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1 01.10.2019 – Introduction to the Weil conjectures

Let Fq be the finite field with q elements and X/Fq be a smooth, projective, geometrically
connected variety. We denote by d the dimension of X. The aim is to count the number
of rational points of X: more precisely, we define

Nm = #X(Fqm).

In elementary terms, X is defined by equations in projective space, and we are simply
counting the number of solutions to such equations over all extensions of Fq. It turns
out that the interesting object to look at is the exponential generating function of this
collection of numbers Nm:

Definition 1.1 (Zeta function). We set

ZX(T ) := exp

∑
m≥1

Nm
Tm

m

 ∈ Q[[T ]]

and call it the Zeta function of X.

Why is this called the Zeta function? There is a close relationship with the Riemann
Zeta function which we now discuss.

Let x be a closed point of X. The degree of x is by definition

deg(x) := [κ(x) : Fq],

where κ(x) is the residue field at x (a finite extension of Fq). We have the following
equality of formal series:

log

(
1

1− T deg(x)

)
=
∑
n≥1

Tn deg(x)

n

=
∑
n≥1

deg(x)
Tn deg(x)

n deg(x)
,

which shows that the coefficient of Tm

m is{
0, if deg(x) - m
deg(x), if deg(x) | m

Remark 1.2. The quantity deg(x) is also the number of points in X(Fqdeg(x)) lying above
x.

Using the previous remark we find∑
x closed point

log

(
1

1− T deg(x)

)
=
∑
m

Nm
Tm

m
,

because every rational point corresponds to some x, and the number of rational points
corresponding to a given x is precisely its degree. Exponentiating both sides of the previous
identity we get

ZX(T ) =
∏

x closed point

1

1− T deg(x)
,

where the right hand side now looks exactly like the Euler product for the Riemann Zeta
function.
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1.1 Statement of the Weil conjectures

The Weil conjectures are (unsurprisingly) contained in a famous paper by Weil, Number
of solutions of equations over finite fields (Bulletin of the AMS, 1949). All of Weil’s
conjectures are now theorems, and we will see their proofs during the course.

Conjecture 1.3 (Rationality). The Zeta function ZX(T ) is a rational function of T , that
is, ZX(T ) ∈ Q(T ). In fact, there exist polynomials P0(T ), P1(T ), . . . , P2d(T ), all of them
with rational coefficients, such that

ZX(T ) =
P1(T ) · · ·P2d−1(T )

P0(T ) · · ·P2d(T )

Remark 1.4. We will see later that if we normalise the Pi(T ) so that Pi(0) = 1, then
each Pi(T ) has integral coefficients.

Conjecture 1.5 (Functional equation). The Zeta function satisfies the functional equation

ZX

(
1

qdT

)
= ±qdχ/2TχZX(T ),

where χ is the “Euler characteristic of X” (to be defined precisely later).

Remark 1.6. The substitution T → p−s brings the functional equation into a form very
close to the functional equation for the usual Riemann Zeta function.

Conjecture 1.7 (Riemann hypothesis). Using the normalisation Pi(0) = 1 and factoring
Pi(T ) over Q as Pi(T ) =

∏
(1− αijT ), we have:

1. P0(T ) = 1− T

2. P2d(T ) = 1− qT

3. |αij | = qi/2.

Definition 1.8. A q-Weil number of weight i is an algebraic number α such that
|σ(α)| = qi/2 for every embedding σ : Q ↪→ C.

Example 1.9. This is a fairly special property: for example, α = 1+
√

2 has very different
absolute values under the two possible embeddings Q(

√
2) ↪→ C

Remark 1.10. 1. We shall see that the αij are in fact algebraic integers, not just
algebraic numbers.

2. Statement (3) is independent of the choice of embedding Q ↪→ C: in particular, αij
is q-Weil number of weight i.

3. The αij are the reciprocal roots of the polynomials Pi(T ).

4. Consider the special case d = 1. The only interesting polynomial Pi(T ) is then P1(T )
(because P0(T ), P2(T ) are independent of the specific choice of curve), and replacing
T by q−s we see that the Riemann hypothesis is indeed the statement that all the
zeroes of the Zeta function (as a function of s) have abscissa 1/2.
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Conjecture 1.11. Suppose X arises by reduction modulo p of a flat projective generically
smooth scheme Y/ SpecOK , where K is a finite extension of Q and p is a prime of the
ring of integers of K. Then the degree of Pi(T ) is the i-th Betti number of the complex
variety (Y ×OK

C)(C).

Remark 1.12. Starting from X/Fq, one can lift the equations defining X to the ring of
integers of some number field, and (with some care) get a Y as in the previous conjecture.

However, one can also run the construction in the other direction: starting from a
smooth variety Y/K, we can fix a flat model Y over OK . This Y will not be smooth
everywhere, but for all primes p of OK with finitely many exceptions we will have a
smooth fibre X = Yp, for which we can consider the corresponding Zeta function.

1.2 A little history

• The elliptic curve case was proven by Hasse (who gave two proofs, in 1934 and 1935)

• The case when X is an algebraic curve was handled by Weil himself in the 40s (2
proofs). He also tackled the case of abelian varieties.

• Weil also treated the case of diagonal hypersurfaces by elementary methods. Here a
diagonal hypersurface is a hypersurface defined by an equation of the form

∑
i=0 aix

r
i

• There is a proof by Katz that reduces the general case to the case of diagonal
hypersurfaces.

• Conjecture 1 was first proven by Dwork in 1959, by p-adic analysis methods. Dwork’s
proof can be found in Serre’s Bourbaki talk [Ser60] on the topic.

• Conjectures 1.3, 1.5 and 1.11 were proven by Grothendieck, Artin, and many others
in SGA during the 1960s.

• Conjecture 1.7 was proven by Manin for unirational varieties (1966) and by Deligne
for K3 surfaces (1969). The methods used by Deligne for this special case are com-
pletely different from those he used to prove the general case, which he established
in 1974 in a paper [Del74] usually referred to as ‘Weil I’.

• Grothendieck had a strategy to prove Conjecture 1.7 that goes through his famous
Standard Conjectures. Unfortunately, these are still very much open!

• Deligne also obtained [Del80] vast generalisations of his results that apply to non-
smooth varieties. The arguments in Weil II are much harder than those in Weil
I.

• A second, simpler proof of Weil II was obtained by Laumon (1984).

• In Weil II, Deligne also states some open problems, many of which are still open.
An important input for those that have been solved comes from L. Lafforgue’s work
on the Langlands correspondence for GLn.
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1.3 Grothendieck’s proof of Conjectures 1.3 and 1.5

The key point, as observed by Grothendieck (and already implicit in Weil’s work), is that
there is a cohomological interpretation of the Zeta function. Fix a prime number ` 6= p.
Let Q` be the field of `-adic numbers, which – as it is well known – is a field of characteristic
zero. Let X = X ×Fq Fq. Grothendieck defined certain `-adic étale cohomology groups
H i
(
X,Q`

)
, which are finite-dimensional vector spaces over Q`. We briefly recall some

properties of these cohomology groups:

1. H i(X,Q` are finite-dimensional vector spaces over Q`, and are trivial for i > 2d.

2. X 7→ H i(X,Q`) is a contravariant functor.

3. Poincaré duality: the cup product induces perfect pairings

H i(X,Q`)×H2d−i(X,Q`)→ H2d(X,Q`) ∼= Q`.

4. Lefschetz fixed point formula: let f : X → X be a self-map with isolated fixed points
of multiplicity 1. Then

#{fixed points of f} =
2d∑
i=0

(−1)i tr
(
f∗
∣∣ H i(X,Q`)

)
.

Notice that this last formula makes sense since H i(X,Q`) is a contravariant functor.

The idea is now to apply (4) with f given by F : X → X, where F is the (geometric)
Frobenius (namely, the identity on X and g 7→ gp on functions). It is a fact (a consequence
of the definition of the étale cohomology groups) that F acts as multiplication by q2d on
H2d(X,Q`). Moreover,

X(Fqm) = {fixed points of Fm}.

Proof of Conjecture 1.3. Apply the Lefschetz fixed point formula to Fm. It yields

Nm =
2d∑
i=0

(−1)i Tr
(
F ∗m

∣∣ H i
(
X,Q`

))
,

and therefore

ZX(T ) = exp

∑
m≥1

Nm
Tm

m


=

2d∏
i=0

exp

( ∞∑
m=1

Tr
(
F ∗m

∣∣ H i(X,Q`)
))(−1)i

=
2d∏
i=0

det(Id−F ∗T
∣∣ H i(X,Q`))

(−1)i+1

where in the last equality we have used the well-known Lemma 1.14. Hence one can take

Pi(T ) = det(Id−F ∗T
∣∣ H i(X,Q`)),
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but so far we have only shown that Pi(T ) is a polynomial with coefficients in Q`. We now
have

ZX(T ) ∈ Z[[T ]] ∩Q`(T ),

where the fact that ZX(T ) ∈ Z[[T ]] follows from the Euler product description. We would
like to deduce that ZX(T ) ∈ Q(T ). This is done via the theory of Hankel determinants:
let f ∈ K[[T ]], where K is any field. Write f =

∑∞
i=0 aiT

i and define

Hk = det(ai+j+k)0≤i,j≤M

for k > N , where both M and N are arbitrary parameters. The theory of Hankel de-
terminants shows that f ∈ K(T ) if and only if Hk = 0 for all M,N sufficiently large.
Clearly this criterion is independent of the field of coefficients, hence the fact that ZX(T )
is a rational function in Q`(T ) implies the same statement in Q(T ). More precisely: con-
sidering ZX(T ) as a formal power series in Q`[[T ]] we find that all Hankel determinants
for M,N � 0 vanish, because ZX(T ) is a rational function in Q`(T ). But on the other
hand the coefficients of ZX(T ) are integers, so ZX(T ) is in particular a formal power series
with coefficients in Q for which all Hankel determinants with M,N � 0 vanish, so by the
converse statement we have that ZX(T ) is a rational function in Q(T ).

To finish the proof (namely, show that Pi(T ) has rational coefficients), we use the
following elementary Lemma due to Deligne:

Lemma 1.13. Assume we already know that the αij are algebraic numbers with absolute

value qi/2. Write ZX(T ) = P (T )
Q(T ) , where P (T ), Q(T ) ∈ Q[T ]. By a classical lemma of

Fatou, we may assume P (0) = Q(0) = 1. Also write ZX(T ) =
P1(T )...P2d−1(T )
P0(T )...P2d(T ) . Since the

different Pi(T ) have distinct roots (because they have different absolute value), they are
pairwise coprime, so P (T ) =

∏
i odd Pi(T ) and Q(T ) =

∏
j even Pj(T ). Finally, since the

condition |αij | = qi/2 is invariant under the action of Gal(Q | Q), the polynomials Pi(T )
have rational coefficients.

Lemma 1.14. Let V be a finite-dimensional vector space, ϕ ∈ End(V ). Then

exp

( ∞∑
m=1

Tr
(
ϕm

∣∣ V )) Tm

m
= det(Id−ϕT )−1

Proof. The statement is obvious for 1-dimensional vector spaces, and both sides of the
equality are multiplicative in short exact sequences of the form 0→ V ′ → V → V/V ′ → 0.
Since the statement does not depend on the ground field, one can work over the algebraic
closure and use the existence of eigenvectors to proceed by induction on the dimension of
V .
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2 08.10.2019 – Diagonal hypersurfaces

2.1 Proof of Conjecture 1.5

Recall our setup: we let Fq be a finite field, X/Fq a smooth projective variety of dimension
d, Nm = #X(Fqm), and

ζX(T ) = exp

∑
m≥1

Nm
Tm

m

 .

We have discussed the Weil conjectures:

1. Rationality: ZX(T ) ∈ Q(T ).

2. Functional equation: ZX

(
1
qdT

)
= ±qdχ/2TχZX(T ).

3. Riemann hypothesis: writing ZX(T ) =
P1(T )···P2d−1(T )
P0(T )···P2d(T ) we have Pi(T ) ∈ Q[T ], and

normalising Pi(T ) so that Pi(0) = 1 we can write

Pi(T ) =
∏

(1− αijT )

with |αij | = qi/2 under any embedding of αij in C.

Today we begin with the proof of the functional equation, assuming all the good
properties of (`-adic) étale cohomology.

Proof. Proof of Conjecture 1.5 The proof is based on Poincaré duality, that is, the fact
that for every i ∈ {0, . . . , 2d} the vector space H i

(
X,Q`

)
is dual to H2d−i(X,Q`).

Lemma 2.1. Let H∗ :=
⊕2d

i=0H
i be a graded algebra over a field, and suppose that each

H i is finite-dimensional. Assume that for every i there exists a nondegenerate pairing

〈 , 〉 : H i ×H2d−i → K,

induced by the composition of the product map H i × H2d−i → H2d with a trace map
H2d → K.

Let ϕ = ϕ0⊕ · · · ⊕ϕ2d be a graded endomorphism of degree 0 (that is, ϕ(H i) ⊆ H i for
all i). Assume:

(i) ϕ(a · b) = ϕ(a) · ϕ(b)

(ii) ϕ2d = id

Then ϕ is an automorphism of H∗, so that in particular every ϕi is invertible, and ϕ−1
i =

tϕ2d−1, where t denotes transposition with respect to 〈 , 〉.

Proof. Let a ∈ H i be any nonzero element. Since we have assumed the product to be
nondegenerate, there exists b ∈ H2d−i such that a · b 6= 0, so

H2d 3 a · b (ii)
= ϕ(a · b) (i)

= ϕ(a)ϕ(b),
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so ϕ(a) is nonzero and ϕ is injective. Since dimH i is finite, this implies that every ϕi
(hence also ϕ) is an automorphism. Finally, for every a ∈ H i and b ∈ H2d−i we have

〈ϕ−1
i (a), b〉 = Tr

(
ϕ−1
i (a) · b

)
= Tr

(
ϕ2d

(
ϕ−1
i (a) · b

))
= Tr

(
ϕi(ϕ

−1
i (a)) · ϕ2d−i(b)

)
= 〈a, ϕ2d−i(b)〉,

so – using the fact that 〈 , 〉 is nondegenerate – we obtain ϕ−1
i = tϕ2d−i as desired.

To prove Conjecture 1.5, we apply the Lemma with H i = H i
(
X,Q`

)
and ϕi = F√

qi

and use that
{eigenvalues of tϕ2d−i} = {λ−1 : λ eigenvalue of ϕi}.

It follows that{
qi/2

αij
: 1 ≤ j ≤ degPi(T )

}
=

{
α2d−i

q
2d−i

2

∣∣ 1 ≤ j ≤ degP2d−i = degPi

}
:

here we have used degPi = degP2d−i, which again follows from Poincaré duality since
these degrees are the dimensions of H i(X,Q`), H

2d−i(X,Q`) respectively. Equivalently,

if αij is an eigenvalue of F on H i(X,Q`), then qd

αij
is an eigenvalue of F on H2d−i(X,Q`).

Using this, the statement is reduced to a direct computation.

Exercise 2.2. Fill in the details of the previous proof.

2.2 Diagonal hypersurfaces

In [Wei49], Weil verified his conjectures for the special case of hypersurfaces given by
equations of the form

r∑
i=0

aix
d
i = 0,

where (d, q) = 1. Today we’ll study the special case of the Fermat curve xd + yd = zd.

Lemma 2.3 (Lemma Z). ZX(T ) is rational if and only if for some α1, . . . , αs and
β1, . . . , βr ∈ C the equality

Nm(X) =
∑
j

βmj −
∑
i

αmi

holds for every m.

Proof. We have ZX(0) = 1 by definition, so ZX(T ) is rational if and only if we can write

ZX(T ) = P (T )
Q(T ) with P (T ), Q(T ) ∈ Q[T ] with P (0) = Q(0) = 1. Assuming rationality, we

have

ZX(T ) =

∏
(1− αiT )∏
(1− βjT )

,

where the {αi}, {βj} are reciprocal roots of P (T ) and Q(T ) respectively. Taking the
logarithmic derivative of both sides we get

Z ′X(T )

ZX(T )
= −

∑
i

αi
1− αiT

+
∑
j

βj
1− βjT

,
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and multiplying both sides by T and expanding the right hand side as a formal power
series in T we have

TZ ′X(T )

ZX(T )
=

∞∑
m=1

∑
j

βmj −
∑
i

αmi

Tm.

Recalling that ZX(T ) = exp
(∑∞

m=1
NmTm

m

)
, one gets

T
Z ′X(T )

ZX(T )
=

∞∑
m=1

NmT
m.

Comparing coefficients of Tm we get the desired statement. The converse implication is
now immediate.

2.3 Gauss & Jacobi sums

Let χ : F×q → C× be a multiplicative character.

Definition 2.4 (Gauss sum). We set

g(χ) =
∑
a∈Fq

χ(a)ζ
TrFq/Fp (a)
p ,

where – as is customary in number theory – we have set χ(0) = 0.

Remark 2.5. The function

ψ(a) := ζ
TrFq/Fp (a)
p

is an additive character of Fq, that is, a homomorphism (Fq,+)→ C×.

Lemma 2.6 (Lemma G). (a) g(χ) = χ(−1)g(χ);

(b) g(χ)g(χ) = q if χ 6= 1;

(c) g(χ)g (χ) = χ(−1)q if χ 6= 1.

Proof. Clearly (a) and (b) together imply (c).

(a)

g(χ) =
∑
a

χ(a)ψ(a)

=
∑
a

χ(a)ψ(−a)

=
∑
a

χ(−1)χ(−a)ψ(−a)

= χ(−1)g(χ)

= χ(−1)g(χ),

where in the last equality we have used the fact that χ(−1) ∈ {±1} is a real number.
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(b)

g(χ)g(χ) =
∑
a,b 6=0

χ(ab−1)ψ(a− b)

c=ab−1

=
∑
b,c 6=0

χ(c)ψ(bc− b)

=
∑
b,c 6=0

χ(c)ψ(b(c− 1))

=
∑
b 6=0

χ(1)ψ(0) +
∑
c 6=0,1

χ(c)
∑
b 6=0

ψ(b(c− 1))

= (q − 1) +
∑
c 6=0,1

χ(c)(−1)

= q,

where we have repeatedly used the fact that
∑

c∈Fq
ψ(c) = 0 if ψ is a nontrivial additive

character, and similarly for multiplicative characters.

Definition 2.7 (Jacobi sums). If χ1, χ2 are multiplicative characters F×q → C, we set

J(χ1, χ2) =
∑
a∈Fq

χ1(a)χ2(1− a).

Lemma 2.8 (Lemma J). (a) J(1, 1) = q − 2

(b) J(1, χ) = J(χ, 1) = −1

(c) J(χ, χ) = −χ(−1)

(d) If χ1χ2 6= 1, then

J(χ1, χ2) =
g(χ1)g(χ2)

g(χ1χ2)

Remark 2.9. Lemma 2.6 (b) implies in particular |J(χ1, χ2)| = √q.

Proof. (a) and (b) are easy. We prove (c) and (d) simultaneously:

g(χ1)g(χ2) =
∑
a,b

χ1(a)χ2(b)ψ(a+ b)

=
∑
a,c

χ1(a)χ2(c− a)ψ(c) (c = a+ b)

=
∑

a∈Fq ,c∈F×q

χ1(a)χ2(c− a)ψ(c) +
∑
a∈Fq

χ1(a)χ2(−a).

Let’s compute the two sums separately. The latter one can be evaluated exactly:

∑
a∈Fq

χ1(a)χ2(−a) = χ2(−1)
∑
a

(χ1χ2)(a) =

{
χ1(−1)(q − 1), if χ1χ2 = 1

0, otherwise,

11



while the former can we rewritten as∑
a∈Fq

c∈F×q

χ1(a)χ2(c− a)ψ(c) =
∑
d∈Fq

c∈F×q

χ1(cd)χ2(c(1− d))ψ(c) (a = c · d)

=
∑

c∈F×q ,d∈Fq

χ1χ2(c)ψ(c)χ1(d)χ2(1− d)

= g(χ1χ2)J(χ1, χ2).

This finishes the proof of (d). For (c), observe that g(χχ) = g(1) = −1, so that using the
previous computations together with Lemma 2.6 we get

−J(χ, χ) + χ(−1)(q − 1) = g(χ)g(χ) = χ(−1)q,

which proves (c).

Proposition 2.10 (Main proposition). Let Xd = {xd + yd = zd} ⊂ P2
Fq

, where d ≥ 2 and

(d, q) = 1. Let e = (q − 1, d) and χ : F×q → C× be a character of order e. Then

N1(Xd) = q + 1 +
e−1∑
a,b=1
a+b 6=e

J(χa, χb)

To establish the Riemann hypothesis we also need to investigate what happens over
extensions. Let Fqm/Fq be a finite extension, and let

χm = χ ◦NFqm/Fq
: F×qm → C×.

By definition, g(χm) is a Gauss sum for Fqm .

Proposition 2.11 (Hasse-Davenport relation).

−g(χm) = (−g(χ))m

Corollary 2.12.

Nm(Xd) = #Xd(Fqm) = qm + 1−
e−1∑
a,b=1
a+b 6=e

(
−J(χa, χb)

)m
,

so in the spirit of Lemma 2.3 we can write

Nm =
∑

αmi︸ ︷︷ ︸
qm+1

−
∑(

−J(χa, χb)
)m

︸ ︷︷ ︸∑
βm
j

.

The fact that |βj | =
√
q by Lemma 2.8 then implies the Riemann hypothesis.

Remark 2.13. Replacing Fq with Fqm can change the value of e (e.g. q = 5,m = 2, d = 3).
One checks that this does not affect the proof, and that one can in fact assume e = d.
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3 15.10.2019 – A primer on étale cohomology

3.1 How to define a good cohomology theory

The basic example to have in mind is the following. Let X be a topological space, and
let CX be the category whose objects are open subsets of X and in which Mor(V,U) =
{ι : V ↪→ U open inclusion}. In particular, Mor(V,U) is nonempty if and only if V is a
subset of U , and in that case it consists of precisely one element. A presheaf (of abelian
groups) on X is a contravariant functor CX → Ab, that is,

• for each open subset U of X we have an abelian group F(U);

• for each inclusion V ⊆ U we have a restriction morphism U → V.

The presheaf F is a sheaf if and only if for every open cover {Ui → U}i∈I the following
sequence is exact:

0→ F(U)→
∏
i∈I
F(Ui) −→−→

∏
(i,j)∈I2

F(Ui ∩ Uj),

where the two arrows
∏
F(Ui)→

∏
(i,j)F(Ui∩Uj) are induced by the inclusion of Ui∩Uj

into Ui and Uj respectively. Classically, the category of sheaves has enough injectives,
and we can define Hq(X,−) as the qth derived functor of the global sections functor
X 7→ F(X).

Definition 3.1. Let A be an abelian group. The constant sheaf A associated with A is
given by

A(U) := Aπ0(U),

with the obvious restriction maps induced by

Problem 3.2. The above construction of cohomology is uninteresting if F is a constant
sheaf and X is the underlying topological space of a (reasonable) scheme. The reason is
that A is flabby, hence it has trivial cohomology in degree > 0.

Definition 3.3. A Grothendieck topology consists of:

• a category C with fibre products;

• a set1 Cov C, whose elements are families of morphisms {Ui
ϕi−→ U} (U is fixed, and

we consider several Ui). These elements are called coverings, and are supposed to
satisfy the following axioms:

1. the identity {U id−→ U} is in Cov C for every object U in C;

2. given {Ui
ϕi−→ U}i∈I and {Vij

ψij−−→ Ui} are in Cov C, then so is the family

{Vij
ϕi◦ψij−−−−→ U}

3. given {Ui → U} in Cov C and V → U a morphism in C, the family {V ×U Ui →
V } is again in Cov C.

1there are nontrivial set-theoretical problems here, but we will not discuss them
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Definition 3.4. In this situation, a presheaf is a contravariant functor F : C → Ab. A
presheaf is a sheaf if

0→ F(U)→
∏
i∈I
F(Ui) −→−→

∏
(i,j)∈I2

F(Ui ×U Uj),

is exact for all coverings {Ui → U}i∈I in the topology.

Theorem 3.5 (Grothendieck). The category of sheaves has enough injectives, and we can
define

Hq(U,F) := RqΓ(U,F),

where
Γ(U,−) : F 7→ F(U).

3.1.1 Examples

1. the above topological example

2. Let X be a scheme and C be the category of X-schemes. The family of coverings
is given by the collections {Ui

ϕi−→ U}i∈I such that
⋃
i∈I ϕi(Ui) = U and every ϕi

is étale. We will always use this (Grothendieck) topology, and we will denote by
Hq(X,−) the corresponding cohomology theory, usually called étale cohomology.

3.2 Basic properties of étale cohomology

1. Let X = Spec(k), where k is a field with separable closure ks. Then Hq(X,F) :=
Hq (k,F(ks)), where the latter is (continuous) Galois cohomology.

2. Let A be a finite abelian group and denote by A also the constant sheaf associated
with A (same definition as in Definition 3.1). Let X be a smooth variety over C.
There exists a canonical isomorphism

Hq(X,A) = Hq
sing(X(C), A).

Smoothness is not very important here, but finiteness of A is essential: the statement
is not true, for example, with Z coefficients. In fact, already H1(X,Z) is different in
the two theories: on the one hand, H1

sing(X(C),Z) ∼= Hom(π1(X(C)),Z), while

H1(X,Z) ∼= Homcont

(
π

alg(X)
1 ,Z

)
= (0),

because π1(X)alg is (by construction) a profinite group.

3.3 Stalks of an étale sheaf

In the topological case, the stalk of a sheaf F at a point x is

Fx := lim−→
x∈U
F(U);

14



this is modelled over the set of germs of functions at a point. For étale sheaves we have
the following analogue. Given a point Spec k(x)→ X, an étale neighbourhood of x is
a commutative diagram

Spec k(x)s

��

// U

étale
��

Spec k(x) // X

Given a geometric point x : Spec k(x)s → X lying above x, we define

Fx := lim−→
x∈U
F(U),

where the indexing category is given by étale neighbourhoods of (the topological image
of) x.

3.4 How to get cohomology groups with coefficients in a ring or field of
characteristic 0

Let ` be a prime number. The ring of `-adic integers is

Z` := lim←−
n

Z/`nZ,

and the field of `-adic numbers is Q` := Z` ⊗Z Q. In the same way, when X is a scheme
we define

Hq(X,Z`) := lim←−
n

Hq(X,Z/`nZ)

and
Hq(X,Q`) := Hq(X,Z`)⊗Z Q.

Remark 3.6. This is not the same as the q-th étale cohomology group of the constant
sheaf of group Z`! In particular, H1(X,Z`) (cohomology of the constant sheaf) is often
zero, while lim←−nH

q(X,Z/`nZ) usually captures the ‘interesting’ information.

In general, we can define “`-adic sheaves” and take their cohomology. This is a bit
technical, so we only give a sketch. Let (Fr)r≥1 be a sequence of sheaves such that Fr is
locally constant2 with finite stalks. Suppose that for every r ≥ 1 the sheaf Fr is killed by
`r, and that Fr+1/`

rFr+1
∼= Fr. Then we can define

Hq(X,F) := lim←−
n

Hq(X,Fr);

one also gets Q`-sheaves by tensoring with Q`, or equivalently, by working in the category
of `-adic sheaves up to isogeny.

Remark 3.7. A good reference for `-adic sheaves is [FK88].

2the pullback to an étale cover is constant. In this case, since stalks are finite the étale cover can be
chosen to be finite
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3.4.1 Examples

If X is a variety over a field k with (n, char k) = 1, then we have an étale sheaf of n-th
roots of unity,

µn(U) := {f ∈ OU (U) : fn = 1}.

Notice that Gal(ks/k) acts naturally on µn. The system (µ`r)r≥1 defines an `-adic sheaf
which is usually denoted by Z`(1) (and called a Tate twist). One also defines Q`(1) :=
Z`(1)⊗Q and

Z`(i) := Z`(1)⊗i, Q`(i) := Q`(1)⊗i.

3.5 Operations on sheaves

Let ϕ : X → Y be a morphism, F be an étale sheaf on X. The pushforward ϕ∗F is the
sheaf on Y given by

ϕ∗F(U) := F(X ×Y U).

The functor ϕ∗ has a left adjoint, denoted by ϕ∗, which to a sheaf G on Y associates a
pullback sheaf ϕ∗G on X in such a way that

Hom (ϕ∗F ,G) ∼= Hom (F , ϕ∗G) .

The pullback is exact, but the pushforward is not exact on the right, and one may consider
the right derived functors Rqϕ∗ of ϕ∗. If f is locally constant with finite stalks, and ϕ is
proper, then

(Rqϕ∗)y ∼= Hq
(
Xy,FXy

)
Theorem 3.8 (Proper smooth base change). If ϕ : X → Y is proper and smooth, F is
a locally constant sheaf on X with finite stalks, then the derived pushforwards Rqϕ∗F are
locally constant with finite stalks on Y .

3.5.1 The 4th Weil conjecture

Suppose X/Fq lifts to a smooth proper scheme over an open subscheme of OK , where
OK is the ring of integers in a number field K, then degPi(T ) = i-th Betti number
of the corresponding complex variety. Recall that degPi(T ) is simply the dimension of
the cohomology space H i(X,Q`), so the fourth Weil conjecture simply states that the
dimension of the étale and Betti cohomology groups agree. For the proof, let p be a prime
of OK such that X → Fq extends to a smooth proper scheme X over Spec ÔK,p, where
·̂ denotes completion. We have a morphism ϕ : X → SpecOK , and we can consider the
sheaf Q` on X and Rpϕ∗Q` on SpecOK .

Now OK,p is a DVR, so its spectrum consists of two points: a generic point η, with
residue field equal to a finite extension of Qp, and a special point s with residue field Fq.
Now smooth proper base change gives(

Riϕ∗Q`

)
η
∼=
(
Riϕ∗Q`

)
s
,

and the two sides of this equality are H i(Xη,Q`) and H i(X,Q`). The right hand side has
dimension degPi(T ). We claim that for the left hand side we have

H i(Xη,Q`) ∼= H i(XC,Q`).
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To see this, one can either use the axiom of choice to prove that the algebraic closure of
Qp is isomorphic to C, or use the Lefschetz principle to go down from Qp to a finitely
generated extension of Q, then back up to its algebraic closure, and then from there to C.
The claim then follows from the fact that étale cohomology is invariant under extension
of the field of definition between algebraically closed fields.

4 22.10.2019 – Deligne’s integrality theorem

4.1 More generalities on étale cohomology

4.1.1 Cohomology with compact support

Given an open immersion j : U ↪→ X, one can define an extension by zero functor

Sh(U) → Sh(X)
F 7→ j!F .

This has the property that for every geometric point x of X we have

(j!F)x =

{
Fx, if the topological image of x is in |U |
0, otherwise

Given U and an étale sheaf F on U , we can then define

H i
c(U,F) := H i(X, j!F)

where X is proper and contains U as a dens open subset. For U of finite type over a
field, such an X always exist by Nagata’s compactification theorem. One shows that the
definition does not depend on X.

Let now f : X → Y be a compatifiable morphism, i.e., such that there exists a diagram

X

f   

� � // Xc

fc
}}

Y

where Xc is proper over Y and X is a dense open subset of Xc. For a sheaf F on X we
can then define

Rif!F := Ri(f c∗ ◦ j!)F .

One (that is, Deligne) proves that this construction does not depend on the compactific-
ation Xc, and that if F is torsion there is a canonical identification

(Rif!F)y = H i
c (Xy,Fy)

for every geometric point y of Y . This extends in the usual way to Z`- and Q`-sheaves.
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4.1.2 Three basic theorems

Let F be a locally constant sheaf of finite Z/nZ-modules, or of finite-dimensional Q`-vector
spaces.

Theorem 4.1 (Cohomological dimension, M. Artin). Let X be of finite type over a sep-
arably closed field k. Then

H i(X,F) = H i
c(X,F) = (0)

for i > 2d. In addition, H i(X,F) = (0) if i > dimX and X is affine over a separably
closed field k.

Theorem 4.2 (Localisation sequence in compact support cohomology). Let Z ↪→ X be a
closed immersion with complement U := X \ Z. There is a long exact sequence

· · · → H i
c(U,F)→ H i

c(X,F)→ H i
c(Z,F → H i+1

c (U,F)→ · · ·

Theorem 4.3 (Poincaré duality). Let X be smooth, connected, and of finite type over a
separably closed field and write d for the dimension of X. Then the following hold:

1. There is a “trace map” isomorphism H2d
c (X,Q`) ∼= Q`(−d);

2. Let F be a locally constant sheaf of finite-dimensional Q`-vector spaces, and define
F∨ := Hom(F ,Q`). There exists a perfect pairing

H i(X,F)×H2d−i
c (X,F∨)

∪−→ H2d
c (X,Q`) ∼= Q`(−d).

Corollary 4.4 (Weak Lefschetz). Let X be proper and smooth over a separably closed
field k and let d = dimX. Let Z ↪→ X be a closed immersion such that U := X \ Z is
affine. Then:

1. H i(X,F) ∼= H i(Z,F) for i < d− 1;

2. Hd−1(X,F) ↪→ Hd−1(Z,F) for every locally constant sheaf of Q`-vector spaces.

Sketch of proof. Write the localisation sequence for X \Z and use the cohomological van-
ishing from Theorem 4.1 after identifying H i

c(U,F) with H2d−i(U,F).

4.2 Generalised zeta functions

Let X/Fq be a separated scheme of finite type, and let F be an étale sheaf on X. Denote
by X the base change X×Fq Fq and let F be the pull-back of F to X. There is a Frobenius
F : X → X, which induces the geometric Frobenius F : X → X. If x is a geometric point
of X, pulling back along F induces a morphism

F ∗x ;FF (x) → Fx,

and more generally
F ∗nx : FFn(x) → Fx.

In particular, if the topological image of x is a closed point defined over the degree n
extension of Fq, then Fn(x) = x and F ∗nx is an endomorphism of Fx.
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Definition 4.5. In this situation, define

Z(X,F , T ) :=
∏
x∈X

closed point

det
(

1− F deg(x)
x T

∣∣ Fx)−1
.

Remark 4.6. For the constant (`-adic) sheaf Q` we have Z(X,Q`, T ) = ZX(T ).

There is a generalised Lefschetz trace formula for these zeta functions, which implies
in particular

Z(X,F , T ) =

2d∏
i=0

det
(
1− F ∗T

∣∣ H i
c(X,F)

)(−1)i+1

Exercise 4.7. Reverse-engineer the general Lefschetz trace formula from the above iden-
tity.

4.3 The integrality theorem

We start with a definition:

Definition 4.8 (Deligne). Let X be a separated scheme of finite type over Fq and let
F be a locally constant sheaf of finite-dimensional Q`-vector spaces. We say that F is

integral if for all geometric points x the eigenvalues of F
∗deg(x)
x acting on Fx are algebraic

integers.

Remark 4.9. As with many of our constructions and definitions, this also makes sense
for constructible sheaves. There is also a version of this definition where one considers
S-algebraic integers (that is, algebraic numbers that are integral over Z[1/S]).

Theorem 4.10 (Deligne). In the above situation, if F is integral, then H i
c(X,F) is also

integral for every i ≥ 0 (that is, the eigenvalues of Frobenius acting on it are algebraic
integers).

Corollary 4.11. The constant sheaf F = Q` is integral, so H i
c(X,Q`) is too. In particular,

the zeroes and poles of ZX(T ) are algebraic integers.

Proof. Notice first that we can assume that X is reduced by [Sta18, Tag 03SI]. In the case
of curves, this guarantees that the singular locus is 0-dimensional.

By induction on d = dimX. For d = 0, the theorem is (trivially) true for H0
c = H0

(0-dimensional schemes are proper!).
Next we consider the case of curves, namely d = 1. The first observation is that there

exists a closed subscheme Z ↪→ X of dimension zero such that H0(X,F) ↪→ H0(Z,F). To
see this, recall that we have assumed that each Fx is a finite-dimensional Q`-vector space,
so it suffices to choose sufficiently many points to get the desired injection. The result for
H0
c (X,F) then follows from the 0-dimensional case, because we have injections

H0
c (X,F) ↪→ H0(X,F) ↪→ H0(Z,F)

and the eigenvalues on a subspace are a subset of the eigenvalues on the whole space.
We now consider the case d = 1 and i = 2. Choose a closed subscheme Z ↪→ X of

dimension 0 containing the singular locus of X. The localisation sequence gives

(0) = H1
c (Z,F)→ H2

c (U,F)→ H2
c (X,F)→ H2

c (Z,F) = (0),
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that is, H2
c (U,F) ∼= H2

c (X,F). So we may assume that X is smooth, which by Poincaré
duality (Theorem 4.3) implies that H2

c (X,F) is dual to H0(X,F∨), and we win because
we already know that the statement holds for H0(X,F∨). Notice that we are taking the
reciprocal of the eigenvalues twice, one because of the presence of the dual sheaf F∨ and
one because of the duality between H2

c (X,F) and H0(X,F∨).
To finish the case of curves we still need to handle the case d = 1, i = 1. We have an

equality of formal power series

det(1−F ∗T
∣∣ H1

c (X,F)) = det(1−F ∗T
∣∣ H0

c (X,F)) det(1−F ∗T
∣∣ H2

c (X,F))Z(X,F , T ).

As F is integral, the coefficients of Z(X,F , T ) are algebraic integers, so the same is true
for det(1− F ∗T

∣∣ H1
c (X,F)). As det(1− F ∗T

∣∣ H1
c (X,F)) is a polynomial with constant

coefficient 1 and whose other coefficients are (algebraic) integers, the inverse roots of
det(1− F ∗T

∣∣ H1
c (X,F)) are also algebraic integers. But these inverse roots are precisely

the eigenvalues of Frobenius, and we are done.
Finally, for the induction step, assume that d > 1. Choose an open subscheme U ↪→ X

such that dim(X \U) < d and there exists a compactifiable morphism f : U → Y , with Y
a curve, such that the fibres of f have dimension < d. In other words, we want a diagram

U //

  

U c

~~

Y ;

to show that this exists, choose U to be a dense open affine subscheme of X, embed it in
projective space, take its closure, and use a suitable pencil of hyperplanes. Using Theorem
4.2 we get

H i
c(U,F)→ H i

c(X,F)→ H i
c(Z,F)

By the induction hypothesis, it suffices to prove the statement for H i
c(U,F), that is, we

can assume X = U . In particular, we can assume that there is a compactifiable morphism
f : X → Y with fibres of dimension < d, and we may consider Rif!F . Shrinking U further
if necessary, we can also assume that f is smooth. There is a potential small problem
here, because Rqf!F is not necessarily locally constant. In any case, one can work with
constructible sheaves, and the problem disappears. In this situation, there exists a Leray
spectral sequence

Ep,q2 = Hp
(
Y ,Rqf!F

)
⇒ Hp+q

c (X,F).

Notice that this is slightly less easy than the usual Leray spectral sequence, because we are
working with cohomology with compact support. The spectral sequence is compatible with
the action of Frobenius, and Hp+q

c (X,F) is filtred with graded pieces that are subquotients
of Hp

(
Y ,Rqf!F

)
. Hence it suffices to prove integrality for Hp

(
Y ,Rqf!F

)
. Now observe

that
(Rqf!F)y

∼= Hq
c (Xy,Fy) ,

Remark 4.12. We will see later that in the proof of Conjecture 1.7 we shall need a much
more refined version of the coarse geometric lemma used in this proof. The advantage
in the proof of Deligne’s integrality theorem is that the fibres of f : U → Y can have
arbitrarily bad singularities.
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5 29.10.2019 – Katz’s proof of the Riemann Hypothesis for
hypersurfaces (2015)

Theorem 5.1. Let X ⊂ Pd+1
Fq

be a smooth projective hypersurface. The eigenvalues of

Frobenius acting on H i
(
X,Q`

)
all have absolute value qi/2, for i = 0, . . . , 2d.

Convention. For this lecture, absolute value means absolute value with respect to all
embeddings of Q` into C.

Remark 5.2. Scholl [Sch11] shows that the case of hypersurfaces implies the case of
general smooth projective varieties.

Remark 5.3. The weak Lefschetz theorem implies that H i
(
X,Q`

) ∼−→ H i
(
Pd,Q`

)
for

i < d. Moreover, if k is a separably closed field,

H i
(
Pdk,Q`

)
=

{
Q`

(
− i

2

)
, 0 ≤ i ≤ 2d, i even

0, i odd

To see this, notice that for k = C this is known from topology (up to the Galois action).
Since cohomology does not change by extension of algebraically closed field, the result also
holds for every k of characteristic 0. By smooth proper base change, as in Section 3.5.1,
this implies the result for arbitrary separably closed k. This proves that the group is Q`.
As for the Galois action, we have a Galois-equivariant map

Z/nZ ∼= Pic(Pn)/nPic(Pn) ∼= H1
(
P1,Gm

)
/nH1

(
P1,Gm

)
→ H2 (Pn, µn)

which is an isomorphism of abelian groups by comparison with the case k = C. Hence it
is an isomorphism of Galois modules, which gives the action of Galois on H2 (Pn, µn). For
i > 2, one similarly considers the Galois-equivariant map

H2
(
Pd, µn

)
∪ · · · ∪H2

(
Pd, µn

)
→ H2d

(
Pd, µ⊗dn

)
,

which is again an isomorphism by comparison with topology.

Putting together the previous arguments, we get that for i < d

H i
(
X,Q`

) ∼= {Q`

(
− i

2

)
, i even

0, i odd

By Poincaré duality, the same holds for 2d ≥ i > d, hence in particular the Riemann
hypothesis holds for all H i except at most for i = d.
Goal. The eigenvalues of Frobenius on Hd

(
X,Q`

)
are of absolute value qd/2.

Lemma 5.4 (Key Lemma). Let U ⊆ P1
Fq

be a nonempty open subscheme of the projective
line, and let F be a locally constant sheaf of finite Q`-vector spaces on U . Assume that, for
every geometric point x ∈ U , the inverse characteristic polynomial Px := det(1−TF ∗x

∣∣ Fx)
has real coefficients. Assume furthermore that there exists a closed point x0 ∈ U such that
∀x0 above x0 the polynomial Px0 has roots of absolute value 1. Then the same holds for
all closed points.
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Remark 5.5. Here real means real in all embeddings.

We now show that the Key Lemma implies the Riemann Hypothesis:

Proof. Let F be an equation for X, let n be its degree, and let G be the equation of a
hypersurface (of the same degree) for which the result is known. For example, if n = degF
is prime to q, then we can take G =

∑d
i=0 aix

n
i (see Section 2). If (n, q) 6= 1, then one can

take

G = xn0 +
d∑
i=0

xix
n−1
i+1 ,

and similar methods involving Gauss sums allow one to prove the Riemann hypothesis
directly. Consider now the deformation tF + (1− t)G = 0. We consider this as a fibration
over the t-line. This fibration may have singular fibres, but the fibres at t = 0 and at
t = 1 are smooth by construction and by assumption respectively. Let U ⊆ P1

Fq
be the

non-empty open locus where the fibres are smooth. Apply Lemma 5.4 to Rdf∗Q`

(
−d

2

)
and x0 = 1.

Notice that to apply the Key Lemma we need to know that the coefficients of the
relevant characteristic polynomials are real. We do in fact know that they are rational,
because we know this in all degrees except i = d, and we also know that the Zeta function
has rational coefficients.

Remark 5.6. Provided that one knows that the coefficients of the characteristic polyno-

mials of Frobenius are real, the argument also works for Rjf∗Q`

(
− j

2

)
. In particular, if

one could find a deformation from an arbitrary variety X to one for which the Riemann
hypothesis is known to hold, the Key Lemma would prove the Riemann Hypothesis for X.

5.1 Reminder on the arithmetic fundamental group

Let X be a connected space and let x → X be a geometric point. One can define a
profinite group π1(X,x). There is a correspondence{

finite étale
covers Y → X

}
←→

{
finite sets endowed

with a continuous action of π1(X,x)

}
Y 7→ Yx

and a similar one{
locally constant sheaves of

finite-dimensional Q`-vector space

}
↔

{
finite-dimensional continuous

representations of π1(X,x) over Q`

}
F 7→ Fx.

These objects are usually called lisse or smooth sheaves, and (essentially) correspond to
continuous homomorphisms π1(X,x)→ GLn(Z`).

Let X be a scheme of finite type over Fq. There exists an exact sequence

1→ π1(X,x)→ π1(X,x)→ Gal
(
Fq/Fq

)
→ 1,

split by a rational point (if there is one). The group
(
Fq/Fq

)
is isomorphic to Ẑ, with

generator denoted by Fq. Let x be a closed point of X of degree m,

x : Spec (Fqm)→ X.
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As π1 is a covariant functor, x induces a map Gal
(
Fq/Fqm

)
→ π1(X,x) which sends the

canonical generator Frobm of Gal
(
Fq/Fqm

)
to an element of π1(X,x) which we denote by

Fx.

Remark 5.7. If F is a lisse sheaf on X, its pullback to X corresponds to the restriction
of the representation of π1(X,x) on Fx to the geometric fundamental group π1(X,x).
Moreover,

H0
(
X,F

)
= Fπ1(X).

If U/Fq is an affine curve and F is lisse on U , then H0
c (U,F) = 0 (either by definition,

or because by Poincaré duality this is the same as H2(U,F), which vanishes for an affine
curve). Finally,

H2
c (U,F) = Fπ1(X)(−1),

where Fπ1(X) denotes the co-invariants of the action of π1(X).

Remark 5.8. The crucial observation is the following: for every closed point x ∈ U , the

Frobenius Fx acts on Fπ1(X) via F
deg(x)
q : indeed, if we work in a quotient where π1(X,x)

acts trivially, then the action of an element in π1(X,x) (coming from a point x) depends
only on its image in Gal(Fq/Fq), which depends only on the degree of x.

5.2 Katz’s proof

Proposition 5.9 (Deligne). Let U/Fq be an affine curve and let F be a Q`-lisse sheaf
over U such that Px has real coefficients for all closed x ∈ U . Suppose there exists a closed
point x0 such that all the eigenvalues of Fx0 on F are of absolute value ≤ 1. Then the
same holds for all closed points.

Lemma 5.10 (Rankin’s trick). Under the above assumptions, for all k ≥ 1 the eigenvalues
of Fq on

(
F⊗2k

)
π1(X)

are of absolute value ≤ 1.

Proof. If β is an eigenvalue of Fq on
(
F⊗2k

)
π1(X)

, then for m = deg(x0) the number βm

is an eigenvalue of Fx0 . But then βm is a product of 2k eigenvalues of Fx0 on F , which
means |βm| ≤ 1⇒ |β| ≤ 1.

Proof of Proposition 5.9. We have already seen that

H2
c

(
U,F⊗2k

)
∼=
(
F⊗2k
π1(U)

)
(−1),

so the Lemma implies that Fq acts on it with eigenvalues of absolute value ≤ q. Consider
now the Zeta function associated with F⊗2k:

Z(U,F⊗2k, T ) :=
∏

x∈U(0)

det
(

1− T deg xFxT
∣∣ F⊗2k

)−1
,

which by the Grothendieck-Lefschetz trace formula we know to be equal to

det(1− TF
∣∣ H1

c (U,F⊗2k
)

det(1− TF
∣∣ H2

c (U,F⊗2k
)
,
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where the term corresponding to H0
c is trivial by Remark 5.7. The fact that the absolute

value of the eigenvalues of Frobenius is bounded by q implies that the Zeta function con-
verges for |T | < 1

q , because the denominator has no poles there. By the assumption, every

factor det
(
1− T deg xFxT

∣∣ F) has real coefficients, and therefore det
(
1− T deg xFxT

∣∣ F⊗2k
)

has positive real coefficients (this is why the 2 is important!). In particular, if we fix a
factor in the Euler product, every coefficient of it is bounded above by the corresponding
coefficient in Z(X,F⊗2k, T ). This implies that every fixed Euler factor for F⊗2k converges
for |T | < 1

q . Hence for every x closed point of U , and every eigenvalue α of Fx on F , then

α2k is an eigenvalue of Fx on F⊗2k, and by the previous estimate this implies |α2k| ≤ qdeg x,
which by passing to the limit k →∞ gives |α| ≤ 1.

Lemma 5.11. Let U ⊆ P1 be a nonempty affine open subscheme, and let F be a Q`-lisse
sheaf of rank 1 on U . Then there exists m > 0 such that π1(U) acts trivially on F⊗m.

We briefly postpone the proof of this lemma, and show that Lemma 5.11 and Propos-
ition 5.9 together imply Lemma 5.4.

Proof. By Proposition 5.9, all eigenvalues are of absolute value ≤ 1. To show that they
are equal to 1, it suffices to show that their product is 1. Now this product is an eigenvalue
of Frobenius acting on ΛrF , where r = rkF . By Lemma 5.11, there exists m > 0 such
that (ΛrF)⊗m has trivial π1(U)-action. It follows that all Fx act on (ΛrF)⊗m via F deg x

q .
In particular, if one of them acts with eigenvalues of absolute value 1, then all do.

Proof of Lemma 5.11. The sheaf F corresponds to a representation ρ : π1(U) → Z×` =
GL1(Z`) ∼= F×` × (1 + `Z`). Assume for simplicity that ` > 2: then 1 + `Z` ∼= `Z` via the
logarithm map, hence we can consider ρ`−1 as a map from π1(U) to `Z` ↪→ Q`. By the
étale version of Hurewicz’s theorem, this map corresponds to an element of H1 (U,Q`). In
particular, ρ`−1

∣∣
π1(U)

corresponds to an element of H1(U,Q`) fixed by Frobenius (because

it comes by pullback from something defined over U). Now observe that H1(U,Q`) is dual
to H1

c (U,Q`)(−1), and – setting Z := P1 \ U – by the long exact sequence for compact
support cohomology we get

H0
(
Z,Q`

)
→ H1

c (U,Q`)→ H1(P1
Fq
,Q`) = (0).

Since Frobenius acts trivially on H0
(
Z,Q`

)
, and we have just shown that H1

c (U,Q`) is a
quotient of H0

(
Z,Q`

)
, we get that Frobenius acts trivially on H1

c (U,Q`), hence it has no
invariants when acting on H1

c (U,Q`)(−1), because of the twist. Hence ρ`−1|π1(U) must be
trivial, which is what we wanted to show.

6 05.11.2019 – Deligne’s original proof of the Riemann Hy-
pothesis

6.1 Reductions in the proof of the Weil Conjectures

We now only have one remaining conjecture, namely the Riemann Hypothesis 1.7.

Theorem 6.1. The eigenvalues of Frobenius on H i
(
X,Q`

)
have absolute value qi/2.
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Remark 6.2. The proof will be by induction on the dimension of X, starting from
dimX = 0.

Remark 6.3. We continue with our running convention that absolute value means absolute
value under every embedding. Also recall that X/Fq is a smooth projective variety.

Lemma 6.4. It is enough to prove the theorem after finite extension of the base field.

Proof. Let Fq′/Fq be a finite extension. The hypothesis is that F [Fq′ :Fq ] has eigenvalues of
absolute value (q′)i/2, which implies that the eigenvalues of F have absolute value qi/2.

Lemma 6.5. It is enough to prove the theorem for i = d = dimX.

Proof. By Poincaré duality it is enough to prove the statement for i ≤ d. Let Y ↪→ X be
a smooth connected hyperplane section (which exists by Bertini’s theorem). By Lemma
6.4, we may assume that such a smooth section is defined over Fq. By weak Lefschetz, it
is enough to prove the statement for Y : indeed, weak Lefschetz yields

H i(X,Q`)
∼−→ H i(Y ,Q`) for i < d− 1

and
Hd−1(X,Q`) ↪→ Hd−1(Y ,Q`),

so the induction hypothesis on Y gives the statement for H i(X,Q`) with i < d, so only
the case i = d remains as claimed.

Lemma 6.6. It is enough to prove the following for d even: for every smooth projective
X, the eigenvalues α of F on Hd(X,Q`) satisfy

q
d
2
− 1

2 ≤ |α| ≤ q
d
2

+ 1
2 . (1)

Proof. If k is even, αk is an eigenvalue of Frobenius on Hkd(Xk,Q`) by the Künneth
formula. The hypothesis implies

qkd/2−1/2 ≤ |α|k ≤ qkd/2+1/2,

which by taking k-th roots and passing to the limit k →∞ yields |α| = qd/2.

6.2 Geometric and topological ingredients: Lefschetz pencils

Let P be a projective space of dimension > 1 over an algebraically closed field k. Let P̌
be the dual projective space: points of P̌ correspond to hyperplanes in P. We denote the
bijection (on closed points) by t ∈ P̌ ←→ Ht ⊆ P. If A ⊆ P is a subspace of codimension 2,
the hyperplanes H ⊃ A are parametrised by the points of a line D ⊆ P̌ . These hyperplanes
form a pencil with axis A.

Let X ⊆ P be a smooth projective variety of dimension d = n+1. Define the incidence
variety

X̃ := {(x, t) ∈ X ×D : x ∈ Ht},
which as usual comes equipped with maps

X X̃π
oo

f
��

D.
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Assume that X̃ ∩ A is smooth and has codimension 2 in X. The fibre of f over t ∈ D is
X ∩Ht. The fibre of π over x ∈ X is:

• (x,D) ∼= D if x ∈ X ∩A;

• a single point (x,Hx) if x 6∈ A.

This remark suggests (and the definition of X̃ shows) that X̃ is the blowup of X in X̃ ∩A.
The map f : X̃ → D is a proper surjective map (a fibration, in the sense of algebraic
geometry).

Theorem 6.7. By choosing A appropriately (in fact, sufficiently generically), and after
performing some Veronese embedding in characteristic p > 0, we may arrange for the
following to hold:

1. there exists a finite set of points S ⊆ D such that the fibre X̃t is smooth for all t 6∈ S

2. the fibres X̃s for s ∈ S have only one singularity, and it is quadratic (see Definition
6.8).

Definition 6.8. A singularity is quadratic if the completion of the corresponding local
ring is isomorphic to k[[t1, . . . , tn]]/(Q(t1, . . . , tn)) with Q a nondegenerate quadratic form.

Before moving on, we give a general overview of Deligne’s argument to prove the
estimate in Equation (1).

6.3 Strategy of proof of estimate (1)

Let k = Fq and let X/Fq be a smooth projective variety. Take a Lefschetz pencil on X.
Up to extending Fq, we may assume the following objects to all be defined over Fq:

• the base D and axis A of the pencil, hence the pencil itself;

• the points of S;

• some other point u0 ∈ D \ S;

• a smooth hyperplane section Y of the fibre Xu0 .

Notice that dimY = d− 2 = n− 1: we wish our induction to only involve varieties of
even dimension.

Theorem 6.9 (Blow-up formula for étale cohomology). There is a Frobenius-equivariant
isomorphism

H i
(
X̃,Q`

)
= H i

(
X,Q`

)
⊕H i−2

(
A ∩X,Q`(−1)

)
.

Remark 6.10. The proof of the blow-up formula goes through the projective bundle
formula and some localisation sequences, so it exists for almost any cohomological theory
(in particular, for étale cohomology).
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The blow-up formula (together with its compatibility with the Frobenius action) shows
that it is enough to prove (1) for X̃ instead of X, hence we may assume that there is a
Lefschetz pencil X → D.

We have a Frobenius-equivariant Leray spectral sequence (for normal étale cohomology:
everything is proper, so we don’t need compact support cohomology)

Hp,q
2 = Hp (D,Rqf∗Q`)⇒ Hp+q

(
X,Q`

)
We know that the stalks of Rqf∗Q` at points t ∈ D are the cohomology groups Hq(Xt,Q`).
Assume for now that all fibres of f are smooth. Notice that this almost never happens, and
avoiding this assumption is a substantial difficulty in the actual proof; for now, however,
we just discuss this toy case.

By proper smooth base change, the sheaves Rqf∗Q` are locally constant on D ∼= P1,
hence they are constant (because P1 has no finite connected étale covers). It follows that
Rqf∗Q` is the constant sheaf associated with the abelian group Hq(Xu0 ,Q`) (because
this is the fibre at the point u0, hence at every point by constancy). The groups Ep,q2

contributing to Hn+1(X,Q`) are

H0(D,Rn+1f∗Q`), H1(D,Rnf∗Q`), H2(D,Rn−1f∗Q`),

hence it is enough to prove that (1) holds for the eigenvalues of Frobenius acting on these
groups.

1. H1(D,F) vanishes for any constant sheaf of finite-dimensional Q`-vector spaces:
one reduces first to Z`-sheaves, and then to the constant sheaf Z/nZ, for which it is
well-known that H1 vanishes (because P1 has no nontrivial covers, for example).

2. Using Poincaré duality we find

H2(D,Rn−1f∗Q`) = H2(D,Hn−1(Xu0 ,Q`)) = H0(D,Hn−1(Xu0 ,Q`)
∨)∨(−1),

and since dimXu = n we obtain Hn−1(Xu,Q`) ↪→ Hn−1(Y ,Q`), so the claim follows
from the case d− 2 by induction.

3. A similar argument works for H0
(
D,Rn+1f∗Q`

) ∼= Hn+1
(
Xu0 ,Q`

)
(one again ap-

plies Poincaré duality and Weak Lefschetz).

Of course, the difficulty is that when f has singular fibres the sheaves Rn+1f∗Q` are
in general not locally constant. In particular, H1(D,Rnf∗Q`) will prove to be hard to
understand.

6.4 Lefschetz theory over C

Lefschetz is the study of the cohomology of Lefschetz pencils. We shall start with the local
picture – what happens around a single bad fibre – and then move on the global aspects.
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6.4.1 Local theory

Consider a small complex disc D around the singular fibre.

Xt
� � //

smooth
��

X

��

X0
? _oo

one quadratic singularity
��

{t 6= 0} �
�

// D {0}? _oo

As X0 is a deformation retract of X, we have an isomorphism H i(X0,Z)
∼←− H i(X,Z),

and we also have a restriction map H i(Xt,Z). By composing (the inverse of) the former
with the latter we obtain a (co)specialisation map

cosp : H i(X0,Z)→ H i(Xt,Z).

Monodromy induces an action of the fundamental group of the punctured disc,

π1(D \ {0}, t) ∼= Z,

on H i(Xt,Z).

Theorem 6.11 (Lefschetz). The following hold:

1. for i 6= n, n+1 the cospecialisation map cosp is an isomorphism, and the monodromy
action is trivial;

2. there exists a canonical element δ ∈ Hn(Xt,Z), called the vanishing cycle and
well-defined up to sign, such that we have an exact sequence

0→ Hn(X0,Z)
cosp−−→ Hn(Xt,Z)

α−→ Z −→ Hn+1(X0,Z)
cosp−−→ Hn+1(Xt,Z)→ 0,

where the map α sends ξ ∈ Hn(Xt,Z) to ξ∪δ ∈ H2n(X,Z) = Z by Poincaré duality.

The action of π1(D \ {0}) = Z · γ on Hn+1(Xt,Z) is trivial, and on Hn(Xt,Z) is given
by

γ · x = x± (x, δ)δ,

where (·, ·) is the Poincaré duality pairing, and the sign is determined by n mod 4 (once
γ is fixed): if n ≡ 0, 1 (mod 4) then the sign is +, and if n ≡ 2, 3 (mod 4) the sign is −.
This result is called the Picard-Lefschetz formula. Further interesting properties of this
situation:

• The monodromy action on Hn(Xt,Z) is compatible with the Poincaré duality pairing
(·, ·).

• The orthogonal of 〈δ〉 with respect to the Poincaré pairing is Hn(Xt,Z)π1(D\{0},t):
this is an immediate consequence of the Poincaré-Lefschetz formula).

7 12.11.2019 – Deligne’s original proof of the Riemann Hy-
pothesis II

7.1 Lefschetz theory over C

Aim: describe the cohomology of the fibres of a Lefschetz pencil.
We have seen that (up to blowing-up a subvariety of codimension 2) we may find a

pencil in which every fibre has at worst one quadratic singularity.
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7.1.1 Local theory

Let D be a small complex disc around a point 0 where the fibre is singular. Recall our
convention that dimX = d = n+ 1.

Xt
� � //

��

X

��

X0
? _oo

��

{t 6= 0} �
�

// D {0}? _oo

We have seen that the cospecialisation map H i(X0,Z)→ H i(Xt,Z) is an isomorphism for
i 6= n, n + 1. Furthermore, there exist a canonical element δ ∈ Hn(Xt,Z) and an exact
sequence

0→ Hn(X0,Z)
cosp−−→ Hn(Xt,Z)

α−→ Z −→ Hn+1(X0,Z)
cosp−−→ Hn+1(Xt,Z)→ 0

ξ 7→ ξ ∪ δ

We also have the Picard-Lefschetz formula: given γ ∈ π1(D \ {0}) and x ∈ Hn(Xt,Z) we
have

γ · x = x± (x, δ)δ.

7.1.2 Global theory

We will now consider a Lefschetz pencil X → D ∼= P1 and let U = D \ S, where S ⊆ D is
the set of points over which the fibre is singular. Fix u ∈ U and consider the fundamental
group π1(U, u): it is generated by loops γs around the points s ∈ S.

It would be nice to add a picture
The group π1(U, u) acts by monodromy on H i(Xu,Z) for all i, and the local theory

describes the action of every γs: for every s ∈ S we have a vanishing cycle δs ∈ Hn(Xu,Z),
and γs ∈ π1(U, u) acts by

γs · x = x± (x, δs)δs. (2)

Theorem 7.1 (Lefschetz). The following hold:

• π1(U, u) acts trivially on H i(Xu,Z) for i 6= n;

• the elements δs are conjugate under the action of π1(U, u).

Proposition 7.2. Let E be the subspace of Hn(Xu,Q) generated by the δs. Then E is
stable by the action of π1(U, u), and its orthogonal E⊥ (with respect to Poincaré duality)
is Hn(Xu,Q)π1(U,u).

Proof. This is an immediate consequence of the Picard-Lefschetz formula (see for example
Equation (2)): if x ∈ E then γs · x ∈ E, and x is orthogonal to all the δs if and only if it
is stable under the action of every γs.

Proposition 7.3. The action of π1(U, u) on E/E ∩ E⊥ is absolutely irreducible.

Remark 7.4. Notice that E ∩ E⊥ is in fact 0, but this is a consequence of the Hard
Lefschetz theorem. Over C, one can prove Hard Lefschetz independently of what we are
doing, but the proof of Hard Lefschetz in étale cohomology relies on the Weil conjectures,
so we will not be able to assume that E ∩ E⊥ = (0) in our appications.
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Proof. If F ⊆ E ⊗ C is stable by π1(U, u), and F is not contained in (E ∩ E⊥) ⊗ C,
then there exists x ∈ F and s ∈ S such that (x, δs) 6= 0. By Picard-Lefschetz we have
γsx − x = ±(x, δs)δs, and this is an element of F . Furthermore, the vanishing cycles are
all conjugate, so all δs are in F , which proves F = E ⊗ C.

Let n be odd (this will be the case in our applications, where the total space is even-
dimensional and the fibres are odd-dimensional). The duality pairing on

(
E/E ∩ E⊥

)
⊗C

is non-degenerate. Hence we get a representation

ρ : π1(U, u)→ Sp
(

(E/E ∩ E⊥)⊗ C
)

Remark 7.5. When n is even, it is interesting to study the self-product (δs, δs), which
turns out to be equal to 2.

7.2 Lefschetz theory in étale cohomology

Consider a Lefschetz pencil

X

��

D ∼= P1

defined over an algebraically closed field k. Write d = dimX = n + 1 = 2m + 2 and let
s ∈ D be a point where Xs is singular. The completion of the local ring OD,s is k[[t]]. Let
B = Spec k[[t]] and consider the Cartesian diagram.

XB

��

// X

��

B // D ∼= P1

Let η be a geometric generic point of B and let s be the closed point of B. For any
` 6= char(k) we have a cospecialisation map

H i(Xs,Q`)
∼←− H i(X,Q`)→ H i(Xη,Q`),

where the first arrow is an isomorphism by the proper base change theorem (which replaces
the argument with deformation retracts).

Let I = Gal
(
k((t))/k((t))

)
∼=
∏
`6=p Z` be the inertia subgroup. The action of I on

H i(Xη,Q`) is the analogue of the local monodromy action.

7.2.1 Local theory

There exists a vanishing cycle δ ∈ Hn(Xη,Q`)(m), well-defined up to sign.

Theorem 7.6. Assume that δ 6= 0 (if δ = 0 life is actually easier, so this is harmless).
The cospecialisation map

cos : H i
(
Xs,Q`

)
→ H i

(
Xη,Q`

)
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is an isomorphism for i 6= n. Furthermore, there is an exact sequence

0→ Hn(Xs,Q`)→ Hn(Xη,Q`) → Q`(m− n) → 0

x 7→ x ∪ δ ∈ H2n(Xη,Q`)(m)
(3)

and a Picard-Lefschetz formula: for all x ∈ Hn(Xη,Q`) and σ ∈ I we have

σ(x) = x± t`(σ)(x, δ)δ,

where t` : I → Z`(1) is the cyclotomic character, defined by

σ(t1/`
n
) = t`(σ) · t1/`n .

Notice that (x, δ) is an element in Q`(m − n) and δ is in Hn(Xη,Q`), so the product
carries a Galois action of weight 2m − n = −1, which is compensated by the cyclotomic
character.

Corollary 7.7. Suppose the vanishing cycle is nonzero. There is a canonical isomorphism
Hn(Xs,Q`) ∼= Hn(Xη,Q`)

I , and this space has codimension 1 in Hn(Xη,Q`).

7.2.2 Global theory

Consider again

X

��

D

and let S = {s ∈ D : Xs is singular}. Also define U := D \ S. There is a problem in
translating the classical theory over to the étale setting:

Problem 7.8. π1(U, u) is huge in characteristic p. For example, π1(A1) has any finite
p-group as a quotient!

Instead of the full π1(U, u), one considers its tame quotient πt1(U, u), which classifies
étale covers V → U extending to W → D tamely ramified at the points of S.

Remark 7.9. There is a general definition of the tame fundamental group for the com-
plement of any divisor in any proper variety.

Good news. As a consequence of Picard-Lefschetz, the action of π1(U, u) onHn(Xu,Q`)
factors via πt1(U, u). Furthermore, πt1(U, u) is generated by the inertia groups Is for s ∈ S.

Results. The sheaves Riπ∗Q` are locally constant for i 6= n: this is an immediate
consequence of the local theory, since it can be checked on stalks. Furthermore, the action
of the tame fundamental group πt1(U, u) on these groups is trivial. Let η be a geometric
generic point of U . For every s ∈ S, there is a vanishing cycle δs ∈ Hn(Xη,Q`)) (after
twisting by −m). If E is the subspace generated by the vanishing cycles, then E is stable
by the action of πt1(U, u), and

E⊥ = Hn(Xη,Q`)
πt
1(U,u).

This is proven in the same way as the classical case, starting from Picard-Lefschetz.
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Remark 7.10. Picard-Lefschetz is proven in SGA7 by reduction to the complex case.
Illusie has later given an independent, purely algebraic proof, which however is not easier
than the original one.

Furthermore, the δs are conjugated under the action of π1(U, u), and as over C this
implies that E/E ∩E⊥ is an absolutely irreducible representation, and we get (for odd n)
a representation

ρ : πt1(U, u)→ Sp
(
E/E ∩ E⊥

)
.

Theorem 7.11 (Kazhdan-Margulis). The image of ρ is Zariski-dense and `-adically open
in Sp

(
E/E ∩ E⊥

)
.

Remark 7.12. This result is not too hard, and is proven by comparing Lie algebras. We
shall only use the Zariski part of this theorem.

Corollary 7.13. Consider the inclusion j : U ↪→ D and let π : X → D be the Lefschetz
pencil.

1. The natural adjunction map

Rnπ∗Q` → j∗j
∗Rnπ∗Q`

is an isomorphism.

2. j∗Rnπ∗Q` is locally constant on U , and has a filtration by locally constant subsheaves

0 ⊆ E ∩ E⊥ ⊆ E ⊆ j∗Rnπ∗Q`

where E is the sheaf with stalks Eu = Eu. Moreover, π1(U, η) acts trivially on the

subsheaf E ∩ E⊥ (because E⊥ = Hn
(
Xη,Q`

)πt
1(U,u)

), hence in particular E ∩ E⊥ is a
constant sheaf. Similarly, by Picard-Lefschetz the monodromy action on j∗Rnπ∗Q`/E
is trivial, and so this is also a constant sheaf.

Proof. We only give details for part 1. This can be checked on stalks: for points in U

they are the same, and for s ∈ S we have (j∗j
∗Rnπ∗Q`)s = Hn

(
Xη,Q`

)Is
, and by Picard-

Lefschetz (more precisely, by Corollary 7.7) we have Hn
(
Xη,Q`

)Is
= Hn

(
Xs,Q`

)
.

7.3 The big picture: how is all this used in Deligne’s proof?

Goal: prove that the eigenvalues of the Frobenius F on Hn+1(X,Q`) satisfy the estimate
of Equation (1).

We have already seen that it is enough to prove this for the eigenvalues of F on

1. H0
(
D,Rn+1π∗Q`

)
2. H1 (D,Rnπ∗Q`)

3. H2
(
D,Rn−1π∗Q`

)
The first and the last of these spaces behave as in the case of a smooth fibration. Using
the filtration above,

0 ⊆ j∗
(
E ∩ E⊥

)
⊆ j∗E ⊆ j∗ (Rnπ∗Q`) ,

and observing that two of the successive quotients are constant, one is left with handling
the cohomology j∗E/j∗(E ∩ E⊥). This will be done by a (clever) combination of the
techniques introduced today and of the manipulations of L-functions we have seen last
time.
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8 19.11.2019 – Conclusion of the proof (modulo two tech-
nical lemmas)

8.1 Where do we stand?

After many reductions, we are in the following situation: we have a (smooth projective)
variety X/Fq and a Lefschetz pencil

X

��

D0
∼= P1

which by base-change induces X → D := D0 × Fq. We denote by d and n the dimensions
of X and of the fibres of π respectively (so d = n+ 1).

We are reduced to considering the cohomology groups

H0
(
D,Rn+1π∗Q`

)
, H1 (D,Rnπ∗Q`) , H2

(
D,Rn−1π∗Q`

)
,

and we need to prove that the eigenvalues of Frobenius acting on these spaces satisfy (1),
that is,

q
d
2
− 1

2 ≤ |α| ≤ q
d
2

+ 1
2 .

Let S be the locus of points over which the fibre is singular, and assume that the corres-
ponding vanishing cycles δs are nonzero for all s ∈ S.

Remark 8.1. It is possible for one or more of the vanishing cycles to be zero. This
situation can be handled by similar methods, and is not significantly harder.

In this case we obtain that Rn+1π∗Q` and Rn−1π∗Q` are locally constant (see Corollary
7.13), hence constant because P1 is simply-connected. These sheaves can then be handled
by the same methods we used in the case when all the fibres of the Lefschetz pencil are
smooth, see section 6.3.

We have also seen (Corollary 7.13 again) that the adjunction map

j∗j
∗Rnπ∗Q`

∼←− Rnπ∗Q`

is an isomorphism, and the sheaf j∗Rnπ∗Q` has a filtration

0 ⊆ j∗
(
E ∩ E⊥

)
⊆ j∗E ⊆ j∗ (Rnπ∗Q`) ,

where E is the locally constant sheaf with fibre Eu at u ∈ U . We have remarked that
E ∩ E⊥ is now known to be 0, but this is proven as a consequence of the Weil conjectures
(including the Riemann hypothesis), so we cannot assume that this is the case.

Finally, we have discussed the Picard-Lefschetz formula: given s ∈ S, we have a van-
ishing cycle δs ∈ Hn(Xu,Q`(n)) and an element γs ∈ πt1(U, u) (a generator for the inertia
group at s), and for the natural action of the tame fundamental group on Hn(Xu,Q`(n))
we have

γs · x = x± t`(γs)(x, δs)δs.
This formula shows that the action of πt1(U, u) is trivial on E ∩ E⊥, as well as on the

quotient j∗Rnπ∗Q`/E (indeed, the action of the generators γs can only change any given
cohomology class by a vanishing cycle, which is in E).
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8.2 Study of the filtration on RnQ`

Pushing forward the filtration we have on j∗Rnπ∗Q` by j∗ we get a filtration on j∗j
∗RnQ` =

RnQ`:
0→ j∗(E ∩ E⊥) ⊂ j∗E ⊂ Rnπ∗Q`.

Denote by E the fibre Eu. We now distinguish two cases:

• Case 1: δs 6∈ E⊥ for all s ∈ S. We have an exact sequence

0→ E → Hn(Xu,Q`)→ Hn(Xu,Q`)/E → 0. (4)

The local inertia group Is at s acts trivially on Hn(Xu,Q`)/E (again by Picard-
Lefschetz), and the inclusion

Hn (Xu,Q`)
Is ⊂ Hn(Xu,Q`)

has codimension 1 (this follows from the exact sequence (3)) . The assumption on
δs implies that restricting to E we obtain an inclusion EIs ⊂ E which is still of
codimension 1. In particular, we see that taking invariants in (4) gives another
exact sequence

0→ EIs → Hn(Xu,Q`)
Is → Hn(Xu,Q`)/E → 0.

At the level of sheaves, this gives an exact sequence of sheaves

0→ j∗E → Rnπ∗Q` →
constant

sheaf
→ 0.

The constancy of the quotient follows from the fact that the monodromy action
around the singular points is trivial (for each singular point). The long exact se-
quence in cohomology then yields

H1 (D, j∗E) � H1 (D,Rnπ∗Q`) .

Now consider the other relative quotient in the filtration,

0→ E ∩ E⊥ → E → E/(E ∩ E⊥)→ 0,

equipped with its natural Is-action. The action is trivial on E ∩ E⊥ by Picard-

Lefschetz, and the inclusions EIs ⊆ E and
(
E/E ∩ E⊥

)Is ⊆ E/(E ∩ E⊥) are of
codimension 1. As above, we obtain a sequence

0→ constant
sheaf

→ j∗E → j∗

(
E/E ∩ E⊥

)
,

hence an injection

0→ H1 (D, j∗E) ↪→ H1
(
D, j∗

(
E/E ∩ E⊥

))
.

It follows that it suffices to study the eigenvalues of Frobenius on H1(D, j∗E/(E∩E⊥))
(this contains H1(D, j∗E), which in turn surjects onto the relevant cohomology group
H1 (D,Rnπ∗Q`)).
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• Case 2: ∀s ∈ S, the vanishing cycle δs is in E⊥. To see that this is indeed the
complementary case to case (1) above, simply recall that all the δs are conjugated
to each other. In particular, E ⊆ E⊥. Fix s ∈ S and consider the corresponding
inertia group Is. As before, the action of Is is trivial on E⊥ by Picard-Lefschetz,
and we obtain a slightly more complicated exact sequence

0→ E⊥ → Hn (Xu,Q`)
Is → Hn (Xu,Q`) /E

⊥ → Hn (Xu,Q`) /〈δs〉⊥ → 0.

The inertia action on E⊥ is trivial, and – as E ⊆ E⊥ – so is the action on
Hn(Xu,Q`)/E

⊥. It follows that the whole sequence consists of Is-invariant groups.
Moreover,

Hn(Xu,Q`)/〈δs〉⊥ ∼= Q`(m− n)

by the exact sequence (3). We split the exact sequence above into two pieces,

0→ constant
sheaf

→ Rnπ∗Q` → F → 0

and

0→ F → constant
sheaf

→
⊕
s∈S

Q`(m− n)→ 0.

The two exact sequences give

H1(D,Rnπ∗Q`)
� � // H1(D,F)

H0(D,Q`(m− n))

OOOO

and by definition Frobenius acts as multiplication by qn−m = q
n+1
2 , which implies

that Frobenius has the desired weight on H1(D,Rnπ∗Q`).

8.3 The sheaf E/
(
E ∩ E⊥

)
From now on, let F := E/

(
E ∩ E⊥

)
. We have to prove that the eigenvalues of Frobenius

on H1 (D, j∗F) satisfy

q
d
2
− 1

2 ≤ |α| ≤ q
d
2

+ 1
2 .

Lemma 8.2. It suffices to show |α| ≤ q
d
2

+ 1
2 .

Proof. Poincaré duality.

Lemma 8.3. It is enough to prove the estimate for the eigenvalues of Frobenius on
H1
c (U,F).

Proof. There is an exact sequence

0→ j!F → j∗F → j∗F/j!F → 0,

and the sheaf j∗F/j!F has only finitely many nonzero stalks. This induces

H1
c (U,F) = H1(D, j∗F)→ H1(D, j∗F)→ 0,

because the H1 of an étale sheaf supported at finitely many points is zero (this can be
checked for example by using Čech cohomology, which coincides with étale cohomology at
the level of H1).
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Lemma 8.4. Assume that for every closed point x ∈ U the local Frobenius F deg x
x acts

on Fx with eigenvalues that are algebraic numbers and satisfy |α| ≤
(
qdeg x

)n/2
. Assume

moreover that the characteristic polynomial of F deg x
x has rational coefficients. Then the

eigenvalues of Frobenius on H1
c (U,F) satisfy |α| ≤ q

d+1
2 .

Proof. Postponed until next time.

We are thus reduced to the following

Lemma 8.5 (Main lemma). Let F be a locally constant sheaf of finite-dimensional Q`-
vector spaces on U such that

(a) for all closed points x ∈ U , the local Frobenius F
deg(x)∗
x acts on Fx with a characteristic

polynomial in Q[T ].

(b) There exists a π1(U, η)-invariant and Gal
(
Fq/Fq

)
-equivariant alternating, non-degenerate

form
Fx ×Fx → Q`(−n)

for all geometric points x→ U .

(c) the image of π1(U, u) in Sp(Fx) is Zariski dense.

Then the eigenvalues of F
deg(x)∗
x on Fx satisfy |α| ≤

(
qdeg x

)n/2
.

We now show that the main lemma implies the theorem:

Proof. We apply the lemma to our F := E/E ∩ E⊥. We will prove assumption (a) next
time; (b) is simply Poincaré duality on fibres, and (c) is Kazhdan-Margulis (Theorem
7.11). We then get the inequality stated in the main lemma, which implies the theorem
by Lemma 8.4.

8.4 Proof of the Main Lemma

Reduction 1. It is enough to prove that the eigenvalues of Frobenius F
deg(x)∗
x on F2k

x

satisfy |β| ≤ (qdeg x)kn+1 for every k ≥ 0. Indeed, α2k is among the eigenvalues β on F⊗2k
x ,

and we get the assumption by passing the limit k →∞.

Reduction 2. It is enough to prove that the eigenvalues of Frobenius on H2
c

(
U,F⊗2k

)
have absolute value at most qkn+1.

This is very similar to Proposition 5.9, but we repeat the argument. Recall the ele-
mentary identity

det
(

1− F deg(x)∗
x T deg x

∣∣ F⊗2k
x

)
= exp

{ ∞∑
m=1

Tr
(
F

deg(x) ∗m
x

∣∣ F⊗2k
x

) Tm deg(x)

m

}

By assumption, for k = 1
2 this is a polynomial (in particular, a power series in Q[[T ]]),

hence Tr
(
F

deg(x) ∗m
x

∣∣ Fx) is a rational number. But for any k ≥ 0 we have

Tr
(
F

deg(x) ∗m
x

∣∣ F⊗2k
x

)
= Tr

(
F

deg(x) ∗m
x

∣∣ Fx)2k
,
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so if we write
Zx(F⊗2k, T ) := det

(
1− F deg(x)∗

x T deg x
∣∣ F⊗2k

x

)
we see that for all integer k ≥ 0 this is a power series with positive coefficients.

Notation 8.6. We denote by ρ the radius of convergence of a complex power series.

We obtain

ρ
(
Zx

(
F⊗2k, T

))
≤ ρ

(∏
x∈U

Zx(F⊗2k, T )

)
= ρ

(
Z(U,F⊗2k, T )

)
;

on the other hand,

Z(U,F⊗2k, T ) =
det
(
1− F ∗T

∣∣ H1
c (U,F⊗2k

)
det
(
1− F ∗T

∣∣ H2
c (U,F⊗2k)

) ,
where the H0

c vanishes because it’s dual to the H2 of an affine curve, which vanishes.
Now α is a pole of the RHS if and only if it is a pole of the LHS, and αdeg x is a pole

of Zx(F⊗2k, T ) if and only if α is a pole of Z(U,F⊗2k, T ).

Main proof. We have to consider

H2
c

(
U,F⊗2k

)
∼= H0

(
U,F⊗2k(−1)

)∨
= Hom

(
F⊗2k
x ,Q`

)π1(U)
(−1).

By assumption (c), we have

Hom
(
F⊗2k
x ,Q`

)π1(U)
= Hom

(
F⊗2k
x ,Q`

)Sp(Fx)

Recall the following general fact:

Theorem 8.7. Let (V, 〈·, ·〉) be a finite-dimensional symplectic space over a field K. For
every partition P of {1, 2, . . . , 2n} in pairs {ai, bi}, an Sp(V )-invariant function on V ⊗2k

is given by
fP : V ⊗2k → K

v1 ⊗ · · · ⊗ v2k 7→
∏
i〈vai , vbi〉.

Furthermore, as P varies, these give a basis for the Sp(V )-invariant functions V ⊗2k → K.

We obtain

H2
c

(
U,F⊗2k

)
∼= Hom

(
F⊗2k
x ,Q`

)Sp(Fx)
(−1) ∼=

⊕
Q`(−kn)⊕|P|(−1).

Notice that the weight −kn comes from the fact that the bilinear form 〈·, ·〉 has weight
−n, and we are taking the product of k such forms. The eigenvalues of Frobenius on
Q`(−kn− 1) are qkn+1, and we are done.
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9 26.11.2019 – Leftovers

Our first leftover is Lemma 8.4, which we now restate. Consider a Lefschetz pencil

X

��

D ∼= P1

where everything lives over the finite field Fq. Let j : U ↪→ D be the open subset of D over
which the fibres are smooth. Write d = n + 1 = dimX, and recall that have constructed
a sheaf of vanishing cycles E . We are interested in the subsheaf j∗E of Rnπ∗Q`, and this
led us to consider the sheaf

F := E/E ∩ E⊥.

Lemma 9.1 (Lemma 8.4). Assume that for every closed point x ∈ U the local Frobenius

F deg x
x acts on Fx with eigenvalues that are algebraic numbers and satisfy |α| ≤

(
qdeg x

)n/2
.

Assume moreover that the characteristic polynomial of F deg x
x has rational coefficients.

Then the eigenvalues of Frobenius on H1
c (U,F) satisfy |α| ≤ q

d+1
2 .

Remark 9.2. If one uses the axiom of choice (and therefore the fact that the algebraic
closure of Q` embeds in C), the lemma can also be proven without assuming rationality
of the coefficients of the characteristic polynomials of Frobenius. However, we will prove
rationality later today, so we might as well assume it.

Proof. By Poincaré duality we have H0
c (U,F) ∼= H2(U,F∨(−1))∨, which vanishes because

U is affine of dimension 1 over an algebraically closed field (Theorem 4.1). Similarly,

H2
c (U,F) ∼= H0(U,F∨(−1))∨.

As F is locally constant, taking H0 is the same as taking π1-invariants, and after dualising
this statement we get

H2
c (U,F) ∼= H0(U,F∨(−1))∨ ∼=

(
E/E ∩ E⊥

)
π1(U,η)

(−1).

By Kazhdan-Margulis (Theorem 7.11) we have(
E/E ∩ E⊥

)
π1(U,η)

=
(
E/E ∩ E⊥

)
Sp(E/E∩E⊥)

It is a fact from invariant theory that

Hom(V,K)Sp(V ) = (0)

for any finite-dimensional K-vector space V . In our setting, this implies that H2
c (U,F) is

trivial. As a consequence, the Zeta function

Z(U,F , T ) =
∏

x∈U(0)

det
(

1− F deg x
x T

∣∣ Fx)−1
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is equal (by the Lefschetz trace formula) to

det
(
1− F ∗T

∣∣ H1
c (U,F)

)
.

Using the assumption that characteristic polynomials of Frobenius have rational coeffi-
cients, we have

det
(
1− F ∗T

∣∣ H1
c (U,F)

)
=

∏
x∈U(0)

det
(

1− F deg x
x T

∣∣ Fx) ∈ Q[[T ]] ⊂ C[[T ]],

and we now show that this power series converges for |T | ≤ 1

q
d+1
2

= 1

q
n
2 +1 .

Let αx,i, for 1 ≤ i ≤ r = rkFx, be the eigenvalues of Fdeg x
x on Fx. Then

Z(U,F , T )−1 =
∏
x,i

(1− αx,iT deg(x)),

and it is enough to show that ∑
x,i

|αx,iT deg(x)‖ <∞

for |T | ≤ 1

q
n
2 +1 . We have∑

x,i

‖αx,iT deg x‖ ≤
∑
x,i

‖αx,i‖ · ‖T‖deg x ≤ r
∑
x

(qdeg x)n/2|T |deg x ≤ r
∑
m

(qm)n/2+1|Tm|,

where we have used the trivial estimate

#{x ∈ U closed point : deg x ≤ m} ≤ qm.

Finally, the sum r
∑

m(qm)n/2+1|Tm| converges for |T | < 1
qn/2+1+ε , as desired.

9.1 Rationality theorem

Our second (and final) leftover is the following rationality result:

Theorem 9.3 (Théorème de rationalité, Weil I). For every closed point x ∈ U the char-
acteristic polynomial

det
(

1− F deg x
x T

∣∣ Fx)
is in Q[T ].

We will prove this under the assumption q > |S| = |X \ U |. Let Xx be the fibre of
π : X → P1

Fq
above x. We already know that Z(Xx, T ) is a rational function of T with

rational coefficients.

Lemma 9.4. There exist units3 αi, βj ∈ Q`
×

, independent of x, such that

Z(Xx, T ) =

∏
i(1− α

deg x
i T )∏

j(1− β
deg x
j T )

det
(

1− F deg x
x T

∣∣ Fx) .
3that is, algebraic elements of valuation 0
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Proof. We have

Z(Xx, T ) =
2n∏
i=0

det
(
1− F ∗xT

∣∣ (Riπ∗Q`

)
x

)(−1)i+1

,

and we have seen4 that the sheaves
(
Riπ∗Q`

)
x

are constant for i 6= n. In particular, for

i 6= n the operator F deg x
x acts on Riπ∗Q` acts as Adeg x

i , where Ai ∈ Gri(Q`) is a constant
matrix. The eigenvalues are elements of Q` of valuation 0, because (by definition of an
`-adic sheaf) the action of any automorphism preserves an integral structure, so all its
eigenvalues are integral. It follows that

Z(Xx, T ) =

∏
i

(
1− (α′i)

deg xT
)∏

j

(
1− (β′j)

deg xT
) det

(
1− F deg x

x T
∣∣ Rnπ∗Q`

)
.

To deal with Rnπ∗Q`, recall that we have a filtration

0 ⊆ j∗(E ∩ E⊥) ⊆ j∗E ⊆ Rnπ∗Q`

where the first and last relative quotients are constant. Repeating the same argument as
above for these constant sheaves, we get some more powers of constant matrices, and all

that is left is then the factor det
(

1− F deg x
x T

∣∣ Rnπ∗Q`

)
as claimed.

The idea is now that if 1−F deg x
x has an eigenvalue which is not an algebraic number,

then – using the fact that Z(Xx, T ) is a rational function with rational coefficients – this

eigenvalue must cancel with some factor 1− βdeg x
j T , and this for all x. The next lemma

essentially shows that this cannot happen.

Lemma 9.5. Fix N > 1. There does not exist any integral λ ∈ Q×` such that λdeg x is an

eigenvalue of F deg x
x on Fx for all x ∈ U with (deg x,N) = 1.

Proof. Assume such a λ exists. Let E/Q` be a finite extension such that λ ∈ mathcalO×E .
Notice that the homomorphism

Z → O×E
n 7→ λ−n

extends to Ẑ → O×E . To see this, let `k be the order of the finite residue field of OE ,

observe that λ`
k−1 is in 1 + mE , and recall that one can take arbitrary `-adic powers of

elements in 1 + mE .
Consider now the exact sequence

1→ π(U, x)t → π1(U, x)t → Gal
(
Fq/Fq

)
→ 0,

where Gal
(
Fq/Fq

) ∼= Ẑ. Consider the character

χ : π1(U, x)→ Ẑ→ O×E ,
4under the assumption that the vanishing cycles are nonzero. But if they are zero, the sheaf F is trivial

and there is nothing to prove
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and observe that χ
(
F deg x
x

)
= λn. It follows that

det(1− F deg x
x χ(F deg x

x )) = 0,

and by Chebotarev we know that the F deg x
x , for all x of degree prime to N , are dense in

π1(U, x)t. We get that for all g ∈ π1(U, u)t the determinant det(1− gχ(g)) vanishes. Now
use the fact that there exists x0 ∈ U of degree 1. Let F0 be the associated Frobenius. For
all h0 ∈ π1(U, x0)t, the operator F0h0 has eigenvalue λ on Fx. For the Poincaré duality
pairing on Fx we have

〈F0h0(x), F0h0(y)〉 = 〈F0(x), F0(y)〉 = qn〈x, y〉,

hence
{q−n/2F0h0 : h0 ∈ πt1(U, x)} ⊆ Sp(Fx),

and by Kazhdan-Margulis again this implies that q−n/2F0h0 are dense in Sp(Fx). This
implies that λq−n/2 is a common eigenvalue for all the elements of Sp(Fx), which is a
contradiction.

Notation 9.6. If f is a polynomial of the form
∏
k(1− γkT ), we write

f (m) :=
∏
k

(1− γmk T ).

Lemma 9.7. Assume that f ∈ Q`[T ], with f(0) = 1, is such that

f (deg x)Z(Xx, T ) ∈ Q`[T ] ∀x ∈ U closed point

Then
∏
j(1− βjT ) | f , where the βj are as in the statement of Lemma 9.4.

Proof. Write f =
∏
k(1− γkT ). Then∏
k(1− γ

deg x
k T )(1− αdeg x

i T )∏
(1− βdeg x

j T )
det
(

1− F deg x
x T

∣∣ Fx)
is a polynomial for all closed points x. Let N be a common multiple of all r such that
βrj = γrk or αri = βrj for some αi, βj , γk and r is minimal with this property. Also if βj = αi

or βj = γk, then simplify. If no βj remains we are done. If βj does remain, then βdeg x
j is

an eigenvalue of F deg x
x on Fx for all x such that (deg x,N) = 1. But this is impossible by

Lemma 9.5.

Corollary 9.8. 1.
∏
j(1− βjT ) is a polynomial with rational coefficients.

2.
∏
i(1− α

deg x
i T ) det

(
1− F deg x

x T
∣∣ Fx) is a polynomial with rational coefficients.

Proof. The second part is a consequence of the first: this is obvious for deg x = 1, using
that Z(Xx, T ) has rational coefficients. Moreover, if

∏
(1− βjT ) has rational coefficients,

so does
∏

(1− βrjT ) by Galois theory, which proves it for deg x = r. For part (1), let

S := {f ∈ Q`[T ] : f(0) = 1, fdeg xZ(Xx, T ) ∈ Q`[T ]}.
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Then by Lemma 9.7 we have that the greatest common divisor of all the polynomials in
S is

∏
(1 − βjT ), and on the other hand S is stable under the action of Aut(Q`). Hence

in particular the coefficients of
∏

(1− βjT ) are in

Q`
Aut(Q`) = Q

as desired.

The corollary implies in particular that all the roots of det
(

1− F deg x
x T

∣∣ Fx) are

algebraic numbers. It remains to show that the set of such roots is stable under the Galois
action.

Proof of Theorem 9.3. We already know that
∏
i(1− α

deg x
i T ) det

(
1− F deg x

x T
∣∣ Fx) is a

polynomial with rational coefficients. If all the Galois conjugates of the αi are among the

αi, then the same is true for the α
deg(x)
i for all x. If there exists an eigenvalue of F deg x

x

that is a conjugate of some αdeg x
i , then already the αi are not stable by Galois. Hence

there exists a conjugate α̃i of some αi such that α̃i
deg x is an eigenvalue of F deg x

x on Fx
for all x. But this again contradicts Lemma 9.5.

Remark 9.9. To completely formalise this proof one needs to take the expression
∏

(1−
αiT ) of the minimal degree such that

∏
(1− αiT ) det

(
1− F deg x

x T
∣∣ Fx) is a polynomial

with rational coefficients.

10 03.12.2019 – A brief overview of Weil II

10.1 Q`-sheaves

Let E/Q` be a finite extension. The ring OE is a finite-dimensional Z`-algebra, and one
can generalise the construction of Z`-sheaves to this case to obtain a OE-sheaf. Tensoring
with E (over OE) we get the notion of an E-sheaf, and the category of Q`-sheaves is the
direct limit of the categories of E-sheaves for E ⊂ Q`.

Remark 10.1. In particular, a Q`-sheaf is also a Q`-sheaf.

10.2 Purity

Definition 10.2. Let X be a scheme of finite type over Fq and let F be a Q`-sheaf on X.

We say that F is (punctually) pure if ∃w ∈ Z such that the eigenvalues of F deg x
x on Fx

satisfy

|τ(α)| =
(
qdeg x

)w/2
for all τ : Q`

∼−→ C and for all closed points x of X. If we want to specify w, we say that
F is pure of weight w. We say that F is mixed if it has a finite filtration such that
all successive quotients are pure. We say that it is mixed of weights ≤ n if (for some
filtration) the successive quotients are pure, and weights of such quotients are all ≤ n.

Remark 10.3. There exist more general notions of being τ -pure and τ -mixed for a fixed
embedding τ .
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Theorem 10.4 (Main theorem of Weil II). Let f : X → Y be a morphism of schemes of
finite type over Fq. If F is a constructible Q`-sheaf on X that is mixed of weights ≤ n.
Then, for every integer i ≥ 0, the sheaf Rif!F is also mixed of weights ≤ n+ i.

Corollary 10.5. In the case Y = SpecFq, we get that H i
c(X,F) is mixed of weights

≤ n+ i.

Corollary 10.6. Assume moreover that X is smooth. If F is mixed of weights ≥ n, then
H i(X,F) is mixed of weights ≥ n+ i.

Proof. Poincaré duality.

Corollary 10.7. If X is smooth and F is pure of weight n, then

Im
(
H i
c(X,F)→ H i(X,F)

)
is pure of weight n + i. In particular, if X is proper and smooth, then H i(X,F) is pure
of weight n+ i.

Remark 10.8. This immediately implies Weil I (which is the case F = Q`, of weight 0).
Also notice that here we assume that X is only proper, and not necessarily projective.

Theorem 10.9 (Semisimplicity theorem). If X is smooth and F is lisse and pure, then F
is semisimple, that is, a direct sum of irreducible subsheaves. In particular, if f : X → Y
is proper and smooth, the sheaves Rif∗Q` are semisimple (because they are pure, by Weil
I).

Remark 10.10. Let f : X → Y be a proper and smooth morphism of schemes over C. It
is again true that the sheaves Rif∗Q` are semisimple, and this can be deduced from the
finite field case.

Proof. Let F ′ ⊆ F on X be the largest semisimple lisse subsheaf (in other words, the –
automatically direct – sum of all the irreducible subsheaves). By construction, F ′ is stable
by Frobenius, and therefore it comes from a subsheaf F ′ of F over X. Let F ′′ := F/F ′.
We have an exact sequence

0→ F ′ → F → F ′′ → 0 (5)

that gives rise to a class in Ext1
X (F ′′,F ′). We can map this class to Ext1

X

(
F ′′,F ′

)F
,

where the superscript F denotes the subset of elements fixed by Frobenius. Hence we get

Ext1
X

(
F ′′,F ′

)
→ Ext1

X

(
F ′′,F ′

)F
= H1

(
X,HomX(F ′′,F ′)

)F
Since F ′,F ′′ are both pure of weight w, the sheaf Hom (F ′′,F ′) is of weight 0, hence
H1(X,Hom(F ′′,F ′)) is of weights ≥ 1. In particular it has no weight-0 part, hence it
contains no nontrivial Frobenius-invariant element. This proves that the pullback of se-
quence (5) to the algebraic closure splits (because the class defining the extension vanishes
over the algebraic closure). But this is a contradiction, because one can then enlarge F ′
(simply add to it a simple subsheaf of F ′′), contradicting its maximality.

Remark 10.11. Using Theorem 10.4 it is possible to define, on every lisse mixed sheaf F ,
an increasing weight filtration by lisse subsheaves WiF such that the graded quotients
grWi F is pure of weight i and the filtration is functorial in F . Moreover, morphisms F → G
are even strictly compatible with the filtration W : the pullback of the weight filtration
on G gives the weight filtration on F .
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10.3 Some reductions in the proof of Theorem 10.4

The following is the key case: X is a smooth projective curve over Fq, j : U ↪→ X is a
dense open, and F is lisse and pure of weight w on U . Then H i

(
X, j∗F

)
is pure of weight

w + i for i = 0, 1, 2.

Remark 10.12. Besides Deligne’s original proof, there is an argument by Laumon using
the Fourier transform for `-adic sheaves.

We now give a sketch of how this special case implies the general one.

10.4 Dévissages

1. if 0 → F ′ → F → F ′′ → 0 is exact, and the conclusion of the theorem holds for
F ′,F ′′, then it also holds for F . One can therefore assume that F is pure.

2. let U
i−→ X

j←− Z = X \ U with U open. Then if the theorem holds for i∗F , j∗F it
also holds for F .

3. It is slightly harder to check that the same holds on Y : if V is an open subset of Y ,
T is its closed complement, and the statement holds upon restriction to V, T , then
it holds on all of Y .

4. if f = g ◦h, then the theorem for g and h implies the theorem for f (by the spectral
sequence for composite functors)

5. one may assume that Y is reduced, and also replace it with a purely inseparable
cover if necessary

6. the case where F is pure and f is of relative dimension 0 is easy (one reduces to
finite morphisms).

10.5 Structure of the main proof

One uses Noetherian induction on the relative dimension. After the above dévissages, one
arrives at the following situation:

X �
� j

//

f
  

X

f
��

D? _
ioo

��

Y

where X is a smooth projective relative curve over Y and D is an étale divisor. We have

Rif!F = Rif∗j!F ,

and the key case says that Rif∗j∗F is pure of weight w+ i (if F is pure of weight i). There
is an exact sequence

0→ j!F → j∗F → i!i
∗j∗F → 0,

which (by passing to the corresponding long exact sequence) shows that it is enough to
prove that i∗j∗F is mixed of weights at most w (in fact, it would be enough to prove that
the weights are at most w + i, but they turn out to be at most w).
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10.6 Local monodromy

Let X be a smooth curve over Fq, U ⊂ X an open dense subscheme, s ∈ X \ U a closed
point, η a geometric generic point of U . Let F be a lisse sheaf over X. The stalk Fη has
an action of the local Galois group Gs. The structure theory for the Galois group of local
fields gives

1→ I → Gs → Ẑ→ 0

and
1→ P → I →

∏
` 6=p

Z`(1)→ 0,

where the map I → Z`(1) is the cyclotomic character.

Theorem 10.13 (Grothendieck’s local monodromy theorem). There exists I ′ ⊆ I open
of finite index such that the action of I ′ on V = Fη is unipotent. If ρ is the representation
of Gs on V , we may write

ρ(σ) = exp(Nt`(σ)) ∀σ ∈ I ′

for a suitable nilpotent operator N .

Remark 10.14. The action of σ ∈ I ′ on V factors through t` (by the usual argument with
passing to a finite quotient of GL(V )). Once we know this, we have a map Z`(1)→ End(V ),
and since the image consists of unipotent operators we can take the logarithm by using
the defining power series.

Notice furthermore that we can consider N as a map V (1)→ V .

Lemma 10.15. There exists a unique increasing filtration M• of V such that N sends
MiV (1) into Mi−2V and for all k the operator Nk induces an isomorphism grMk V (k)

∼−→
grM−k(V ).

Remark 10.16. The construction shows that M0 = kerN .

Theorem 10.17 (Deligne). In the above situation, if F is pure of weight w, then grMk (V )
is pure of weight w + k.

10.7 Conclusion of the proof

Theorem 10.17 is applied as follows. Recall our setting: we have

X �
� j

//

f
  

X

f
��

D? _
ioo

��

Y

Let V = Fη, which gives rise to

Fs = V Is ⊆ V kerN = M0(V ).

This shows that only the negative parts of the monodromy filtration contribute, so – as
F is pure of weight w – the only nontrivial contributions come from grMk (V ) for k ≤ 0,
which have weights w + k ≤ w by Theorem 10.17.
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10.8 Aside: the weight-monodromy conjecture

Let K be any local field and X/K be smooth and proper. Let V = H i(X,Q`) for some
` prime to the characteristic. Applying Theorem 10.13 we get a monodromy filtration on
V .

Conjecture 10.18 (Weight-monodromy conjecture). grMk (V ) is pure of weight i+ k.

Remark 10.19. If X has good reduction X0, by smooth proper base change one gets
that H i(X,Q`) is the same as H i(X0,Q`), which is pure by Weil I.

Remark 10.20. Scholze has proven the weight-monodromy conjecture for charK = 0
and for X a smooth complete intersection in Pn.

10.9 A conjecture from Weil II

Conjecture 10.21 (Deligne, Weil II). Let X be a normal connected scheme over Fq and
let F be a lisse irreducible Q`-sheaf such that its determinant (seen as a representation of
the fundamental group) is a character of finite order of π1(X,x).

1. F is pure

2. the characteristic polynomials of Frobenius on Fx, as x varies over the closed points
x ∈ X, all have coefficients in a fixed number field E ⊂ Q`

3. (“companions”) given a Q`-sheaf F as above, for all `′ 6∈ {`, p}, there exists a Q`′-
sheaf G with the same Frobenius eigenvalues

4. Moreover, ‘on espère de petits camarades cristallins’, i.e. a similar statement should
hold for ` = p.

Remark 10.22. Deligne shows that, after twisting by some Q`(i), we may always achieve
the condition that detF is a character of finite order.

Remark 10.23. Parts (1)-(3) are now proven (based on work of Lafforgue).

11 10.12.2019 – Appendix: an application of Deligne’s in-
tegrality theorem

Conjecture 11.1 (Manin, Lang). If X/Fq is a (smooth projective) Fano variety, then
X(Fq) 6= ∅; more precisely, X(Fq) ≡ 1 (mod q).

Remark 11.2. A special case of this is the Chevalley-Warning theorem (which is the case
of hypersurfaces of low degree).

Theorem 11.3 (Esnault, 2002). The conjecture is true more generally for smooth pro-
jective varieties X/Fq such that CH0(X

k(X)
) ∼= Z.

Remark 11.4. Recall that the Chow group of 0-cycles is

CH0(X) = coker

⊕
x∈X1

k(x)×
div−−→

⊕
x∈X0

Z


46



The condition on CH0 appearing in Theorem 11.3 is satisfied for all rationally chain
connected varieties over an algebraically closed field. Here rationally chain connected
means that any two points can be joined by a chain of rational curves.

Theorem 11.5 (Kollár, Miyaoka, Mori). Fano varieties are rationally chain connected.

Remark 11.6. In Theorem 11.3 one could (equivalently) consider the base-change of X
to any algebraically closed field Ω containing the field of rational functions k(X).

Remark 11.7. There are generalisations of Theorem 11.3 to singular varieties. For ex-
ample, Esnault herself has proven that if X is the (projective) special fibre of a smooth
projective variety Y over Qp, and Y satisfies

CH0

(
Y
k(Y )

)
∼= Z,

then the conclusion holds for X.

Remark 11.8. Esnault’s original proof relies on p-adic techniques and rigid cohomology.
We will see a modification of the argument, due to Faltings, which allows one to work
with ‘good old’ étale cohomology instead.

11.1 Idea of proof

Let X := X ×Fq Fq. The Lefschetz trace formula gives

#X(Fq) =
d∑
i=0

(−1)i Tr
(
F ∗
∣∣ H i

(
X,Q`

))
,

and H0(X,Q`) ∼= Q`. It follows that the trace of Frobenius on H0(X,Q`) is 1, hence to
prove the theorem it is therefore enough to show that, for i > 0, the eigenvalues of F ∗

on H i(X,Q`) are divisible by q. Notice that this last statement makes sense because of
Deligne’s integrality theorem 4.10: the eigenvalues of Frobenius are algebraic integers.

11.2 Generalities

11.2.1 Cohomology with support in a closed subscheme

If Z in X is a closed subscheme, one can define

H0
Z(X,F) = ker

(
H0(X,F)→ H0(X \ Z,F)

)
;

this is a left-exact functor, whose right derived functors are by definition F 7→ H i
Z(X,F),

cohomology with compact support on Z.
There is a long exact sequence

· · · → H i(X,F)→ H i(X,F)→ H i(U,F)→ H i+1(X,F)→ · · ·

where U := X \ Z, and more generally, if Y ⊆ Z is another closed subset, there is a long
exact sequence

· · · → H i
Y (X,F)→ H i

Z(X,F)→ H i
Z\Y (X \ Y,F)→ · · · (6)

There is a purity isomorphism: if F = Z/nZ(j), Z ⊆ X is a smooth pair of varieties over
a field, and c is the codimension of Z in X, then there is an isomorphism

H i
Z(X,F) ∼= H i−2c(Z,F(−c))
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Remark 11.9. By work of Gabber, the purity isomorphism is now known to exist more
generally for regular pairs.

11.2.2 Cycle map

Let X be a smooth variety and let Zi(X) be the group of cycles of codimension i on X.
There is a cycle map

Zi(X)→ H2i(X,Z/nZ(i)).

In particular, we want to associate a class in H2i(X,Z/nZ(i)) with with any closed subs-
cheme Z of codimension i. If Z happens to be smooth, by purity we have

H0(Z,Z/nZ) ∼= H2i
Z (X,Z/nZ(i))→ H2i(X,Z/nZ(i)),

and we define the cycle class of Z to be the image of 1 ∈ H0(Z,Z/nZ) intoH2i(X,Z/nZ(i)).
If Z is not smooth, let Y ⊂ Z be the singular locus, and consider the long exact sequence
(6) for the pair Y ⊂ Z:

Hα
Y (X,Z/nZ(·))→ Hα

Z(X,Z/nZ(·))→ Hα
Z\Y (X \ Y,Z/nZ(·))→ Hα+1

Y (X,Z/nZ(·))

For α < 2i = 2 codimX(Z) the cohomology groups Hα
Y (X,Z/nZ(·)) and Hα+1

Y (X,Z/nZ(·))
vanish: if Y is smooth, this follows by purity for dimension reasons. Even if Y is not
smooth, one can proceed by (Noetherian) induction by taking Yn+1 to be the singular
locus of Yn, and the conclusion is still the same. Now we take α = 2i and · = i to get

0→ H2i
Z (X,Z/nZ(i))→ H2i

Z\Y (X \ Y,Z/nZ(i))→ 0,

and by purity we have

H2i
Z\Y (X \ Y,Z/nZ(i)) ∼= H0(Z \ Y,Z/nZ(i)).

Finally, we have a canonical map H0(Z,Z/nZ(i)) → H0(Z \ Y ): the image of 1 ∈
H0(Z,Z/nZ(i)) in H2i

Z (X,Z/nZ(i)) is then the value of cycle class map in Z.

Definition 11.10. Two cycles α1, α2 are rationally equivalent if α1 − α2 is a Z-linear
combination of T (0)− T (∞), where T ⊆ X × P1 is a closed subscheme.

Fact. Let
CHi(X) := Zi(X)/rational equivalence

be the i-th Chow group of X. The cycle map factors through CHi(X)→ H2i(X,Z/nZ(i)).

11.2.3 Correspondences

Consider the obvious diagram

X ×X
p1

{{

p2

##

X X
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We have pullback maps p∗1, p
∗
2 : H i(X,Q`(j)) → H i(X × X,Q`(j)) and, if X is smooth

and projective, by Poincaré duality we get push-forward maps

p1∗, p2∗ : H4d−i(X ×X,Q`(j))→ H2d−i(X,Q`(d− j))

Now take α ∈ CHd(X × X), which induces [α] ∈ H2d
(
X ×X,Q`(d)

)
. We can then

consider the following chain of maps:

H i(X,Q`(j))
p∗1−→ H i

(
X ×X,Q`(j)

) −∪[α]−−−→ H2d+i(X ×X,Q`(j + d))
p2,∗−−→ H i(X,Q`(j)).

In particular, given α, we obtain [α]∗ : H i(X,Q`(j))→ H i(X,Q`(j)), called a correspond-
ence action.

11.3 Bloch’s lemma

Lemma 11.11 (Bloch, decomposition of the diagonal). Assume X is a smooth projective
variety over a field and such that CH0(X

k(X)
) ∼= Z. Let ∆ ⊂ X × X be the diagonal.

Then, for some positive integer N , there exists a decomposition

N ·∆ ∼ Γ1 + Γ2 ∈ CHd(X ×X) (rational equivalence)

such that Γ1 is supported on ? × X, where ? ⊆ X is a 0-dimensional closed subscheme,
and Γ2 is supported on X × (X \D), where D is a divisor.

Proof. Let η : Spec k(X) → X be the generic point. Then ∆ induces, by pullback, an
element ∆η of Z0(Xk(X)). The assumption implies that CH0(X

k(X)
\ ?

k(X)
) = 0 for some

0-dimensional ? (which, over the algebraic closure, becomes a bunch of points, one of
which is such that one can concentrate the support of any 0-cycle on it, up to rational
equivalence).
Fact. If V is a variety over a field F , and if we write V for V ×F F , we have that

ker
(
CH0(V )→ CH0(V )

)
is torsion.

Proof of the fact. If α is an element in the kernel, there exists a finite extension L/F such
that α becomes 0 in CH0(XL). Consider the commutative diagram with exact rows⊕

x∈V1 k(x)× //

��

⊕
x∈V0 Z

��

// CH0(V )

��⊕
x∈(VL)1

k(x)× //

NL/F

��

⊕
x∈(VL)0

Z //

��

CH0(VL)

��⊕
x∈V1 k(x)× //

⊕
x∈V0 Z // CH0(V ) :

then the composition of the vertical arrows is [L : F ], and an easy diagram chasing then
shows that if α is in ker CH0(V ) → CH0(VL), then it is killed by [L : F ]. (Notice that
the vertical maps at the level of

⊕
Z are multiplication by the local degree of the field

extensions).
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By the fact, some multiple N∆η of ∆η vanishes. Let ?×X be the closure of ?k(X) in
X × X. There exists some Γ1, supported on ? × X, such that N · ∆ − Γ1 maps to 0 in
CH0(Xk(X)). Now it is an easy fact that

CH0(Xk(X)) = lim−→
U open in X

CHd(X × U),

and open subsets of the form X \D are cofinal in the system of all open subsets, so

CH0(Xk(X)) = lim−→
D

CHd(X × (X \D)).

The fact that N∆− Γ1 is 0 in the limit now means precisely that, for some D, the cycle
N∆− Γ1 is of the desired form Γ2. This follows from the exact sequence

CHd(X ×D)→ CHd(X ×X)→ CHd(X × (X \D)).

11.4 Proof of Theorem 11.3

Lemma 11.11, applied to the diagonal of X ×X, implies that

N [∆]∗ = [Γ1]∗ + [Γ2]∗ on H i(X,Q`);

moreover, [∆]∗ is the identity, while [Γ1]∗ = 0, because the action factors via the d-
dimensional cohomology of the 0-dimensional variety ?. For every α ∈ H i(X,Q`) we then
have

Nα ∈ ker
(
H i(X,Q`)→ H i(X \D,Q`)

)
But N : H i(X,Q`)→ H i(X,Q`) is an isomorphism, so the same is true for α itself. Recall
once more that we have a purity isomorphism: if Z ⊂ X is smooth,

H i
Z(X,Q`(j)) ∼= H i−2c(Z,Q`(j − c)),

where c is the codimension of Z in X. If moreover we are over Fq, this implies that the
action of Frobenius on H i

Z(X,Q`(j)) is qc times the action on H i−2c(Z,Q`(j)). Applying
this with Z = D (we are assuming, for now, that D is smooth) and c = 1, we have
seen that α comes from H i

D(X,Q`) ∼= H i−2(D,Q`(−1)). The eigenvalues of the action
of Frobenius on this latter space are of the form q2 × eigenvalues on H i−2(D,Q`), hence
they are divisible by q2 (by theorem 4.10). Finally, if D is not smooth, we can find a chain
of subschemes {pt} ⊂ D0 ⊂ D1 ⊂ · · · ⊂ Dr = D such that Dg \Dg−1 is smooth. The long
exact sequence

· · · → H i
Dg−1

(X,Q`)→ H i
Dg

(X,Q`)→ H i
Dg\Dg−1

(X \Dg−1,Q`)

then implies the theorem by Noetherian induction.
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[Wei49] André Weil. Numbers of solutions of equations in finite fields. Bull. Amer. Math.
Soc., 55:497–508, 1949.

51

https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

	01.10.2019 – Introduction to the Weil conjectures
	Statement of the Weil conjectures
	A little history
	Grothendieck's proof of Conjectures 1.3 and 1.5

	08.10.2019 – Diagonal hypersurfaces
	Proof of Conjecture 1.5
	Diagonal hypersurfaces
	Gauss & Jacobi sums

	15.10.2019 – A primer on étale cohomology
	How to define a good cohomology theory
	Examples

	Basic properties of étale cohomology
	Stalks of an étale sheaf
	How to get cohomology groups with coefficients in a ring or field of characteristic 0
	Examples

	Operations on sheaves
	The 4th Weil conjecture


	22.10.2019 – Deligne's integrality theorem
	More generalities on étale cohomology
	Cohomology with compact support
	Three basic theorems

	Generalised zeta functions
	The integrality theorem

	29.10.2019 – Katz's proof of the Riemann Hypothesis for hypersurfaces (2015)
	Reminder on the arithmetic fundamental group
	Katz's proof

	05.11.2019 – Deligne's original proof of the Riemann Hypothesis
	Reductions in the proof of the Weil Conjectures
	Geometric and topological ingredients: Lefschetz pencils
	Strategy of proof of estimate (1)
	Lefschetz theory over C
	Local theory


	12.11.2019 – Deligne's original proof of the Riemann Hypothesis II
	Lefschetz theory over C
	Local theory
	Global theory

	Lefschetz theory in étale cohomology
	Local theory
	Global theory

	The big picture: how is all this used in Deligne's proof?

	19.11.2019 – Conclusion of the proof (modulo two technical lemmas)
	Where do we stand?
	Study of the filtration on Rn Q
	The sheaf E/ (E E)
	Proof of the Main Lemma

	26.11.2019 – Leftovers
	Rationality theorem

	03.12.2019 – A brief overview of Weil II
	Q-sheaves
	Purity
	Some reductions in the proof of Theorem 10.4
	Dévissages
	Structure of the main proof
	Local monodromy
	Conclusion of the proof
	Aside: the weight-monodromy conjecture
	A conjecture from Weil II

	10.12.2019 – Appendix: an application of Deligne's integrality theorem
	Idea of proof
	Generalities
	Cohomology with support in a closed subscheme
	Cycle map
	Correspondences

	Bloch's lemma
	Proof of Theorem 11.3


