mod.AX / carrying !jhXi to
the forgetful functor. Moreover AX D End.!jhXi/.

PROOF. The right action f 7! f ıa of AX on Hom.!X;X/ stabilizes PX because obvi-
ously,

.Y W !Y /.!Y W !Y /� .Y W!Y /:

If M is an AX -module, we define

PX ˝AX M D Coker.PX ˝AX ˝M ⇒ PX ˝M/.
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Then
!.PX ˝AX M/' !.PX /˝AX M D AX ˝AX M 'M:

This shows that ! is essentially surjective. A similar argument shows that hXi!Mod.AX /
is full.

Clearly any element ofAX defines an endomorphism of!jhXi. On the other hand an el-
ement � of End.!jhXi/ is determined by �X 2End.!.X//; thus End.!.X//�End.!jhXi/�
AX . But �X stabilizes !.Y / for all Y � Xn, and so End.!jhXi/ � AX . This completes
the proof of the lemma. 2

Let BX D A_X . The observation at the start of the proof, allows us to restate (2.13) as
follows: ! defines an equivalence

.hXi;!jhXi/! .ComodBX ; forget/

where ComodBX is the category of BX -comodules of finite dimension over k.
On passing to the inverse limit over X (cf. the proof of 2.8), we obtain the following

result.

PROPOSITION 2.14. Let .C;!/ be as in (2.12) and let B D lim
�!

End.!jhXi/_. Then !
defines an equivalence of categories C! ComodB carrying ! into the forgetful functor.

EXAMPLE 2.15. Let A be a finite-dimensional k-algebra and let ! be the forgetful functor
ModA ! Veck . For R a commutative k-algebra, let �R be the functor R˝�WVeck !
ModR. There is a canonical map ˛WR˝k A! End.�R ı!/, which we shall show to be an
isomorphism by defining an inverse ˇ. For � 2 End.�R ı!/, set ˇ.�/ D �A.1/. Clearly
ˇ ı˛ D id, and so we only have to show ˛ ıˇ D id. For M 2 ob.ModA/, let M0 D !.M/.
The A-module A˝kM0 is a direct sum of copies of A, and the additivity of � shows that
�A˝M0 D �A˝ idM0 . The map a˝m 7! amWA˝kM0!M is A-linear, and hence

R˝A˝M0 R˝M

R˝A˝M0 R˝M

� �

is commutative. Therefore �M .m/ D �A.1/m D .˛ ı ˇ.�//M .m/ for m 2 R˝M . In
particular,A

'
!End.!/, and it follows that, if in (2.13) we take CDModA, so that CDhAi,

then the equivalence of categories obtained is the identity functor.

Let B be a coalgebra over k and let ! be the forgetful functor ComodB ! Veck . The
discussion in Example 2.15 shows that B D lim

�!
End.!jhXi/_. We deduce, as in (2.9), that

every functor ComodB!ComodB 0 carrying the forgetful functor into the forgetful functor
arises from a unique homomorphism B! B 0.

Again, letB be a coalgebra over k. A homomorphism uWB˝kB!B defines a functor

�uWComodB �ComodB ! ComodB

sending .X;Y / to X˝k Y with the B-comodule structure

X˝Y
�X˝�Y
�����!X˝B˝Y ˝B

1˝u
���!X˝Y ˝B:
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PROPOSITION 2.16. The map u 7! �u defines a one-to-one correspondence between the
set of homomorphisms B ˝k B ! B and the set of functors �WComodB �ComodB !
ComodB such that �.X;Y / D X ˝k Y as k-vector spaces. The natural associativity and
commutativity constraints on Veck induce similar contraints on .ComodB ;�u/ if and only
if the multiplication defined by u on B is associative and commutative; there is an identity
object in .ComodB ;�u/ with underlying vector space k if and only if B has an identity
element.

PROOF. The pair .ComodB �ComodB ;!˝!/, with .!˝!/.X ˝ Y / D !.X/˝!.Y /
(as a k-vector space), satisfies the conditions of (2.14), and lim

�!
End.!˝!jh.X;Y /i/_ D

B ˝B . Thus the first statement of the proposition follows from (2.15). The remaining
statements are easy. 2

Let .C;!/ and B be as in (2.14) except now assume that C is a tensor category and !
is a tensor functor. The tensor structure on C induces a similar structure on ComodB , and
hence, because of (2.16), the structure of an associative commutative k-algebra with identity
element on B . Thus B lacks only a coinverse map S to be a bialgebra, and G D SpecB is
an affine monoid scheme. Using (2.15) we find that, for any k-algebra R,

End.!/.R/ def
D End.�R ı!/D lim

 �
Homk-linear.BX ;R/D Homk-linear.B;R/.

An element � 2 Homk-linear.BX ;R/ corresponds to an element of End.!/.R/ commuting
with the tensor structure if and only if � is a k-algebra homomorphism; thus

End˝.!/.R/D Homk-algebra.B;R/DG.R/:

We have shown that, if in the statement of (2.11) the rigidity condition is omitted, then one
can conclude that End˝.!/ is representable by an affine monoid scheme G D SpecB and
! defines an equivalence of tensor categories

C! ComodB ! Repk.G/.

If we now assume that .C;˝/ is rigid, then (1.13) shows that End˝.!/DAut˝.!/, and the
theorem follows.

REMARK 2.17. Let .C;!/ be .Repk.G/;!
G/. On following through the proof of (2.11)

in this case one recovers (2.8): Aut˝.!G/ is represented by G.

REMARK 2.18. Let .C;˝;�; ;F / satisfy the conditions of (1.20). Then certainly .C;˝;�; /
is a tensor category, and the proof of (2.11) shows that F defines an equivalence of tensor
categories C! Repk.G/ where G is the affine monoid scheme representing End˝

k
.!/.

Thus, we may assume CD Repk.G/. Let U be as in (d). Because it is an identity object,
!U is isomorphic to k with the trivial action of G (i.e., each element of G acts as the iden-
tity on k; cf. 1.3b). Let � 2 G.R/. If L in Repk.G/ has dimension 1, then �LWR˝L!
R˝L is invertible, as follows from the existence of a G-isomorphism L˝L�1! U . It
follows that �X is invertible for all X in Repk.G/, because

det.�X /
def
D

^d
�X D �Vd X ; d D dimX;

is invertible. Thus, G is an affine group scheme.
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DEFINITION 2.19. A rigid abelian tensor category C with End.11/ D k is a neutral Tan-
nakian category over k if it admits an exact faithful k-linear tensor functor !WC! Veck .
Any such functor is said to be a fibre functor for C.

Thus (2.11) shows that every neutral Tannakian category is equivalent (in possibly many
different ways) to the category of finite-dimensional representations of an affine group
scheme.

Properties of G and of Rep.G/

In view of the previous theorems, it is natural to ask how properties of G are reflected in
Repk.G/.

PROPOSITION 2.20. Let G be an affine group scheme over k.
(a) G is finite if and only if there exists an object X of Repk.G/ such that every object

of Repk.G/ is isomorphic to a subquotient of Xn for some n� 0.
(b) G is algebraic if and only if Repk.G/ has a tensor generator X .11

PROOF. (a) If G is finite, then the regular representation X of G is finite-dimensional and
has the required property. Conversely if, with the notations of (2.11), Repk.G/D hXi, then
G D SpecB where B is the linear dual of the finite k-algebra AX .

(b) If G is algebraic, then it has a finite-dimensional faithful representation X (see 2.5),
and one shows as in Deligne 1982, 3.1a, that X ˚X_ is a tensor generator for Repk.G/.
Conversely, if X is a tensor generator for Repk.G/, then it is a faithful representation of
G. 2

PROPOSITION 2.21. Let f WG!G0 be a homomorphism of affine group schemes over k,
and let !f be the corresponding functor Repk.G

0/! Repk.G/.
(a) f is faithfully flat if and only if !f is fully faithful and every subobject of !f .X 0/,

for X 0 2 ob.Repk.G
0//, is isomorphic to the image of a subobject of X 0.

(b) f is a closed immersion if and only if every object of Repk.G/ is isomorphic to a
subquotient of an object of the form of !f .X 0/, X 0 2 ob.Repk.G

0//.

PROOF. (a) If G
f
! G0 is faithfully flat, and therefore an epimorphism, then Repk.G

0/

can be identified with the subcategory of Repk.G/ of representations G ! GL.V / fac-
toring through G0. It is therefore obvious that !f has the stated properties. Conversely,
if !f is fully faithful, it defines an equivalence of Repk.G

0/ with a full subcategory of
Repk.G/, and the second condition shows that, for X 0 2 ob.Repk.G

0//, hX 0i is equivalent
to h!f .X 0/i. Let G D SpecB and G0 D SpecB 0; then (2.15) shows that

B 0 D lim
�!

End.!0jhX 0i/_ D lim
�!

End.!jh!f .X 0/i/_ � lim
�!

End.!jhXi/_ D B;

and B 0!B being injective implies that G!G0 is faithfully flat (Waterhouse 1979, 14.1).
(b) Let C be the strictly full subcategory of Repk.G/ whose objects are isomorphic to

subquotients of objects of the form of !f .X 0/. The functors

Repk.G
0/! C! Repk.G/

11An object X of Repk.G/ is a tensor generator if every object of Repk.G/ is isomorphic to a subquotient
of P.X;X_/ for some P 2 NŒt; s�.
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correspond (see 2.14), 2.15) to homomorphisms of k-coalgebras

B 0! B 00! B

where G D SpecB and G0 D SpecB 0. An argument as in the above above proof shows that
B 00!B is injective. Moreover, forX 0 2 ob.Repk.G

0//, End.!jh!f .X/i/!End.!0jhX 0i/
is injective, and so B 0! B 00 is surjective. If f is a closed immersion, then B 0! B is sur-
jective and it follows that B 00

�
! B , and C D Repk.G/. Conversely, if C D Repk.G/,

B 00 D B and B 0! B is surjective. 2

COROLLARY 2.22. Assume that k has characteristic zero. ThenG is connected if and only
if, for every representation X of G on which G acts non-trivially, hXi is not stable under
˝.12

PROOF. The group G is connected if and only if there is no non-trivial epimorphism G!

G0 with G0 finite. According to (2.21a) this is equivalent to Repk.G/ having no non-trivial
subcategory of the type described in (2.20a). 2

PROPOSITION 2.23. Let G be a connected affine group scheme over a field k of charac-
teristic zero. The category Repk.G/ is semisimple if and only if G is pro-reductive (i.e., a
projective limit of reductive groups).

This will proved as a consequence of a series of lemmas (for another exposition of the
proof, see Milne 2017, 22.42). As every finite-dimensional representation G ! GLV of
G factors through an algebraic quotient of G, we can assume that G itself is an algebraic
group. In the lemmas, G is assumed to be connected.

LEMMA 2.24. Let X be a representation of G; a subspace Y �X is stable under G if and
only if it is stable under Lie.G/.

PROOF. Standard. 2

LEMMA 2.25. Let G be an affine group scheme over a field k of characteristic zero, and
let Nk be an algebraic closure of k. Then Repk.G/ is semisimple if and only if Rep Nk.G Nk/ is
semisimple.

PROOF. Let U.G/ be the universal enveloping algebra of Lie.G/, and let X be a finite-
dimensional representation of G. The last lemma shows that X is semisimple as a repre-
sentation of G if and only if it is semisimple as a representation of Lie.G/, or of U.G/. But
X is a semisimple U.G/-module if and only if Nk˝X is a semisimple Nk˝U.G/-module
(Bourbaki Algèbre, VIII, 13.4). Since Nk˝U.G/ D U.G Nk/, this shows that Repk.G/ is
semisimple then so is Rep Nk.G Nk/. For the converse, let NX be an object of Rep Nk.G Nk/. There
is a finite extension k0 of k and a representation X 0 of Gk0 over k0 giving NX by extension
of scalars. When we regard X 0 as a vector space over k, we obtain a k-representation X of
G. By assumption, X is semisimple and, as was observed above, this implies that Nk˝k X
is semisimple. Since NX is a quotient of Nk˝kX , NX is semisimple. 2

12Recall that hXi is the strictly full subcategory of Repk.G/ whose objects are those isomorphic to a sub-
quotient of Xn for some n 2 N.
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LEMMA 2.26. (Weyl). Let g be a semisimple Lie algebra over an algebraically closed field
k of characteristic zero. Every finite-dimensional representation of g is semisimple.

PROOF. For an algebraic proof, see, for example, Humphreys 1972, 6.3. Weyl’s original
proof was as follows: we can assume that k DC; let g0 be a compact real form of g, and let
G0 be a connected simply-connected real Lie group with Lie algebra L0; as G0 is compact,
every finite-dimensional representation .V;r/ of it carries a g0-invariant positive-definite
form, namely, hx;yi0 D

R
G0
hx;yidg where h ; i is any positive-definite form on V , and

therefore is semisimple; thus every finite-dimensional (real or complex) representation of
G0 is semisimple, but, for any complex vector space V , the restriction map is an isomor-
phism

Hom.G;GLV /' Hom.G0;GLV /,

and so every complex representation of G is semisimple. 2

For the remainder of the proof, we assume that k is algebraically closed.

LEMMA 2.27. Let N be a normal closed subgroup of the affine group scheme G. If .X;�/
is a semisimple representation of G, then .X;�jN/ is a semisimple representation of N .

PROOF. We can assume that X is a simple G-module. Let Y be a nonzero simple N -
submodule ofX . For any g 2G.k/, gY is anN -module and it is simple because g 7! g�1S

maps N -submodules of gY to N -submodules of Y . The sum
P
gY , g 2G.k/, is G-stable

and nonzero, and therefore equals X . Thus X , being a sum of simple N -submodules, is
semisimple. 2

We now prove the proposition. If G is reductive, then G D Z �G0 where Z is the
centre of G and G0 is the derived subgroup of G. Let �WG! GLX be a finite-dimensional
representation of G. As Z is a torus, �jZ is diagonalizable: X D

L
i Xi as a Z-module,

where each element z of Z acts on Xi as a scalar �i .z/. Each Xi is G0-stable and, as G0 is
semisimple, is a direct sum of simple G0-modules. It is now clear that X is semisimple as a
G-module.

Conversely, assume that Repk.G/ is semisimple and choose a faithful representation X
of G. Let N be the unipotent radical of G. Lemma 2.27 shows that X is semisimple as
an N -module: X D

L
i Xi where each Xi is a simple N -module. As N is solvable, the

Lie-Kolchin theorem shows that each Xi has dimension one, and as N is unipotent, it has
a fixed vector in each Xi . Therefore N acts trivially on each Xi , and on X , and, as X is
faithful, this shows that N D f1g.

REMARK 2.28. The proposition can be strengthened as follows: assume that k has charac-
teristic zero; then the identity component Gı of G is pro-reductive if and only if Repk.G/
is semisimple.

To prove this, we have to show that the category Repk.G/ is semisimple if and only if
Repk.G

ı/ is semisimple. As Gı is a closed normal subgroup of G, the necessity follows
from (2.27). For the sufficiency, let X be a representation of G. After replacing G with its
image in GLX , we may assume that G is algebraic. Let Y be a G-stable subspace of X . By
assumption, there is a Gı-equivariant map pWX ! Y such that pjY D id. Define

qW Nk˝X ! Nk˝Y; q D
1

n

X
g

gY pg
�1
X
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where nD .G. Nk/WGı. Nk// and g runs over a set of coset representatives for Gı. Nk/ in G. Nk/.
One checks easily that q has the following properties:

(a) it is independent of the choice of the coset representatives;
(b) for all � 2 Gal. Nk=k/, �.q/D q;
(c) for all y 2 Nk˝Y , q.y/D q;
(d) for all g 2G. Nk/, gY �q D q �gX :

Thus q is defined over k, restricts to the identity map on Y , and is G-equivariant.

REMARK 2.29. When, as in the above remark, Repk.G/ is semisimple, the second con-
dition in (2.21a) is superfluous; thus f WG! G0 is faithfully flat if and only if !f is fully
faithful.

Examples
2.30. (Graded vector spaces) Let C be the category whose objects are families .V n/n2Z

of vector spaces over k with finite-dimensional sum V D
L
V n. There is an obvious rigid

tensor structure on C for which End.11/D k and !W.V n/ 7!
L
V n is a fibre functor. Thus,

according to (2.11), there is an equivalence of tensor categories C! Repk.G/ for some
affine k-group scheme G. This equivalence is easy to describe: take G D Gm and make
.V n/ correspond to the representation of Gm on V for which Gm acts on V n through the
character � 7! �n.

2.31. A real Hodge structure is a finite-dimensional vector space V over R together with
a decomposition

V ˝CD
M

p;q
V p;q

such that V p;qand V q;p are conjugate complex subspaces of V ˝C. There is an obvious
rigid tensor structure on the category HodR of real Hodge structures, and

!W.V;.V p;q// V

is a fibre functor. The group corresponding to HodR and ! is the real algebraic group S
obtained from Gm by restriction of scalars from C to R: SDResC=RGm.13 The real Hodge
structure .V;.V p;q// corresponds to the representation of S on V such that an element
� 2 S.R/ D C� acts on V p;q as ��p N��q . We can write V D

L
V n where V n˝C DL

pCqDnV
p;q . The functor .V;.V p;q// 7! .V n/ from HodR to the category of graded

real vector spaces corresponds to a homomorphism Gm! S which, on real points, is t 7!
t�1WR�! C�:

2.32. The preceding examples have a common generalization. Let Nk be a separable alge-
braic closure of k, and let � D Gal. Nk=k/. Recall that an algebraic group G over k is of
multiplicative type every representation of G becomes diagonalizable over Nk. In character-
istic zero, this is equivalent to the identity component of G being a torus. The character
group X.G/ def

DHom.G Nk;Gm/ of such a G is a finitely generated abelian group on which �
acts continuously. LetM DX.G/, and let k0 � Nk be a Galois extension of k over which all
elements of M are defined. For any finite-dimensional representation V of G,

V ˝k k
0
D

M
m2M

V m; V m
def
D fv 2 V ˝k k

0
j gv Dm.g/v all g 2G.k/g:

13This is often called the Deligne torus.
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A finite-dimensional vector space V over k together with a decomposition k0˝V D
L
m2M V m

arises from a representation of G if and only if V �.m/ D �V m for all m 2M and � 2 � .
Thus an object of Repk.G/ can be identified with a finite-dimensional vector space V over
k together with an M -grading on V ˝k0 that is compatible with the action of � .

2.33. (Tannakian duality) Let K be a topological group. The category RepR.K/ of con-
tinuous representations of K on finite-dimensional real vector spaces is, in a natural way, a
neutral Tannakian category with the forgetful functor as fibre functor. There is therefore a
real affine algebraic group QK called the real algebraic envelope of K, for which there ex-
ists an equivalence RepR.K/! RepR. QK/. This equivalence arises from a homomorphism
K! QK.R/, which is an isomorphism if K is compact.14

In general, a real algebraic group G is said to be compact if G.R/ is compact and
the natural functor RepR.G.R//! RepR.G/ is an equivalence. The second condition is
equivalent to each connected component of G.C/ containing a real point (or to G.R/ being
Zariski dense in G). We note for reference that Deligne 1972, 2.5, shows that a subgroup
of a compact real group is compact.

2.34. (The true fundamental group.) Recall that a vector bundle E on a curve C is semi-
stable if for every sub-bundle E 0 �E,

deg.E 0/
rank.E 0/

�
deg.E/
rank.E/

.

Let X be a complete connected reduced k-scheme, where k is assumed to be perfect. A
vector bundle E on X will be said to be semi-stable if for every nonconstant morphism
f WC ! X with C a projective smooth connected curve, f �E is semi-stable of degree
zero. Such a bundle E is finite if there exist polynomials g;h 2 NŒt �, g ¤ h, such that
g.E/ � h.E/. Let C denote the category of semi-stable vector bundles on X isomorphic
to a subquotient of a finite vector bundle. If X has a k-rational point x, then C is a neutral
Tannakian category over k with fibre functor !WE Ex . The affine group scheme attached
to .C;!/ is a pro-finite group scheme over k, called the true fundamental group �1.X;x/
of X , which classifies all G-coverings of X with G a finite group scheme over k. In
particular, the largest pro-étale quotient of �1.X;x/ classifies the finite étale coverings of
X together with a k-point lying over x; it coincides with the usual étale fundamental group
of X when k D Nk. See Nori 1976.

2.35. LetK be a field of characteristic zero, complete with respect to a discrete valuation,
whose residue field is algebraically closed of characteristic p¤ 0. The Hodge-Tate modules
for K form a neutral Tannakian category over Qp (see Serre 1979).

3. Fibre functors; the general notion of a Tannakian
category

Throughout this section, k denotes a field.

14See �5 of Serre, Jean-Pierre. Gèbres. Enseign. Math. (2) 39 (1993), no. 1-2, 33–85. For the original
Tannakian duality, see Tannaka, Tadao, Über den Dualitätssatz der nichtkommutativen topologischen Gruppen.
Tohoku Math. J. 45, 1-12 (1938).
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Fibre Functors
Let G be an affine group scheme over k and U D Spec.R/ an affine k-scheme. A G-torsor
over U (for the fpqc topology) is an affine scheme T , faithfully flat over U , together with a
morphism T �U G! T such that

.t;g/ 7! .t; tg/WT �U G! T �U T

is an isomorphism. Such a scheme T is determined by its points functor, hT D .R0 T .R0//.

3.1. A non-vacuous set-valued functor h of R-algebras equipped with a functorial pairing
h.R0/�G.R0/! h.R0/ arises from a G-torsor if,

(a) for each R-algebra R0 such that h.R0/ is non-empty, G.R0/ acts simply transitively
on h.R0/, and

(b) h is representable by an affine scheme faithfully flat over U .

Descent theory shows that (3.1b) can be replaced by the condition that h be a sheaf
for the fpqc topology on U (see Waterhouse 1979, 18.4). There is an obvious notion of a
morphism of G-torsors.

Assume now that C is a k-linear abelian tensor category. A fibre functor on C with
values in a k-algebra R is a k-linear exact faithful tensor functor �WC!ModR that takes
values in the subcategory ProjR of ModR. Assume now that C is a neutral Tannakian
category over k. There then exists a fibre functor ! with values in k and we proved in
the last section that if we let G D Aut˝.!/, then ! defines an equivalence C! Repk.G/.
For any fibre functor � with values in R, composition defines a pairing

Hom˝.!;�/�Aut˝.!/! Hom˝.!;�/

of functors of R-algebras. Proposition 1.13 shows that Hom˝.!;�/ D Isom˝.!;�/, and
therefore that Hom˝.!;�/ satisfies (3.1a).

THEOREM 3.2. Let C be a neutral Tannakian category over k:

(a) For any fibre functor � on C with values in R, Hom˝.!;�/ is representable by an
affine scheme faithfully flat over SpecR; it is therefore a G-torsor.

(b) The functor � Hom˝.!;�/ determines an equivalence between the category of
fibre functors on C with values in R and the category of G-torsors over R.

PROOF. Let X 2 ob.C/, and, with the notations of the proof of (2.11), define

AX � End.!X/; AX D
\
Y

.!Y W!Y /; Y �Xn;

PX � End.!X;X/; PX D
\
Y

.Y W!Y /; Y �Xn:

Then !.PX / D AX and PX 2 ob.hXi/. For any R-algebra R0, Hom.!jhXi;�jhXi/.R0/
is the subspace of Hom.!.PX /˝k R0;�.PX /˝R R0/ of maps respecting all Y � Xn; it
therefore equals �.PX /˝R0. Thus

Hom.!jhXi;�jhXi/.R0/
'
�! HomR-lin.�.P

_
X /;R

0/:
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Let Q be the ind-object .P_X /X , and let B D lim
�!

A_X . As we saw in the last section, the
tensor structure on C defines an algebra structure on B; it also defines a ring structure onQ
(i.e., a mapQ˝Q!Q in Ind.C/) making !.Q/!B into an isomorphism of k-algebras.
We have

Hom.!;�/.R0/D lim
 �

Hom.!jhXi;�jhXi/.R0/

D lim
 �

HomR-lin.�.P
_
X /;R

0/

D HomR-lin.�.Q/;R/

where �.Q/ def
D lim
�!

�.P_X /. Under this correspondence,

Hom˝.!;�/.R0/D HomR-alg.�.Q/;R
0/;

and so Hom˝.!;�/ is represnted by �.Q/. By definition, �.P_X / is a projective R-module,
and so �.Q/D lim

�!
�.P_X / is flat over R. For each X , there is a surjection PX � 11, and the

exact sequence
0! 11! P_X ! P_X=11! 0

gives rise to an exact sequence

0! �.11/! �.P_X /! �.P_X=11/! 0.

As �.11/ D R and �.P_X=11/ is flat, this shows that �.P_X / is a faithfully flat R-module.
Hence �.Q/ is faithfully flat over R, which completes the proof that Hom˝.!;�/ is a G-
torsor.

To show that � Hom˝.!;�/ is an equivalence, we construct a quasi-inverse. Let T
be a G-torsor over R. For a fixed X , define R0  �T .X/.R

0/ to be the sheaf associated
with

R0 .!.X/˝R0/�T .R0/=G.R0/:

Then X  �T .X/ is a fibre functor on C with values in R. 2

REMARK 3.3. (a) Define

AX � Hom.X;X/; AX D
\
.Y WY /; Y �Xn.

Then AX is a ring in C such that !.AX / D AX (as k-algebras). Let B be the ind-object
.A_X /. Then

End˝.!/D Spec!.B/DG

End˝.�/D Spec�.B/:

(b) The proof of (3.2) can be made more concrete (but less canonical) by using (2.11) to
replace .C;!/ with .Repk.G/;!

G/.

REMARK 3.4. The situation described in the theorem is analogous to the following. Let X
be a connected topological space, and let C be the category of locally constant sheaves of Q-
vector spaces onX . For any x 2X , there is a fibre functor !x WC!VecQ, and !x defines an
equivalence of categories C! RepQ.�1.X;x//. Let ˘x;y be the set of homotopy classes
of paths from x to y; then ˘x;y ' Isom.!x;!y/, and ˘x;y is a �1.X;x/-torsor.
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QUESTION 3.5. Let .C;˝/ be a rigid abelian tensor category whose objects are of finite
length and which is such that End.11/D k and ˝ is exact. (Thus .C;˝/ lacks only a fibre
functor with values in k to be a neutral Tannakian category). As in (3.3) one can define

AX � Hom.X;X/; AX D
\
.Y WY /; Y �Xn

and hence obtain a bialgebra B D “ lim
�!

”A_X in Ind.C/ which can be thought of as defining
an affine group scheme G in Ind.C/. Is it true that, for X � X 0, the morphism AX 0 ! AX
is an epimorphism?

For anyX in C, there is a morphismX
�
�!X˝B , which can be regarded as a represen-

tation ofG. DefineXG , the subobject fixed byG, to be the largest subobject ofX such that
XG!X˝BX factors throughXG˝11 ,!X˝BX . Is it true that Hom.11;X/˝k 11!XG

is an isomorphism?
If for allX in C there exists an integerN � 0 such that

VN
X D 0, does C admit a fibre

functor (and so is Tannakian in the sense of Definition 3.7 below)?
Assume that k has characteristic zero. Then the answer to the last question is positive

(Deligne 1990, 7.1); in particular, .C;˝/ admits a fibre functor with values in a nonzero
k-algebra R. For such a fibre functor !, G.!/ def

D Spec.!.B// is the affine group scheme
Aut˝.!/ (Deligne 1989, �6), and it follows that the answer to the first two questions is also
positive.15

The general notion of a Tannakian category
In this subsection, we need to use some terminology from non-abelian 2-cohomology, for
which we refer the reader to the Appendix. In particular, AffS or Affk denotes the category of
affine schemes over S D Spec.k/ and PROJ is the stack over AffS such that PROJU D ProjR
forRD � .U;OU /. For a gerbe G over Affk (for the fpqc topology), we let Repk.G/ denote
the category of cartesian functors G!PROJ. Thus, an object � of Repk.G/ determines
(and is determined by) functors �RWGR! ProjR, one for each k-algebra R, and functorial
isomorphisms

�R0.g
�Q/$ �R.Q/˝RR

0

defined whenever gWR! R0 is a homomorphism of k-algebras and Q 2 ob.GR/. There is
an obvious rigid tensor structure on Repk.G/, and End.11/D k.

EXAMPLE 3.6. Let G be an affine group scheme over k, and let TORS.G/ be the gerbe
over AffS such that TORS.G/U is the category of G-torsors over U . Let Gr be G regarded
as a right G-torsor, and let ˚ be an object of Repk.TORS.G//. The isomorphism G

'
�!

Aut.Gr/ defines a representation of G on the vector space ˚k.Gr/, and it is not difficult to
show that ˚  ˚k.Gr/ extends to an equivalence of categories

Repk.TORS.G//! Repk.G/:

Let C be a rigid abelian tensor category with End.11/ D k. For any k-algebra R, the
fibre functors on C with values in R form a fibred category FIB.C/R over Affk . Descent
theory for projective modules shows that FIB.C/ is a stack, and (1.13) shows that its fibres
are groupoids. There is a canonical k-linear tensor functor C! Repk.FIB.C // attaching
to X 2 ob.C/ the family of functors ! 7! !.X/WFIB.C/R! ProjR:

15This paragraph has been added, and the next subsection rewritten, to take account of Deligne 1990.
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DEFINITION 3.7. A rigid abelian tensor category C with End.11/D k is a Tannakian cat-
egory over k if it admits a fibre functor with values in some nonzero k-algebra.

EXAMPLE 3.8. A Tannakian category C over k is said to be neutral if it admits a fibre
functor with values in k.16 Clearly this agrees with the definition in (2.19). Let C be a
neutral Tannakian category over k. Theorem 3.2 shows that the choice of a fibre functor !
with values in k determines an equivalence of fibred categories FIB.C/!TORS.G/ where
G represents Aut˝.!/. This shows that FIB.C/ is an affine gerbe, and the commutative
diagram of functors

C Repk.FIB.C//

Repk.G/ Repk.TORS.G//

!� �

�

shows that C! Repk.FIB.C// is an equivalence of categories.

The following fundamental theorem, which was not available when the original article
was written, justifies the above definition of Tannakian category.

THEOREM 3.9. Let C be a Tannakian category over k. Then FIB.C/ is an affine gerbe and
the functor C! Repk.FIB.C// is an equivalence of categories.

PROOF. Deligne 1990, 1.12, 1.13. 2

To say that FIB.C/ is a gerbe means that any two fibre functors are locally isomorphic
for the fpqc topology. To say that it is affine means that, for any fibre functor with values in
a k-algebra R, Aut˝.!/ is represented by an affine group scheme over R.

REMARK 3.10. A Tannakian category C over k is said to be algebraic if FIB.C/ is an
algebraic gerbe. There then exists a finite field extension k0 of k and a fibre functor !
with values in k0 (Appendix, p. 70, Proposition), and the algebraicity of C means that
G D Aut˝.!/ is an algebraic group over k0. As in the neutral case (2.20), a Tannakian
category is algebraic if and only if it has a tensor generator. Consequently, every Tannakian
category is a filtered union of algebraic Tannakian categories.

Tannakian categories neutralized by a finite extension
Let C be a k-linear category and A a commutative k-algebra. An A-module in C is a pair
.X;˛X / withX an object of C and ˛X a homomorphism A! End.X/. For example, an A-
module in Veck0 , where k0� k, is simply anA˝k k0-module that is of finite dimension over
k0. With an obvious notion of morphism, the A-modules in C form an A-linear category
C.A/. If C is abelian, then so also is C.A/, and if C has a tensor structure and its objects
have finite length, then we define .X;˛X /˝ .Y;˛Y / to be the A-module in C with object
the largest quotient of X˝Y to which ˛X .a/˝ id and id˝˛Y .a/ agree for all a 2 A.

Now let C be a Tannakian category over k, and let k0 be a finite field extension of k. As
the tensor operation on C commutes with direct limits (1.16) , it extends to Ind.C/, which
is therefore an abelian tensor category. The functor C! Ind.C/ defines an equivalence

16Every Tannakian category over an algebraically closed field is neutral (letter of Deligne, November 30,
2011).
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between C and the strictly full subcategory Ce of Ind.C/ of essentially constant ind-objects.
In Ce it is possible to define external tensor products with objects of Veck (cf. the proof of
2.11) and hence a functor

X  i.X/D .k0˝kX;a
0
7! a0˝ id/WCe! Ce.k0/:

This functor is left adjoint to

.X;˛/ j.X;˛/DX WCe.k0/! Ce

and has the property that k0˝k Hom.X;Y /
'
�! Hom.i.X/; i.Y //. Let ! be a fibre functor

on Ce (or C) with values in k0. For any .X;˛/ 2 ob.Ce
.k0/
/, .!.X/;!.˛// is a k0-module in

Veck0 , i.e., it is a k0˝k k0-module. If we define

!0.X;˛/D k0˝k0˝k0 !.X/ (3.10.1)

then
Ce Ce

.k0/

Veck0 :

! !0

commutes up to a canonical isomorphism.

PROPOSITION 3.11. Let C be a Tannakian category over k and let ! be a fibre functor on C
with values in a finite field extension k0 of k; extend !0 to C.k0/ using the formula (3.10.1);
then !0 defines an equivalence of tensor categories C.k0/!Repk0.G/whereGDAut˝.!/.
In particular, !0 is exact.

PROOF. One has simply to compose the following functors:

C.k0/
�
�! Repk.G/.k0/

arising from the equivalence C
�
�! Repk.G/, GDFIB.C/), in (3.9);

Repk.G/.k0/
�
�! Repk0.G=k

0/

where G=k0 denotes the restriction of G to Affk0 (the functor sends .�;˛/2 ob.Repk.G/.k0//
to �0 where, for any k0-algebra R and Q 2 GR, �0R.Q/DR˝k0˝F �R.Q/;

Repk0.G=k
0/
�
�! Repk0.TORS.G//

arising from TORS.G/
�
�!G=k0I

Repk0.TORS.G//
�
�! Repk0.G/

(see 3.6). 2

REMARK 3.12. Let C D Repk.G/ and let k0 be a finite extension of k. Then C.k0/ D
Repk0.G/ and i WC! C.k0/ is X  k0˝kX . Let ! be the fibre functor

X  k0˝kX WRepk.G/! Veck0 :

ThenGk0 DAut˝.!/ and the equivalence C.k0/ �!Repk0.Gk0/ defined by the proposition
is

X  k0˝k0˝k0 X WRepk0.G/! Repk0.Gk0/:
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DESCENT OF TANNAKIAN CATEGORIES

Let k0=k be a finite Galois extension with Galois group � , and let C0 be a Tannakian
category over k0. A descent datum on C0 relative to k0=k is

3.13. (a) a family .ˇ /2� of equivalences of tensor categories ˇ WC0 ! C0, ˇ being
semi-linear relative to  , together with

(b) a family .� 0; / of isomorphisms of tensor functors � 0; Wˇ 0
�
�! ˇ 0 ıˇ such

that

ˇ 00 0 .X/ ˇ 00.ˇ 0 .X//

ˇ 00 0.ˇ .X// ˇ 00.ˇ 0.ˇ .X///

�00;0 .X/

�000; .X/ ˇ00 .�0 .X//

�000 .ˇ .X//

commutes for all X 2 ob.C/:

A Tannakian category C over k gives rise to a Tannakian category C0 D C.k0/ over
k0 together with a descent datum for which ˇ .X;˛X / D .X;˛X ı �1/. Conversely, a
Tannakian category C0 over k0 together with a descent datum relative to k0=k gives rise to
a Tannakian category C over k whose objects are pairs .X;.a //, where X 2 ob.C0/ and
.a WX ! ˇ .X//2� is such that .� 0; /X ıa 0 D ˇ 0.a /ıa 0 , and whose morphisms
are morphisms in C0 commuting with the a . These two operations are quasi-inverse, so
that to give a Tannakian category over k (up to a tensor equivalence, unique up to a unique
isomorphism) is the same as giving a Tannakian category over k0 together with a descent
datum relative to k0=k (Saavedra Rivano 1972, III, 1.2). On combining this statement with
(3.11) we see that to give a Tannakian category over k together with a fibre functor with
values in k0 is the same as giving an affine group scheme G over k0 together with a descent
datum on the Tannakian category Repk0.G/.

QUESTIONS

3.14. Let G be an affine gerbe over k. There is a morphism of gerbes

G! FIB.Repk.G// (3.14.1)

which, to an object Q of G over S D SpecR, attaches the fibre functor F  F.Q/ with
values in R. Is (3.14.1) an equivalence of gerbes? If G is algebraic, or if the band of G is
defined by an affine group scheme over k, then it is (Saavedra Rivano 1972, III 3.2.5) but
the general question is open. A positive answer would provide the following classification
of Tannakian categories: the maps C 7!FIB.C/ and G 7! Repk.G/ determine a one-to-one
correspondence between the set of tensor equivalence classes of Tannakian categories over
k and the set of equivalence classes of affine gerbes over k; the affine gerbs banded17 by a
given band B are classified by H 2.S;B/, and H 2.S;B/ is a pseudo-torsor over H 2.S;Z/

where Z is the centre of B .

3.15. Saavedra (1972, III 3.2.1) defines a Tannakian category over k to be a k-linear rigid
abelian tensor category C for which there exists a fibre functor with values in a field k0 � k.

17The original says bound, but banded seems to have become more common.
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He then claims to prove (ibid. 3.2.3.1) that C satisfies Theorem 3.9. This is false. For
example, Veck0 for k0 a field containing k is a Tannakian category over k according to his
definition, but the fibre functors V  �V

def
D V ˝k0;� k

0 for � 2 Aut.k0=k/ are not locally
isomorphic for the fpqc topology on Speck0. There is an error in the proof (ibid. p. 197,
line 7) where it is asserted that “par définition” the objects of GS are locally isomorphic.

At the time the original article was written, Theorem 3.9 had not been proved. The
essential point at the time was the following: let C be a rigid abelian tensor category with
End.11/D k and let ! be a fibre functor with values in a finite field extension k0 of k; is the
functor !0,

X  k0˝k0˝k0 !.X/WC.k0/! Veck0

exact? (See Saavedra Rivano 1972, p. 195; the proof there that !0 is faithful is valid.) The
answer is yes if CD Repk.G/, G an affine group scheme over k, but we know of no proof
simpler than to say that !0 is defined by a G-torsor on k0, and C.k0/ D Repk0.G/.

4. Polarizations
Throughout this section C will be an algebraic Tannakian category over R and C0 will be its
extension to C: C0 D C.C/. Complex conjugation on C is denoted by � or by z 7! Nz.

Tannakian categories over R
4.1. According to (3.13) and the paragraph following it, to give C is the same as giving

the following data:

(a) an algebraic Tannakian category C0 over C;
(b) a semilinear18 tensor functor X  NX WC0! C0I19 and
(c) a functorial tensor isomorphism �X WX !

NNX such that � NX D �X .

An object of C can be identified with an objectX over C0 together with a descent datum (an
isomorphism aWX! NNX such that NaıaD�X /. Note that C0 is automatically neutral (3.10).

EXAMPLE 4.2. Let G be an affine group scheme over C and let � WG ! G be a semi-
linear isomorphism (meaning that f 7! � ı f W� .G;OG/! � .G;OG/ is a semi-linear
isomorphism). Assume that there is given a c 2G.C/ such that

�2 D ad.c/; �.c/D c: (4.2.1)

From .G;�;c/ we can construct data as in (4.1):

(a) define C0 to be RepC.G/;
(b) for any vector space V over C, there is an (essentially) unique vector space NV and

semi-linear isomorphism v 7! NvWV ! NV ; if V is a G-representation, we define a
representation of G on NV by the rule gv D �.g/ Nv;

(c) define �V to be the map cv 7! NNvWV
'
�!

NNV .

18An additive map f WV ! W of C-vector spaces is semilinear if f .zv/ D Nzf .v/ for z 2 C and v 2 V .
An additive functor F WC1! C2 of C-linear categories is semilinear if F.zX /D NzFX , where zX denotes the
action of z 2C onX . A morphism of C-schemes ˛WT ! S is semilinear if f 7! f ı˛W� .S;OS /!� .T;OT /
is semilinear as a map of C-vector spaces.

19so zX D NzX , z 2 C
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Let m 2 G.C/. Then � 0 D � ı ad.m/ and c0 D �.m/cm again satisfiy (4.2.1). The
element m defines an isomorphism of the functor V  NV (rel. to .�;c// with the functor
V 7! NV (rel. to .� 0; c0/) by

mv 7! NvW NV (rel. to .�;c/)! NV (rel. to .� 0; c0/).

This isomorphism carries �V (rel. to .�;c/) to �V (rel. to .� 0; c0/), and hence defines an
equivalence C (rel. to .�;c/) with C (rel. to .� 0; c0/):

PROPOSITION 4.3. Let C be an algebraic Tannakian category over R, and let C0 D C.C/.
Choose a fibre functor ! on C0 with values in C, and let G D Aut˝.!/.

(a) There exists a pair .�;c/ satisfying (4.2.1) and such that under the equivalence C0!
RepC.G/ defined by !, the functor X  NX corresponds to V  NV and !.�X /D �!.X/.

(b) The pair .�;c/ in (a) is uniquely determined up to replacement by a pair .� 0; c0/ with
� 0 D � ı ad.m/ and c0 D �.m/cm, some m 2G.C/.

PROOF. (a) Let N! be the fibre functor X  !. NX/ and let T D Hom˝.!; N!/. According
to (3.2), T is a G-torsor, and the Nullstellensatz shows that it is trivial. The choice of a
trivialization provides us with a functorial isomorphism !.X/! N!.X/ and therefore with
a semi-linear functorial isomorphism �X W!.X/! !. NX/. Define � by the condition that
�.g/ NX D �X ıgX ı�

�1
X for all g 2G.C/, and let c be such that cX D !.�X /�1 ı� NX ı�X .

(b) The choice of a different trivialization of T replaces �X with �X ımX for some
m 2G.C/, � with � ı ad.m/, and c with �.m/cm. 2

Sesquilinear forms

Let C be Tannakian category over R, and let .C0;X 7! NX;�X / be the associated triple
(3.13).

Let .11;e/, eW11˝11
'
�! 11, be an identity object for C0. Then .11; Ne/ is again an identity

object, and the unique isomorphism of identity objects aW.11;e/! .11; Ne/ is a descent datum.
It will be used to identify 11 with 11.

A sesquilinear form on an object X of C0 is a morphism

�WX˝ NX ! 11:

On applying �, we obtain a morphism NX ˝ NNX ! 11, which can be identified (using �X )
with a morphism

N�W NX˝X ! 11.

There are associated with � two morphisms ��, ��WX ! NX_ determined by20

��.x/.y/ D �.x˝y/
��.x/.y/ D N�.y˝x/

(4.3.1)

20Take �� to be the morphism corresponding to � under the canonical isomorphisms

Hom.X˝ NX;11/' Hom.X;Hom. NX;11//D Hom.X; NX_/.
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The form � is said to be nondegenerate if �� (equivalently ��) is an isomorphism. The
parity of a nondegenerate sesquilinear form � is the unique morphism "� WX!X such that

�� D �� ı "� I �.x;y/D N�.y;"�x/ (4.3.2)

Note that
� ı ."�˝ N"�/D �I �."�x; N"�y/D �.x;y/ (4.3.3)

The transpose u� of u 2 End.X/ relative to � is determined by

� ı .u˝ id NX /D � ı .idX˝u
�/I �.ux;y/D �.x;u�y/: (4.3.4)

There are formulas

.uv/� D v�u� ; .idX /� D idX ; .u�/� D "�u"
�1
� ; ."�/

�
D "�1� (4.3.5)

and u 7! u� is a semilinear bijection End.X/! End.X/.
If � is a nondegenerate sesquilinear form onX , then any other nondegenerate sesquilin-

ear form can be written

�˛ D � ı .˛˝ id/; �˛.x;y/D �.˛x;y/D �.x;˛�y/ (4.3.6)

for a uniquely determined automorphism ˛ of X . There are the formulas

u�˛ D .˛u˛�1/� ; "�˛ D .˛
�/�1"�˛: (4.3.7)

Therefore, when "� is in the centre of End.X/, �˛ has the same parity as � if and only if
˛� D ˛.

REMARK 4.4. There is also a notion of a bilinear form on an objectX of a tensor category:
it is a morphism X˝X ! 11. Most of the notions associated with bilinear forms on vector
spaces make sense in the context of Tannakian categories; see Saavedra Rivano 1972, V
2.1.

Weil forms
A nondegenerate sesquilinear form � on X is a Weil form if its parity "� is in the centre of
End.X/ and if for all nonzero u in End.X/, TrX .uıu�/ > 0.

PROPOSITION 4.5. Let � be a Weil form on X .
(a) The map u 7! u� is an involution of End.X/ inducing complex conjugation on CD

C � idX , and .u;v/ 7! TrX .uv�/ is a positive-definite Hermitian form on End.X/.
(b) End.X/ is a semisimple C-algebra.
(c) Any commutative sub-R-algebraA of End.X/ composed of symmetric elements (i.e.,

elements such that u� D u) is a product of copies of R.

PROOF. (a) is obvious.
(b) Let I be a nilpotent ideal in End.X/. We have to show that I D 0. Suppose on the

contrary that there is a u¤ 0 in I . Then v D uu� 2 I and is nonzero because TrX .v/ > 0.
As v D v� , we have that TrX .v2/ > 0, TrX .v4/ > 0,. . . contradicting the nilpotence of I .

(c) The argument used in (b) shows that A is semisimple and is therefore a product of
fields. Moreover, for any u 2 A, TrX .u2/D TrX .uu�/ > 0. If C occurs as a factor of A,
then TrX jC is a multiple of the identity map, which contradicts TrX .u2/ > 0 . 2
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Two Weil forms, � on X and  on Y , are said to be compatible if the sesquilinear form
�˚ on X˚Y is again a Weil form.

Let � and be Weil forms onX and Y respectively. Then � and define isomorphisms

Hom.X;Y /! Hom.X˝Y;11/ Hom.Y;X/:

Let u 2 Hom.X;Y /, and let u0 be the corresponding element in Hom.Y;X/. Then � and  
are compatible if and only if, for all u¤ 0, TrY .uıu0/ > 0. In particular, if Hom.X;Y /D 0,
then � and  are automatically compatible.

PROPOSITION 4.6. Let � be a Weil form on X , and let �˛ D � ı .˛˝ idX / for some ˛ 2
Aut.X/.

(a) The form �˛ has the same parity as � if and only if ˛ is symmetric, i.e., ˛� D ˛.
(b) Assume ˛ is symmetric. Then �˛ is a Weil form if and only if ˛ is a square in

RŒ˛�� End.X/.
(c) If �˛ is a Weil form with the same parity as �, then �˛ is compatible with �.
(d) For any Weil form � on X , the map ˛ 7! �˛ defines a one-to-one correspondence

between the set of totally positive symmetric endomorphisms of X and the set of
Weil forms on X that have the same parity as � and are compatible with �.

PROOF. (a) According to (4.3.7), the parity of �˛ is .˛�/�1��˛. As �� is in the centre of
End.X/, this equals �� if and only if ˛� D ˛.

(b) As ˛D ˛� , (4.3.7) and (4.3.5) show that u�˛ D ˛�1 �u� �˛. Thus, �˛ is a Weil form
if and only if

TrX .u �˛�1 �u� �˛/ > 0, all u¤ 0, u 2 End.X/:

If ˛ D ˇ2 with ˇ 2 RŒ˛�, then

TrX .u˛�1u�˛/D TrX ..uˇ�1/ˇ�1u�˛�1/

D TrX .ˇ�1u�˛�1.uˇ�1// (TrX .vw/D TrX .wv/)

D TrX ..ˇuˇ�1/�.ˇ�1uˇ// > 0

for u¤ 0. Conversely, if �˛ is a Weil form, then TrX .u2˛/ > 0 for all u¤ 0 in RŒ˛�, which
implies that ˛ is a square in RŒ˛�.

(c) Let u be a nonzero endomorphism of X . Then u0 D u�˛ , and so � and �˛ are
compatible if and only if TrX .u �u�˛ / > 0 for all u¤ 0, but this is implied by �˛’s being a
Weil form.

(d) According to (4.3.6), every nondegenerate sesquilinear form on X is of the form �˛
for a unique automorphism ˛ of X . Thus, the proposition is an immediate consequence of
the preceding statements. 2

An element of a semisimple R-algebra B of finite degree is said to be totally positive if
the roots of its characteristic polynomial P˛ are all > 0. This condition is equivalent to ˛
being invertible in B and a square in RŒ˛�.

The relation of compatibility on the set of Weil forms on X is obviously reflexive and
symmetric, and the next corollary implies that it is also transitive on any set of Weil forms
on X having a fixed parity.

COROLLARY 4.7. Let � and �0 be compatible Weil forms on X with the same parity, and
let  be a Weil form on Y . If � is compatible with  , then so also is �0.
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PROOF. This follows easily from writing �0 D �˛. 2

EXAMPLE 4.8. Let X be a simple object in C0, so that End.X/D C, and let " 2 End.X/.
If NX is isomorphic to X_, so that there exists a nondegenerate sesquilinear form on X , then
(4.3.6) shows that the sesquilinear forms on X are parametrized by C; moreover, (4.3.7)
shows that if there is a nonzero such form with parity ", then the set of sesquilinear forms
onX with parity " is parametrized by R; finally, (4.6) shows that if there is a Weil form with
parity ", then the set of such forms falls into two compatibility classes, each parametrized
by R>0.

REMARK 4.9. Let X0 be an object in C and let �0 be a nondegenerate bilinear form
�0WX0˝X0! 11. The parity "�0of �0 is defined by the equation

�0.x;y/D �0.y;"�0x/:

The form �0 is said to be a Weil form on X0 if "�0 is in the centre of End.X0/ and if for
all nonzero u 2 End.X0/, TrX0.u ıu

�0/ > 0. Two Weil forms �0 and  0 are said to be
compatible if �0˚ 0 is also a Weil form.

Let X0 correspond to the pair .X;a/ with X 2 ob.C0/. Then �0 defines a bilinear form
� on X , and

 
def
D .X˝ NX

1˝a�1

�����!X˝X
�
�! 11/

is a nondegenerate sesquilinear form on X . If �0 is a Weil form, then  is a Weil form on
X which is compatible with its conjugate N , and every such  arises from a �0; moreover,
" D "�0 .

Polarizations
Let Z be the centre of the band associated with C (see the appendix). Thus Z is a commu-
tative algebraic group over R such that

Z.C/' Centre.Aut˝.!//

for every C-valued fibre functor on C0. Moreover, Z represents Aut˝.idC/:

DEFINITION 4.10. Let " 2 Z.R/ and, for each X 2 ob.C0/, let �.X/ be an equivalence
class (for the relation of compatibility) of Weil forms on X with parity ". Then � is a
(homogeneous) polarization on C if

(a) for all X , N� 2 �.X/ whenever � 2 �. NX/, and
(b) for all X and Y , �˚ 2 �.X˚Y / and �˝ 2 �.X˝Y / whenever � 2 �.X/ and

 2 �.Y /.

We call " the parity of � and say that � is positive for � if � 2�.X/. Thus the conditions
require that N�, �˚ , and �˝ be positive for � whenever � and  are.

PROPOSITION 4.11. Let � be a polarization on C.

(a) The categories C and C0 are semisimple.
(b) If � 2 �.X/ and Y � X , then X D Y ˚Y ? and the restriction �Y of � to Y is in

�.Y /.
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PROOF. (a) Let X be an object of C0and let uWY ,! X be a nonzero simple subobject of
X . Choose � 2 �.Y / and  2 �.X/. Consider

v D

�
0 u

0 0

�
WX˚Y !X˚Y

and let u0WX ! Y be such that

v ˚� D

�
0 0

u0 0

�
:

Then TrY .u0u/D TrY˚X .v ˚� ıv/ > 0, and so u0u is an automorphism w of Y . The map
p D w�1 ıu0 projects X onto Y , which shows that Y is a direct summand of X . We have
shown that X is semisimple.

The same argument, using the bilinear forms (4.9) shows that C is semisimple.
(b) Let Y 0 D Y \ Y ?, where Y ? is the largest subobject of X such that � is zero

on Y ˝ NY ?, and let pWX ! X be the projection of X onto Y 0 (by which we mean that
p.X/� Y 0 and pjY 0 D idY 0). As � is zero on Y 0˝Y 0,

0D � ı .p˝ Np/D � ı .id˝p�p/,

and so p�pD 0. Therefore, TrX .p�p/D 0, and so p, and Y 0, are zero. ThusX D Y ˚Y ?

and � D �Y ˚�?Y . Let �1 2 �.Y / and �2 2 �.Y ?/. Then �1˚�2 is compatible with �,
and this implies that �1 is compatible with �Y . 2

REMARK 4.12. Suppose C is defined by a triple .G;�;c/, as in (4.1), so that C0DRepC.G/.
A sesquilinear form �WX˝ NX! 11 defines a sesquilinear form �0 on X in the usual, vector
space, sense by the formula

�0.x;y/D �.x˝ Ny/; x;y 2X: (4.12.1)

The conditions that � be a G-morphism and have parity " 2Z.R/ become respectively

�0.x;y/ D �0.gx;��1.g/y/; g 2G.C/;
�0.y;x/ D �0.x;"c�1y/:

(4.12.2)

When G acts trivially on X , then the last equation becomes

�0.y;x/D �0.x;y/;

and so �0 is a Hermitian form in the usual sense on X . When X is one-dimensional, �0 is
positive-definite (for otherwise �˝� … �.X/). Now (4.11b) shows that the same is true for
any X on which G acts trivially, and (4.6) shows that f�0 j � 2 �.X/g is the complete set
of positive-definite Hermitian forms on X . In particular, VecR has a unique polarization.

REMARK 4.13. A polarization � on C with parity " defines, for each simple object X of
C0, an orientation of the real line of sesquilinear forms on X with parity " (see 4.8), and �
is obviously determined by this family of orientations. Choose a fibre functor ! for C0, and
choose for each simple object Xi a �i 2 �.Xi /. Then

�.Xi /D fr�i j r 2 R>0g:
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If X is isotypic of type Xi , so that !.X/ D W ˝!.Xi / where Aut˝.!/ acts trivially on
W , then

f!.�/0 j � 2 �.X/g D f ˝!.�i /
0
j  Hermitian  > 0g.

If X D
L
X .i/, where the X .i/ are the isotypic components of X , then

�.X/D
M

�.X .i//:

REMARK 4.14. Let " 2 Z.R/ and, for each X0 2 ob.C/, let �.X0/ be a nonempty com-
patibility class of bilinear Weil forms on X0 with parity " (see 4.9). One says that � is a
homogeneous polarization on C if �0˚ 0 2 �.X˚Y / and �0˝ 0 2 �.X˝Y / when-
ever �0 2 �.X/ and  0 2 �.Y /. As fX j .X;a/ 2 ob.C/g generates C0, the relation between
bilinear and sesquilinear forms noted in (4.9) establishes a one-to-one correspondence be-
tween polarizations in this bilinear sense and in the sesquilinear sense of (4.10).

In the situation of (4.12), a bilinear form �0 on X0 defines a sesquilinear form  0 on
X D C˝X0 (in the usual vector space sense) by the formula:

 0.z1v1;z2v2/D z1 Nz2�0.v1;v2/; v1;v2 2X0; z1;z2 2 C:

Description of the polarizations
Let C be defined by a triple .G;�;c/ satisfying (4.2.1), and let K be a maximal compact
subgroup of G.C/. As all maximal compact subgroups of G.C/ are conjugate (Hochschild
1965, XV, 3.1), there exists an m 2 G.C/ such that ��1.K/D mKm�1. Therefore, after
replacing � with � ıad.m/, we can assume that �.K/DK. Subject to this constraint, .�;c/
is determined up to modification by an element m in the normalizer of K.

Assume that C is polarizable. Then (4.11a) and (2.28) show that Gı is reductive, and
it follows that K is a compact real form of G, i.e., that K has the structure of a compact
real algebraic group G in the sense of (2.33) and KC DG (see Springer 1979, 5.6). Let �K
be the semilinear automorphism of G such that, for g 2G.C/, �K.g/ is the conjugate of g
relative to the real structure onG defined byK; note that �K determinesK. The normalizer
of K is K �Z.C/, and so c 2K �Z.C/.

Fix a polarization � on C with parity ". Let X be an irreducible representation of G,
and let  be a positive-definite K-invariant Hermitian form on X . For any � 2 �.X/, the
associated form �0.x;y/

def
D �.x˝ Ny/ can be expressed

�0.x;y/D  .x;ˇy/

for some ˇ 2 Aut.X/. The equations (4.12.2) can be re-written as

ˇ �gX D �.g/X �ˇ g 2K.R/
ˇ� D ˇ � "X � c

�1
X

(4.14.1)

where ˇ� is the adjoint of ˇ relative to  :

 .ˇx;y/D  .x;ˇ�y/:

As K.R/ is Zariski dense in K.C/, X is also irreducible as a representation of K.R/,
and so the set c.X;�/ of such ˇ is parametrized by R>0. An arbitrary finite-dimensional
representation X of G can be written

X D
M

i
Wi ˝Xi
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where the sum is over the non-isomorphic irreducible representations Xi of G and G acts
trivially on each Wi . Let  0i and  i respectively be K-invariant positive-definite Hermitian
forms on Wi and Xi , and let  D˚ 0i ˝ i . Then for any � 2 �.X/,

�0.x;y/D  .x;ˇy/; ˇ 2 Aut.X/;

where ˇ D˚ˇ0i ˝ˇi with ˇi 2 c.Xi ;�/ and ˇ0i is positive-definite and Hermitian relative
to  0i . We again let c.X;�/ denote the set of ˇ as � runs through �.X/. The condition
(4.10b) that

�.X1/˝�.X2/� �.X1˝X2/

becomes
c.X1;�/˝ c.X2;�/� c.X1˝X2;�/:

LEMMA 4.15. There exists a b 2K with the following properties:

(a) bX 2 c.X;�/ for all irreducible X ;
(b) � D �K ı ad.b/, where �K denotes complex conjugation on G relative to K;
(c) "�1c D �b �b D b2.

PROOF. Let aD "c�1 2G.C/. When X is irreducible, the first equality in (4.14.1) applied
twice shows that

ˇ2 �g �x D �2.g/ �ˇ2 �x D c �g � c�1 �ˇ2 �x

for ˇ 2 c.X;�/, g 2K, and x 2X ; therefore

.c�1ˇ2/gx D g.c�1ˇ2/x;

and so c�1ˇ2 acts as a scalar on X . Hence aˇ2 D "c�1ˇ2 also acts as a scalar. Moreover,
ˇ2aD ˇˇ� (by the second equation in 4.14.1) and so

TrX .aˇ2/D TrX .ˇ2a/ > 0I

we conclude that aXˇ2 2 R>0. It follows that there is a unique ˇ 2 c.X;�/ such that
aX D ˇ

�2, ˇgX D �.g/Xˇ (g 2K), and ˇ� D ˇ�1 (i.e., ˇ is unitary).
For an arbitraryX , we writeX D

L
Wi˝Xi as before, and set ˇD

L
id˝ˇi , where ˇi

is the canonical element of c.Xi ;�/ just defined. We still have aX D ˇ�2, ˇgX D �.g/Xˇ
(g 2 K), and ˇ 2 c.X;�/. Moreover, these conditions characterize ˇ: if ˇ0 2 c.X;�/ has
the same properties, then ˇ0 D

P
i ˝ˇi (this expresses that ˇ0gX D �.g/Xˇ0, g 2 K)

with 2i D 1 (as ˇ02 D a�1X ) and i positive-definite and Hermitian. Hence i D 1.
The conditions are compatible with tensor products, and so the canonical ˇ are com-

patible with tensor products: they therefore define an element b 2 G.C/. As b is uni-
tary on all irreducible representations, it lies in K. The equations ˇ2 D a�1X show that
b2 D a�1 D "�1c. Finally, ˇgX D � .g/X ˇ implies that �.g/D ad.b.g// for all g 2 K;
therefore � ı ad.b/�1 fixes K, and as it has order 2, it must equal �K . 2

THEOREM 4.16. Let C be a Tannakian category over R, and let G D Aut˝.!/ where !
is a fibre functor on C with values in C; let � be a polarization on C with parity ". For
any compact real form K of G, the pair .�K ; "/ satisfies (4.2.1), and the equivalence C0!
RepC.G/ defined by ! carries the descent datum on C0 defined by C into that on RepC.G/
defined by .�K ; "/:

!. NX/D !.X/, !.�X /D �!.X/:
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For any simple X in C0,
f!.�/0 j � 2 �.X/g

is the set of K-invariant positive-definite Hermitian forms on !.X/.

PROOF. Let .C;!/ correspond to the triple .G;�1; c1/ (see 4.3a), and let b 2 K be the
element constructed in the lemma. Then �1 D �K ı ad.b/ and c D " � �b � b D �b � " � b.
Therefore, .�K ; "/ has the same property as .�1; c1/ (see 4.3b), which proves the first as-
sertion. The second assertion follows from the fact that b 2 c.!.X/;�/ for any simple
X . 2

Classification of polarized Tannakian categories
THEOREM 4.17. (a) An algebraic Tannakian category C over R is polarizable if and only
if its band is defined by a compact real algebraic group K.

(b) For any compact real algebraic group K and " 2Z.R/, where Z is the centre of K,
there exists a Tannakian category C over R whose gerbe is banded by the band B.K/ of K
and a polarization � on C with parity ".

(c) Let .C1;�1/ and .C2;�2/ be polarized algebraic Tannakian categories over R with
isomorphic bands B1 and B2. If there exists an isomorphism B2! B1 sending ".�1/ to
".�2/ (as elements ofZ.Bi /.R/), then there is a tensor equivalence C1!C2 respecting the
polarizations and the actions of B1 and B2 (i.e., such that FIB.C2/! FIB.C1/ is a banded
by B2! B1), and this equivalence is unique up to isomorphism.

PROOF. We have already seen that if C is polarizable, then C0 is semisimple, and so, for any
fibre functor ! with values in C, (the identity component of) G D Aut˝.!/ is reductive,
and has a compact real formK. This proves half of (a). Part (b) is proved in the first lemma
below, and the sufficiency in (a) follows from (b) and the second lemma below. Part (c)
follows from (4.16). 2

LEMMA 4.18. Let K and " be as in (b) of the theorem, and let G D KC. Then K corre-
sponds to a Cartan involution � 0 ofG, and we let �.g/D � 0. Ng/. The pair .�;"/ then satisfies
(4.2.1) and the Tannakian category C defined by .G;�;"/ has a polarization with parity ".

PROOF. Since �2 D id and � fixes all elements of K, (4.2.1) is obvious. There exists a
polarization � on C such that, for all simpleX , f�0 j � 2�.X/g is the set of positive-definite
K-invariant Hermitian forms on X . (In the notation of (4.15), b D 1.) This polarization has
parity ". 2

Let C correspond to .C0;X 7! NX;�/. For any z 2 Z.R/, where Z is the centre of the
band B of C, .C0;X 7! NX;�ı z/ defines a new Tannakian category zC over R.

LEMMA 4.19. Every Tannakian category over R whose gerbe is banded by B is of the
form zC for some z 2Z.R/. There is a tensor equivalence zC! z0C respecting the action
of B if and only if z0z�1 2Z.R/2.

PROOF. Let! be a fibre functor on C, and let .C;!/ correspond to .G;�;c/. We can assume
that the second category C1 corresponds to .G;�1; c1/. Let  and 1 be the functors V 7! NV
defined by .�;c/ and .�1; c1/ respectively. Then �11 ı defines a tensor automorphism of
!, and so corresponds to an element m 2 G.C/. We have � D �1 ı ad.m/, and so we can
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modify .�1; c1/ in order to get �1D � . Let� and�1 be the functorial isomorphisms V ! NNV
defined by .�;c/ and .�;c1/ respectively. Then ��11 ı� defines a tensor automorphism of
idC, and so ��11 ı�D z

�1, z 2Z.R/. We have �1 D �ı z.
The second part of the lemma is obvious. 2

REMARK 4.20. Some of the above results can be given a more cohomological interpreta-
tion. Let B be the band defined by a compact real algebraic group K, and let Z be the
centre of B; let C be a Tannakian category whose band is B .

(a) As Z is a subgroup of a compact real algebraic group, it is also compact (see 2.33).
It is easy to compute its cohomology. One finds that

H 1.R;Z/D 2Z.R/
def
D Ker.2WZ.R/!Z.R//

H 2.R;Z/DZ.R/=Z.R/2:

(b) The general theory (Saavedra Rivano 1972, III 2.3.4.2, p. 184) shows that there is an
isomorphismH 1.R;Z/!AutB.C/, which can be described explicitly as the map sending
z 2 2Z.R/ to the automorphism wz�

.X;aX / 7! .X;aXzX /

f 7! f

(c) The Tannakian categories banded by B are classified, up to B-equivalence, by
H 2.R;B/, and H 2.R;B/, if nonempty, is an H 2.R;Z/-torsor. The action of H 2.R;Z/D
Z.R/=Z.R/2 on set of B-equivalence classes is made explicit in (4.19).

(d) Let Pol.C/ denote the set of polarizations on C. For � 2 Pol.C/ and z 2 Z.R/ we
define z� to be the polarization such that

�.x;y/ 2 z�.X/ ” �.x;zy/ 2 �.X/I

it has parity ".z�/D z2".�/. The pairing

.z;�/ 7! z� WZ.R/�Pol.C/!Pol.C/

makes Pol.C/ into a Z.R/-torsor.
(e) Let � 2 Pol.C/ and let "D ".�/; then C has a polarization with parity "0 2 Z.R/ if

and only if "0 D "z2 for some z 2Z.R/.

REMARK 4.21. In Saavedra Rivano 1972, V, 1, there is a table of Tannakian categories
whose bands are simple, from which it is possible to read off those that are polarizable (loc.
cit. V, 2.8.3).

Neutral polarized categories
The above results can be made more explicit when C has a fibre functor with values in R.

LetG be an algebraic group over R, and let C 2G.R/. AG-invariant sesquilinear form
 WV �V ! C on V 2 ob.RepC.G// is said to be a C -polarization if

 C .x;y/
def
D  .x;Cy/

is a positive-definite Hermitian form on V . When every object of RepC.G/ has a C -
polarization, C is called a Hodge element.
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PROPOSITION 4.22. Assume that G.R/ contains a Hodge element C .
(a) There is a polarization �C on RepR.G/ for which the positive forms are exactly the

C -polarizations; the parity of �C is C 2.
(b) For any g 2G.R/ and z 2Z.R/, where Z is the centre of G, C 0 D zgCg�1is also a

Hodge element and �C 0 D z�C .
(c) Every polarization on RepR.G/ is of the form �C 0 for some Hodge element C 0.

PROOF. Let  be a C -polarization on V 2 ob.RepC.C //; then

 .x;y/D  .Cx;Cy/

because  is G-invariant, and

 .Cx;Cy/D  C .Cx;y/D  C .y;Cx/D  .y;C 2x/:

This shows that  has parity C 2. For any V and g 2G.R/,

 .y;C 2x/D  .x;y/

D  .gx;gy/

D  .gy;C 2gx/

D  .y;g�1C 2gx/.

This shows that C 2 2 Z.R/. For any u 2 End.V /, u D u 
C

, and so Tr.uu / > 0 if
u ¤ 0. This shows that  is a Weil form with parity C 2. Statement (a) is now easy to
check. Statement (b) is straightforward to prove, and statement (c) follows from it and
(4.19). 2

PROPOSITION 4.23. The following conditions on G are equivalent:
(a) there exists a Hodge element in G.R/;
(b) the category RepR.G/ is polarizable;
(c) G is an inner form of a compact real algebraic group K.

PROOF. (a))(b). This is proved in (4.22).
(b))(c). To say that G is an inner form of K is the same as to say that G and K define

the same band; this implication therefore follows from (4.17a).
(c))(a). Let Z be the centre of K (and therefore also of G) and let Kad DK=Z. That

G is an inner form of K means that its cohomology class is in the image of

H 1.R;Kad/!H 1.R;Aut.K//:

More explicitly, this means that there is an isomorphism  WKC!GC such that

N D  ı c; some c 2Kad.C/:

According to Serre 1964, III, Thm 6, H 1.R;Kad/ ' H 1.Gal.C=R/;Kad.R//, which is
equal to the set of conjugacy classes in Kad.R/ consisting of elements of order 2. Thus, we
can assume that c 2K.R/ and c2 D 1. Consider the cohomology sequence

K.R/ ! Kad.R/ ! H 1.R;Z/ ! H 1.R;K/:

The last map is injective, and so K.R/!Kad.R/ is surjective. Thus c D ad.C 0/ for some
C 0 2K.R/ whose square is in Z.R/. Let C D .C 0/; then NC D N.C 0/D .C 0/D C and
N�1 ı ad.C /D �1. This shows that C 2G.R/ and that K is the form of G defined by C ;
the next lemma completes the proof. 2
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LEMMA 4.24. An element C 2G.R/ such that C 2 2Z.R/ is a Hodge element if and only
if the real form K of G defined by C is a compact real group.

PROOF. Identify KC with GC and let Ng and g� be the complex conjugates of g 2 G.C/
relative to the real forms K and G. Then

g� D ad.C�1/. Ng/D C�1 NgC .

Let  be a sesquilinear form on V 2 ob.RepC.G//. Then  is G-invariant if and only if

 .gx; Ngy/D  .x;y/; g 2G.C/:

On the other hand,  C is K-invariant if and only if

 C .gx;g�y/D  C .x;y/; g 2G.C/.

These conditions are equivalent. Therefore, V has a C -polarization if and only if V has
a K-invariant positive-definite Hermitian form. Thus C is a Hodge element if and only
if, for every complex representation V of K, the image of K in Aut.V / is contained in
the unitary group of a positive-definite Hermitian form; this last condition is implied by K
being compact and implies that K is contained in a compact real group, and so is compact
(see 2.33). 2

REMARK 4.25. (a) The centralizer of a Hodge element C of G is a maximal compact sub-
group of G, and is the only maximal compact subgroup of G containing C ; in particular,
if G is compact, then C is a Hodge element if and only if it is in the centre of G (Saave-
dra Rivano 1972, V, 2.7.3.5).

(b) If C and C 0 are Hodge elements of G, then there exists a g 2 G.R/ and a unique
z 2 Z.R/ such that C 0 D zgCg�1 (Saavedra Rivano 1972, V, 2.7.4). As �C 0 D z�C , this
shows that �C 0 D �C if and only if C and C 0 are conjugate in G.R/.

REMARK 4.26. It would perhaps have been more natural to express the above results in
terms of bilinear forms (see 4.4, 4.9, 4.14): a G-invariant bilinear form �WV0 �V0 ! R
on V0 2 ob.RepR.G// is a C -polarization if �C .x;y/ def

D �.x;Cy/ is a positive-definite
symmetric form on V0; C is a Hodge element if every object of RepR.G/ has a C -
polarization; the positive forms for the (bilinear) polarization defined by C are precisely
the C -polarizations.

Symmetric polarizations
A polarization is said to be symmetric if its parity is 1.

Let K be a compact real algebraic group. As 1 is a Hodge element (4.24), RepR.K/
has a symmetric polarization � for which �.X0/, X0 2 ob.RepR.K//, consists of the K-
invariant positive-definite symmetric bilinear forms on X0 (and �.X/, X 2 ob.RepC.K//,
consists of the K-invariant positive-definite Hermitian forms on X ).

THEOREM 4.27. Let C be an algebraic Tannakian category over R, and let � be a symmet-
ric polarization on C. Then C has a unique (up to isomorphism) fibre functor ! with values
in R transforming positive bilinear forms for � into positive-definite symmetric bilinear
forms; ! defines a tensor equivalence C! RepR.K/, where K D Aut˝.!/ is a compact
real algebraic group.
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PROOF. Let !1 be a fibre functor with values in C, and let G D Aut˝.!1/. Because C
is polarizable, G has a compact real form K. According to (4.16), !01WC

0 ! RepC.G/
carries the descent datum on C0 defined by C into that on RepC.G/ defined by .�K ;1/. It
therefore defines a tensor equivalence !WC!RepR.K/ transforming � into the polarization
on RepR.K/ defined by the Hodge element 1. The rest of the proof is now obvious. Briefly,
let !1 and !2 be two such fibre functors. 2

REMARK 4.28. Let � be a polarization on C. It follows from (4.20d) that C has a symmet-
ric polarization if and only if ".�/ 2Z.R/2.

Polarizations with parity " of order 2
For uD˙1, define a real u-space to be a complex vector space V together with a semilinear
automorphism � such that �2 D u. A bilinear form � on a real u-space is u-symmetric if
�.x;y/D u�.y;x/ — thus a 1-symmetric form is a symmetric form, and a �1-symmetric
form is a skew-symmetric form. A u-symmetric form is positive-definite if �.x;�x/ > 0
for all x ¤ 0.

Let V0 be the category whose objects are pairs .V;�/ where V D V 0˚V 1 is a Z=2Z-
graded vector space over C and � WV ! V is a semilinear automorphism such that �2x D
.�1/deg.x/x. With the obvious tensor structure, V0 becomes a Tannakian category over R
with C-valued fibre functor .V;�/ 7! V . There is a polarization � D �can on V0 such that,
if V is homogeneous of degree m, then �.V;�/ consists of the .�1/m-symmetric positive-
definite forms on V .

THEOREM 4.29. Let C be an algebraic Tannakian category over R, and let � be a polar-
ization on C with parity " where "2 D 1, "¤ 1. There exists a unique (up to isomorphism)
exact faithful functor !WC! V0 such that

(a) ! carries the grading on C defined by " into the grading on V0, i.e., !."/ acts as
.�1/m on !.V /m;

(b) ! carries � into �can, i.e., � 2 �.X/ if and only if !.�/ 2 �can.!.X//.

PROOF. Note that V0 is defined by the triple .�2;�0; "0/ where �0 is the unique semilinear
automorphism of �2 and "0 is the unique element of �2.R/ of order 2. We can assume (by
4.3) that C corresponds to a triple .G;�;"/. Let G0 be the subgroup of G generated by ";
then .G0;� jG0; "/� .�2;�0; "0/, and so the inclusion .G0;� jG0; "/ ,! .G;�;"/ induces a
functor C!V0 having the required properties.

Let ! and !0 be two functors C! V0 satisfying (a) and (b). It is clear from (3.2a) that
there exists an isomorphism �W!!!0 from ! to !0 regarded as C-valued fibre functors. As
�X W!.X/! !0.X/ commutes with action of ", it preserves the gradings; as � commutes
with !.�/, any � 2 �.X/, it also commutes with � ; it follows that � is an isomorphism
from ! to !0 as functors to V0. 2

5. Graded Tannakian categories
Throughout this section, k will be a field of characteristic zero.
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Gradings

LetM be a set. AnM -grading21 on an objectX of an additive category is a decomposition
X D

L
m2M Xm; anM -grading on an additive functor uWC!C0 is anM -grading on each

u.X/, X 2 ob.C/, that depends functorially on X .
Suppose now that M is an abelian group, and let D be the algebraic group of multi-

plicative type over k whose character group isM (with the trivial Galois action; see (2.32)).
The cases of most interest to us are M D Z, D DGm andM D Z=2Z, D D �2 (D Z=2Z).

DEFINITION 5.1. An M -grading on a Tannakian category C over k can be variously de-
scribed as follows:

(a) anM -grading,X D
L
Xm, on each objectX of C that depends functorially onX and

is compatible with tensor products in the sense that .X˝Y /mD
L
rCsDmX

r˝Y s;
(b) anM -grading on the identity functor idC of C that is compatible with tensor products;
(c) a homomorphism D! Aut˝.idC/;
(d) a central homomorphism D!G, G D Aut˝.!/; for one (or every) fibre functor !.

Definitions (a) and (b) are obviously equivalent. By a central homomorphism in (d), we
mean a homomorphism from D into the centre of G defined over k. Although G need not
be defined over k, its centre is, and equals Aut˝.idC/, from which follows the equivalence
of (c) and (d). Finally, a homomorphism wWD ! Aut˝.idC/ corresponds to a family of
gradings X D

L
Xm for which w.d/ acts on Xm �X as m.d/ 2 k.

Tate triples
A Tate triple T over k is a triple .C;w;T / comprising a Tannakian category C over k, a
Z-grading wWGm! Aut˝.idC/ on C (called the weight grading), and an invertible object
T (called the Tate object) of weight �2. For any X 2 ob.C/ and n 2 Z, we write X.n/D
X˝T˝n. A fibre functor on T with values in R is a fibre functor !WC! ModR together
with an isomorphism !.T /! !.T˝2/, i.e., the structure of an identity object on !.T /. If
T has a fibre functor with values in k, then T is said to be neutral. A morphism of Tate
triples .C1;w1;T1/! .C2;w2;T2/ is an exact tensor functor �WC1 ! C2 preserving the
gradings together with an isomorphism �.T1/! T2.

EXAMPLE 5.2. (a) The triple .HodR;w;R.1// in which

˘ HodR is the category of real Hodge structures (see 2.31),
˘ w is the weight grading on HodR, and
˘ R.1/ is the unique real Hodge structure with weight �2 and underlying vector space

2�iR,

is a neutral Tate triple over R.
(b) The category of Z-graded vector spaces over Q, together with the object T DQB.1/,

forms a neutral Tate triple TB over Q. The category of Z-graded vector spaces over Ql ,
together with the object T DQl.1/, forms a neutral Tate triple Tl over Ql . The category of
Z-graded vector spaces over k, together with the object T D kdR.1/, forms a neutral Tate
triple TdR over k. (See Deligne 1982, � 1 for the terminology.)

21Gradation and graduation are also used. The Wikipedia prefers the former, and Bourbaki the latter.
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EXAMPLE 5.3. Let V be the category of Z-graded C-vector spaces V with a semilinear
automorphism a such that a2v D .�1/nv if v 2 V n. With the obvious tensor structure, V
becomes a Tannakian category over R, and !W.V;a/ 7! V is a fibre functor with values
in C. Clearly Gm D Aut˝.!/, and V corresponds (as in 4.3a) to the pair .g 7! Ng;�1/.
Let wWGm ! Gm be the identity map, and let T D .V;a/ where V is C regarded as a
homogeneous vector space of weight �2 and a is z 7! Nz. Then .V;w;T / is a non-neutral
Tate triple over R.

EXAMPLE 5.4. Let G be an algebraic group scheme over k and let wWGm! G be a cen-
tral homomorphism and t WG! Gm a homomorphism such that t ıw D �2 .def

D s 7! s�2/.
Let T be the representation of G on k such that g acts as multiplication by t .g/. Then
.Repk.G/;w;T / is a neutral Tate triple over k.

The next proposition is obvious.

PROPOSITION 5.5. Let TD .C;w;T / be a Tate triple over k, and let ! be a fibre functor
on T with values in k. Let G DAut˝.!/, so that w is a homomorphism Gm!Z.G/�G.
There is a homomorphism t WG!Gm such that g acts on T as multiplication by t .g/, and
t ıw D �2. The equivalence C! Repk.G/ carries w and T into the weight grading and
Tate object defined by t and w.

More generally, a Tate triple T defines a band B , a homomorphism wWGm! Z into
the centre Z of B , and a homomorphism t WG!Gm such that t ıwD�2. We say that T is
banded by .B;w; t/.

Let G, w, and t be as in (5.4). Let G0 D Ker.t WG! Gm/, and let "W�2! G0 be the
restriction of w to �2. We often identify " with ".�1/D w.�1/ 2 Z.G0/.k/. Note that "
defines a Z=2Z-grading on C0 D Repk.G0/.

5.6. The inclusion G0 ,!G defines a tensor functor QWC! C0 with the following prop-
erties:

(a) if X is homogeneous of weight n, then Q.X/ is homogeneous of weight n (mod 2);
(b) Q.T /D 11;
(c) if X and Y are homogeneous of the same weight, then

Hom.X;Y /
'
! Hom.Q.X/;Q.Y //I

(d) if X and Y are homogeneous with weightsm and n respectively andQ.X/�Q.Y /,
then m�n is an even integer 2k and X.k/� Y ;

(e) Q is essentially surjective.

The first four of these statements are obvious. For the last, note that

G D .G�Gm/=�2;

and so we only have to show that every representation of �2 extends to a representation of
Gm, but this is obvious.

REMARK 5.7. (a) The identity component of G0 is reductive if and only if the identity
component of G is reductive; if G0 is connected, so also is G, but the converse statement is
false (e.g., G0 D �2, G DGm).
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(b) It is possible to reconstruct .C;w;T / from .C0; "/ — the following diagram makes
it clear how to reconstruct .G;w; t/ from .G0; "/:

1 �2 Gm Gm 1

1 G0 G Gm 1:

"

�2

w

t

PROPOSITION 5.8. Let TD .C;w;T / be a Tate triple over k with C algebraic. There exists
a Tannakian category C0 over k, an element " in Aut˝.idC0/ with "2 D 1, and a functor
QWC! C0 having the properties (5.6).22

PROOF. For any fibre functor ! on C with values in a k-algebra R, Isom.R;!.T //, re-
garded as a sheaf on SpecR, is a torsor for Gm. This association gives rise to a morphism
of gerbes

FIB.C/
t
! TORS.Gm/;

and we define G0 to be the gerbe of liftings of the canonical section of TORS.Gm/, i.e.,
G0 is the gerbe of pairs .!;�/ where ! is a fibre functor on C and � is an isomorphism
t .!/!Gm (Giraud 1971, IV, 3.2.1). Let C0 be the category Repk.G0/ which (see 3.14) is
Tannakian. If Z D Aut˝.idC/ and Z0 D Aut˝.idC0/, then the homomorphism

˛ 7! ˛T WZ! Aut.T /DGm;

determined by t has kernel Z0, and the composite t ıw D�2. We let "D w.�1/ 2Z0.
There is an obvious (restriction) functor QWC! C0. In showing that Q has the prop-

erties (5.6), we can make a finite field extension k! k0. We can therefore assume that T is
neutral, but this case is covered by (5.5) and (5.6). 2

EXAMPLE 5.9. Let .V;w;T / be the Tate triple defined in (5.3); then .V0; "/ is the pair
defined in the paragraph preceding (4.29).

EXAMPLE 5.10. Let T D .C;w;T / be a Tate triple over R, and let ! be a fibre functor
on T with values in C. On combining (4.3) with (5.5) we find that .T;!/ corresponds to a
quintuple .G;�;c;w; t/ in which

(a) G is an algebraic group scheme over C;
(b) .�;c/ satisfies (4.2.1);
(c) wWGm! G is a central homomorphism; that the grading is defined over R means

that w is defined over R, i.e., �.w.g//D w. Ng/;
(d) t WG! Gm is such that t ıw D �2; that T is defined over R means that t .�.g//D

t .g/ and there exists an a 2Gm.C/ such that t .c/D �.a/ �a.

Let G0 D Ker.t/, and let m 2 G.C/ be such that t .m/D a�1. After replacing .�;c/ with
.� ı ad.m/;�.m/ � c �m/ we find that the new c is in G0. The pair .C0;!jC0/ corresponds
to .G0;� jG0; c/.

22The Tannakian category C0 is the quotient of C by the subcategory generated by T (see Milne, J. S.,
Quotients of Tannakian categories. Theory Appl. Categ. 18 (2007), No. 21, 654–664).
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REMARK 5.11. (a) The functor ! 7! !jC0 defines an equivalence from the gerbe of fibre
functors on the Tate triple T to the gerbe of fibre functors on C0.

(b) As in the neutral case, T can be reconstructed from .C0; "/. This can be proved by
substituting bands for group schemes in the argument used in the neutral case (Saavedra Ri-
vano 1972, V, 3.14.1), or by using descent theory to deduce it from the neutral case.

There is a stronger result: T 7! .C0; "/ defines an equivalence between the 2-category
of Tate triples and that of Z=2Z-graded Tannakian categories (ibid. V, 3.1.4).

Graded polarizations
For the remainder of this section, TD .C;w;T /will be a Tate triple over R with C algebraic.
We use the notations of �4; in particular C0 D C.C/. Let U be an invertible object of C0 that
is defined over R, i.e., U is endowed with an identification U ' NU ; then in the definitions
and results of �4 concerning sesquilinear forms and Weil forms, it is possible to replace 11
with U .

DEFINITION 5.12. For each object X 2 ob.C0/ that is homogeneous of degree n, let �.X/
be an equivalence class of Weil forms X˝ NX ! 11.�n/ of parity .�1/n; we say that � is a
(graded) polarization on T if

(a) for all X , N� 2 �.X/ whenever � 2 �. NX/;
(b) for all X and Y that are homogeneous of the same degree, �˚ 2 �.X˚Y / when-

ever � 2 �.X/ and  2 �.Y /;
(c) for all homogeneous X and Y , �˝ 2 �.X ˝ Y / whenever � 2 �.X/ and  2

�.Y /;
(d) the map T ˝ NT ! T˝2 D 11.2/, defined by T ' NT , is in �.T /.

PROPOSITION 5.13. Let .C0; "/ be the pair associated with T by (5.8). There is a canonical
bijection

QWPol.T/! Pol".C0/

from the set of polarizations on T to the set of polarizations on C0 of parity ".

PROOF. For any X 2 ob.C0/ that is homogeneous of degree n, (5.6b) and (5.6c) give an
isomorphism

QWHom.X˝ NX;11.�n//! Hom.Q.X/˝Q.X/;11/:

We define Q� to be the polarization such that, for any homogeneous X ,

Q�.QX/D fQ� j � 2 �.X/g:

It is clear that � 7!Q� is a bijection. 2

COROLLARY 5.14. The Tate triple T is polarizable if and only if C0 has a polarization �
with parity ".�/� " (mod Z0.R/2).

PROOF. See (4.20e) 2

COROLLARY 5.15. For each z 2 2Z0.R/ and polarization � on T, there is a polarization
z� on T defined by the condition

�.x;y/ 2 z�.X/ ” �.x;zy/ 2 �.X/.
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The map
.z;�/ 7! z� W2Z0.R/�Pol.T/! Pol.T/

makes Pol.T/ into a pseudo-torsor for 2Z0.R/.

PROOF. See (4.20d). 2

THEOREM 5.16. Let � be a polarization on T, and let ! be a fibre functor on C0 with
values in C. Let .G;w; t/ correspond to .T.C/;!/. For any real form K of G such that
K0 D Ker.t/ is compact, the pair .�K ; "/ where "D w.�1/ satisfies (4.2.1), and ! defines
an equivalence between T and the Tate triple defined by .G;�K ; ";w; t/. For any simple X
in C0,

f!.�/0 j � 2 �.X/g

is the set of K0-invariant positive-definite Hermitian forms on !.X/.

PROOF. See (4.16). 2

REMARK 5.17. From (4.17) one can deduce the following: a triple .B;w; t/, where B is
an affine algebraic band over R and t ıw D �2, bounds a polarizable Tate triple if and
only if B0 DKer.t WB!Gm/ is the band defined by a compact real algebraic group; when
this condition holds, the polarizable Tate triple banded by .B;w; t/ is unique up to a tensor
equivalence preserving the action of B and the polarization, and the equivalence is unique
up to isomorphism. The Tate triple is neutral if and only if " def

D w.�1/ 2Z0.R/2.

Let .G;w; t/ be a triple as in (5.4) defined over R, and let G0 DKer.t/ and "Dw.�1/.
A Hodge element C 2 G0.R/ is said to be a Hodge element for .G;w; t/ if C 2 D ". A G-
invariant sesquilinear form  WV �V ! 11.�n/ on a homogeneous complex representation
V of G of degree n is said to be a C -polarization if

 C .x;y/
def
D  .x;Cy/

is a positive-definite Hermitian form on V . When C is a Hodge element for .G;w; t/ there
is a polarization �C on the Tate triple defined by .G;w; t/ for which the positive forms are
exactly the C -polarizations.

PROPOSITION 5.18. Every polarization on the Tate triple defined by .G;w; t/ is of the
form �C for some Hodge element C .

PROOF. See (4.22) and (4.23). 2

PROPOSITION 5.19. Assume that w.�1/ D 1. Then there is a unique (up to isomor-
phism) fibre functor ! on T with values in R transforming positive bilinear forms for �
into positive-definite symmetric bilinear forms.

PROOF. See (4.27). 2

PROPOSITION 5.20. Let .V;w;T / be the Tate triple defined in (5.3), and let �can be the
polarization on V such that, if .V;a/ 2 ob.V/ is homogeneous, then �.V;a/ comprises the
.�1/degV -symmetric positive-definite forms on V . If w.�1/¤ 1 for T and � is a polariza-
tion on T, then there exists a unique (up to isomorphism) exact faithful functor !WC! V
preserving the Tate-triple structure and carrying � into �can.
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PROOF. Combine (4.29) and (5.9). 2

EXAMPLE 5.21. Let T be the Tate triple .HodR;w;R.1// defined in (5.2). A polarization
on a real Hodge structure V of weight n is a bilinear form �WV �V !R.�n/ such that the
real-valued form .x;y/ 7! .2�i/n�.x;Cy/, where C denotes the element i 2 S.R/D C�
is positive-definite and symmetric. These polarizations are the positive (bilinear) forms
for a polarization � on the Tate triple T. The functor !WHodR ! V provided by the last
proposition is V 7! .V ˝C;v 7! C Nv/. (Note that .HodR;w;R.1// is not quite the Tate
triple associated, as in (5.4), with .S;w; t/ because we have chosen a different Tate object;
this difference explains the occurrence of .2�i/n in the above formula; � is essentially the
polarization defined by the canonical Hodge element C .)

Filtered Tannakian categories
For this topic, we refer the reader to Saavedra Rivano 1972, IV, 2.

6. Motives for absolute Hodge cycles

Throughout this section, k will denote a field of characteristic zero with algebraic closure Nk
and Galois group � D Gal. Nk=k/. All varieties will be projective and smooth, and, for X a
variety (or motive) over k, NX denotes X˝k Nk. We shall freely use the notations of Deligne
1982. For example, if k D C, then HB.X/ denotes the graded vector space

L
H i

B.X/.

Complements on absolute Hodge cycles

For X a variety over k, CpAH.X/ denotes the Q-vector space of absolute Hodge cycles on
X (see Deligne 1982, �2). When X has pure dimension n, we write

MorpAH.X;Y /D C
nCp
AH .X �Y /:

Then

MorpAH.X;Y /�H
2nC2p.X �Y /.pCn/

D
L

rCsD2nC2p

H r.X/˝H s.Y /.pCn/

D
L

sDrC2p

H r.X/_˝H s.Y /.p/

D
L
r

Hom.H r.X/;H rC2p.Y /.p//.

The next proposition is obvious from this and the definition of an absolute Hodge cycle.

PROPOSITION 6.1. An element f of MorpAH.X;Y / gives rise to

(a) for each prime `, a homomorphism f`WH`. NX/!H`. NY /.p/ of graded vector spaces
(meaning that f` is a family of homomorphisms f r

`
WH r

`
. NX/!H

rC2p

`
. NY /.p/);

(b) a homomorphism fdRWHdR.X/!HdR.Y /.p/ of graded vector spaces;
(c) for each � Wk ,! C, a homomorphism f� WH� .X/! H� .Y /.p/ of graded vector

spaces.
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These maps satisfy the following conditions

(d) for all  2 � and primes `, f` D f`;
(e) fdR is compatible with the Hodge filtrations on each homogeneous factor;
(f) for each � Wk ,! C, the maps f� , f`, and fdR correspond under the comparison iso-

morphisms (�1).

Conversely, assume that k is embeddable in C; then a family of maps f`, fdR as in (a),
(b) arises from an f 2MorpAH.X;Y / provided .f`/ and fdR satisfy (d) and (e) respectively
and for every � Wk ,! C there exists an f� such that .f`/, fdR, and f� satisfy condition (f);
moreover, f is unique.

Similarly, a  2 C 2n�rAH .X �X/ gives rise to pairings

 sWH s.X/�H 2r�s.X/!Q.�r/.

PROPOSITION 6.2. On every variety X there exists a  2 C 2dimX�r
AH .X �X/ such that,

for every � Wk ,! C,
 r� WH

r
� .X;R/�H

r
� .X;R/! R.�r/

is a polarization of real Hodge structures (in the sense of 5.21).

PROOF. Let nD dimX . Choose a projective embedding of X , and let L be a hyperplane
section of X . Let ` be the class of L in H 2.X/.1/, and write ` also for the map H.X/!
H.X/.1/ sending a class to its cup-product with `. Assume that X is connected, and define
the primitive cohomology of X by

H r.X/prim D Ker.`n�rC1WH r.X/!H 2n�rC2.X/.n� rC1//.

The hard Lefschetz theorem states that

`n�r WH r.X/!H 2n�r.X/.n� r/

is an isomorphism for r � n; it implies that

H r.X/D
M

s�r�n;s�0

`sH r�2s.X/.�s/prim:

Thus, every x 2H r.X/ can be written uniquely xD
P
`s.xs/with xs 2H r�2s.X/.�s/prim .

Define
�x D

P
.�1/.r�2s/.r�2sC1/=2`n�rCsxs 2H

2n�r.X/.n� r/:

Then x 7! �xWH r.X/! H 2n�r.X/.n� r/ is a well-defined map for each of the three
cohomology theories, `-adic, de Rham, and Betti. Proposition 6.1 shows that it is defined
by an absolute Hodge cycle (rather, the map H.X/!H.X/.n� r/ that is x 7! �x on H r

and zero elsewhere is so defined). We take  r to be

H r.X/˝H r.X/
id˝�
���!H r.X/˝H 2n�r.X/.n� r/!H 2n.X/.n� r/

Tr
!Q.�r/:

Clearly it is defined by an absolute Hodge cycle, and the Hodge-Riemann bilinear rela-
tions (see Wells 1980, 5.3) show that it defines a polarization on the real Hodge structure
H r
� .X;R/ for each � Wk ,! C. 2
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PROPOSITION 6.3. For any u 2 Mor0AH.Y;X/, there exists a unique u0 2 Mor0AH.X;Y /

such that
 X .uy;x/D  Y .y;u

0x/; x 2H r.X/; y 2H r.Y /

where  X and  Y are the forms defined in (6.2); moreover,

Tr.uıu0/D Tr.u0 ıu/ 2Q
Tr.uıu0/ > 0 if u¤ 0:

PROOF. The first part is obvious, and the last assertion follows from the fact that the  X
and  Y are positive forms for a polarization in HodR (the Tannakian category of real Hodge
structures). 2

Note that the proposition show that Mor0AH.X;X/ is a semisimple Q-algebra (see 4.5).

Construction of the category of motives
Let Vk be the category of (smooth projective, not necessarily connected) varieties over
k. The category CVk is defined to have as objects symbols h.X/, one for each object
X 2 ob.Vk/, and as morphisms

Hom.h.X/;h.Y //DMor0AH.X;Y /:

There is a map
Hom.Y;X/! Hom.h.X/;h.Y //

sending a homomorphism to the cohomology class of its graph which makes h into a con-
travariant functor Vk! CVk .

Clearly CVk is a Q-linear category, and h.X tY /D h.X/˚h.Y /. There is a Q-linear
tensor structure on CVk for which

˘ h.X/˝h.Y /D h.X �Y /,
˘ the associativity constraint is induced by .X �Y /�Z!X � .Y �Z/,
˘ the commutativity constraint is induced by Y �X !X �Y , and
˘ the identity object is h.point/.

The false category of effective (or positive) motives PMC
k

is defined to be the pseudo-
abelian (Karoubian) envelope of CVk . Thus, an object of PMC

k
is a pair .M;p/withM 2CVk

and p an idempotent in End.M/, and

Hom..M;p/;.N;q//D ff WM !N j f ıp D q ıf=�g (6.3.1)

where f � 0 if f ıp D 0D q ıf . The rule

.M;p/˝ .N;q/D .M ˝N;p˝q/

defines a Q-linear tensor structure on PMC
k

, and M 7! .M; id/WCVk! PM
C

k
is a fully faithful

functor which we use to identify CVk with a subcategory of PMC
k

. With this identification,
.M;p/ becomes the image of pWM !M . The category PMC

k
is pseudo-abelian: any de-

composition of idM into a sum of pairwise orthogonal idempotents

idM D e1C�� �C em
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corresponds to a decomposition

M DM1˚�� �˚Mm

with ei jMi D idMi . The functor CVk! PM
C

k
is universal for functors from CVk to pseudo-

abelian categories.
For any X 2 ob.Vk/, the projection maps pr WH.X/! H r.X/ define an element of

Mor0AH.X;X/D End.h.X//. Corresponding to the decomposition

idh.X/ D p
0
Cp1Cp2C�� �

there is a decompostion (in PMC
k

)

h.X/D h0.X/Ch1.X/Ch2.X/C�� � .

This grading of objects of CVk extends in an obvious way to objects of PMC
k

, and the Künneth
formulas show that these gradings are compatible with tensor products (and therefore satisfy
5.1a).

LetL be the Lefschetz motive h2.P1/. With the notations of Deligne 1982, �1,H.L/D
Q.�1/, whence it follows that

Hom.M;N /
�
! Hom.M ˝L;N ˝L/

for any effective motives M and N . This means that V  V ˝L is a fully faithful functor
and allows us to invert L.

DEFINITION 6.4. The false category PMk of motives is defined as follows:
(a) an object of PMk is a pair .M;m/ with M 2 ob. PMC

k
/ and m 2 Z;

(b) Hom..M;m/;.N;n// D Hom.M ˝Lr�m;N ˝Lr�n/; r � m;n (for different r ,
these groups are canonically isomorphic);

(c) composition of morphisms is induced by that in PMC
k

.
This category of motives is Q-linear and pseudo-abelian and has a tensor structure

.M;m/˝ .N;n/D .M ˝N;mCn/

and grading
.M;m/r DM r�2m.

We identify PMC
k

with a subcategory of PMk by means to M  .M;0/. The Tate motive T is
L�1 D .11;1/. We abbreviate M ˝T˝m D .M;m/ by M.m/.

We shall see shortly that PMk is a rigid abelian tensor category, and End.11/DQ. It is not
however a Tannakian category because, for X 2 ob.Vk/, rank.h.X// is the Euler-Poincaré
characteristic,

P
.�1/r dimH r.X/, ofX , which is not necessarily positive. To remedy this

we modify the commutativity constraint as follows: let

P WM ˝N !N ˝M; P D˚ P r;s; P r;sWM r
˝N s

!N s
˝M r

be the commutativity constraint on PMk; define a new commutativity constraint by

 WM ˝N !N ˝M;  D˚ r;s;  r;s D .�1/rs P r;s: (6.4.1)

Then Mk , with P replaced by  , is the true category Mk of motives.



6 MOTIVES FOR ABSOLUTE HODGE CYCLES 58

PROPOSITION 6.5. The category Mk is a semisimple Tannakian category over Q.

PROOF. As we observed above, Proposition 6.3 implies that the endomorphism rings of
the objects of Mk are semisimple. Because they are also finite dimensional over Q, we may
apply the next lemma.23

2

LEMMA 6.6. Let C be a Q-linear pseudo-abelian category such that, for all objects X;Y ,
Hom.X;Y / is finite dimensional and End.X/ is semisimple. Then C is semisimple (and
hence every additive functor from C to an abelian category is exact).

PROOF. This is Lemma 2 of Jannsen 1992. 2

The following theorem summarizes what we have (essentially) proved about Mk .

THEOREM 6.7. (a) Let w be the grading on Mk; then .Mk;w;T / is a Tate triple over Q.
(b) There is a contravariant functor hWVk ! Mk; every effective motive is the image

.h.X/;p/ of an idempotent p 2 End.h.X// for some X 2 ob.Vk/; every motive is of the
form M.n/ for some effective M and some n 2 Z.

(c) For all varieties X;Y with X of pure dimension m,

CmCs�rAH .X �Y /D Hom.h.X/.r/;h.Y /.s//I

in particular,
CmAH.X �Y /D Hom.h.X/;h.Y //I

morphisms of motives can be expressed in terms of absolute Hodge cycles on varieties by
means of (6.3.1) and (6.4b).

(d) The constraints on Mk have an obvious definition, except that the obvious commu-
tativity constraint has to be modified by (6.4.1).

(e) For varieties X and Y ,

h.X tY /D h.X/˚h.Y /

h.X �Y /D h.X/˝h.Y /

h.X/_ D h.X/.m/ if X is of pure dimension n:

(f) The fibre functorsH`,HdR, andH� define fibre functors on Mk; these fibre functors
define morphisms of Tate triples Mk! T`, TdR, TB (see 5.2b); in particular, H.T /DQ.1/.

(g) When k is embeddable in C, Hom.M;N / is the vector space of families of maps

f`WH`
. NM/!H`. NN/

fdRWHdR.M/!HdR.N /

such that fdR preserves the Hodge filtration, f`D f` for all  2 � , and for every � Wk ,!C
there exists a map f� WH� .M/!H� .N / agreeing with f` and fdR under the comparison
isomorphisms.

(h) The category Mk is semisimple.
(i) There exists a polarization on Mk for which �.hr.X// consists of the forms defined

in (6.2).
23The original followed Saavedra 1972 in deducing Proposition 6.5 from the following statement:

Let C be a Q-linear pseudo-abelian category, and let !WC! VecQ be a faithful Q-linear
functor. If every indecomposable object of C is simple, then C is a semisimple abelian category
and ! is exact.

As Jannsen (1992, p. 451) points out, this statement is false.
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Some calculations
According to (6.7g), to define a map M ! N of motives it suffices to give a procedure
for defining a map of cohomology groups H.M/!H.N/ that works (compatibly) for all
three theories: Betti, de Rham, and `-adic. The map will be an isomorphism if its realization
in one theory is an isomorphism.

Let G be a finite group acting on a variety. The group algebra QŒG� acts on h.X/, and
we define h.X/G to be the motive .h.X/;p/ with p equal to the idempotentP

g2G g

.GW1/
.

Note that H.h.X/G/DH.X/G in each of the standard cohomology theories.

PROPOSITION 6.8. Assume that the finite group G acts freely on X , so that X=G is also
smooth; then h.X=G/D h.X/G .

PROOF. Since cohomology is functorial, there exists a map H.X=G/!H.X/ whose im-
age lies in H.X/G DH.h.X/G/. The Hochschild-Serre spectral sequence

H r.G;H s.X//)H rCs.X=G/

shows that the mapH.X=G/!H.X/G is an isomorphism for, say, the `-adic cohomology,
because H r.G;V /D 0, r > 0, if V is a vector space over a field of characteristic zero. 2

REMARK 6.9. More generally, if f WY ! X is a map of finite (generic) degree n between
connected varieties of the same dimension, then the composite

H.X/
f �

��!H.Y /
f�
�!H.X/

is multiplication by n; there therefore exist maps

h.X/! h.Y /! h.X/

with composite n, and h.X/ is a direct summand of h.Y /.

PROPOSITION 6.10. Let E be a vector bundle of rank mC 1 over a variety X , and let
pWP.E/!X be the associated projective bundle; then

h.P.E//D h.X/˚h.X/.�1/˚�� �˚h.X/.�m/.

PROOF. Let  be the class in H 2.P.E//.1/ of the canonical line bundle on P.E/, and let
p�WH.X/!H.P.E// be the map induced by p. The map

.c0; : : : ; cm/ 7!
X

p�.ci /
i
WH.X/˚�� �˚H.X/.�m/!H.P.E//

has the requisite properties. 2

PROPOSITION 6.11. Let Y be a smooth closed subvariety of codimension c in the variety
X , and let X 0 be the variety obtained from X by blowing up Y ; then there is an exact
sequence

0! h.Y /.�c/! h.X/˚h.Y 0/.�1/! h.X 0/! 0

where Y 0 is the inverse image of Y .
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PROOF. From the Gysin sequences

� � � H r�2c.Y /.�c/ H r.X/ H r.X rY / � � �

� � � H r�2c.Y 0/.�1/ H r.X 0/ H r.X 0rY 0/ � � �

we obtain a long exact sequence

� � � !H r�2c.Y /.�c/!H r.X/˚H r�2.Y 0/.�1/!H r.X 0/! �� � :

But Y 0 is a projective bundle over Y , and soH r�2c.Y /.�c/!H r�2.Y 0/.�1/ is injective.
Therefore, there are exact sequences

0!H r�2c.Y /.�c/!H r.X/˚H r�2.Y 0/.�1/!H r.X 0/! 0,

which can be rewritten as

0!H.Y /.�c/!H.X/˚H.Y 0/.�1/!H.X 0/! 0

We have constructed a sequence of motives, which is exact because the cohomology func-
tors are faithful and exact. 2

COROLLARY 6.12. With the notations of the proposition,

h.X 0/D h.X/˚
c�1L
rD1

h.Y /.�r/:

PROOF. Proposition 6.10 shows that h.Y 0/D
c�1L
rD1

h.Y /.r/. 2

PROPOSITION 6.13. If X is an abelian variety, then h.X/D
V
.h1.X//.

PROOF. Cup-product defines a map
V
.H 1.X//!H.X/which, for the Betti cohomology,

say, is known to be an isomorphism. (See Mumford 1970, I.1.) 2

PROPOSITION 6.14. If X is a curve with Jacobian J , then

h.X/D 11˚h1.J /˚L.

PROOF. The mapX!J (well-defined up to translation) defines an isomorphismH 1.J /!

H 1.X/. 2

PROPOSITION 6.15. Let X be a unirational variety of dimension d � 3 over an alge-
braically closed field; then

.d D 1/ h.X/D 11˚LI

.d D 2/ h.X/D 11˚ rL˚L2, some r 2 NI

.d D 3/ h.X/D 11˚ rL˚h1.A/.�1/˚ rL2˚L3, some r 2 N;

where A is an abelian variety.
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PROOF. We prove the proposition only for d D 3. According to the resolution theorem of
Abhyankar 1966, there exist maps

P3
u
 X 0

v
!X

with v surjective of finite degree and u a composite of blowing-ups. We know

h.P3/D 11˚L˚L2˚L3

(special case of (6.10)). When a point is blown up, a motive L˚L2 is added, and when a
curve Y is blown up, a motive L˚h1.Y /.�1/˚L2 is added. Therefore,

h.X 0/� 11˚ sL˚M.�1/˚ sL2˚L3

where M is a sum of motives of the form h1.Y /, Y a curve. A direct summand of such
an M is of the form h1.A/ for A an abelian variety (see 6.21 below). As h.X/ is a direct
summand of h.X 0/ (see 6.9) and Poincaré duality shows that the multiples of L2 and L3

occurring in h.X/ are the same as those of L and 11 respectively, the proof is complete. 2

PROPOSITION 6.16. Let Xn
d

denote the Fermat hypersurface of dimension n and degree
d :

T d0 CT
d
1 C�� �CT

d
nC1 D 0.

Then,

hn.Xnd /˚dh
n.Pn/D hn.Xn�1d �X1d /

�d ˚ .d �1/hn�2.Xn�2d /.�1/

where �d , the group of d th roots of 1, acts on Xn�1
d
�X1

d
according to

�.t0W : : : W tnIs0Ws1Ws2/D .t0W : : : W�tnIs0Ws1W�s2/

PROOF. See Shioda and Katsura 1979, 2.5. 2

Artin Motives

Let V0
k

be the category of zero-dimensional varieties over k, and let CV0k be the image of
V0
k

in Mk . The Tannakian subcategory M0
k

of Mk generated by the objects of CV0k is called
the category of (Emil) Artin motives.

For any X in ob.V0
k
/, X. Nk/ is a finite set on which � acts continuously. Thus, QX. Nk/

is a finite-dimensional continuous representation of � . When we regard � , in an obvious
way, as a (constant, pro-finite) affine group scheme over k, QX. Nk/ 2 RepQ.� /. For X;Y 2
ob.V0

k
/,

Hom.h.X/;h.Y // def
D C 0AH.X �Y /

D .QX. Nk/�Y. Nk//�

D Hom�
�
QX. Nk/;QY. Nk/

�
.

Thus,
h.X/ QX. Nk/WCV0k! RepQ.� /

is fully faithful, and Grothendieck’s formulation of Galois theory shows that it is essentially
surjective. Therefore, CV0k is abelian and M0

k
D CV0k . We have shown:
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PROPOSITION 6.17. The category of Artin motives M0
k
D CV0k . The functor h.X/  

QX. Nk/ defines an equivalence of tensor categories M0
k

�
! RepQ.� /:

REMARK 6.18. Let M be an Artin motive, and regard M as an object of RepQ.� ). Then

H� .M/DM (underlying vector space) for any � Wk ,! CI
H`. NM/DM ˝QQ`, as a � -module;

HdR.M/D .M ˝Q Nk/
� :

Note that, if M D h.X/ where X D Spec.A/, then

HdR.M/D .QX. Nk/˝Q Nk/
�
D .A˝k Nk/

�
D A.

REMARK 6.19. The proposition shows that the category of Artin motives over k is equiva-
lent to the category of sheaves of finite-dimensional Q-vector spaces with finite-dimensional
stalk24 on the étale site Spec.k/et.

Effective motives of degree 1
A Q-rational Hodge structure is a finite-dimensional vector space V over Q together with
a real Hodge structure on V ˝R whose weight decomposition is defined over Q. Let HodQ
be the category of Q-rational Hodge structures. A polarization on an object V of HodQ is
a bilinear pairing  WV ˝V !Q.�n/ such that  ˝R is a polarization on the real Hodge
structure V ˝R.

Let Isabk be the category of abelian varieties up to isogeny over k. The following
theorem summarizes part of the theory of abelian varieties.

THEOREM 6.20 (RIEMANN). The functor H 1
B W IsabC! HodQ is fully faithful; the essen-

tial image consists of polarizable Hodge structures of weight 1.

Let MC1
k

be the pseudo-abelian subcategory of Mk generated by motives of the form
h1.X/ for X a geometrically connected curve; according to (6.14), MC1

k
can also be de-

scribed as the category generated by motives of the form h1.J / for J a Jacobian.

PROPOSITION 6.21. (a) The functor h1W Isabk ! Mk factors through MC1
k

and defines an
equivalence of categories,

Isabk
�
!MC1

k
.

(b) The functor H 1WMC1C ! HodQ is fully faithful; its essential image consists of po-
larizable Hodge structures of weight 1.

PROOF. Every object of Isabk is a direct summand of a Jacobian, which shows that h1

factors through MC1
k

. Assume, for simplicity, that k is algebraically closed. Then, for any
A;B 2 ob.Isabk/,

Hom.B;A/� Hom.h1.A/;h1.B//� Hom.H� .A/;H� .B//;

and (6.20) shows that Hom.B;A/ D Hom.H� .A/;H� .B//. Thus h1 is fully faithful and
(as Isabk is abelian) essentially surjective. This proves (a), and (b) follows from (a) and
(6.20). 2

24This condition was omitted in the original.
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The motivic Galois group

Let k be a field that is embeddable in C. For any � Wk ,! C, we define G.�/D Aut˝.H� /.
Thus, G.�/ is an affine group scheme over Q, and H� defines an equivalence of categories
Mk

�
! RepQ.G.�//. Because G.�/ plays the same role for Mk as � D Gal. Nk=k/ plays for

M0
k

, it is called the motivic Galois group.

PROPOSITION 6.22. 25(a) The group G.�/ is a pro-reductive (not necessarily connected)
affine group scheme over Q, and it is connected if k is algebraically closed and all Hodge
cycles are absolutely Hodge.

(b) Let k � k0 be algebraically closed fields, let � 0Wk0 ,! C, and let � D � 0jk. The
homomorphism G.� 0/!G.�/ induced by Mk!Mk0 is faithfully flat.

PROOF. (a) LetX 2 ob.Mk/, and let CX be the abelian tensor subcategory of Mk generated
by X , X_, T , and T _. Let GX D Aut˝.H� jCX /. As CX is semisimple (see (6.5)), GX is
a reductive group (2.23), and so G D lim

 �
GX is pro-reductive. If k is algebraically closed

and all Hodge cycles are absolutely Hodge, then (cf. 3.4) GX is the smallest subgroup of
Aut.H� .X//�Gm such that .GX /C contains the image of the homomorphism �WGmC!

Aut.H� .X;C//�GmC defined by the Hodge structure on H� .X/. As Im.�/ is connected,
so also is GX .

(b) According to (2.9), Mk ! Mk0 is fully faithful, and so (2.29) shows that G.� 0/!
G.�/ is faithfully flat. 2

Now let k be arbitrary, and fix an embedding � W Nk ,!C. The inclusion M0
k
!Mk defines

a homomorphism � WG.�/! � because � D Aut˝.H� jM0k/ (see 6.17), and the functor

Mk!M Nk defines a homomorphism i WGı.�/!G.�/ where Gı.�/ df
D Aut˝.H� jM Nk/.

PROPOSITION 6.23. (a) The sequence

1!Gı.�/
i
!G.�/

�
! � ! 1

is exact.
(b) If all Hodge cycles are absolutely Hodge, then the identity component of G.�/ is

Gı.�/.
(c) For any � 2 � , ��1.�/D Hom˝.H� ;H�� /, regarding H� and H� as functors on

M Nk .
(d) For any prime `, there is a canonical continuous homomorphism sp`W� !G.�/.Q`/

such that � ı sp` D id.

PROOF. (a) As Mı
k
! Mk is fully faithful, � is faithfully flat (2.29). To show that i is

injective, it suffices to show that every motive h.X/, X 2 V Nk , is a subquotient of a motive
h. NX 0/ for some X 0 2 Vk; but X has a model X0 over a finite extension k0 of k, and we can
take X 0 D Resk0=kX0. The exactness at G.�/ is a special case of (c).

(b) This is an immediate consequence of (6.22a) and (a).

25In the original, the hypothesis in 6.22 (a) and 6.23 (b) that all Hodge cycles are absolutely Hodge (for the
varieties concerned) was omitted. In (b) it was claimed that if k has infinite transcendence degree over Q, then
G.� 0/!G.�/ is an isomorphism. This is obviously false — the motive defined by an elliptic curve E over k0

will arise from a motive over k if and only if j.E/ 2 k.



6 MOTIVES FOR ABSOLUTE HODGE CYCLES 64

(c) Let M;N 2 ob.Mk/. Then Hom. NM; NN/ 2 ob.RepQ.� //, and so we can regard it as
an Artin motive over k. There is a canonical map of motives Hom. NM; NN/ ,! Hom.M;N /
giving rise to

H� .Hom. NM; NN//D Hom. NM; NN/
H�
! Hom.H� . NM/;H� . NN//DH� .Hom.M;N //

Let � 2 � ; then
H� . NM/DH� .M/DH�� .M/DH�� . NM/

and, for f 2 Hom. NM; NN/, H� .�/DH�� .�f /.
Let g 2G.R/; for any f WM !N in Mk , there is a commutative diagram

H� .M;R/ H� .M;R/

H� .N;R/ H� .N;R/:

gM

H� .f / H� .f /

gN

Let � D �.g/, so that g acts on Hom. NM; NN/�Hom.M;N / as � . Then, for any f W NM ! NN

in M Nk
H� . NM;R/gM H� . NM;R/ H�� . NM;R/

H� . NN;R/ H� . NN;R/ H�� . NN;R/:

H� .f / H� .�
�1f / H�� .f /

gN

commutes. The diagram shows that gM WH� . NM;R/! H�� . NM;R/ depends only on M
as an object of M Nk . We observed in the proof of (a) above that M Nk is generated by mo-
tives of the form NM , M 2 Mk . Thus g defines an element of Hom˝.H� ;H�� /.R/, where
H� and H�� are to be regarded as functors on M Nk . We have defined a map ��1.�/!
Hom˝.H� ;H�� /, and it is easy to see that it is surjective.

(d) After (c), we have to find a canonical element of Hom˝.H`.�M/;H`.��M// de-
pending functorially on M 2 M Nk . Extend � to an automorphism N� of C. For any variety
X over Nk, there is a N��1-linear isomorphism �X  ��X which induces an isomorphism
� WH`.�X/

�
!H`.��X/. 2

The “espoir” (Deligne 1979, 0.10) that every Hodge cycle is absolutely Hodge has a
particularly elegant formulation in terms of motives.

CONJECTURE 6.24. For any algebraically closed field k and embedding � Wk ,! C, the
functor H� WMk! HodQ is fully faithful.

The functor is obviously faithful. There is no description, not even conjectural, for the
essential image of H� .

Motives of abelian varieties
Let Mav

k
be the Tannakian subcategory of Mk generated by motives of abelian varieties and

Artin motives. The main theorem, 2.11, of Deligne 1982 has the following restatement.

THEOREM 6.25. For any algebraically closed field k and embedding � Wk ,!C, the functor
H� WMav

k
! HodQ is fully faithful.
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Therefore, for an algebraically closed k, the groupGav.�/ attached to Mav
k

and � Wk ,!C
is a connected pro-reductive group (see 6.22), and, for an arbitrary k, the sequence

1!Gav.�/ı!Gav.�/! � ! 1

is exact (see 6.23) (here Gav.�/ı is the identity component of Gav.�/).

PROPOSITION 6.26. The motive h.X/ 2 ob.Mav
k
/ if

(a) X is a curve;
(b) X is a unirational variety of dimension � 3;
(c) X is a Fermat hypersurface;
(d) X is a K3-surface.

Before proving this, we note the following consequence.

COROLLARY 6.27. Every Hodge cycle on a variety that is a product of abelian varieties,
zero-dimensional varieties, and varieties of type (a), (b), (c), and (d) is absolutely Hodge.

PROOF (OF 6.26.). Cases (a) and (b) follow immediately from (6.14) and (6.15), and (c)
follows by induction (on n) from (6.16). In fact, one does not need the full strength of
(6.16). There is a rational map

Xr
d � Xs

d XrCs
d

.x0 W : : : W xrC1/; .y0 W : : : W ysC1/ .x0ysC1 W : : : W xrysC1 W "xrC1y0 W : : : W "xrC1ys/

where " is a primitive 2mth root of 1. The map is not defined on the subvariety

Y WxrC1 D ysC1 D 0:

On blowing up Xr
d
�Xs

d
along the nonsingular centre Y , one obtains maps

Z
r;s
d

Xr
d
�Xs

d
XrCs
d

:

By induction, we can assume that the motives of Xr
d

, Xs
d

, and Y .D Xr�1
d
�Xs�1

d
/ are in

Mav
k

. Corollary (6.12) now shows that h.Zr;s
d
/ 2 ob.Mav

k
/ and (6.9) that h.XrCs

d
/ 2 ob.Mav

k
/.

For (d), we first note that the proposition is obvious if X is a Kummer surface, for then
X D QA=h�i where QA is an abelian variety A with its 16 points of order � 2 blown up and �
induces a 7! �a on A.

Next consider an arbitrary K3-surface X , and fix a projective embedding of X . Then

h.X/D h.P2/˚h2.X/prim

and so it suffices to show that h2.X/prim is in Mav
k

. We can assume k D C. It is known
(Kuga and Satake 1967; Deligne 1972, 6.5) that there is a smooth connected variety S over
C and families

f WY ! S

aWA! S

of polarized K3-surfaces and abelian varieties respectively parametrized by S having the
following properties:
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(a) for some 0 2 S , Y0
def
D f �1.0/ is X together with its given polarization;

(b) for some 1 2 S , Y1 is a polarized Kummer surface;
(c) there is an inclusion uWR2f�Q.1/prim ,! End.R1a�Q/ compatible with the Hodge

filtrations.

The map u0WH 2
B .X/.1/prim ,! End.H 1.A0;Q// is therefore defined by a Hodge cycle, and

it remains to show that it is defined by an absolute Hodge cycle. But the initial remark shows
that u1, being a Hodge cycle on a product of Kummer and abelian surfaces, is absolutely
Hodge, and Principle B (2.12 of Deligne 1982) completes the proof. 2

Motives of abelian varieties of potential CM-type
An abelian variety A over k is said to be of potential CM-type if it becomes of CM-type
over an extension of k. Let A be such an abelian variety defined over Q, and let MT.A/ be
the Mumford-Tate group of AC (Deligne 1982, �5). Since AC is of CM-type, MT.A/ is a
torus, and we let L� C be a finite Galois extension of Q splitting MT.A/ and such that all
the torsion points on A have coordinates in Lab.26 Let MA;LQ be the Tannakian subcategory
of MQ generated by A, the Tate motive, and the Artin motives split by Lab, and let GA be
the affine group scheme associated with this Tannakian category and the fibre functor HB.

PROPOSITION 6.28. There is an exact sequence of affine group schemes

1!MT.A/
i
!GA

�
! Gal.Lab=Q/! 1:

PROOF. Let MAC be the image of MA;LQ in MC; then MT.A/ is the affine group scheme as-
sociated with MAC , and so the above sequence is a subsequence of the sequence in (6.23a).2

REMARK 6.29. If we identify MT.A/ with a subgroup of Aut.H 1
B .A//, then (as in 6.23a)

��1.�/ becomes identified with the MT.A/-torsor whose R-points, for any Q-algebra R,
are the R-linear homomorphisms aWH 1.AC;R/! H 1.�AC;R/ such that a.s/ D �s for
all (absolute) Hodge cycles on A NQ. We can also identify MT.A/ with a subgroup of
Aut.HB

1 .A// and then it becomes more natural to identify ��1.�/ with the torsor of R-
linear isomorphisms a_WH1.AC;R/!H1.�AC;R/ preserving Hodge cycles.

On passing to the inverse limit over all A and L, we obtain an exact sequence

1! Sı! S ! Gal. NQ=Q/! 1

with Sı and S respectively the connected Serre group and the Serre group. This sequence
plays an important role in Articles III, IV, and V of Deligne et al. 1982.

Appendix: Terminology from nonabelian cohomology
We review some definitions from Giraud 1971.

26This condition was omitted in the original.
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Fibred categories
Let ˛WF! A be a functor. For an object U of A, we write FU for the category whose
objects are those in F in F such that ˛.F / D U and whose morphisms are those f such
that ˛.f /D idU . For any morphism aW˛.F1/! ˛.F2/, we write Homa.F1;F2/ for the set
of f WF1!F2 such that ˛.f /D a. A morphism f WF1!F2 is said to be cartesian, and F1
is said to be an inverse image ˛.f /�F2 of F2 relative to ˛.f / if, for every F 0 2 obF˛.F1/
and h 2 Hom˛.f /.F 0;F2/, there exists a unique g 2 Homid.F

0;F1/ such that f ıg D h:

F 0

F1 F2

˛.F1/ ˛.F2/:

h

f

˛.f /

g

In other words,
Homid.F

0;F1/' Hom˛.f /.F
0;F2/

for all F 0 lying over ˛.F1/.

DEFINITION. The functor ˛WF! A is a fibred category if
(a) (existence of inverse images) for every morphism aWV ! U in A and F 2 ob.FV /,

an inverse image a�F of F exists;
(b) (transitivity of inverse images) the composite of two cartesian morphisms is cartesian.

In a fibred category, a� can be made into a functor FU ! FV , and for every pair a;b of
composable morphisms in A, .a ıb/� ' b� ıa�.

Let ˛WF! A and ˛0WF0! A be fibred categories over A. A functor ˇWF! F0 such that
˛0 ıˇD ˛ is said to be cartesian if it maps cartesian morphisms to cartesian morphisms (in
other words, it preserves inverse images).

Stacks (Champs)
Let S be the spectrum of a ring R, and let AffS be the category of affine schemes over S
endowed with the fpqc topology (that for which the coverings are finite surjective families
of flat morphisms Ui ! U ).

Let aWV ! U be a faithfully flat morphism of affine S -schemes, and let F 2 ob.FU /.
A descent datum on F relative to a is an isomorphism

�Wp�1 .F /! p�2 .F /

satisfying the “cocycle” condition

p�31.�/D p
�
32.�/ıp

�
21.�/

where p1;p2 are the projections V �U V ! V and the pij are the projections V �U
V �U V ! V . With the obvious notion of morphism, the pairs .F;�/ form a category
Desc.V=U /. There is a functor FU ! Desc.V=U / under which an object F in FU maps
to .a�F;�/ with � the canonical isomorphism

p�1 .a
�F /' .a ıp1/

�F D .a ıp2/
�F ' p�2 .a

�F /:
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DEFINITION. A stack is a fibred category ˛WF! AffS such that, for all faithfully flat mor-
phisms aWV ! U in AffS , FV ! Desc.V=U / is an equivalence of categories.

Explicitly, this means the following:
(a) for an affine S -scheme U and objects F;G in FU , the functor sending aWV ! U to

the set Hom.a�F;a�G/ is a sheaf on U (for the fpqc topology);
(b) for every faithfully flat morphism V ! U of affine S -schemes, descent is effective

(that is, every descent datum for V=U is isomorphic to the descent datum defined by
an object of FU ).

In other words, both morphisms and objects, given locally for the fpqc topology, patch to
global objects.

EXAMPLE. (a) Let ˛WMOD! AffS be the fibred category such that MODU is the cat-
egory of finitely presented � .U;OU /-modules. Descent theory shows that this is a
stack (Waterhouse 1979, 17.2; Bourbaki, Algèbre Commutative, I, 3.6).

(b) Let ˛WPROJ! AffS be the fibred category such that PROJU is the category of finitely
generated projective � .U;OU /. Descent theory again shows this to be a stack (ibid.).

(c) There is a stack AFF! AffS for which AFFT D AffT .

Gerbes
DEFINITION. A gerbe over S is a stack G! AffS such that

(a) in every category GU , all morphisms are isomorphisms;
(b) there exists a faithfully flat morphism U ! S such that GU is nonempty;
(c) any two objects of a fibre GU are locally isomorphic (i.e., their inverse images under

some faithfully flat morphism V ! U of affine S -schemes are isomorphic).
A morphism of gerbes over S is a cartesian functor, and an isomorphism of gerbes over S
is a cartesian functor that is an equivalence of categories. A gerbe G! AffS is neutral if
GS is nonempty.

EXAMPLE. Let F be a sheaf of groups on S (for the fpqc topology). The fibred category
TORS.F /! AffS for which TORS.F /U is the category of right F -torsors on U is a neutral
gerbe. Conversely, let G be a neutral gerbe, and let Q 2 ob.GS /. If F D Aut.Q/ is a sheaf
of commutative groups on S , then, for any aWU ! S and P 2 ob.GU /, Isom.a�Q;a�P /
is an F -torsor, and the functor

P  IsomU .a
�Q;a�P /WG! TORS.F /

is an isomorphism of gerbes.

Bands (Liens)
Let G be a gerbe over S . For U ! S in AffS and x in GU , the presheaf

V  Aut.x/.V / def
D Aut.xjV /

is a sheaf of groups over U for the fpqc topology (because G is a stack). If x and y
are isomorphic objects of GU , then we have an isomorphism Aut.x/! Aut.y/ unique
up to composition with an inner automorphism. We are led to consider the category LIU
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whose objects are sheaves of groups on U , the morphisms F !G being the sections of the
quotient sheaf

GnHom.F;G/=F

where F and G act by inner automorphisms. In this way, we get a fibred category LI!
AffS in which the morphisms patch. A standard procedure allows us to add objects to the
categories LIU to obtain a fibred category LIEN! AffS in which the objects also patch,
i.e., which is a stack. An object of LIENU is called a band (lien) over U . By the above
discussion, a gerbe G over S defines, up to a unique isomorphism, a band B over S . We
say that G is banded by B , or that it is a B-gerbe.

We make this more explicit. Let F and G be sheaves of groups for the fpqc topology
on S , and let Gad be the quotient sheaf G=Z where Z is the centre of G. The action of Gad

on G induces an action of Gad on the sheaf Isom.F;G/, and we set

Isex.F;G/D �
�
S;Gad

nIsom.F;G/
�
:

As Gad acts faithfully on Isom.F;G/;

Isex.F;G/D lim
�!

Ker.Gad.T /nIsom.F jT;GjT /⇒Gad.T �T /nIsom.F j.T �T /;Gj.T �T //

where the limit is over all T ! S faithfully flat and affine.
Every band B over S is defined by a triple .S 0;G;�/ where S 0 is an affine S -scheme,

faithfully flat over S , G is a sheaf of groups on S 0, and � 2 Isex.p�1G;p
�
2G/ is such that

p�31.�/D p
�
32.�/ıp

�
21.�/:

(As before, the pi and pij are the various projection maps S 00! S and S 000! S 00). If T
is also a faithfully flat affine S -scheme, and aWT ! S 0 is an S -morphism, then .S 0;G;�/
and .T;a�.G/;.a�a/�.�// define the same band. If B1 and B2 are the bands defined by
.S 0;G1;�1/ and .S 0;G2;�2/, then an element  2 Isex.G1;G2/ such that p�2 . / ı�1 D
�2 ıp

�
1 . / defines an isomorphism B1! B2.

When G is a sheaf of groups on S , we write B.G/ for the band defined by .S;G; id/.
One shows that

Isom.B.G1/;B.G2//D Isex.G1;G2/:

Thus, B.G1/ and B.G2/ are isomorphic if and only if G2 is an inner form of G1, i.e.,
G2 becomes isomorphic to G1 on some faithfully flat S -scheme T , and the class of G2 in
H 1.S;Aut.G1// comes from H 1.S;Gad

1 /. When G2 is commutative, then

Isom.B.G1/;B.G2//D Isex.G1;G2/D Isom.G1;G2/;

and we usually do not distinguish B.G2/ from G2.
The centre Z.B/ of the band B defined by .S 0;G;�/ is defined by .S 0;Z;�jp�1Z/

where Z is the centre of G. The above remark shows that �jp�1Z lifts to an element
�1 2 Isom.p�1Z;p

�
2Z/, and one checks immediately that p�31.�1/ D p

�
32.�1/ ıp

�
21.�1/.

Thus .S 0;Z;�jp�1Z/ arises from a sheaf of groups on S , which we identify with Z.B/.
Let G be a gerbe on AffS . By (b) of the definition, there exists an object Q 2 GS for

some S 0 ! S faithfully flat and affine. Let G D Aut.Q/; it is a sheaf of groups on S 0.
Again, by definition, p�1Q and p�2Q are locally isomorphic on S 00, and the locally-defined
isomorphisms determine an element � 2 Isex.p�1G;p

�
2G/. The triple .S 0;G;�/ defines a
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bandB which is uniquely determined up to a unique isomorphism. This is the band attached
to the gerbe G.

A band B is said to be affine (resp. algebraic) if it can be defined by a triple .S 0;G;�/
with G an affine (resp. algebraic) group scheme over S 0. A gerbe is said to be affine (resp.
algebraic) if it is banded by an affine (resp. algebraic) band.

Cohomology
Let B be a band on AffS . Two gerbes G1 and G2 banded by B are said to be B-equivalent
if there exists an isomorphism mWG1 ! G2 with the following property: for some triple
.S 0;G;�/ defining B , there is an object Q 2 G1S such that the automorphism

G ' Aut.Q/' Aut.m.Q//'G

defined by m is equal to id in Isex.G;G/. The cohomology set H 2.S;B/ is defined to
be the set of B-equivalence classes of gerbes banded by B . If Z is the centre of B , then
H 2.S;Z/ is equal to the cohomology group ofZ in the usual sense of the fpqc topology on
S , and either H 2.S;B/ is empty or H 2.S;Z/ acts simply transitively on it (Giraud 1971,
IV, 3.3.3).

PROPOSITION. Let G be an affine algebraic gerbe over the spectrum of a field, S D Speck.
There exists a finite field extension k0 of k such that GS 0 , S 0 D Speck0, is nonempty.

PROOF. By assumption, the band B of G is defined by a triple .S 0;G;�/ with G of finite
type over S 0. Let S 0 D SpecR0; R0 can be replaced by a finitely generated subalgebra, and
then by a quotient modulo a maximal ideal, and so we may suppose that S 0D Speck0 where
k0 is a finite field extension of k. We shall show that the gerbes G and TORS.G/ become B-
equivalent over some finite field extension of k0. The statement preceding the proposition
shows that we have to prove that an element of H 2.S 0;Z/, Z the centre of B , is killed by
a finite field extension of k0. But this assertion is obvious for elements of H 1.S 0;Z/ and is
easy to prove for elements of the C̆ech groups MH r.S 0;Z/, and so the exact sequence

0! MH 2.S 0;Z/!H 2.S 0;Z/! MH 1.S 0;H1.Z//

completes the proof. See Saavedra Rivano 1972, III, 3.1, for more details. 2
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