
Algebraic Number Theory Lecture Notes

Lecturer: Bianca Viray; written, partially edited by Josh Swanson

December 9, 2015

Abstract

The following notes were taking during a course on Algebraic Number Theorem at the University of
Washington in Fall 2015. Please send any corrections to jps314@uw.edu. Thanks!

Contents

September 30th, 2015: Introduction—Number Fields, Integrality, Discriminants . . . . . . . . . . . 2

October 2nd, 2015: Rings of Integers are Dedekind Domains . . . . . . . . . . . . . . . . . . . . . . 4

October 5th, 2015: Dedekind Domains, the Group of Fractional Ideals, and Unique Factorization . 6

October 7th, 2015: Dedekind Domains, Localizations, and DVR’s . . . . . . . . . . . . . . . . . . . 9

October 9th, 2015: The ef Theorem, Ramification, Relative Discriminants . . . . . . . . . . . . . . 11

October 12th, 2015: Discriminant Criterion for Ramification . . . . . . . . . . . . . . . . . . . . . . 13

October 14th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

October 16th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

October 19th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

October 21st, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

October 23rd, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

October 26th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

October 29th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

October 30th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

November 2nd, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

November 4th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

November 6th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

November 9th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

November 13th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

November 18th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1



November 20th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

November 23rd, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

November 25th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

November 30th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

December 2nd, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

December 7th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

December 9th, 2015: Draft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

List of Symbols 60

Index 62

September 30th, 2015: Introduction—Number Fields, Integrality,
Discriminants

1 Remark
This is a course in algebraic number theory. An undergraduate course in elementary number theory
studies Z and primes–for instance, there are infinitely many primes, even of the form 4k + 3, 8k + 5,
etc., and in fact:

2 Theorem (Dirichlet)
For any a, n ∈ Z+ with gcd(a, n) = 1, there are infinitely many primes congruent to a mod n.

Dirichlet’s theorem essentially identifies linear polynomials in one variable (namely a+nx) which produce
infinitely many primes. Question: what are the primes of the form x2+ny2 = (x+

√
−ny)(x−

√
−ny) ∈

Z[
√
−n]? This naturally leads to the study of rings of the form Z[

√
−n]. Algebraic number theory is

primarily interested in the following objects:

3 Definition
A number field is a finite degree field extension of Q. IfK is a number field, the ring of integers

OK of K is the set of elements of K integral over Z, i.e. those which satisfy a monic polynomial

over Z[x].

Course texts: Osserman’s notes; supplemented with some material from Lang, Neukirch, and Stein.

4 Aside
There are some closely related objects that won’t make much of an appearance in this class. Let R
be a commutative domain with fraction field F and suppose A is a finite-dimensional F -algebra. An

R-order O in A is a subring of A that is a finitely generated R-module with FO = A. Claim: OK
is the (unique) maximal Z-order in K. For instance, this claim requires OK to be a ring, which we
haven’t proved yet.

5 Definition
A global field is either a number field or a finite extension of Fp(t). Many of the things that

hold for number fields also hold for global fields. For instance, rings of integers of number fields
are analogous to the integral closures of Fp[t] in finite extensions of Fp(t).
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6 Lemma
Let K be a number field, x ∈ K. Then x is an integral element (over Z) if and only if there exists a

finitely generated Z-module M ⊂ K such that xM ⊂M .

Proof If x is integral, it is a root of a monic polynomial f(t) ∈ Z[t], so letM := SpanZ{1, x, . . . , xdeg f−1}.
Then xM ⊂M since we can replace xdeg f with the negative of the non-top-degree terms of f .
On the other hand, suppose v1, . . . , vn ∈M are generators. Since xM ⊂M , there exist integers
aij ∈ Z such that xvj =

∑
i aijvi, so xI − (aij) has a nontrivial kernel (namely it contains

[v1, . . . , vn]T ), so its determinant is zero, but its determinant is also a monic polynomial in Z[x].

7 Proposition
OK is a ring.

Proof If x, y ∈ OK , then we have finitely generated M,N ⊂ K such that xM ⊂ M and yN ⊂ N .
Then MN is also finitely generated and (x± y)MN ⊂MN , xyMN ⊂MN .

8 Proposition
If A is a UFD, then A is integrally closed (in its field of fractions).

Proof Let a, b ∈ A, b 6= 0. Assume a/b is integral over A, so there exists c0, . . . , cn−1 ∈ A such that(a
b

)n
+ cn−1

(a
b

)n−1
+ · · ·+ c0 = 0.

Multiply through by bn to get

an + cn−1a
n−1b+ · · ·+ c0b

n = 0.

Hence b | an, so every prime dividing b divides a. If we had made a and b relatively prime to
begin with, which is possible over a UFD, this forces b to be a unit in A, so a/b ∈ A.

9 Definition
Let R ⊂ S be rings such that S is a finitely generated free R-module. (Technically either take R
commutative, or take S to be a bimodule. Usually K ⊂ L are fields with OK ⊂ OL.) For α ∈ S, let
mα : S → S be given by x 7→ αx. This is R-linear; we can equivalently consider mα as a matrix with
entries in R.

(a) The norm NS/R(α) is detmα;

(b) The trace TrS/R(α) is Trmα;

(c) The discriminant of α1, . . . , αn ∈ S, DiscS/R(α1, . . . , αn) , is det((Tr(mαiαj ))i,j).

Note that the norm is multiplicative and the trace is R-linear. We will often drop the S/R, so for
instance Tr(α) means Tr(mα).

10 Proposition
If α1, . . . , αn ∈ S are an R-basis and M : S → S is R-linear, then

DiscS/R(Mα1, . . . ,Mαn) = (detM)2 DiscS/R(α1, . . . , αn).

In particular, if M is invertible, these discriminants agree up to a unit in R, so the discriminant of S
can be well-defined as the ideal in R generated by the discriminant of any basis.
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Proof If M = (mij)i,j in the given basis, then Mαk =
∑
kmkiαi by definition, so we compute

Tr(M(αi)M(αj)) = Tr(
∑
k,`

mkiαim`jαj)

=
∑
k,`

mkim`j Tr(αiαj)

= M(Tr(αiαj))ijM
T .

Now take determinants.

11 Aside
The preceding proposition relates DiscS/R(SpanR{α1, . . . , αn}), DiscS/R(SpanR{Mα1, . . . ,Mαn}), and
the index of B ⊂ A—more details on the homework.

12 Proposition
If L/K is a separable field extension of degree n, then let σ1, . . . , σn be the n embeddings L ↪→ K
which are the identity on K. Then

• NL/K(α) =
∏n
i=1 σi(α),

• TrL/K(α) =
∑n
i=1 σi(α), and

• DiscL/K(α1, . . . , αn) = det(σi(αj))
2.

13 Corollary
The norm, trace, and discriminant of integral elements coming from a separable field extension are all
integral.

Proof Integrality is preserved by the σi, so the above quantities are all polynomial combinations of
integral elements.

October 2nd, 2015: Rings of Integers are Dedekind Domains

Review of norm, trace, discriminant from last lecture:

Let R ⊂ S be rings, S ∼= Rn, α ∈ S, mα : S → S by x 7→ αx, NS/R(α) := detmα, TrS/R(α) :=
Trmα, and DiscS/R((αi)i) := det(Tr(αiαj)i,j).

If x1, . . . , xn ∈ S are an R-basis for S, and M : S → S is R-linear, then Disc(M(xi)) =
(detM)2 Disc((xi)). Moreover, if L/K is a separable field extension of degree n, and if σ1, . . . , σn : L ↪→
K are the n embeddings of L into the algebraic closure of K which fix K, then NL/K(α) =

∏n
i=1 σi(α),

TrL/K(α) =
∑n
i=1 σi(α), DiscL/K(α) = det(σi(αj))

2.

Indeed, if L/K is inseparable, Tr(α) = 0 for all α ∈ L and Disc((αi)i) = 0 whenever αi ∈ L. More
details and proofs in the homework and Osserman’s notes.

As a corollary, if L/K is an extension of number fields and K contains a subring R, and if α ∈ L
is integral over R, then N(α),Tr(α) are integral over R. Similarly if α1, . . . , αn ∈ L are integral over
R, then Disc((αi)) is integral over R. In particular, if R = Z and K = Q, then the discriminant of
elements of OL are in OQ = Z.
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14 Lemma
Let L/K be an extension of fields. Assume L = K(α) for some α. Let f(x) be the minimal polynomial
of α over K (in this class, f is thus assumed monic). Then

DiscL/K(1, α, . . . , αn−1) =
∏
i<j

(αi − αj)2 =: Disc f(x) ,

where α = α1, α2, . . . , αn are the roots of f(x).

Proof In this case, (σi(α
j)) is a Vandermonde matrix. (If the extension is inseparable, both sides are

zero, so it still works.)

15 Lemma
Let L/K be a field extension of degree n with α1, . . . , αn ∈ L. Then DiscL/K(α1, . . . , αn) 6= 0 if and
only if α1, . . . , αn is a K-basis for L and L/K is separable.

Proof Assume L/K is separable, so L = K(β) for some β.

⇐ By the previous lemma, Disc(1, β, . . . , βn−1) 6= 0. We can use an (invertible) change of
basis matrix to send βi to αi and an earlier proposition then says that Disc((βi)) and
Disc((αi)) differ by a unit (in R).

⇒ If {α1, . . . , αn} is K-linearly dependent, then {σj(αi)}ni=1 is K-linearly dependent with
the same dependence relation, for each j. Hence det(σj(αi))

2 = 0.

The preceding discussion was quite general, though here are some special properties in the case R = Z
involving rings of integers.

16 Notation
Let K be a number field.

17 Proposition
Let I ⊂ OK be a nonzero ideal. Then I contains a Q-basis for K, and among the Q-bases for K
contained in I, any basis with minimal absolute value of the discriminant is a Z-basis for I. In
particular, I is a free Z-module of rank n.

Proof Let n = [K : Q] and let α1, . . . , αn be any Q-basis for K. Notice that for all i, there exists
some di ∈ Z such that diαi ∈ OK (essentially, take di large enough to clear all denominators of
the minimal polynomial). Then if 0 6= β ∈ I, βd1α1, . . . , βdnαn is a Q-basis for K contained in
I. By the comments in the above review, the discriminant of (αi) is in Z.

Now let α1, . . . , αn be a Q-basis for K contained in I of minimal |Disc(αi)|. If β ∈ I, then
β =

∑
i aiαi for some ai ∈ Q. Assume to the contrary that a1 6∈ Z. Write a1 = b + ε where

b ∈ Z and 0 < ε < 1. Let α′1 := β − bα1 and consider {α′1, α2, . . . , αn}. This is clearly a Q-basis
for K and is contained in I. The change of basis matrix from {α1, . . . , αn} to {α′1, α2, . . . , αn}
in the {α1, . . . , αn} basis is lower triangular with ε, 1, . . . , 1 on the main diagonal, which has
squared determinant 0 < ε2 < 1, giving a contradiction.

(Aside: the above change of basis proposition says that the discriminant of any two bases
have the same sign, since they differ by the square of the determinant of a matrix over Q.)

18 Definition
The preceding proposition says that ideals in OK have Z-bases, so the discriminant of any such ideal
can be well-defined up to a unit (in Z) as the discriminant of any Z-basis. Precisely, d(OK) = D(OK) =

Disc(OK) is the discriminant of any Z-basis of OK , which is well-defined up to a sign.

19 Proposition
If 0 6= I ⊂ OK , then OK/I is finite.
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20 Lemma
Let R ⊂ S be integral domains and let I ⊂ S be a non-zero ideal. Suppose 0 6= α ∈ I satisfies a
non-zero polynomial f(x) ∈ R[x]. Then I ∩R 6= 0.

Proof WLOG assume f(0) 6= 0 by canceling enough powers of x. Consider f(α)− f(0) ∈ I,
but f(α) = 0, so 0 6= −f(0) ∈ R.

Proof (of proposition). The lemma implies that I ∩ Z 6= 0, so there exists 0 6= m ∈ I ∩ Z, and
OK/mOK ∼= (Z/m)n (since OK is a rank n Z-module), and OK/I is a further quotient of this,
so is “even more” finite.

21 Definition
The norm of an ideal I is N(I) := #(OK/I). By the preceding proposition, this is finite.

22 Fact
If 0 6= x ∈ OK , then N(xOK) = |NK/Q(x)|.

For instance, if the norm of an ideal is prime, then OK/I has prime order, so it must be a finite
field, so I must be maximal, hence prime.

23 Lemma
If M,N are free Z-modules of rank n and A : M → N is an injective Z-linear map, then
|det(A)| = #(N/A(M)).

Proof Exercise; also in Osserman’s notes.

Proof Let M = N = OK , A = mx.

Now we’ll “zoom out” a little to the generality of Dedekind domains.

24 Definition
An integral domain R is a Dedekind domain if

(1) R is Noetherian

(2) Every nonzero prime ideal is maximal

(3) R is integrally closed (in its field of fractions)

(Geometrically, this is essentially saying SpecR is one-dimensional and regular/normal/non-singular.
While fields are precisely zero-dimensional Dedekind domains, they typically satisfy the properties of
one-dimensional Dedekind domains trivially.)

25 Proposition
Let R be an integral domain. If R is integrally closed and R/I is finite for all non-zero ideals in R,
then R is a Dedekind domain.

In particular, by the previous proposition, rings of integers are Dedekind domains

Proof Let p ⊂ R be a prime ideal, so R/p is a finite integral domain, hence a field, so p is maximal.
For the Noetherian condition, suppose 0 6= I0 ⊂ I1 ⊂ · · · ⊂ In ⊂ · · · is an ascending chain of
ideals. Taking successive quotients gives a sequence of surjections R/I0 � R/I1 � · · · , which
must eventually stabilize since these quotients have weakly decreasing finite order.

October 5th, 2015: Dedekind Domains, the Group of Fractional
Ideals, and Unique Factorization
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Summary of last class: we introduced Dedekind domains, which are commutative domains R where (1) R is
Noetherian, (2) every non-zero prime in R is maximal, and (3) R is integrally closed. Our main source
of example of Dedekind domain are rings of integers. (These should be all the Dedekind domains which
are finite rank Z-modules that are not fields.)

26 Definition
If R is an integral domain with K := Frac(R), then a subset I ⊂ K is a factional ideal of R if

(i) I is an R-submodule;

(ii) There exists c ∈ R such that cI ⊂ R.

A fractional ideal I is a principal fractional ideal if I = αR for some α ∈ K.

(The idea behind (ii) is that the “denominators don’t get too large” and can all be canceled
simultaneously. “Fractional ideal” naively would suggest a subset of ideals satisfying special properties,
but in fact fractional ideals are more general than ideals.)

27 Remark
Dedekind domains are not necessarily UFD’s, despite OQ = Z being the first example. For instance,

OQ(
√
−5) = Z[

√
−5] is not a UFD since 2 · 3 = 6 = (1 +

√
−5)(1 −

√
−5). (This is the standard

counterexample).

28 Theorem
Let R be a Dedekind domain. Then

(1) Every ideal of R factors uniquely into prime ideals.

(2) The set of fractional ideals forms a group under multiplication, with identity R.

29 Remark
The product of two fractional ideals I, J is the set of finite sums of pairwise products ij for
i ∈ I, j ∈ J .

(1) says that while Dedekind domains need not be UFD’s, their primes at least factor uniquely.
If every prime were principal, then we would have unique factorization on the level of elements.
Hence (2) says we can measure the failure of unique factorization by considering the “ideal class
group” of K, ClK , which is the quotient of the fractional ideals by non-zero principal ideals.
More on this later.

Proof We follow the proof from Lang, which proves (2) and deduces (1). Neukirch does (1) implies
(2); Osserman does (2) implies (1) in a different way.

We first outline the proof of (2) as a series of claims:

30 Definition
If I is an ideal, define I−1 := {x ∈ K : xI ⊂ R} ⊂ K. (This is a generalized ideal
quotient.)

(I−1 is indeed a factional ideal: let 0 6= a ∈ I, so (a) ⊂ I, so (a)I−1 ⊂ II−1 ⊂ R.)

Claim 1: If I ⊂ R is a nonzero ideal, there exist non-zero prime ideals p1, . . . , pr such that p1 · · · pr ⊂
I.

Claim 2: Every maximal ideal p is invertible with inverse p−1.

Claim 3: Every nonzero ideal is invertible and its inverse is a fractional ideal.
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Claim 4: If 0 6= I ⊂ R is an ideal and J ⊂ K is an inverse of I, then J = I−1.

Assuming the claims, we first prove (2). Claim 3 says every ideal is invertible. To amplify
this up to all fractional ideals, suppose I is a fractional ideal with c ∈ K such that cI ⊂ R. An
inverse for I is the product of (c) and an inverse for cI. Claim (4) says inverses are unique.

For claim (1), suppose not. Take a maximal counterexample I (using the Noetherian
hypothesis). Since I is not prime, we have b1, b2 6∈ I such that b1b2 ∈ I. Note that

(I + b1)(I + b2) ⊂ I ( I + (bi).

Since I is a maximal counterexample, I + (bi) cannot be counterexamples, so they each contain
a product of non-zero primes. But then the product of those products of primes is contained in
(I + b1)(I + b2), hence in I, a contradiction.

For claim (2), from the definition we see that p ⊂ pp−1 ⊂ R is an ideal. Since p is maximal,
either pp−1 is either p or R. So, assume to the contrary pp−1 = p. From the finitely generated
Z-module definition of integrality above, this says p−1 ⊃ R consists of integral elements, so since
R is integrally closed, p−1 = R. We next exhibit an element of p−1 −R, giving a contradiction
and proving the claim. Pick 0 6= a ∈ p. By claim (1), there exist non-zero primes p1, . . . , pr such
that p1 · · · pr ⊂ (a) ⊂ p. Take r minimal with this property. Since p is prime, some pi ⊂ p, say
i = 1. Primes are maximal here, so we have p1 = p. Since r is minimal, p2, . . . , pr 6⊂ (a). Take
b ∈ p2 · · · pr 6∈ (a). Note that bp ⊂ (a), so ba−1 ∈ p−1 and ba−1 6∈ R. Note also that we have
shown p−1 ) R in general.

For claim (3), again assume not and take a maximal counterexample I. By claim (2), I is
not prime, so I ( p for some prime p. Now I ⊂ Ip−1 ⊂ R, and p−1 has non-integral elements,
so I 6= Ip−1. But then Ip−1 has inverse J , so Jp is an inverse for I.

For claim (4), take 0 6= I ⊂ R and J ⊂ K such that IJ = R. By definition J ⊂ I−1. On the
other hand, for x ∈ I−1, xI ⊂ R, so xR = xIJ ⊂ J , so x ∈ J and J = I−1.

We finally prove unique factorization (1). For existence, assume it fails and take a maximal
counterexample I. Obviously I cannot be prime. Let p ) I be a maximal ideal. Now
I ( Ip−1 ⊂ R, so Ip−1 has a prime factorization, and we can multiply it by p to get a
factorization for I.

For uniqueness, first define:

31 Definition
If I, J ⊂ K are fractional ideals, say I | J if there is an ideal I ′ ⊂ R such that J = II ′.

Equivalently (using the existence of inverses), J ⊂ I.

Now assume p1 · · · pr = q1 · · · qs. Then p1 | q1 · · · qs. Hence qi ⊂ p1 for some i, say i = 1. Then
q1 = p1 may be canceled from both sides, giving the result by induction.

32 Example
Let’s return briefly to the motivating question from the first day. Let n ∈ Z and pick a prime p. We
want to know if there exist x, y ∈ Z such that p = x2 + ny2 = (x +

√
−ny)(x −

√
−ny) ∈ Z[

√
−n].

Assume for the moment that Z[
√
−n] is integrally closed (equivalently, −n is squarefree and −n ≡4 2, 3).

Then p = x2 + ny2 if and only if (p) ⊂ Z[
√
−n] factors as the product of two principal prime ideals.

(They have to be prime since the norm of (p) is p2, and since norm is multiplicative, the norms of
the two factors above are each p, which implies they were prime.) Factoring (p) ⊂ Z[

√
−n] into

not-necessarily principal primes is well-understood, but fuguring out when they are principal is not
well understood since class groups are complicated.
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October 7th, 2015: Dedekind Domains, Localizations, and DVR’s

Summary of last time: we proved the theorem above, that in a Dedekind domain R, ideals factor uniquely
as a product of prime ideals, and the set of fractional ideals form a group under multiplication with
identity R. We also related our recent discussion with the problem of finding primes of a particular
“polynomial” form.

Today we’ll study localizations of Dedekind domains.

33 Definition
An integral domain R is a discrete valuation ring (DVR) if it is a local PID.

34 Proposition
If R is an integral domain, then

(i) Assume R is noetherian. Then R is a UFD if and only if every irreducible is prime.

(ii) R is a PID if and only if R is a Dedekind domain and a UFD.

Proof For (i), the ⇒ implication is clear. As for ⇐, pick r ∈ R. First we claim r factors into
irreducibles: for if r is not irreducible, we can write it as the product of non-units, which
themselves are either irreducible or can be written as the product of non-units, etc. Abstractly
this could result in an infinite recursion, but this process constructs a tower of ideals, and infinite
recursion would imply an infinite strictly ascending chain, a contradiction. Uniqueness follows
since every irreducible element is prime using the standard fundamental theorem of arithmetic
argument.

For (ii), in the ⇒ direction, we know that since R is a PID, it is noetherian (having finitely
generated ideals) and is a UFD. We’ve already showed that UFD’s are integrally closed in their
field of fractions. So, we need only show primes are maximal. Let (x) = p ⊂ R be prime. Since
p is prime, x is irreducible, from which it follows that (x) = p is maximal.

In the ⇐ direction for (ii), since R is a Dedekind domain, by the theorem it suffices to prove
that every prime ideal is principal. Since p ⊂ R, we can pick any non-zero element of p and
write it as a product of irreducibles, whence we have x ∈ p irreducible. But then (x) ⊂ p is a
prime ideal, so (x) = p is principal.

35 Corollary
DVR’s are Dedekind domains.

Proof DVR’s are (local) PID’s.

36 Lemma
Any Dedekind domain with only finitely many prime ideals is a PID. In particular, local Dedekind
domains are DVR’s.

Proof Let p1, . . . , pn be the prime ideals of R and let a be some other ideal. By the theorem, we can
write a = pe11 · · · perr . Choose πi ∈ pi − p2i . By the Chinese Remainder Theorem, there exists

α ∈ R such that α ≡
p
ei+1

i
πeii . Write (α) = pf11 · · · pfrr . We claim fi is the maximal value such

that (α) ⊂ pfii , from which fi = ei follows, so (α) ⊂ a. For the claim, suppose (α) ⊂ ps1 for

s > f1. Then pf1−s1 pf22 · · · pfrr ⊂ R, however pf1−s1 is a non-integral ideal since f1 − s < 0, which
contradicts the fact that we can factor this product uniquely using integral ideals.
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37 Proposition
If R is a Dedekind domain and S is a multiplicative subset, then S−1R is a Dedekind domain, and the
induced map on fractional ideals a 7→ S−1a is a surjective homomorphism from the group of fractional
ideals of R to the group of fractional ideals of S−1R. The kernel of this map consists precisely of those
fractional ideals which intersect S non-trivially.

Proof Exercise; this will be on homework.

38 Definition
Let R be an integral domain with fraction field K := Frac(R). Let I ⊂ K be a fractional ideal and

suppose p ⊂ R is a non-zero prime ideal. Then Ip := IRp ⊂ K. (Note that we may assume all

localizations S−1R are literal subsets of K.)

39 Lemma
In the notation of the preceding definition, Ip is a fractional ideal of Rp and I = ∩pIp.

Proof I is a fractional ideal, so pick c ∈ R such that cI ⊂ R, so cIp ⊂ Rp. It follows that Ip is indeed
a fractional ideal of Rp.

For I = ∩pIp, the ⊂ direction is clear, so let x ∈ ∩pIp ⊂ K and write x = a/b for a, b ∈ R.
Let J := {y ∈ R : ya ∈ bI} ⊂ R. We claim J = R, in which case 1 ∈ J says a ∈ bI, so a/b ∈ I.
For the claim, pick p prime, so x ∈ Ip says a/b = c/d for some c ∈ I, d 6∈ p. Hence da = bc ∈ bI
and d ∈ J − p. Therefore J 6⊂ p for all p, forcing J = R.

40 Remark
Osserman proves the theorem on unique factorization in Dedekind domains by building up the
local picture and using this lemma repeatedly.

41 Proposition
Let R be a noetherian integral domain. Then R is a Dedekind domain if and only if Rp is a DVR for
all primes p.

Proof In the ⇒ direction, 37 shows that Rp is a (local) Dedekind domain, hence is a DVR. For ⇐,
we need to show that non-zero primes are maximal and that R is integrally closed.

If 0 6= p ⊂ m ⊂ R, then localize at m. By assumption, Rm is a DVR, so p = m are both the
unique prime in Rm. Since primes in Rm are in bijection with primes in R contained in m, we
have p = m in R. Now suppose x ∈ K is integral over R. Then x is integral over Rp for all p.
Since Rp is a DVR, hence is a UFD, so x ∈ Rp for all p. By the lemma with I = R, x ∈ R.

42 Remark
Let K be a number field with an order O ⊂ K. The maximal order OK is a Dedekind domain, but
O need not be. More details in Neukirch, Chapter 1. We can still talk about fractional ideals with
respect to O, but they are not necessarily invertable.

43 Definition
Let a ⊂ K be a fractional ideal of O. Say a is invertible if there exists another fractional ideal
b ⊂ K of O such that ab = O.

If a is invertible, then a−1 = {x ∈ K : xa ⊂ O}. This follows from claim (4) in the theorem from
last time.

44 Proposition
a is invertible if and only if ap := aOp is a principal fractional ideal for all p.

Proof Assume a is invertible with b := a−1. Then 1 =
∑r
i=1 aibi for some ai ∈ a, bi ∈ b. At

least one of the products aibi 6∈ p, say with i = 1. We claim ap = (a1). Let x ∈ ap, so
xb1 ∈ apb = Op. Write x = (xb1)(a1b1)−1a1 ∈ OpO×p a1. Ran out of time to finish it
off—see Neukirch for the rest.
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Hence the failure of invertibility of fractional ideals is intimately related to the failure of localizations
being PID’s.

October 9th, 2015: The ef Theorem, Ramification, Relative
Discriminants

Summary To determine if there exists a solution to p = x2 +ny2, we want to know how p factors in Z[
√
−n].

So, the next few days will be concerned with figuring out how (p) factors over rings of integers.

We’ll use the following background notation in the next few lectures:

45 Notation
Let R ⊂ S be Dedekind domains. Suppose S is finitely generated as an R-module. Let K :=
Frac(R), L := Frac(S), where L/K is an extension of degree n.

46 Theorem (“ef Theorem”)
Let 0 6= p ⊂ R be a prime ideal and let pS =

∏r
i=1 q

ei
i where the qi are distinct non-zero prime

ideals, and ei ∈ Z>0. Then S/qi is a finite dimensional R/p-vector space and n =
∑r
i=1 eifi where

fi := dimR/p S/qi.

47 Proposition
RpS is a free Rp-module of rank n.

Proof Since S is finitely generated as an R-module, RpS is a finitely generated Rp-module.
Note that RpS has finitely many prime ideals, so is a local Dedekind domain, hence is a
PID. Using the structure theorem for finitely generated modules over a PID, we just need
to show that RpS is torsion free and of rank n. Since RpS ⊂ L is a subset of a field, it is
obviously torsion-free. As for the rank, let x1, . . . , xm be free generators for RpS over Rp.
Then x1, . . . , xm is also a K-basis for L, essentially by canceling denominators. Hence
m = n.

Proof of theorem: write Sp := RpS. Notice that S/pS ∼= Sp/pSp and Sp
∼= Rnp by the proposition,

so S/pS is an R/p-vector space of dimension n. By the Chinese Remainder Theorem, S/pS ∼=∏r
i=1 S/q

ei
i . Now we need only show dimS/qeii = eifi. For any m, S/qmi

∼= Sqi/q
m
i Sqi . But Sqi

is a DVR since S is a Dedekind domain. Then we have

S/qi ∼= Sqi/qiSqi
∼= qi/q

2
iSqi

∼= · · · ∼= qmi /q
m+1
i Sqi .

The claim now follows by induction and the observation (Sqi/q
m+1
i Sqi)/(q

m
i /q

m+1
i Sqi)

∼=
Sqi/q

m
i Sqi .

48 Definition
We say that a prime ideal q ⊂ S lies above a prime ideal p ⊂ R if q ∩R = p. (Of course, this is just
saying the induced map SpecS → SpecR sends q to p.)

49 Proposition
Every non-zero prime ideal of S lies above a unique non-zero prime ideal of R. The following are
equivalent:

a) q lies above p

b) p ⊂ q (equivalently, pS ⊂ q)

c) q occurs in the factorization of pS.

11



Proof We’ve already shown q ∩R 6= 0. If x, y ∈ R such that xy ∈ q ∩R, then since q is prime, x or
y ∈ R, so x or y is in q ∩R, so q ∩R is prime.

We essentially showed (b) ⇔ (c) when we defined divisibility of fractional ideals. For (b)
⇒ (a), we have p = p ∩R ⊂ q ∩R is a maximal ideal, so p = q ∩R. Note that (a) ⇒ (b) is by
definition.

50 Definition
Let q be a non-zero prime ideal of S lying over p, written q/p . Let eq/p and fq/p be ei, fi from the

theorem. Then

• eq/p is the ramification index/degree of q/p

• fq/p is the inertia degree of q/p.

• We say that p is ramified in S if eq/p > 1 or S/q over R/p is inseparable for some q/p. We say

p is unramified otherwise.

• We say that p is inert if p is unramified and there is a unique prime lying above p.

• We say p splits completely if it is unramified and the inertia degrees fq/p are 1 for all q/p.

Note that for rings of integers, S/q over R/p is an extension of finite fields, so is automatically separable,
so ramification is controlled entirely by the multiplicity condition.

51 Example
Let S = Z[i], R = Z. Using the e, f theorem, there are only three possible sums which add up to n = 2.
Indeed, p is ramified iff p ≡4 2, p is inert iff p ≡4 3, and p splits completely iff p ≡4 1.

52 Proposition
Let T ⊂ R ⊂ S be extensions of Dedekind domains. Write K ⊂M ⊂ L for the corresponding tower of
fraction fields. Suppose that R is finitely generated as a T -module and S is finitely generated as an
R-module. Pick a “tower” of primes q ⊂ p ⊂ l. Then

el/p = el/qeq/p fl/p = fl/qfq/p.

Proof Let p =
∏r
i=1 q

ei
i , qi =

∏ri
j=1 l

eij
j , so p =

∏r
i=1(

∏ri
j=1 l

eij
j )ei , and distribute. Then use the fact

that dimensions of towers of field extensions multiply.

Discriminants help determine when primes are ramified, but e is a relative notion, so we first generalize to
relative discriminants.

53 Definition
Consider either of the following setups:

Case 1: Let R ⊂ S be integral domains with fields of fractions K ⊂ L with L/K of degree n, where R is
integrally closed in K and x is integral over R for all x ∈ S.

Case 2: Let R ⊂ S where S is free of rank n over R.

The relative discriminant DR/S ⊂ R is the ideal generated by

Case 1: DL/K((x1, . . . , xn))

Case 2: DS/R((x1, . . . , xn))

12



as (xi) ranges over tuples of elements of S.

Recall that DR/S(x1, . . . , xn) = det(Tr(xixj)) = det(Tr(mxixj )), so the traces are in R and the
determinant is indeed in R in case (2). In case (1), the traces are in K and are integral over R, hence
are in R, so the determinant is again in R.

54 Remark
1) The two definitions agree when they both apply.

2) If S is free over R then DS/R is a principal ideal generated by DS/R(x1, . . . , xn) where (xi) is any
R-basis for S.

3) If L is a number field, then DOL/Z = 〈DL〉.

Proof The two discriminants in fact agree for all tuples, giving (1). For (2), use the change of basis
proposition for discriminants above. Hence (3) follows from (2) using the definition of DL.

October 12th, 2015: Discriminant Criterion for Ramification

Summary Last time we defined relative discriminants in two contexts: A) when S/R was free of rank n,
and B) when R ⊂ S was a domain with fields of fractions K ⊂ L of degree n, where R is integrally
closed in K and for all x ∈ S, x is integral over R.

Our main goal today is to prove a standard result relating ramification and relative discriminants.

(The “B” context was originally stated without the two integral hypotheses, but then isn’t not
clear the result is an ideal in R. The additional hypotheses have been incorporated into the previous
lecture’s notes.)

55 Notation
Today, S and R will be as in cases A) or B) above. Again write Sp := RpS.

56 Lemma
Let S1, S2 be free R-modules of finite rank and let S = S1 ⊕ S2. Then DS/R = DS1/RDS2/R.

Proof Note that xy = 0 for all x ∈ S1, y ∈ S2. Hence mx,S : S → S given by (s1, s2) 7→ (xs1, 0) is
essentially mx,S1

, and similarly with y. It follows that if z1, z2 ∈ S1 ∪ S2, then

Tr(z1z2) =


0 if zi ∈ S1, zj ∈ S2

TrS1
(zizj) if zi, zj ∈ S1

TrS2
(zizj) if zi, zj ∈ S2

Since S is a free R-module, DS/R is a principal ideal generated by DS/R((z1, . . . , zn)) for any
R-basis for S. The resulting matrix of traces is block diagonal, and the result follows.

57 Lemma (Case B.)
If R is a field and Nil(S) 6= 0, then DS/R = 0.

Proof Let 0 6= x ∈ Nil(S) and let y ∈ S. Consider mxy and let z ∈ S be an eigenvector of mxy with
eigenvalue λ. Then

0 = xnynz = (xy)nz = mn
xy(z) = λnz

for sufficiently large n. Hence λn = 0, so λ = 0. While there may be no eigenvectors in S itself,
we may pass to an algebraic closure and deduce that the minimal polynomial of mxy is of the
form tk, so that Tr(xy) = 0 for all y ∈ S. Since R is a field, there exists a basis containing x, so
that DS/R = 0.
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58 Lemma (Case A.)
Let I ⊂ R be an ideal. Then

D(S/IS)/(R/I) ≡ DS/R mod I.

Proof If x1, . . . , xn is an R-basis for S, then x1, . . . , xn is an R/I-basis for S/IS. The result now
follows from the definitions.

59 Lemma (Case B.)
Let p ⊂ R be a prime ideal. Then DSp/Rp

= RpDS/R.

Proof ⊃ is clear from the definitions, since computing discriminants of tuples of elements in S can
be done either before or after localizing without affecting the answer. For the ⊂ inclusion, let
xi = yi/zi ∈ Sp, so yi ∈ S and 1/zi ∈ Rp. Then using the change of basis formula gives

Disc((xi)) = Disc((yi/zi)) =

(∏
i

1

z2i

)
Disc((yi)) ∈ RpDS/R.

60 Theorem
Let R ⊂ S be a finitely generated extension of Dedekind domains. Then p ⊂ R is ramified in S if and
only if p | DS/R.

Proof Our rough strategy is to localize and use the last lemma to allow us to use the previous
lemmas.

Let pS =
∏m
i=1 q

ei
i . Claim:

DS/R ⊂ p⇔ p | DS/R ⇔ D(S/q
ei
i )/(R/p) = 0 for some i.

Recall that (S/pS)/(R/p) falls in Case A since R/p is a field. Likewise Sp ⊃ Rp falls in Case A
by the proposition from last lecture. By the Chinese Remainder Theorem, S/pS ∼= ⊕S/qeii , so
by the first lemma, the final clause of the claim occurs iff D(S/pS)/(R/p) = 0. Using the third
lemma, this occurs iff DSp/Rp

⊂ p in Rp. Using the fourth lemma, this final condition is the
same as saying p | DS/R, giving the claim.

Now suppose p is unramified. Then ei = 1 and S/qi is a separable field extension of R/p.
Hence Disc(S/qi)/(R/p)(any basis) 6= 0 for all i, so p - DS/R.

If p is ramified, then either ei > 1, so S/qeii over R/p is an extension with nilpotents, so the
discriminant of the quotient is zero, or ei = 1 and S/qi is an inseparable field extension. But we
already showed the discriminant of any inseparable field extension is zero. Hence p | DS/R.

61 Corollary
Under the assumptions of the theorem, if L/K is separable, then only finitely many prime ideals
ramify in S/R.

Next we discuss factoring ideals in extensions of Dedekind domains.

62 Notation
We now return to the notation from last class, namely R ⊂ S is a finitely generated extension of
Dedekind domains, and the corresponding extension of fields of fractions K ⊂ L is of degree N .

63 Lemma
Let α ∈ S. Assume that K(α) = L and let f(x) be the minimal polynomial of α. Then Disc(f(x)) ∈
DS/R.

Proof We showed in an earlier lemma that Disc(f(x)) = DiscL/K((1, α, . . . , αn−1)). This latter
quantity is in DS/R since each αi is in S.
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The next theorem allows us to often determine how a prime factors in an extension (and more) using
factorization over finite fields.

64 Theorem
Let p ⊂ R be a non-zero prime ideal. Assume there exists α ∈ S such that Sp = Rp[α]. Let f(x) be

the minimal polynomial of α over R. If f(x) factors as
∏m
i=1 f i(x)ei in (R/p)[x] with the f i distinct

and separable, then

1) pS =
∏m
i=1 q

ei
i with fqi/p = deg f i.

2) qi = p + (f̃i(α)) where f̃i(x) ∈ R[x] is any lift of f i(x).

Furthermore, if α ∈ S is such that Disc(fα)D−1S/R 6⊂ p, then Sp = Rp[α].

65 Corollary
Assume there exists α ∈ S such that L = K(α). If p ⊂ R is such that f(x) mod p is separable,
then properties 1) and 2) hold.

Proof Next time!

October 14th, 2015: Draft

We first recall the theorem from the end of last class.

66 Notation
As before, let R ⊂ S be a finitely generated extension of Dedekind domains. Let K ⊂ L be the
resulting extension of fields of fractions, of degree n. Set Sp := RpS.

67 Theorem
Given p ⊂ R nonzero, assume there exists α ∈ S such that Sp = Rp[α]. Let f(x) be the minimal

polynomial of α over R. If f(x) =
∏m
i=1 f

ei
i (x) in (R/p)[x] with f i distinct and irreducible, then

1) pS =
∏m
i=1 q

ei
i and fq/p = deg f i, and

2) qi = p + f̃i(α) where f̃i is any lift of f i to R[x].

Further, if α ∈ S is such that Disc(fα)DS/R−1 6⊂ p, then Sp = Rp[α].

Proof Let pS =
∏m′

i=1 q
e′i
i . Note that

m′∏
i=1

S/q
e′i
i
∼= S/pS ∼= Sp/pSp

∼= Rp[α]/pSp
∼=

m∏
i=1

(R/p)[x]/f i(x)ei .

Hence we essentially need to match up terms. From earlier, Sp is a PID, so we may apply the
structure theorem to do the matching; Osserman does this step more “by hand”; we won’t take
the time to write out either approach. Hence m = m′, ei = e′i, and fqi/p = deg f i.

For the last claim, we already know Disc(fα) ⊂ DS/R, so (Disc fα)D−1S/R ⊂ R. We also know

that RpDS/R = DSp/Rp
by a lemma from last time. If Disc(fα)D−1S/R 6⊂ p, then Rp Disc(fα) =

DSp/Rp
. Note that DSp/Rp

is principal. Hence Rp(Disc(fα)) = 〈Disc(1, α, . . . , αn−1)〉, so
1, α, . . . , αn−1 is an Rp-basis for Sp, since otherwise the ideal would be zero.
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Next we turn to factorization in Galois extensions.

68 Notation
We now assume K ⊂ L is a Galois extension.

69 Proposition
Let p ⊂ R be non-zero and suppose pS =

∏m
i=1 q

ei
i . Then Gal(L/K) acts transitively on qi, and for all

i, j, we have ei = ej and fi = fj . In particular, n = mef .

In this context, we write ep := eq/p and fp := fq/p for any q = qi.

70 Lemma
S is the integral closure of R in L and so σ induces an automorphism of S for all σ ∈ Gal(L/K).

Proof Not difficult; can see it in Osserman; fine exercise.

Proof of proposition: take σ ∈ Gal(L/K). Can check that σ(qi) is a prime ideal directly. Also,
σ(qi) ∩ R = σ(qi ∩ R) = σ(p) = p, which says that σ(qi) = qj for some j. Applying σ to the
factorization shows that ei = ej and σ induces an isomorphism S/qi ∼= S/qj , so fi = fj . Hence
the full statement follows from transitivity, which we now turn to.

Suppose qj is a prime lying over p outside of the orbit of q1. By the Chinese Remainder
Theorem, there exists x ∈ S such that x ∈ qj , x 6∈ qi for all qi in the orbit of q1. Consider

NL/K(x) =

n∏
i=1

σi(x) σi ∈ Gal(L/K).

This is a product of integral elements in R, so is itself in R. Also, it is in qj (since the identity
is in Gal(L/K)), but the product is not in q1 since by assumption none of the factors is in q1.
But since qj ∩R = p = q1 ∩R, this is a contradiction.

71 Definition
Let p ⊂ R be a non-zero prime ideal, q ⊂ S lying over p. The decomposition group of q/p is Dq/p :=

{σ ∈ Gal(L/K) : σ(q) = q} and the inertia group of q/p is Iq/p := {σ ∈ Dq/p : σ(x) ≡q x, ∀x ∈ S}.

72 Theorem
Let LD,q denote the fixed field of Dq/p and let LI,q denote the fixed field of Iq/p. Further write
SD,q := S ∩ LD,q and SI,q := LI,q ∩ S. Diagrammatically, we have

q S L

q1 SI,q LI,q

q0 SD,q LD,q

p R K

Then

(i) LD,q is the minimal subfield of L containing K such that q is the unique prime lying over q0.
Further eq0 = ep, fq0 = fp, and [L : LD,q] = epfp.
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(ii) Assume that S/q is separable over R/p. Then there is a short exact sequence

0→ Iq/p → Dq/p → Gal((S/q)/(R/p))→ 0.

In particular, #Iq/p = ep and #Dq/p = fpep.

(iii) LI,q is the minimal subfield of L containing K such that q1 is totally ramified. Further, eq1 = ep
and fq1 = 1. (Totally ramified means q is a power of i, and the interia degree is always 1. Double
check.) ([L : LI,q] = ep = eq1

, fq1
= 1.)

More intuitively, there is no splitting in L/LD,q, [LI,q : LD,q] = fp, [L : LI,q] = ep. The topmost
extension is totally ramified, the middle is inert, and the extensions involving the top three fields are
all Galois. However, LD,q/K is not necessarily Galois.

Proof We begin with (i). By definition, Gal(L/LD,q) = Dq/p = {σ : σ(q) = q}. Hence the orbit of
q under the Galois group is just q, but from the previous proposition the Galois group acts
transitively on primes lying over q0, so q is the unique prime over q0.

Now assume there were some K ⊂ E ⊂ LD/q with q the unique minimal prime above q ∩ E.
Then Gal(L/E) ⊂ DL,q. Cardinality count gives equality.

We know that #Dq/p = eq0
fq0

. We also know that [L : k] = mepfp = (#Dq/p) ·# of cosets.
The number of cosets is just the number of primes lying above p, which is m by definition. Hence
epfp = eq0fq0 . We also know that inertia degrees and ramification indexes multiply in towers,
so eq0eq/p = ep and likewise with f ’s. These three equations imply ep = eq0 and fp = fq0 .

October 16th, 2015: Draft

We continue the proof of the theorem from last time. Recall that R ⊂ S was a finitely generated extension
of Dedekind domains with fields of fractions K ⊂ L of degree n.

Proof (Continued.) The following lemma essentially assures us that subextensions of Dedekind domains
preserve our background hypotheses.

73 Lemma
Let E be a subfield extension of L/K (i.e. L/E/K). Set T := S ∩ E. Then T is a Dedekind
domain with Frac(T ) = E. Further, T is a finitely generated R-module and S is a finitely
generated T -module.

Proof That Frac(T ) = E is a straightforward verification. It is clear that T is integrally
closed in E. That T is noetherian and a finitely generated R-module follows since R is
noetherian and S is a finitely generated R-module. S is a finitely generated T -module
since it is a finitely generated module over R ⊂ T . To see that every non-zero prime in T
is maximal, apply the going up theorem holds for S/T .

The lemma completes the proof of (i). Now we turn to (ii). We must show S/q is normal in R/p.
Pick α ∈ S/fq and consider the minimal polynomial f ∈ R/p[x]. Lift α to α ∈ S and let f ∈ R[x] be
its minimal polynomial. Since L/K is Galois, L, and therefore S, contains all roots of f . Viewing
these in S/q, it follows that S/q contains all roots of f mod q, which f divides, so we have all roots of
f . Since we’re assuming separability, S/q is Galois over R/p.

Recall Dq/p = {σ ∈ Gal(L/K) : σ(q) = q}. This definition gives a map Dq/p → Gal((S/q)/(R/p))
whose kernel by definition is Iq/p. Hence we need only show surjectivity. Since S/q is separable over
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R?p, there exists a primitive element α ∈ S/q. For τ ∈ Gal((S/q)/(R/p)), let β be such that τ(α) = β.
We can lift α, β to α, β ∈ S where f is the minimal polynomial of α and β is a root of f . By transitivity
of the Galois group, there is some σ ∈ Gal(L/K) such that σ(α) = β. We claim σ fixes q—this gap will
be filled in later, and it’s in Osserman’s notes. This proves surjectivity, giving the short exact sequence.
From (i), we have #Dq/p = epfp. By definition, # Gal((S/q)/(R/p)) = fp. Hence #Iq/p = ep.

We turn to (iii). By definition of totally ramified and (i), LI,q ⊇ LD,q. From (ii), [L : LI,q] = eq.
Suppose there were another field E ⊂ LI,q such that q′ := q ∩ E were totally ramified. Then we could
apply (i) and (ii) to L/E instead of L/K. Notice E ⊇ LD/q. Hence we have

LD,q ⊂ E = LD,q/q′ ⊂︸ ︷︷ ︸
fp

LI,q ⊂ L︸ ︷︷ ︸
ep

.

Note that E ⊂ LI,q corresponds to Gal((S/q)/(RE/q
′)) which is 1 by the totally ramified assumption

and the preceding two observations, so E = LI,q is indeed minimal.

Note that if q1, q2 ⊂ S lying over p ⊂ R, then Dq1/p = σ−1Dq2/pσ where σ(q1) = q2, Iq1/p = σ−1Iq2/pσ.
In particaular, if Gal(L/K) is abelian, then Dq/p and Iq/p is independent of q. In particular:

74 Theorem
If Gal(L/K) is abelian, then LD,p is the maximal subextension of L/K where p splits completely, and
LI,p is the maximal subextension where p is unramified.

Proof We begin with

75 Proposition
If E,E′ are Galois subextensions of L/K and p is unramified in E and E′, the p is
unramified in EE′.

Proof The extensions involving E and E′ satisfy our background hypotheses by the
lemma. We’ll prove this in more generality later, so we skip the proof of this special
case, though we have been assured it can be filled in non-circularly.

Claim for LD,p: need to show for all q0 lying over p that eq0
= fq0

= 1. Since e and f are
multiplicative in towers and eq/p = eq/q0

and fq/p = fq/q0
for all q, we have eq0/p = fq0/p = 1.

Claim for LI,p: can use the same argument; Osserman gives another.

76 Notation
In addition to our background assumptions, further assume R/p is finite for all non-zero prime ideals.
This holds for rings of integers.

77 Corollary
Dq/p/Iq/p is cyclic and generated by a lift of the Frobenius map.

Proof The Galois group in this case is cyclically generated by the Frobenius map.

78 Definition
Suppose q is lying over p with ep = 1. Then Fr(q/p) is the unique element of the decomposition

group Dq/p that maps to the Frobenius map. If L/K is abelian, write Fr(p) for any Fr(q/p).

The Frobenius element will show up again in class field theory.

October 19th, 2015: Draft
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Bianca is away for two lectures. We’ll discuss cyclotomic fields and essentially have a series of extended
examples.

79 Outline
(1) Cyclotomic fields, namely Q(ζ)/Q

(a) Show OQ(ζ) = Z[ζ]

(b) Consider decomposition of primes

(2) Application: proving Fermat’s Last Theorem for regular primes, of which there are conjecturally
infinitely many

80 Notation
Fix a primitive nth root of unity ζ := ζn = e2πi/n. Let ` be a prime and suppose n = `ν . Write
K := Q(ζ).

81 Proposition
Set λ := 1− ζ.

• (λ) is a prime ideal of OK with interia degree f = 1

• `OK = (λ)φ(n) where φ is Euler’s totient function, φ(`ν) = `ν−1(`− 1) = [Q(ζ) : Q].

Proof The minimal polynomial of ζ over Q is classically the nth cyclotomic polynomial Φn(x) ,

namely

Φn(x) =
∏

σ∈(Z/nZ)×
(x− ζσ) =

(x`
ν−1

)` − 1

x`ν−1 − 1
= (x`

ν−1

)`−1 + · · ·+ x`
ν−1

+ 1.

Since there are ` factors, plugging in x = 1 gives ` =
∏
σ∈(Z/nZ)×(1− ζσ). Now fix σ ∈ (Z/nZ)×

and write 1 − ζσ = (1 − ζσ)/(1 − ζ)λ. We claim the fraction is a unit in the ring of integers.
Using the geometric series and the fact that ζ is in OK , the fraction is also in OK . To show
that its inverse is as well, pick σ ∈ (Z/nZ)× such that στ ≡n 1. Then its inverse is

1− ζ
1− ζσ

=
1− (ζσ)τ

1− ζσ
∈ OK .

Now ` = (units)λφ(n), so `OK = (λ)φ(n) = (λ1 · · ·λr)φ(n). Since Q(ζ)/Q is Galois with
Galois group (Z/nZ)×, from our earlier theorem we have [Q(ζ) : Q] =

∑
eifi = (# primes) ·e ·f ,

and we’ve already accounted for φ(n) factors, we must have r = 1, f = 1, e = φ(n), so λ is prime
with f = 1.

82 Notation
Let B := {1, ζ, ζ2, . . . , ζφ(n)−1} be the usual Q-basis for Q(ζ)/Q. We continue to have n = `ν .

83 Proposition
DiscB = ±`µ.

Proof Let ζ1, . . . , ζφ(n) be the Gal(Q(ζ)/Q)-conjugates of ζ and again write Φn(x) =
∏φ(n)
i=1 (x− ζi).

From our earlier lemma, up to a unit we have DiscB is the Vandermonde determinant
∏
i 6=j(ζi−

ζj). If we apply the product rule, we find

Φ′n(x) =
∑
i

∏
j 6=i

(x− ζj),

so that

±DiscB =
∏
i6=j

(ζi − ζj) =

φ(n)∏
i=1

Φ′n(ζi) = NK/Q(Φ′n(ζ)).
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On the other hand, (x`
ν−1)Φn(x) = x`

ν − 1, so differentiating gives

Φ′n(ζ) =
`ν · ζ−1

ζ`ν−1 − 1
.

Since the norm is multiplicative, we consider each piece. Note that NK/Q = ±` since the constant
term of Φn(1− λ) is Φn(1) = `. Similarly, if we replace ν with ν − s, then

NQ(ζ`s )/Q(1− ζ`
s

) = ±`.

We know that NM/K = NL/K ◦NM/L and that NM/L(α) = α for α ∈ L. Putting it all together,

NK/Q(1− ζ`s) = ±`m, so that DiscB = ±`µ.

84 Remark
[OK : Z[ζ]] = `m. Hence `m

′OK ⊂ Z[ζ] for m′ large enough. Note that Disc(OK/Z)[OK : Z(ζ)]2 =
DiscB.

85 Theorem
If K = Q(ζ) = Q(ζn) = Q(ζ`ν ), then OK = Z[ζ].

Proof Again let λ := 1 − ζ. Since f = 1, [OK/λOK : F`] = 1, so OK/λOK ∼= Z/`Z. Hence
OK = Z + λOK , so OK = Z[ζ] + λOK . Multiply this last expression by λ and substitute the
resulting right-hand side in for λOK in this last expression to get OK = Z[ζ] + λZ[ζ] + λ2OK .
We can of course ignore the middle term. Iterating this computation, we find

OK = Z[ζ] + λtOK t ≥ 1.

If we use the observation in the remark, if `OK = (λ)φ(n), letting t = φ(n)m′ gives OK =
Z[ζ] + `m

′OK = Z[ζ].

86 Notation
We now consider general n, so write n := `ν11 · · · `νss . For notational convenience, write ζi := ζ

n/`
νi
i

n and
let Bi := {1, ζi, . . .} be the corresponding basis.

87 Remark
Notice that Q(ζ) = Q(ζ1) · · ·Q(ζs) since the `i’s are coprime, and Q(ζ1) · · ·Q(ζi) ∩Q(ζi+1) = Q. (For
the intersection identity, suppose p 6= q are two primes and consider K ⊂ Q(ζp) ∩ Q(ζq). Consider
those subfields in which p and q are totally ramified–the result will follow immediately.)

We have DiscBi = ±`µii are pairewise coprime. A technical lemma (Neukirch, 2-11) says that in
this situation ζα1

1 · · · ζαss as αi ∈ Z varies forms a Z-basis for the ring of integers of the product Q(ζ).
Hence if α ∈ OK , α = f(ζ) for f ∈ Z[x]. Now deg f ≤ φ(n) − 1, which says {1, ζ, . . . , ζφ(n)−1} is a
Z-basis for OQ(ζ).

October 21st, 2015: Draft

Francesca will continue lecturing today on cyclotomic extensions, the splitting behavior of their primes,
and Fermat’s Last Theorem.

88 Theorem
Let n =

∏
p p

νp . For each p let fp be the smallest positive integer such that pfp ≡n/pνp 1. Then

pOQ(ζn) =

(
r∏
i=1

pi

)φ(pνp )
where r := φ(n/pνp)/fp.

20



Proof Last time, we saw OQ(ζn) = Z[ζn], so trivially [OQ(ζn) : Z[ζn]]. By (what is sometimes
called) Dedekind-Kummer, study Φn(x) mod p. Fix p and let n = pνpu for (p, u) = 1. Since
ζn = 1 = ζp

νpu let ζu := ζp
νp

, which is a primitive uth root of unity. Likewise set ζpνp := ζu,
which is a pνpth root of unity.

We know that Q(ζ) = Q(ζu)Q(ζpνp ), if we consider ζiu · ζ
j
pνp for i ∈ (Z/uZ)×, j ∈ (Z/pνpZ)×

varying, we get all the primitive roots of unity. Therefore

Φn(x) =
∏

σ∈(Z/nZ)×
(x− ζσ) =

∏
i∈(Z/uZ)×

∏
j∈(Z/pνpZ)×

(x− ζiu · ζ
j
pνp ).

Note that xp
νp − 1 ≡p (x− 1)p

νp
. Hence ζjpνp ≡p 1. Moreover, this remains true for any p | (p).

Using this observation in the above expression gives

Φn(x) ≡p

 ∏
i∈(Z/uZ)×

(x− ζiu)

φ(pνp )

≡p Φu(x)φ(p
νp ).

So, we reduce to studying how Φu(x) splits mod p.

Now let O := OQ(ζu), and note that p = charO/p - u for any p lying over (p). Hence the
derivative of xu − 1 is uxu−1 which has roots only at 0, so xu − 1 has distinct linear factors over
O/p. It follows that if ζu is a primitive uth root of unity, then so is ζu ∈ O/p, and moreover the
quotient map induces a bijection between primitive uth roots of unity of either ring. We claim
that the smallest subextension of (O/p)/Fp containing ζu is Fpfp . (Recall that F×

pfp
is cyclic of

order pfp − 1.) It follows that Fpfp/Fp is the splitting field of Φu(x) mod p. We also know that

Φu(x) | xu − 1, so both are separable over Fp. Hence we can write Φu(x) = f1(x) · · · fk(x) over
Fp using distinct irreducible factors. Each factor must then be a minimal polynomial over Fp of
some ζu. But the largest field in which ζu is defined is a degree fp extension, so deg f i = fp,
completing the proof.

(An alternative argument: if p - u, then p is unramified, so e = 1 = #Ip. There is a short
exact sequence 1→ Ip → Dp → Gal(Fp/Fp)→ 1, where Fp := O/p. Hence the kernel is trivial,
so the Galoi group is isomorphic to Dp. The Galois group is of course cyclically generated by
the Frobenius map σ. By pf ≡u 1, we have |σ| = f .)

89 Corollary
Let p 6= 2. Then

• p is ramified in Q(ζn) if and only if n ≡p 0.

• p is totally split in Q(ζn) if and only if p ≡n 1.

90 Remark
Note that Q(ζn)/Q is an abelian extension of Q. Class field theory vastly generalizes these

congruence condition-style results for abelian extensions. Similarly, recall
(−1
p

)
= 1 iff p ≡4 1,

and
(−1
p

)
= −1 iff p ≡4 3, which is another manifestation of these congruence results.

91 Theorem (Gauss’ Reciprocity Law)
Let l 6= p be odd primes. Then (

`

p

)(
p

`

)
= (−1)

p−1
2

`−1
2 .

Proof
92 Proposition

Let `, p be as above. Then p is totally split in Q(

√
(−1)

`−1
2 `) if and only if p can be

decomposed into an even number of primes in Q(ζ`).
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Proof It is “easy to see” that Q(

√
(−1)

`−1
2 `) ⊂ Q(ζ`).

For ⇒, suppose p is totally split in the smaller field. Roughly, consider the
primes above p in the smaller field, and then consider the primes above those
primes in the larger field. It is quite easy to see that there exists an automorphism
σ ∈ Aut(Q(ζ`)) sending any prime p1 lying over p to any other prime p2 which also
sends the primes lying over p1 bijectively onto those lying over p2, so the number
of such primes is the same. In particular, there are an even number of primes lying
over p.

For ⇐, let r be the number of primes in Q(ζ`) lying above p. Assume r is even.
Then by the Fundamental Theorem of Galois Theory,

[Gal(Q(ζ`)) : Dp] = [Q(ζ`)
D
p : Q]

is even. But ` is a prime, so Q(ζ`)/Q is cyclic. This gives rise to a tower of
extensions

Q(ζ`)/Q(ζ`)
Dp/Q,

where the second degree is even. It follows that Q(

√
(−1)

`−1
2 `) ⊂ Q(ζ`)

Dp . Now

looking at any p over p, p ∩ Q(ζ`)
Dp has inertia degree 1, so p ∩ Q(

√
(−1)

`−1
2 `)

also has inertia degree 1. Therefore p is totally split in Q(

√
(−1)

`−1
2 `).

The rest of the proof is left as an exercise–it’s a sequence of equivalences. It is also in
Neukirch.

No time for Fermat’s Last Theorem, though it’s in Osserman.

October 23rd, 2015: Draft

We’ve essentially finished chapters 1-3 in Osserman. We’ll start in on chapter 4. Recall that our main
motivation was finding primes of the form p = x2 + ny2, and more generally for related equations. We saw
we need to determine (1) how (p) factors in OK (or O ⊂ OK), particularly when (p) factors into principal
ideals of some form, and (2) the unit group O×K (or O×). Our previous results were typically quite general,
but in this chapter we’ll restrict to number fields and rings of integers.

93 Notation
Let K be a number field and let OK be its ring of integers.

94 Definition
Let IK denote the set of fractional ideals of OK and let PK denote the set of principal practional

ideals of OK . We saw already that IK is a(n abelian) group, and PK is a subgroup. Define the

class group of K as

ClK := IK/PK .

Write r1 for the number of real embeddings K ↪→ R, and write r2 for half the number of complex

embeddings K ↪→ C (where a complex embedding does not factor through R ↪→ C). Note [K : Q] =
n = r1 + 2r2.

Our focus will now be on proving the following two main theorems:
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95 Theorem (Finiteness of the Class Group)
ClK is finite.

96 Theorem (Dirichlet’s Unit Theorem)
O×K ∼= µK × Zr1+r2−1, where µK := {x ∈ K : xm = 1 for some m} (which is finite).

The following is perhaps the “most general” thing we know about the class group, of which finiteness of
the class group is a corollary:

97 Theorem (Minkowski)
Let I ∈ IK . Then there exists z ∈ K× such that zI ⊂ OK and

N(zI) ≤ n!

nn

(
4

π

)r2
|DK |1/2.

98 Remark
To show finiteness of ClK from here, it suffices to show there are finitely many integral ideals
of norm m. For that, let J ⊂ OK be an integral ideal and suppose N(J) = m. Write the
prime factorization J =

∏r
i=1 p

ei
i . Note that N(J) = #OK/J and OK/J ∼=

∏
iOK/p

ei
i , so

N(J) =
∏
iN(peii ) =

∏
i p
eifi
i = m. (Note the pi’s may not be distinct if two of the pi’s lie over

the same rational prime). Hence there are only finitely many choices of pi, ei, fi, and finitely
many pi lie over those finitely many pi, giving the result.

Note: you can slightly generalize this argument to show N(IJ) = N(I)N(J), which we will
use.

We will deduce Minkowski’s theorem from the following:

99 Theorem
Let J ⊂ OK be an integral ideal. Then there exists x ∈ J such that

|NK/Q(x)| ≤ n!

nn

(
4

π

)r2
N(J)|DK |1/2.

100 Remark
To deduce Minkowski’s theorem, let I ∈ IK and let x ∈ I. Then xI−1 ⊂ OK , do spply the
theorem to get y ∈ xI−1 such that

|NK/Q(y)| ≤ n!

nn

(
4

π

)r2
N(xI−1)|DK |1/2

. Since y ∈ xI−1, y
xI ⊂ OK is integral, and

N(
y

x
I) = N(y(xI−1)−1) = |NK/Q(y)|/N(xI−1) ≤ n!

nn

(
4

π

)r2
|DK |1/2.

We will deduce Theorem 99 by a sequence of arguments involving lattices and convex subsets of Rn.

101 Definition
Define an embedding φ : K → Rn by φ : K ↪→ Rr1×Cr2 followed by the identification Rr1×Cr2 ∼= Rn.

Let L ⊂ Rn be a full rank lattice and let FL be a fundamental domain. More precisely, if v1, . . . , vn
is an integral basis for L, then FL := {

∑
i aivi : 0 ≤ ai < 1}.

102 Theorem
If I ⊂ OK is an integral ideal, then φ(I) is a rank n lattice in Rn, and volFφ(I) = 2−r2N(I)|DK |1/2.
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103 Theorem
Let t ∈ R>0. Then there exists a compact convex region Rt ⊂ Rn that is symmetric about the origin
such that

vol(Rt) = 2r1−r2πr2
tn

n!
.

Moreover, for all x ∈ K with φ(x) ∈ Rt,

|NK/Q(x)| ≤ tn

nn
.

(Minor note: there is a typo in Osserman’s notes, which says < instead of ≤.)

104 Theorem (Minkowski, again)
Let R ⊂ Rn be a compact convex region that is symmetric about the origin and let L ⊂ Rn be a lattice
of full rank. If vol(R) ≥ 2n vol(FL), then R contains a non-zero lattice point of L.

105 Remark
Theorems 102, 103, 104 imply Theorem 99:

Proof Let J ⊂ OK and set t := (n!
(
4
π

)r2
N(J)|DK |1/2)1/n. By Theorem 102, φ(J) is a lattice of full

rank. By Theorem 103, we have Rt where

vol(Rt) = 2r1−r2πr2
(

4

π

)r2
N(J)|DK |1/2

= 2r1+r2N(J)|DK |1/2

= (2n)(2−r2N(J)|DK |1/2)

= 2n vol(Fφ(J))

where the last equality used Theorem 102. Now Theorem 104 gives a non-zero element of
φ(J) ∩Rt. Then Theorem 103 says that for the corresponding x ∈ J , N(x) < tn

nn .

Next week will be devoted to proving Theorems 102, 103, 104.

October 26th, 2015: Draft

Summary Recall Theorem 102 from last time, that if I ⊂ OK is a non-zero ideal, then φ(I) is a lattice of
full rank and vol(Fφ(I)) = 2−r2N(I)|DK |1/2. We turn to its proof.

We maintain all the notation from last time.

Proof (Of Theorem 102) Recall that I is a free Z-module of rank n, where D(I) = DiscK/Q((xi)) where
xi is a Z-basis for I. That φ(I) is a lattice of full rank then follows by standard theory, so we need
only compute the volume.

106 Lemma
Let x = (x1, . . . , xn) ∈ Kn and let φx be the n × n matrix with real entries whose rows are
φ(xi). Then

DK/Q((xi)) = (−4)r2(detφx)2.

In particular, the sign of DK/Q is independent of x and depends only on r2.

Proof Consider σx ∈Mn(C) whose ith row is

(σ1(xi), . . . , σr1(xi), σr1+1(xi), σr1+1(xi), σr1+2(xi), . . . , σr1+r2(xi)).
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We know that DK/Q((xi)) = (det(σx))2. Consider the j and j + 1 columns of φx and σx:a1 b1
...

...
an bn


a1 + ib1 a1 − ib1

...
...

an + ibn an − ibn.


The determinant of φx agrees with that obtained froma1 + ib1 b1

...
...

an + ibn bn


and to go to the determinant of σx we multiply this determinant by (−2i)r2 . Hence

(detφx)2(−4)r2 = (detσx)2.

Continuing the proof of the theorem, we have

vol(Fφ(I)) = |detφx| = 2−r2 |D(I)|/1/2

where x is a Z-basis for I; the first equality uses standard multivariable calculus, and the second uses
the lemma. By definition, N(I) is the index of I ⊂ OK . Now D(I) = N(I)2D(OK), from which the
result follows.

Summary Recall Theorem 103, that if t ∈ R>0, then there exists Rt ⊂ Rn that is compact, convex, and
symmetric about the origin such that

(1) vol(Ri) = 2r1−r2πr2tn/n!

(2) For all x ∈ K such that φ(x) ∈ Rt, NK/Q(x)| ≤ tn/nn.

Proof We claim that

Rt :=

{
x ∈ Rn : |x1|+ · · ·+ |xr1 |+ 2

√
x2r1+1 + x2r1+2 + · · ·+ 2

√
x2n−1 + x2n

}
has the desired properties. Compactness and symmetry are clear. For convexity, write ||x|| for
the quantity above and let y, z ∈ Rt with 0 ≤ λ ≤ 1. We see that λy + (1− λ)z ∈ Rt since

||λy + (1− λ)z|| ≤ ||λy||+ ||(1− λ)z|| ≤ t(λ+ (1− λ)) = t.

For the second point, recall that

|NK/Q(x)| =
n∏
i=1

|σi(x)| =
r1∏
i=1

|σi(x)|
r2∏
j=1

|σj(x)|2.

From the arithmetic-geometric mean inequality, we find

(NK/Q(x))1/n ≤
∑r1
i=1 |σi(x)|

n
+ 2

r2∑
j=r1+1

|σj(x)| ≤ ||x||
n
≤ t

n
.

Finally, for the volume computation, see Lang, page 117, which integrates in polar.

Summary Recall Theorem 104, where if R ⊂ Rn is a compact convex region symmetric about the origin
and L ⊂ Rn is a lattice of full rank, and if vol(R) ≥ 2n vol(FL), then R contains a non-zero lattice
point of L.

Note: we can modify the theorem statement by replacing “compact” with “bounded” at the cost of
using strict inequality and get the same result.
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Proof (Of Theorem 104) We begin with...

107 Lemma
Let R be a bounded region and let L ⊂ Rn be a lattice of full rank. If all translates of R under
L are disjoint, then vol(R) ≤ vol(FL).

Proof (Minor note: “volume” of an arbitrary region isn’t well-defined, though our regions are
incredibly nice–compact sets, or the open set of points < ε from such a set. So, we will be
a bit vague in measure-theoretic details.) Recall the partition Rn =

∐
v∈L FL + v. Hence

R =
∐
v∈L

(R ∩ (FL + v))

= ∪v∈L((R− v) ∩ FL) + v.

Since (R+ w) ∩ (R+ w′) = ∅ for all w 6= w′ ∈ L by assumption, so this latter union is
actually a disjoint union as well. Hence

vol(R) = vol(∪v∈L((R− v) ∩ FL)) ≤ vol(FL).

We now prove the modified version of the theorem, which we will use to deduce the
stated version. Since 1

2n vol(R) > vol(FL), by the lemma we have v 6= w ∈ L such that
( 1
2R + v) ∩ ( 1

2R + w) 6= ∅. Let x belong to the intersection, so that x − v, x − w ∈ 1
2R. By

symmetry and convexity, (x−v)−(x−w)
2 ∈ 1

2R, so w − v ∈ R is the desired non-zero lattice point.

We will defer the proof of Theorem 104 as stated from this modified version till next class.
(Osserman’s is a bit complicated and has a typo.)

October 29th, 2015: Draft

108 Aside
There was a mistake on HW2, problem 1. “kernel consists of ideals that meet S” should say “kernel is
generated by integral ideals that meet S”.

Also, Neukirch gives a somewhat different bound than the above, but it is always worse than the
bound we obtained. Neukirch also outlines our proof in the exercises.

109 Definition
A subset L ⊂ Rn is called a discrete subgroup if

1) it is a subgroup under pointwise addition

2) there exists ε > 0 such that for all v ∈ L, Bε(v) ∩ L = {v}.

(As it turns out, the order of the quantifiers in 2) can be switched.)

A lattice in Rn is the Z-span of a set of R-linearly independent vectors.

110 Lemma
Let L ⊂ Rn. Then L is a lattice if and only if L is a discrete subgroup.

Proof See homework.
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Last time we proved a modified version of Theorem 104. Namely, if R is bounded, convex, and symmetric
about the origin and if L is a lattice of full rank, and if vol(R) > 2n vol(FL), then R contains a non-zero
lattice point. Now we wish to deduce Theorem 104 itself, namely, if R is compact, convex, and symmetric
about the origin and vol(R) ≥ 2n vol(FL), then R contains a non-zero lattice point.

Proof (Of THeorem 104) For all ε > 0, vol((1 + ε)R) > 2n vol(FL), so (1 + ε)R contains a non-zero
lattice point vε. We also know that 2R is bounded, so since L is a discrete subgroup, there are finitely
many lattice points in 2R by compactness and condition (2). Hence the vε must hit some particular
non-zero lattice point infinitely often as ε→ 0, which is then in ∩ε>0(1 + ε)R = R (using compactness
at the end).

Having proven finiteness of the class group, our next goal is:

111 Theorem (Dirichlet’s Unit Group Theorem)
Let O ⊂ OK be an order of a ring of integers. Then

O× ∼= µO × Zr1+r2−1,

where µO := {x ∈ O : xn = 1 for some n} is a finite cyclic group.

To prove this, we’ll again use lattices. This time we’ll consider

ψ : K× → Rr1+r2

x 7→ (log |σ1(x)|, . . . , log |σr1(x)|, 2 log |σr1+1|, . . . , 2 log |σr1+r2 |)

We will deduce Dirichlet from the following result:

112 Proposition
The image ψ(O×) is a lattice of rank r1+r2−1, and it spans the hyperplaneH given by x1+· · ·+xr1+r2 =
0.

Proof (Of Dirichlet, Theorem 111) This proposition implies that O×/ kerψ|O× ∼= Zr1+r2−1.
Let x ∈ kerψ|O× . Then |σi(x)| = 1 for all i implies |σi(xj)| = 1 for all i, j, so ψ({xj}j∈N) lies in
a bounded region. Using the embedding φ : K ↪→ Rn from the above arguments, φ(OK) is a
lattice, so φ({xj}) must be a finite set, so {xj} is a finite set since φ is injective, so xn = 1 for
some n. Since [K : Q] is finite, it follows that µO is finite (we could alternatively expand the set
{xj} in the above). That it is cylic is a standard result:

113 Lemma
Every finite subgroup G of F× for a field F is cyclic.

Proof There are many arguments. Let m be the least common multiple of x ∈ G Them
m | |G|. On the other hand, every x ∈ G is a root of Tm − 1, so |G| ≤ m, so
|G| = m. One may produce an element of order m by an inductive argument, or by
using the classification of finitely generated abelian groups, or the Sylow theorems.

Proof (Of Proposition) Obviously O× ⊂ O×K . So, for all x ∈ Ox×,

1 = |NK/Q(x)| =
r∏
i=1

|σi(x)|
r2∏
j=1

|σj+r1(x)|2.

Take log of both sides to get
∑

(ψ(x)i) = 0, so the image lies in the suggested hyperplane. We
want to show that in any bounded region, ψ(O×) has finitely many points. Assuming this, we
then have that ψ(O×) is a discrete subgroup (using the fact that ψ is a group homomorphism).

For the claim, let R be a bounded region. Then there exists c1, . . . , cr1+r2 such that for every
x = ψ(y) ∈ ψ(O×) ∩R, log |σi(y)| ≤ ci. Hence σi(y)| ≤ eci , so φ(y) is contained in a bounded
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region. But φ(y) ∈ φ(OK) is a lattice, so all φ(y) are contained in a finite set, so again since φ
is an embedding, all y are contained in a finite set.

As an aside, we now have the machinery to define:

114 Definition
The regulator of O is

vol(Fψ(O×) ⊂ H).

We likely won’t use the regular in this class, though it comes up, especially in analytic
studies of number fields. (When r1 + r2 − 1 = 0, the regular is defined to be 1.)

All that remains is that ψ(O×) spans H. For that, we show

115 Lemma

(1) φ(O) is a lattice of full rank

(2) O/I is finite for any ideal 0 6= I ⊂ O

(3) O is noetherian and every non-zero prime ideal is maximal

(4) For all 0 6= x ∈ O, there exist only finitely many ideals containing x.

Proof Each is straightforward and typically follows from an earlier argument where we
showed the corresponding property for the ring of integers.

We’ll finish the proof next time.

October 30th, 2015: Draft

We were finishing a proof at the end of last lecture, the remaining part of which is encapsulated in the
following proposition:

116 Proposition
The image ψ(O×) spans the hyperplane x1 + · · ·+ xr1+r2 = 0.

117 Notation
To be clear, σ1, . . . , σr1 are the r1 real embeddings of K, σr1+1, . . . , σr2 are r2 fo the 2r2 complex
embeddings, and σi = σj . We had defined

φ : K Rn

Rr1 × Cr2
(σi)

∼

and

ψ : K× → Rr1+r2

x 7→ (log |σ1(x)|, . . . , log |σr1(x)|, 2 log |σr1+1(x)|, . . . , 2 log |σr1+r2(x)|).
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We will further define a multiplication Rn × Rn → Rn induced by coordinate-wise multipli-
cation on Rr1 × Cr2 . Also define the norm map

N : Rn → R≥0

(x1, . . . , xn) 7→
r1∏
i=1

|xi|
r2∏
j=1

|x2r1+2j−1 + x2r1+2j |

and also define

χ : Rn → Rr1+r2

(x1, . . . , xn) 7→ (log |σ1(x)|, . . . , log |σr1(x)|, 2 log |σr1+1(x)|, . . . , 2 log |σr1+r2(x)|)

Note that

ψ = χ ◦ φ,
φ(xy) = φ(x) · φ(y)

χ(x · y) = χ(x) + χ(y)

N(x · y) = N(x)N(y)

logN(x) =

r1+r2∑
i=1

(χ(x))i.

118 Lemma
If L ⊂ Rm is a lattice, then L is full rank if and only if there exists a bounded region S ⊂ Rm
such that S + L covers Rm.

Proof In the⇒ direction, we have L = Zv! + · · ·+Zvm where the vi are R-linearly independent.
Then set S := {

∑m
i=1 aivi : 0 ≤ ai < 1}.

If L is not full rank, then Span(L) =: V ( Rm. So for any D > 0, there exists v ∈ Rm
such that the distance from r to V is > D, so no such S exists.

Proof (Of Proposition) By the lemma, we want to construct a bounded set S ⊂ H such that

S + ψ(O×) covers H. We will take S = χ(S̃) for some S̃ ⊂ Rn. Let U ⊂ Rn where U := {x ∈
Rn : N(x) = 1}. Note that χ(U) = H, so S̃ ⊂ U .

Claim 1: if S̃ is bounded, then S is bounded. To see the implication, suppose that for all
x ∈ S̃, |xi| ≤ Ci. Then we have component-wise bounds (χ(x))j ≤ C ′j for some C ′j . Since

χ(S̃) ⊂ χ(U) = H, this implies that χ(x)j ≥ C ′′j for some C ′′j . (The converse also holds.)

Claim 2: if for all v ∈ U there exists x ∈ O× such that φ(x) · v ∈ S̃, then S + L covers H.

To see this, let y ∈ H. We want to show that there exists w ∈ L such that y − w ∈ S = χ(S̃),
which is χ(v) + ψ(x). Note that χ(v · φ(x)) = χ(v) + χ(φ(x)).

Hence it suffices to construct S̃ with the properties in the claim.

119 Lemma
Given c ∈ Rr1+r2>0 , set

Sc :=

{
(xi) ∈ Rn :

{
|xi| ≤ ci 1 ≤ i ≤ r1
x22i+r1−1 + x22i+r1 ≤ ci r1 + 1 ≤ i ≤ r2

}
.

Then Sc is compact, convex, symmetric about the origin, and has volume

vol(Sc) = 2r1πr2
r1+r2∏
i=1

ci.
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Proof Compactness, convexity, and symmetry are routine or immediate. For the volume,
we have r1 intervals of length 2ci and r2 discs of radius

√
ci, so it is also essentially

routine.

Now we construct S̃. Let V = vol(Fφ(O)). Let c ∈ Rn>0 such that C =
∏
ci > (4/π)r2V . Let

α1, . . . , αm be generators for all of the principal ideals of O of norm ≤ C. Then set

S̃ := U ∩ (∪mi=1(φ(α−1i ) · Sc))

Notice that
vol(Sc) = 2r1πr2

∏
ci = 2r1πr2C > 2nV,

which is exactly the condition needed to have a non-zero lattice point. For any y ∈ U , N(y) = 1,
so vol(y · Fφ(O)) = vol(Fφ(O)) = V . Hence for any y ∈ U , there exists a non-zero lattice point
of y · φ(O) in Sc, call it φ(αy). Consider

|NK/Q(αy)| = N(φ(αy)) ≤
∏

ci = C,

so (αy) = (α1) (say), so αy = εα1 for some ε ∈ O×. We know that y · φ(αy) ∈ Sc, which is

y · φ(ε) · φ(αi), so y · φ(ε) ∈ (φ(α−11 )Sc) ∩ U ⊂ S̃, giving the second claim and completing the
proof and theorem.

120 Aside
Why do we care about finiteness of the class group? For one example, set hp := # Cl(Q(ζp)). If p - hp,
then Fermat’s Last Theorem holds for exponent p. (The proof is in Osserman.)

In another direction, let S be a finite set of primes, and define OK,S := S−1OK (where we are
inverting all primes in S rather than localizing at them in any sense). The finiteness of Cl(OK) implies
that for any finite set S0 of primes, there exists a finite set S ⊃ S0 such that OK,S is a UFD. This
fact is used very often in number theory, but it fails in more generality since class groups of Dedekind
domains need not be finite.

One can generalize Dirichlet’s unit theorem to get O×K,S ∼= µm × Zr1+r2+#S−1. It’s perhaps not as
widely used as the finiteness of the class group, though it is certainly fundamental.

November 2nd, 2015: Draft

Summary We’ll now switch the focus of our discussion to local fields. We’ll begin with a review of p-adics.

121 Notation
Fix a prime p.

122 Definition
The p-adic valuation

vp : Q→ Q ∪ {∞}

0 7→ 0

pk
a

b
= r 6= 0 7→ k (p - ab)
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The p-adic absolute value is

|| · ||p : Q→ R≥0

0 7→ 0

r 7→ p−vp(r).

123 Lemma
Let z1, z2 ∈ Q. Then

(1) vp(±1) = 0;
|| ± 1||p = 1

(2) vp(z1z2) = vp(z1) + vp(z2); ||z!z2||p = ||z1||p||z2||p

(3) vp(z1 + z2) ≥ min(vp(z1), vp(z2)) with equality if vp(z1) 6= vp(z2); ||z1 + z2||p ≤ max(||z1||p, ||z2||p
with equality if ||z1||p 6= ||z2||p

Proof (1) and (2) are immediate from the definitions. As for (3), assume z1z2 6= 0 and write
zi = pkiai/bi for p - aibi. Then if m := min(vp(z1), vp(z2)),

z1 + z2 =
pk1a1b2 + pk)2a2b1

b1b2
= pm

pk1−ma1b2 + pk2−ma2b1
b1b2

.

Note that p - b1b2 by assumption, and if, say, k1 < k2, then the numerator is of the form
a1b2 + p·a2b1 where · > 0, giving the result.

We next give three essentially equivalent definitions:

124 Definition
The set of p-adic integers is the set of formal power series

Zp := {
∞∑
i=0

aip
i : 0 ≤ ai < p},

with the usual addition and multiplication.

125 Definition
Alternatively, we may define Zp categorically as an inverse limit,

Zp := lim
←−

Z/piZ maps are usual quotients

= {(a0, a1, a2, . . .) : ai ∈ Z/pi+1Z, ai+1 ≡pi+1 ai}

which inherits a ring structure from the components.

126 Definition
Finally, we may define Zp as the completion of Z with respect to || · ||p.

127 Proposition
There is a set bijection between any two of these definitions, and the additional structures are preserved.

128 Remark
Refer to definition 124 as (1), definition 125 as (2), and 126 as (3).

Definition (2) inherits a topology from components (the discrete topology on each). Definition
(3) has a ring structure.
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Proof For (1) ⇒ (2), use
∞∑
i=0

aip
i 7→

(
j∑
i=0

aip
i mod pj+1

)∞
j=0

.

To go the other way, use (ai) 7→
∑∞
j=0 bjpj where the bj ’s are defined recursively and uniquely

by the condition
∑i
j=0 bjp

j ≡pi+1 ai. We can essentially divide by pi to solve this equation for
bi. That these are mutual inverses is clear.

For (2) ⇒ (3), send (ai) 7→ (ãi) for any lifts ãi ∈ Z of a. Any two lifts differ by a Cauchy
sequence converging to zero since ãi ≡pi ai+1, so in the completion such choices are equal.
For (3) ⇒ (2), let (bi) be a Cauchy sequence. Then for all j there exists n � 0 such that
bm ≡pj+1 bm′ for all m,m′ > n. Set aj := bm mod pj+1 for all m > nj . One may easily check
this is well-defined.

129 Remark
Zp is an integral domain, from (2). So, we may set Qp as its field of fractions. (Alternatively, Qp is

the completion of Q with respect to || · ||p.)

130 Exercise
Show that

(1)
√
−1 ∈ Zp for all p ≡4 1

(2)
√
a ∈ Zp for all p such that

(
a
p

)
= 1, using the Legendre symbol, i.e. if and only if a is a

non-zero square mod p.

Indeed, we have several natural inclusions,

Q Qp

Z Zp

Z(p)

131 Definition (Ad-hoc)
A local field is either R, C, a finite extension of Qp, or a finite extension of Fq((t)).

At present this is unmotivated (to put it mildly), so we’ll give another definition and come back to
this one later.

132 Definition
Let K be a field. An absolute value on K is

| · | : K → R≥0

such that

(i) For all x ∈ K, |x| = 0 if and only if x = 0

(ii) |xy| = |x||y|

(iii) |x+ y| ≤ |x|+ |y|
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133 Example
On Q, set

|x|∞ :=

{
x if x ≥ 0

−x if x < 0

We can also use |x|p := p−vp(x). Moreover, for any fieldK, we may use the trivial absolute value

|x| = 1 for x 6= 0 with |0| = 0.

134 Definition
Two absolute values | · |1, | · |2 on a field K are equivalent absolute values if and only if the underlying

topology is the same.

135 Proposition
| · |1 ∼ | · |2 if and only if there exists s ∈ R>0 such that |x|1 = |x|s2 for all x ∈ K.

136 Remark
The ⇐ direction assumes both |x|1 and |x|2 are in fact absolute values. In general we may have
to restrict the possible s’s, since for instance squaring the Euclidean distance does not preserve
the triangle inequality.

Proof The ⇐ direction is clear, so consider ⇒ and assume | · |1 ∼ | · |2. Let x ∈ K. Note that |x| < 1
if and only if {xn} converges to 0, so |x|1 < 1 if and only if |x|2 < 1. Without loss of generality,
assume | · |1 is non-trivial. Pick y ∈ K such that |y|1 > 1. For any x ∈ K, there exists α = α(x)
such that |x|1 = |y|α1 . Take a sequence of rational numbers mi/ni converging to α from above.
Hence

|x|1 = |y|α1 ≤ |y|
mi/ni
1 ∀i

so by multiplicativity |xni/ymi |1 ≤ 1 for all i. By the opening observation, |xni/ymi |2 ≤ 1. So

|x|2 ≤ |y|mi/ni2 , meaning |x|2 ≤ |y|α2 . Similarly if we take mi/ni converging to α from below
instead, we find |x|2 ≥ |y|α2 , so |x|2 = |y|α2 . So

log |x|1
log |x|2

=
log |y|1
log |y|2

= s

for s independent of x.

Since |y|1 > 1 implies |y|2 > 1, we find s > 0.

Next time, we will classify absolute values on Q:

137 Proposition
Let | · | be a non-trivial absolute value on Q. Then | · | ∼ || · ||p for some prime p, or | · | ∼ | · |∞.

November 4th, 2015: Draft

Let K be a field.

138 Theorem (Approximation)
Let | · |1, . . . , | · |n be inequivalent non-trivial absolute values on K, and pick a1, . . . , an ∈ K. Then for
all ε > 0, there exists x ∈ K such that |x− ai|i < ε.

(The conclusion may fail if the absolute values are trivial or inequivalent.)
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Proof From the characterization of equivalent absolute values, there exist α, β ∈ K such that
|α|1 < 1, |β|1 > 1, and |α|2 > 1, |β|2 < 1.

Claim: there exists z ∈ K such that |z|1 > 1 and |z|j < 1 for all j ≥ 2. We’ll prove this by
induction; the previous observation gives the n = 2 case. Suppose z ∈ K such that |z|1 > 1 and
|z|j < 1 for j = 2, . . . , n− 1. If |z|n < 1, then we’re done. Assume |z|n ≤ 1. Set y := α/β and
consider zmy for m� 0. Now |zmy|1 > 1 since |z|1 ≥ 1 and zmy|j < 1 for j = 2, . . . , n− 1. In
addition, since |y|n < 1, |zmy|n < 1 for all m. So for m� 0, zmy satisfies claim.

Then consider |zm/(1 + zm)|·; this is going to 1 where · = 1, n and 0 for · = 2, . . . , n − 1.
Then yzm/(1 + zm) has the desired properties.

[There are some minor mistakes in the above–clean it up as an exercise.]

Now set wm = zm/(1 + zm); note

|wm|j →

{
1 j = 1

0 j > 1
.

Let x1 = wm, m� 0, and define x2, . . . , xn similarly after exchanging 1 with j, so

|xj |i →

{
1 i = j

0 otherwise
.

Now set x := a1x1 + · · ·+ anxn, so that

|x− ai|i ≤ |ai(xi − 1)|i +
∑
j 6=i

|ajxj |i,

which will be appropriately small.

There are roughly two types of absolute values—the real absolute value we’re used to from grade school,
and absolute values similar to the p-adic case above. We give a pair of ad-hoc definitions distinguishing
between these:

139 Definition (Ad-Hoc)
| · | on K is archimidean if it is non-trivial and the completion of K with respect to | · | is isomorphic

to R or C. It is called nonarchimidean otherwise. (In particular, the trivial absolute value on R or C
is nonarchimidean.)

Alternatively, | · | is nonarchimedean if |n| is bounded for all n ∈ N and archimidean otherwise.
(This condition is unchanged for positive characteristic; the condition is just trivial then.)

140 Proposition
| · | is nonarchimedean if and only if it satisfies the “strong triangle inequality”

|x+ y| ≤ max{|x|, |y|}.

Proof For (⇐), note that |n| = |1+ · · ·+1| ≤ max |1| is evidently bounded. For (⇒), assume |n| < M
for all n. Let x, y ∈ K, and take |x| ≥ |y|. Then |x|ν |y|n−ν ≤ |x|n and

|x+ y|n ≤
n∑
ν=0

∣∣∣∣(nν
)
xνyn−ν

∣∣∣∣ ≤ (n+ 1)M |x|n.

Taking nth roots of both sides,

|x+ y| ≤ (n+ 1)1/nM1/n|x|.

Take the limit as n→∞ to get |x+ y| ≤ |x| = max(|x|, |y|).
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141 Remark
If for all x, y ∈ K, |x+ y| ≤ max(|x|, |y|), then in fact |x| 6= |y| implies |x+ y| = max(|x|, |y|).

Proof Suppose |x| > |y|. Then

|x+ y| ≤ |x| = |x+ y − y| ≤ max |x+ y|, |y| = |x+ y|

where the last step follows from |y| < |x|. We had obtained this stronger triangle inequality
above.

142 Proposition ((“Little”) Ostrowski)
Let | · | be a nontrivial absolute value on Q. Then | · | ∼ || · ||p for some p, or | · | ∼ || · ||∞.

Proof Assume | · |p is nonarchimedean. Then |n| ≤ 1. Since | · | is nontrivial, there exists n
with |n| < 1, so by unique factorization in integers, there exists a prime p with |p| < 1. Set
a := {a ∈ Z : |a| < 1}. This is an ideal and pZ ⊂ a ( Z, so a = pZ. Hence |n| = |p|k for

pk||n (where pk exactly divides n). But this says precisely |n| = ||n||− log |p|/ log p
p , which says

| · | ∼ || · ||p.

Now assume | · |p is archimedean. Pick m,n ∈ N and write m in base n as m = a0 + a1n+
· · ·+ arn

r for 0 ≤ ai ≤ n− 1. Now nr ≤ m, so r ≤ logm/ log n, and |ai| ≤ ai ≤ n. Hence

|m| ≤
r∑
i=0

|ai||ni| ≤
r∑
i=0

|nr| = (r + 1)n|n|r ≤ (logm/ log n+ 1)n|n|logm/ logn.

Set m = (m′)k and take kth roots of both sides to get

|m′| ≤ (k logm′/ log n+ 1)1/kn1/k|n|logm
′/ logn.

Take the limit as k → ∞ to get |m′| ≤ |n|logm′/ logn. Now set m 7→ nk and n 7→ m′ to get
|n| ≤ |m′|logn/ logm′ . This gives |n|1/ logn = |m|1/ logm. Setting s := log |m′|/ logm′, one finds
|m| = ||m||s∞ for all m ∈ Z, so for all m ∈ Q.

143 Theorem ((“Big”) Ostrowski)
If K is a field which is complete with respect to an archimidean absolute value | · |, then there exists a
field isomorphism σ : K → R or C such that |a| = ||σ(a)||s∞ for all a ∈ K.

Proof Outline: archimedean absolute value implies K is characteristic 0, giving Q ↪→ K, so the
restriction of | · | to Q is equivalent to || · ||∞. Since K is complete, it contains the completion of
Q under || · ||∞, namely R. Hence one must show K is either this R or C. Then one can show
that for all a ∈ K, a satisfies a quadratic relation over R—take x ∈ K and consider f : C→ R
given by z 7→ ||x2 − (z + z)x+ zz||∞, which one may show has minimum zero.

November 6th, 2015: Draft

Last time we classified the fields which are complete with respect to an archimedean absolute value. Today
we’ll focus on non-archimedean absolute values | · | : K → R≥. We can define an associated (non-archimedean)
valuation.

144 Definition
A valuation is a map v : K → R ∪ {∞} such that

(1) v(x) =∞ if and only if x = 0

(2) v(xy) = v(x) + v(y)
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(3) v(x+ y) ≥ min{v(x), v(y)}

145 Remark
If | · | is a non-archimedean absolute value, its associated valuation is defined by v|·|(0) :=∞,
v|·|(x) := − log |x|. In the other direction, we may choose any a ∈ R>1 and construct a

non-archimedean absolute value from a valuation by setting |x|v := a−v(x).

We also have the trivial valuation, | · | := 0 for all x 6= 0.

146 Definition
Two valuations v1, v2 are equivalant valuations if there exists s > 0 such that v1(x) = sv2(x) for all

x ∈ K.

147 Proposition
Let v be a valuation on K. Define O := {x ∈ K : v(x) ≥ 0}. This is a ring with a unique maximal
ideal p := {x ∈ K : v(x) > 0} and the units are precisely O× = {x ∈ K : v(x) = 0}.

Proof O is a ring from properties (1) through (3). Let m ⊂ O be an ideal. If there exists x ∈ m such
that v(x) = 0, then 1/x ∈ O because v(1/x) = −v(x) = 0 ≥ 0, so 1/x · x ∈ m, so m = O. Hence
any proper idea is contained in p, which is an ideal by properties (1) through (3). Since O is a
local ring, its complement is the set of units.

The ring O satisfies the following abstract condition:

148 Definition
An integral domain O is a valuation ring if for all x ∈ Frac(O), either x ∈ O or x−1 ∈ O. Any

valuation ring has a unique maximal ideal p := {x ∈ O : x−1 6∈ O}. The residue field of O is
κ := O/p.

Nathan says a version of the converse (going from these abstract conditions to a valuation with values in
a certain abelian group) is done in Atiyah-Macdonald.

149 Lemma
A valuation ring is integrally closed.

Proof Let x ∈ Frac(O) and assume that x satisfies a monic polynomial in O[x], so there exists ai ∈ O
such that

x−(n−1)(xn + an−1x
n−1 + · · ·+ a1x+ a0) = 0

so that
x = −an−1 − an−2x−1 − · · · − a0(x−1)n−1.

If x−1 ∈ O, the the right-hand side is in O, so in either case x ∈ O.

150 Definition
A valuation v is a discrete valuation if im(v) has a minimum positive element, which says v(K×) is

a lattice in R. A normalized discrete valuation is one where v(K×) = Z.

Given a discrete valuation, we can choose π ∈ O with minimal valuation. Then for all x ∈ K =

Frac(O), x = uπm for some unique unit u and m ∈ Z. Such an element is called a uniformizer , which
is not itself unique.

151 Proposition
If v is a discrete valuation of K, then the corresponding valuation ring O = OK is a DVR. If v is
normalized and π is a uniformizer, then all ideals of O are of the form

pn = πnO = {O : v(x) ≥ n}.

Further, O/p ∼= pn/pn+1 for all n.
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Proof O is local, noetherian, and integrally closed, so it satisfies our earlier DVR definition, so
it’s principal. The ideal structure is then clear (and it’s easy to prove directly). As for the
isomorphism, define a map pn → O/p by x = aπn 7→ (x/πn) = a mod p. The kernel of this map
is precisely pm+1.

We have a basis for neighborhoods of 0 and 1. For 0 we have

O ⊃ p ⊃ p2 ⊃ p3 ⊃ · · · ⊃ (0)

and for 1 we have
O× ⊃ U (1) ⊃ U (2) ⊃ · · · ⊃ (1)

where
U (n) := 1 + pn = {x ∈ K : |1− x|v < 1/qn−1} q := |π|−1.

152 Proposition
O×/U (n) ∼= (O/pn)× and U (n)/U (n+1) ∼= O/p for all n.

Proof Use maps u 7→ u mod pn and u = 1 + aπn 7→ (u− 1)/πn mod p.

The following is Bianca’s favorite fact about valuations. It has many variations.

153 Theorem (Hensel’s Lemma)
Let K be complete with respect to a non-trivial valuation v, with valuation ring O. Let f(x) ∈ O[x]

be a primitive polynomial, meaning f(x) 6≡p 0. If f(x) ≡p gh with g, h relatively prime, then there
exist g, h ∈ O[x] such that

1. deg g = deg g

2. g ≡p g and h ≡p h

3. f = gh

Proof Let d := deg f , m := degG. Then d − m ≥ deg h. Let g0, h0 ∈ O[x] be any lift of g and
h for which deg g0 = deg g and deg h0 ≤ d −m. Since g, h are relatively prime in κ[x], there
exist a(x), b(x) ∈ O[x] such that ag0 + bh0 − 1 ≡p 0. We also have f − g0h0 ≡p 0. Let π be a
coefficient of ag0 + bh0 − 1 or f − g0h0 with minimum valuation (v(π) > 0). We want to find
gn, hn ∈ O[x] such that

(1) deg(gn) = m, deg(hn) ≤ d−m, and the leading coefficients of gn and g0 agree;

(2) gn ≡πn gn−1 and hn ≡πn hn−1;

(3) f ≡πn+1 gnhn.

We’ve already exhibited such elements for n = 0, so suppose we have such a gn−1 and hn−1.
Then we’ll construct

gn = gn−1 + πnpn for some deg pn < m

hn = hn−1 + πnqn for some deg qn ≤ d−m.

That is,
f − gnhn = f − gn−1hn−1 − πn(gn−1qn + hn−1pn + πnpnqn) ≡πn+1 0.

Set
fn = (f − gn−1hn−1)/πn ≡π (gn−1qn + hn−1pn) ≡π (g0qn + h0pn).

Recall we have g0a+ bh0 ≡π 1, so use the Extended Euclidean Algorithm to get

fnb = qg0 + r(x) with deg r(x) < deg g0 = m

Then
g0fna+ fnbh0 = g0(fna+ h0q) + h0r(x) ≡π fn.

We can set pn := r(x) which has degree < d and qn := fna+ h0q which has degree m.
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November 9th, 2015: Draft

Last time, we ended with:

154 Theorem (Hensel’s Lemma)
Let K be complete with respect to a non-trivial nonarchimedean valuation with valuation ring O with

(unique) maximal ideal p and residue field κ, where f(x) 6≡p 0. If there exists g, h ∈ κ[x] relatively
prime such that f mod p = gh. Then there exists g, h ∈ O[x] such that

(1) g ≡p g, h ≡p h

(2) deg g = deg g

(3) f = gh in O[x]

155 Corollary
Let K be complete with respect to a non-trivial (nonarchimedean?) valuation. Suppose
f(x) =

∑n
i=0 aix

i ∈ K[x] is irreducible with a0an 6= 0. Then |f | : max{|ai|} = max(|a0|, |an|).
In particular, if an = 1 and a0 ∈ O, then ai ∈ O for all i.

Proof After scaling by the least possible amount, we may assume f(x) ∈ O[x] such that |f | = 1.
Let r be minimal such that |ar| = 1. Then f(x) mod p = xr(ar + · · ·+ anx

n−r) where
ar 6= 0. If 0 < r < n, then by Hensel’s lemma, there exists a non-trivial factorization of f ,
which is irreducible. It follows that r = 0 or r = n, giving the result.

156 Theorem
Let K be complete with respect to | · | and suppose L/K is an algebraic extension. Then there exists a
unique extension of | · | to L. If L/K is finite of degree n, then

|α| = n

√
|NL/K(α)| ∀α ∈ L,

and L is complete.

Proof If | · | is archimedean, then this follows from the classification using R or C. So, assume | · | is
nonarchimedean. Since an algebraic extension is just the union of all finite sub-extensions, we
may assume that L/K is finite.

For existence using the formula above: |α| = 0⇔ α = 0 is clear, and multiplicativity is also
clear. Claim: |α+ β| ≤ max{|α|, |β|} for all α, β ∈ L if and only if (|α| ≤ 1⇒ |α+ 1| ≤ 1). (For
⇐, roughly, divide by an element of maximal absolute value.)

Now let α ∈ L have |α| ≤ 1. Then |NL/K(α)| ≤ 1, so the minimal polynomial of α has
integral constant term, so α is integral by the preceding corollary, i.e. {α ∈ L : |α| ≤ 1} = OL.
But α ∈ OL implies α+ 1 ∈ OL, so |α+ 1| ≤ 1.

For uniqueness, suppose |̃ · | is another extension of | · | to L. Let ÕL be the valuation

ring of |̃ · |. Note that OL is the integral closure of OK in L. Claim: OL ⊂ ÕL. Proof: let

α ∈ OL and f =
∑d
i=0 aix

i be the minimal polynomial, with αd = 1. Hence f(α) = 0 says

1 = −ad−1α−1 − ad−2α−2 − · · · − a0α−d. If α 6∈ ÕL, then α−1 ∈ p̃, but then the right-hand side
is in p̃, so 1 ∈ p̃, a contradiction.

Since OL ⊂ ÕL, we have |α| ≤ 1 implies |̃α| ≤ 1, which implies | · | ∼ |̃ · |. Since | · | = |̃ · | on

K, we have | · | = |̃ · |.

It remains to show that L is complete.
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157 Proposition
Let K be complete with respect to | · | and let V be an n-dimensional normed K-vector
space. Suppose v1, . . . , vn is a K-basis for V . Then the max norm

|x1v1 + · · ·+ xnvn| := max{|x1|, . . . , |xn|}

is equivalent to the given norm on V . In particular, Kn → V is a homeomorphism and V
is complete.

Proof One may check that if there exists ρ, ρ′ > 0 such that

ρ||x|| ≤ |x| ≤ ρ′||x|| ∀x ∈ V

then | · | ∼ || · || and Kn → V given by ei 7→ vi is a homeomorphism. By the
triangle inequality, we have

|x| ≤ |x1||v1|+ · · ·+ |xn||vn| ≤ ||x||(|v1|+ · · ·+ |vn|) =: ||x||ρ′.

To construct ρ, we induct. If n = 1, set ρ = |v1|. Now Vi := Span{v1, . . . , v̂i, . . . , vn}
has V = Vi + Kvi. By induction, Vi is complete, so it is closed in V , so Vi + vi
is closed. Since 0 6∈ ∪iVi + vi, there exists a neighborhood of 0 disjoint from all
Vi + vi, i.e. there exists ρ > 0 such that |wi + vi| ≥ ρ for all wi ∈ Vi. Then

|x|
||x||

=

∣∣∣∣∣
n∑
i=1

xi
xr
vi

∣∣∣∣∣ =

∣∣∣∣∣∣vr +
∑
i 6=r

xi
xrvi

∣∣∣∣∣∣ ≥ ρ.
We now have enough machinery to give a nicer definition of local fields.

158 Theorem
Let K be a locally compact field with a non-trivial absolute value. Then (K, | · |) is isomorphic to one
of the following:

• R

• C

• A finite extension of Qp

• A finite extension of Fp((t))

where the valuation in each case is the obvious one. The first two are the archimedean ones, the
third are the characteristic zero non-archimedean ones, and the fourth are the positive characteristic
non-archimedean ones.

Proof We will avoid a lengthy digression by assuming the following fact:

159 Lemma
Let (F, | · |) be a locally compact field with a non-trivial absolute value and suppose V is
a valued F -vector space. Then V is locally compact if and only if dimF V <∞.

The archimedean case follows from Ostrowski’s theorem, so assume | · | is nonarchimedean.
Suppose K has characteristic 0, so Q ↪→ K and | · | restricts to a nonarchimedean absolute value
of Q, which must be non-trivial by a brief argument. So without loss of generality we may
assume | · |Q = | · |p, meaning Qp ↪→ K. Now apply the lemma with base field Qp.

Now suppose K has characteristic p, so Fp ↪→ K. Note that | · |Fp is trivial (indeed, any
valuation on a finite field is trivial), but | · | on K is nontrivial, so we have some t ∈ K such that
|t| < 1. Hence | · | restricted to Fp(t) is equivalent to the standard valuation. Hence Fp((t)) ↪→,
so we may again apply the lemma.
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November 13th, 2015: Draft

Bianca will be out of town on Monday, so class is cancelled.

Last time we showed that every locally compact non-discrete valued field is one of four types. For
completeness, we now prove the reverse, that these possibilities are in fact locally compact non-discrete valued
fields. This is clear for R and C. (A note on terminology: Neukirch says just “local field” for “non-archimedean
local field”.)

160 Proposition
Let K be a finite extension of Qp or Fp((t)) equipped with the unique extension of the natural valuation.
Then K is locally compact and the valuation ring O is compact.

161 Lemma
With K as above, we have O ∼= lim

←−n
O/pn, both as rings and as topological spaces.

Proof The map is induced by x 7→ x mod pn. The overall kernel is then ∩npn = {x :
v(x) > s · n} = {0}. For surjectivity, let (xn) ∈ lim

←−
O/pn, and choose lifts x̃i ∈ O. By

completeness, there exists x ∈ O such that x̃n → x.

The topological statement (where O/pn is given the discrete topology) is straightfor-
ward and a good exercise in the definitions.

Proof (of Proposition) O ∼= lim
←−
O/pn is a closed subset of

∏
O/pn, which is compact by Ty-

chonoff’s theorem, so O is compact. If a ∈ K, then a + O is a compact neighborhood of
a.

162 Proposition
Let K be a non-archimedean local field. Set O for its valuation ring, p for the maximal ideal in O,
and κ for the residue field O/p. Further suppose q = #O/p and that π ∈ O is any uniformizer. Then
we have

K× = 〈π〉 × µq−1 × U (1)

where U (1) := {x ∈ O : x ≡p 1}.

Proof Note that xq−1−1 factors into distinct linear factors in κ, so by Hensel’s lemma, it factors into
distinct linear factors in K. Then µq−1 ⊂ O ⊂ K. Note µq−1 → (O/p)× given by x 7→ x mod p
is an isomorphism, so O× = µq−1 × U (1). Since K× = 〈π〉 × O×, this completes the proof.

Note: this describes K× both as a group and topologically.

163 Proposition
Let K be a characteristic 0 non-archimedean local field (i.e. a finite extension of Qp). Then there exists

a continuous homomorphism log : K× → K which is uniquely determined by the following properties:

(1) If p = char(κ), then log p = 0

(2) On U (1), log(1 + x) = x− x2/2 + x3/3− x4/4 + · · ·

Proof First we show that x− x2/2 + x3/3− · · · converges for x ∈ p. Let v be the valuation on K
such that v|Qp = vp. Then for ν ∈ N,

v(xν/ν) = νv(x)− v(ν) ≥ ν ln pν(x)

ln p
− ln ν

ln p
=

ln(pν(x)/ν)

ln p
→∞ as ν →∞.
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Now tet λ be any homomorphism that satisfies (1) and (2). Since K× = 〈π〉 × µq−1 × U (1), for
any x ∈ K×, write x = πn(x)ζπ(x)uπ(x), so that

λ(x) = n(x)λ(π) + λ(ζπ(x)) + λ(uπ(x)).

Note that λ(µπ(x)) = log uπ(x). Also note that λ(ζπ(x)) = 1
q−1λ(ζπ(x)q−1) = 1

q−1λ(1) = 0, so

the middle term cancels. For the first term n(x)λ(π), we know that p = πeζπ(p)uπ(p), so that

0 = λ(p) = eλ(π) + λ(µπ(p)) = eλ(π) + log(uπ(p)),

so that λ(π) = − log(uπ(p))/e.

164 Proposition
Let K be a non-archimedean characteristic zero local field with valuation v extending vp on Qp. Let
e := 1/v(π) ∈ Z for some uniformizer π. Then for any n > e/(p− 1),

pn ∼= U (n) algebraically and topologically

log(1 + x)← 1 + x

x 7→ exp(x) := 1 + x+ x2/2 + x3/3! + · · ·

(Here U (n) := {x ∈ O : x ≡p n}.)

Proof It suffices to show that for all x ∈ pn,

(1) exp(x) converges

(2) exp(x) ∈ U (n)

(3) log(1 + x) ∈ pn

165 Lemma
If ν ∈ N is written mod p as ν =

∑r
i=0 aip

i for 0 ≤ ai < p, then

νp(ν!) =
1

p− 1

r∑
i=0

ai(p
i − 1).

Proof Counting factors of p coming from multiples of p, p2, . . . , we find

vp(ν!) = bν/pc+ bν/p2c+ · · ·+ bν/prc

=

r∑
i=1

aip
i−1 +

r∑
i=2

aip
i−2 + · · ·+

r∑
i=r

aip
i−r.

Rearrange this last expression to get the above formula.

Returning to the proof of the proposition, we turn to (3). Let z be such that v(z) >
1/(p− 1) = e/(p− 1)v(π), i.e. z ∈ pn = πnO = {x ∈ O : v(x) ≥ nv(π)} for n > e/(p− 1). We
want to show log(1 + z) ∈ pn; we want v(zν/ν)− v(z) > 0 for ν > 1. We compute

v(zν/ν)− v(z) = (ν − 1)v(z)− v(ν)

> (ν − 1)

(
1

p− 1
− v(ν)

ν − 1

)
,

where we want to show the final term in parentheses is > 0. Write ν = paν0 and note

v(ν)/(ν − 1) = a/(ν − 1) ≤ a/(pa − 1) = 1/(p− 1)(a/(1 + p+ · · ·+ pa−1)) < 1/(p− 1).

We will skip the arguments for (1) and (2), which Bianca believes are also in Osserman’s notes.
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166 Proposition
Let K be a characteristic 0 non-archimedean local field with q = #κ = pf . Then

K× ∼= Z× Z/(q − 1)× Z/pa × Zdp algebraically and topologically

for some a ≥ 0, where d := [K : Qp].

167 Aside
If K is a characteristic p non-archimedean local field, then analogously K× ∼= Z×Z/(q−1)×ZN

p .
We won’t prove this version though.

Proof ((Sketch)) We have 〈π〉 ∼= Z and uq−1 ∼= Z/(q − 1), so we’re essentially claiming U (1) ∼=
Z/pa × Zdp. Now U (1) is a Zp-module, so by the classification of such finitely generated modules,

we need only compute the torsion of U (1), namely µp∞(K). This uses the facts that p ∼= πnO ∼= O,
rankU (1) = rankU (n).

November 18th, 2015: Draft

Today we’ll do a quick introduction to Newton polygons. A more modern multivariable generalization we
won’t discuss at all is through tropical geometry.

168 Notation
Let K be a field, be v a valuation on K, and f(x) = a0 + a1x+ · · ·+ anx

n ∈ K[x].

169 Definition
The Newton polygon of f(x), NP(f) , is the lower convex hull in R2 of {(i, v(ai))}. More precisely,

for each x-value, the corresponding y-value is the pointwise minimum of all y-values of all line segments
between two vertices. This is one-dimensional, though one can imagine it being a polygon by adding
extra edges in several ways.

170 Proposition
Let ω be an extension of v to the splitting field L of f over K. If (r, v(ar)) ↔ (s, v(as)) is a line
segment of NP(f), then f(x) has s − r roots of valuation equal to −m where m is the slope of the
segment.

If K is complete, then gm(x) :=
∏
α(x−α) ∈ K[x] where the product is over α ∈ L where f(α) = 0

and v(α) = −m.

Proof Let α1, . . . , αn be the roots of f(x), repeated according to multiplicity. Write v for ω for
this half. Order them so that v(αi) ≤ v(αj) for i ≥ j. Let (r, v(ar)) be maximal such that
v(αr) = v(α1). We first claim ar is the right endpoint of the first line segment of the Newton
polygon, i.e.

v(as)− v(a0)

s
>
v(ar)− v(a0)

r
if s > r.

The rough idea is that we can group roots according to their valuations, and we can express
the coefficients as certain sums of products of roots, i.e. if an = 1, then

a0 =
∏

αi

a1 =
∑
j

∏
i6=j

αi

a2 =
∑
j,k

∏
i 6=j,k

αi
...
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Note that if |I| < r, then v(
∏
i∈I αi) < |I|v(α1). Now we can compute the valuations of

a0, a1, . . . in terms of the given data using the strong triangle inequality and the fact that the
αi are constant in groups to give the first claim; the rest of the details are left as an exercise.

For the second claim, let σ ∈ Gal(L/K). Then (σω)(α) = ω(σ−1(α)) is a valuation that
agrees with v when restricted to K. Since K is complete, there is a unique extension of v to L,
so σω = ω. If αi is a root of f(x) with ω(αi) = −m, then σ−1(αi) is a root of f(x) and

ω(σ(αi)) = (σω)(αi) = ω(αi) = −m.

Recall that if f(x) ∈ K[x] is irreducible and monic, and a0 ∈ O, then f(x) ∈ O[x]. We can use the
Newton polygon to deduce a stronger version of this result for complete fields by analyzing the slope between
the 0th and nth vertices.

171 Notation
Let L/K be an extension of non-archimedean local fields. (From the classification of such fields,
the extension must be finite.) Let v be a valuation on K with unique extension w to L (where
w(α) = 1

nv(NL/K(α))).

Recall the inertia degree of [L : K] is [λ : κ] =: f where λ is the residue field of L and κ is the residue
field of K. Similarly the ramification index e is such that qe = pOK . In fact, e = [w(L×) : v(K×)].
Recall that [L : K] = ef (see a remark in Neukirch on page 151 for the positive characteristic case).
We say L/K is unramified if e = 1.

172 Theorem
Continuing the notation above, let L/K be an unramified extension of degree f . Set q := #κ. Then
L = K(µqf−1). Conversely, given any f ∈ Z>0, K(µqf−1) is an unramified extension of L of degree f .
In particular, there exists a unique unramified extension of any degree and it is Galois.

Proof Note that #λ = qf . We know that L ⊃ µqf−1, which we saw when we determined the
multiplicative structure of such fields, which used Hensel’s lemma. Consider the tower of fields

f︷ ︸︸ ︷
L ⊃ K(µqf−1) ⊃ K︸ ︷︷ ︸

≥f

where ≥ f occurs since [κ(µqf−1) : κ)] = f . It remains to show that K(µqf−1) is unramified
over K. This is the splitting field of Φqp−1(x) over K, which is irreducible over κ and preserves
degree when viewed over κ. It follows that ef = [K(µqf−1) : K] = [κ(µqf−1) : κ] = f , so e = 1.

173 Proposition
If L,K ′ are extensions of K and L′ = K ′L is their compositum, and if L/K is unramified, then L′/K ′

is unramified.

Proof Since L/K is unramified, [L : K] = [λ : κ]. Let α ∈ λ be a primitive element and let α ∈ L
be a lift of α, which exists by Hensel’s lemma (though we can get away without Hensel here).
Then L = K(α) by degree considerations. So L′ = K ′(α) and λ′ = κ′(α). Claim: mK,α has the
same degree as mκ,α (by Hensel’s lemma).

November 20th, 2015: Draft

Summary Last time, we had a diagram of local fields
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KL

K L

K

If L/K is unramified, then LK ′/K ′ is unramified.

174 Corollary
The compositum of any unramified extensions is unramified.

175 Definition
If L/K is an extension of local fields, the maximal unramified subextension T is the compositum of
all unramified subextensions. (By the corollary, this is indeed the maximal subextension with the
property of being unramified.)

Last time, we showed the residue field of T is the residue field of L and the value group of T is the
value group of K, so in the tower L/T/K, T in some sense interpolates between the endpoints.

176 Aside

177 Definition
L/K is tamely ramified if e is coprime to p = char(κ). One can generalize our discussion

to this context to a reasonably large degree, but we will not pursue this.

Upshot: if n = ef is coprime to p = char(κ), then degree n extensions of K are easily
characterized.

We next want to relate the theory of extensions of global fields (finite extensions of Q or Fp(t)) to the
theory of extensions of local fields. How do we get from global fields to local fields?

We’ve already gone from Q (a global field) to Qp (a local field) by taking the completion with respect
to | · |p. Let K be a field with an absolute value | · |. If | · | is archimedean, then | · | is determined up to
equivalence by an embedding ι : K → R or C, by Ostrowski’s theorem. Let Kι be the completion of K with
respect to this absolute value, which is well-defined on equivalence classes of valuations.

178 Notation
Let K be a field with an absolute value | · |. If | · | is archimedean, then let Kι be the completion
with respect ι. If | · | is nonarchimedean, then there exists an associated valuation v, so let Kv be the
completion with respect to this valuation.

179 Proposition
Let K be a field with discrete valuation v. Then v extends uniquely to Kv and v(K×v ) = v(K×) (by
the strong triangle inequality). Additionally, if OK,v ⊂ K and Ov ⊂ Kv are the valuation rings with
maximal ideals p ⊂ K and pv ⊂ Kv, then

OK,v/pn ∼= Ov/pnv ∀ n ≥ 1.

Proof See homework.

180 Proposition
Let R ⊂ OK,v be a system of representatives for κ such that 0 ⊂ R and let π ∈ OK,v be a uniformizer.
Then for all x ∈ K× there exists a unique m ∈ Z and unique ai ∈ R with a0 6= 0 such that

x = πm(a0 + a1π + a2π
2 + · · · ).
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Proof The argument is exactly the same as for Zp, so we skip it.

181 Proposition
We have

Ov
∼→ lim
←−
O/pnv ∼= lim

←−
OK,v/pn.

Proof This is just combining earlier facts.

182 Notation
Let K be a global field and L/K a finite extension with nontrivial valuation v on K (or an embedding

ι : K ↪→ R or C; we won’t belabor this point). Let Kv denote the completion and let Kv := Kv be
the result of completing and then taking the algebraic closure. Note that v extends uniquely to Kv,
say as v. Choose an embedding ι : L ↪→ Kv. From this we obtain a valuation w = wτ on L defined by
w(α) := v(τ(α)).

Since (by definition of w) τ is continuous, τ extends to an embedding Lw ↪→ Kv. Diagramattically,

Kv

Lw

L

Kv

K

Note: w agrees with the unique extension of v (namely (1/n)v(NLw/Kv )(−) where n = [Lw : Kv]).

If σ ∈ Gal(Kv/Kv), then σ ◦ τ is another embedding L ↪→ Kv.

183 Definition
We say τ and σ ◦ τ are conjugate embeddings .

From the Newton Polygon proof, we would “morally expect” wτ = wσ◦τ on Lw for all σ ∈
Gal(Kv/Kv).

184 Theorem (Extension Theorem)

(1) Every valuation w on L extending v on K arises from an embedding τ : L ↪→ Kv.

(2) Two embeddings τ, τ ′ give the same valuation if and only if τ is conjugate to τ ′.

185 Proposition
Let L = K[x]/(f(x)) where f(x) is an irreducible monc polynomial, let v be the valuation.
Let f(x) = f1(x)m1 · · · fr(x)mr be the factorization in Kv. Then there are r valuations of L
extending v and the corresponding embeddings are

τi : L→ Kv

x 7→ αi where αi is a root of fi(x)

Proof This follows easily from the extension theorem, and is essentially an example. For
instance, by the second part, the chosen root of fi(x) does not matter.
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Proof For (1), let w be an extension of v and let Lw be the completion. Since w|K = v, Kv ↪→ Lw,
and this is in fact finite, so we have Kv ↪→ Lw ↪→ Kv. Since Lw is complete, there is a unique
extension of v to Lw, so w agrees with this unique extension, which agrees with wτ where
τ : L ↪→ Lw ↪→ Kv.

For (2), consider ⇐. Let τ ′ := σ ◦ τ and consider

Kv

L Kv

στ

τ ′

v is unique when restricted to any complete subextension of Kv/Kv, so restrict to the Galois
closure of Lw, which is the same as the Galois closure of Lw′ . Then we compute

w(alpha) = (v)(τ(α)) = (σv)(α) = v(σ)(τ(α)) = w′(α).

November 23rd, 2015: Draft

186 Notation
Let L/K be a finite extension of global fields and let v be a valuation of K.

187 Theorem (Extension Theorem)
We have:

(1) Every extension w of v to L arises from an embedding τ : L ↪→ Kv.

(2) Two embeddings τ and τ ′ are conjugate if and only if wτ := v ◦ τ = v ◦ τ ′ =: wτ ′ .

Proof For ⇒ in (2), we have τ = σ−1 ◦ τ on Kv and v = σv, so

wτ ′ = v ◦ τ ′ = v ◦ σ−1 ◦ τ = σv ◦ τ = v ◦ τ = wτ .

For ⇐ in (2), let σ = τ ′ ◦ τ−1 : τL
∼→ τ ′L. Note that this is a K-isomorphism. Since τL

is dense in τL · Kv, for all x ∈ τL · Kv there exists xn ∈ L such that x = lim
−→

τ(xn). Since

ωτ = ωτ ′ , i.e. v ◦ τ = v ◦ τ ′, we have that (στ(xn)) = (τ ′(xn)) also converges. So we can extend
σ : τL ·Kv → τ ′L ·Kv to a Kv-isomorphism and then choose σ̃ : Kv → Kv which agrees with σ
on τL ·Kv.

188 Proposition
If L/K is separable, then

L⊗K KV →
∏
w|v

Lw

is an isomorphism.

Proof Let L = K[x]/f(x) for an irreducible, separable polynomial f(x). By the Chinese Remainder
Theorem,

L⊗K Kv
∼= Kv[x]/f(x) ∼=

∏
w|v

Kv[x]/fw(x) ∼=
∏
w|v

Kv(α) = Lw

using τw : L→ Kv by
∑
aix

i 7→
∑
aiα

i where α is a root of fw(x). The composite comes from
the map a⊗ b 7→ (τw(a)b).
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189 Corollary
If L/K is separable, then

[L : K] =
∑
w|v

[Lw : Kv]

NL/K(α) =
∏
w|v

NLw/Kv (α) ∀α ∈ L

TrL/K(α) =
∑
w|v

TrLw/Kv (α) ∀α ∈ L.

In particular, the first gives a “fundamental identity” of valuation theory, [L : K] =
∑
w|v ewfw.

Proof The first follows immediately. Notice that mα,L ⊗Kv = Mα,L⊗Kv is similar to a block matrix
of mα,Lw and use linear algebra.

190 Remark
What if we apply the preceding theory to the case where L is a number field? What are the absolute
values of L, up to equivalence? If | · | is a nonarchimedean valuation v, then v|Q is a nonarchimedean
valuation, so up to equivalence v|Q = vp. We have bijections

{irreducible factors of f(x) over Qp} ↔ {extensions of vp} ↔ {embeddings L ↪→ Qp}/Gal(Qp/Qp)

One can show that extensions of vp are in bijection with prime ideals of OL lying over p by taking
maximal ideals of valuation rings. Assuming f(x) is separable mod p, we can put the primes of OL
lying over p in bijection with irreducible factors of f(x) over Fp.

What about archimedean absolute values? Then vQ = | · |∞. We get a bijection

{extensions of | · |∞ to L} ↔ {embeddings of L ↪→ C}/Gal(C/R).

We now turn to the Galois theory of valuations for number fields.

191 Notation
Let L/K be a Galois extension of number fields. Set G := Gal(L/K) and let v be a valuation on K.

192 Proposition
Gal(L/K) acts transitively on extensions w of v to L.

Proof Let w,w′ be two extensions of v to L which are not conjugate under G. Then {σw : σ ∈ G}
and {σw′ : σ ∈ G} are disjoint, so by the approximation theorem there exists some x ∈ L such
that |x|σw < 1 and |x|σw′ > 1. Then

|NL/K(x)|v =
∏
σ∈G
|σx|w =

∏
σ∈G
|x|σ−1w < 1

=
∏
σ∈G
|σx|w′ =

∏
σ∈G
|x|σ−1w′ > 1,

a contradiction.

193 Definition
The decomposition group of w | v is

Gw := Gw(L/K) := {σ ∈ Gal(L/K) : σw = w}.
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If v is nonarchimedean, the inertia group of w | v is

Iw := Iw(L/K) := {σ ∈ Gw : w(σ(x)− x) > 0,∀x ∈ OL}

and the ramification group of w | v is

Rw := Rw(L/K) := {σ ∈ Gw : w(σ(x)/x− 1) > 0,∀x ∈ L×}.

Note that Rw ⊂ Iw ⊂ Gw. The latter two require w to be nonarchimedean.

November 25th, 2015: Draft

194 Notation
Let L/K be a Galois extension of global fields, v be a valuation on K, and w an extension of v to L.

Recall that we had defined the decomposition group Gw (the set of all elements of Gal(L/K) which
fix w), the inertia group Iw (the set of all elements of Gal(L/K) which fix w and where σ descends to
the identity on OL/pw), and the ramification group Rw (the set of elements of Gal(L/K) which fix w
and where σ(x)/x ≡pw 1 for all x ∈ OL).

195 Remark
Suppose L′/K ′ is as L/K and assume there exists τ : L ↪→ L′ such that

L′

L K ′

K

τ

τ

we get a homomorphism
τ∗ : Gal(L′/K ′)→ Gal(L/K)

defined by
σ 7→ τ−1στ.

(Note that σ : τL→ τL′, so τ−1 is defined on στL.)

196 Proposition
Let v′ be a valuation on K ′, w′ an extension of v′ to L′, so v = v′|K , w = w′|K . Then τ∗ induces
homomorphsisms

τ∗ : Gw′(L
′/K ′)→ Gw(L/K)

τ∗ : Iw′(L
′/K ′)→ Iw(L/K)

τ∗ : Rw′(L
′/K ′)→ Rw(L/K).

Proof We just need to show that τ∗ restricted to each of these subgroups lands in the appropriate
subgroup of the codomain. Let σ ∈ Gal(L′/K ′), x ∈ L. If σ ∈ Gw(L′/K ′), we see

(w◦τ∗σ)(x) = (w◦τ−1στ)(x) = w′(στ(x)) = (w′◦σ)(τ(x)) = w′(τ(x)) = w◦τ−1(τ(x)) = w(x).

Similarly, if σ ∈ Iw(L′/K ′), then

w(τ∗σx− x) = w(τ−1στx− x) = w ◦ τ−1(στx− τx) = w′(σ(τx)− τx) > 0.

A very similar argument also works for Rw.
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197 Remark
If τ and τ |K are isomorphisms, then τ∗ induces isomorphisms on the respective groups.

198 Corollary
If L′ = L, K ′ = K, and τ, τ |K are isomorphisms, then Gw◦τ (L/K) = τ−1Gwτ , Iw◦τ (L/K) =
τ−1Iwτ , Rw◦τ (L/K) = τ−1Rwτ .

199 Corollary
If L/M/K is a tower of extensions with L/K Galois (so L/M is Galois, but M/K need not be
Galois), then

Gw(L/M) = Gw(L/K) ∩Gal(L/M)

Iw(L/M) = Iw(L/K) ∩Gal(L/M)

Rw(L/M) = Rw(L/K) ∩Gal(L/M).

Proof Let L′ = L, τ = id, K ′ = M . Then τ∗ is just the inclusion of Gal(L/M) into Gal(L/K).
Then Gw(L/M) ↪→ Gw(L/K), where Gw(L/M) ⊂ Gal(L/M), Gw(L/K) ⊂ Gal(L/K).

200 Corollary
We have

Gw(L/K) = Gal(Lw/Kv)

Iw(L/K) = Iw(Lw/Kv)[= I(Lw/Kv)]

Rw(L/K) = Rw(Lw/Kv)[= R(Lw/Kv)],

where the pieces in brackets are referring to the fact that there is a unique w by completeness.

Proof Use

Lw

L Kv

K

id

id

so that τ∗ is just restriction Gal(Lw/Kv)→ Gal(L/K).

Claim 1: it suffices to show that Gw(L/K) = Gal(Lw/Kv), which is straightforward
and a nice (small) exercise in the definitions.

Claim 2:

Gw(L/K) = {σ ∈ Gal(L/K) : σ is continuous with respect to w}.

For this, ⊂ is clear from the definition, since constant maps are continuous. On the other
hand, suppose σ ∈ Gal(L/K) is continuous with respect to w, so w is equivalent to w ◦ σ
(since the topologies agree). Since w|K = w ◦ σ|K , they agree on a non-zero element, so
w ∼ w ◦ σ implies w = w ◦ σ is in Gw(L/K), completing Claim 2.

Now, an element σ ∈ Gw(L/K) extends uniquely to an element σ ∈ Gal(Lw/Kv),
since σ (being continuous) extends uniquely to Lw as the limit of finite extensions, and
this fixes K, so also Kv. This completes Claim 1 and the proof.

201 Remark
Fixing an extension w, then Gw controls all extensions of v to L. More precisely,

Gw\G↔ {extensions of v to L}
σ 7→ w ◦ σ.

49



This also works for extensions that are not necessarily Galois. That is, suppose N/L/K is a
tower of extensions where N/K is Galois, but L/K is not necessarily Galois. Suppose w is a
valuation on N extending the valuation v on K. Then

Gw(N/K)\Gal(N/K)/Gal(N/L)↔ {extensions of v to L}
σ 7→ w ◦ σ|L.

This is well-defined since

w ◦ (gσh)|L = (w ◦ g) ◦ (σh)|L = w ◦ (σh)|L = w ◦ σ|L.

202 Notation
Let L/K be Galois, and let w be an extension of v.

203 Definition
The decomposition field Zw := Zw(L/K) is the fixed field of Gw, the inertia field Tw := Tw(L/K)

is the fixed field of Iw, and the ramification field Rw := Rw(L/K) is the fixed field of Rw.

Note: Zw, Tw, Vw are not necessarily complete. We have L ⊃ Vw ⊃ Tw ⊃ Zw ⊃ K.

204 Proposition
We have the following:

(1) The restriction wz of w to Zw extends uniquely to L.

(2) wz has the same value group and residue field as v.

(3) Zw = L ∩Kv (in the completion Lw)

(4) 1→ Iw → Gw → Gal(λ/κ)→ 1, where λ is the residue field of w, κ is the residue field of v

(5) Tw/Zw is the maximal unramified subextension of L/Zw

(6) 1→ Rw → Iw → χ(L/K) := Hom(w(L×)/v(K×)), λ×)→ 1

(7) Rw is the unique p-Sylow subgroup of Iw

(8) Vw/Zw is the maximal tamely ramified subextesnion of L/Zw.

Proof We skip proving (1)-(5) since you can compare them to our earlier reasoning involving prime
ideals instead of valuations. They are relatively straightforward as well. We won’t be able
to completely prove (6)-(8) both because of time constraints and because they involve some
structure theorems for tamely ramified extensions. So, we give a sketch.

For (6), use Iw → χ(L/K) given by σ 7→ (χσ : δ 7→ σ(x)/x mod p where δ ∈ w(L×) is some
lift of δ and x ∈ L× is such that w(x) = δ. It is not obvious that this is well-defined, which ends
up depending on σ being in Iw (as opposed to, say Gw). It follows that Rw is the kernel, so is
normal. It’s not clear that this map is surjective.

(8) follows from (7) in part because (7) implies that the degree of L/Vw is prime to p. (7)
follows from a cardinality count together with (6). Both of these depend on structure theorems
for tamely ramified extensions.

November 30th, 2015: Draft

Today, we’ll begin a discussion of Galois cohomology. Today’s topics are topological groups and profinite
groups. Our main references are Milne’s notes on class field theory (chapter II) and Cassels-Frohlich (chapter
IV).
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205 Definition
A topological group is a group G together with a topology such that the multiplication and inversion

maps G×G→ G and G→ G are continuous. In this class, we will also assume topological groups are
Hausdorff. This is not entirely standard. This is equivalent to the inclusion e ↪→ G being closed.

206 Fact
In a topological group, we have the following:

(1) If U 3 e is an open neighborhood, there exists a symmetric open neighborhood U ⊃ V 3 e such

that V = V −1 and V · V ⊂ U .

(2) If H ≤ G, then H (the closure in the topology) is also a subgroup. Further, if H E G, then H E G.

(3) An open subgroup of G is closed and a finite index closed subgroup is open.

(4) An open subgroup of a compact group is finite index.

(1) is mostly technical, though (2) and (3) will come up during proofs frequently enough that
we will eventually use them without comment. These are a good exercise if you feel unfamiliar with
topological groups.

207 Definition
A profinite group is a topological group G that is isomorphic to an inverse limit of discrete finite

groups. The topology on an inverse limit is the coarsest topology such that all of the projection maps
are continuous.

208 Example
Zp; more generally, the valuation ring O of a nonarchimedean local field, i.e. lim

←−
O/pn. Later,

we’ll see that if E/K is a Galois extension, then Gal(E/K) is a profinite group. Any finite
group is trivially a profinite group (with the discrete topology).

209 Theorem
A topological group G is profinite if and only if G is compact and totally disconnected.

Proof Omitted; relies on topological facts we don’t want to take the time to go through.

210 Corollary
If G is profinite, then G ∼= lim

←−
G/U where the limit is taken over all normal open U E G. (Since G is

compact, each U is of finite index by fact (4) above, so this makes sense.)

211 Corollary
If H E G is closed, then

H ∼= lim
←−

H/(H ∩ U),

where the limit is over all normal open U E G.

212 Corollary
If H E G is closed, then G/H is profinite.

213 Proposition
If E/F is any Galois extension (i.e. normal and separable), then

Gal(E/F ) ∼= lim
←−

Gal(K/F )

where the limit is over all finite Galois subextensions E ⊃ K ⊃ F (i.e. K ⊃ F is finite and Galois).
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Proof We define an isomorphism ρ : Gal(E/F ) → lim
←−

Gal(K/F ). Since K/F is a finite Galois

subextension, we have a restriction morphism Gal(E/F )→ Gal(K/F ). Hence we get a homor-
morphism Gal(E/F ) →

∏
E/K/F Gal(K/F ), and the image is contained in the inverse limit

because the restriction maps satisfy the requisite compatibility condition.

We first show that ρ is injective. If id 6= σ ∈ Gal(E/F ), there exists x ∈ E − F such that
σ(x) 6= x, so there exists E/K/F with x ∈ K and K/F finite and Galois (e.g. take K to be the
Galois closure of F [x]). Now σ|K 6= id, so ρ(σ) is not the identity.

For surjectivity, let (σK) ∈ lim
←−

Gal(K/F ). Define σ : E → E such that σ(x) = σK(x) where

K is such that x ∈ K. Assuming this is well-defined, surjectivity is clear, but this follows
immediately from the compatibility condition for the inverse limit (that the underlying index
set is directed is essential here, i.e. the compositum is used).

214 Theorem (Fundamental Theorem of Galois Theory)
Let E/F be any Galois extension. Then there is an inclusion-reversing bijection

{subfield extensions of E/F} ↔ {closed subgroups of Gal(E/F )}
K 7→ Gal(E/K)

Eh := {x ∈ E : σ(x) = x,∀σ ∈ H} ← H.

Proof We’ll only discuss the parts which are different in the infinite case than in the finite case.
(Note that all subgroups are closed in the finite case.)

Step 1) Claim: Gal(E/K) is a closed subgroup. Note K = ∪Li, where the union is over all
K ⊃ Li ⊃ F where Li ⊃ F is finite. Hence Gal(E/K) = ∩i Gal(E/Li). Each Gal(E/Li)
is closed for reasons that currently elude us (to be fixed).

Step 2) Claim: K = EGal(E/K). The proof is as in the finite case.

Step 3) Claim: let H ′ := Gal(E/EH); then H ′ = H. That H ′ ⊃ H is clear. On the other hand,
by step 2 we have EH = EH

′
. Hence at the finite level, we have H ′/U = HU/U for all

U E H. Hence H is dense in H ′. Since H is closed, H = H = H ′. More generally, groups
that have the same closure end up mapping to the same field, so you generally just recover
the closure of the starting group.

December 2nd, 2015: Draft

There will be no class on Friday.

215 Remark
At the end of last class, we had a Galois extension E/F and a subextension E/K/K. We wanted to show
that Gal(E/K) was closed in Gal(E/F ). We wrote Gal(E/K) = ∩Gal(E/Lj) where K/Lj/F with
Lj/F finite, so we reduced to showing that each Gal(E/Lj) is closed. Here’s essentially Sid’s argument
to finish this. Write L instead of Lj . It’s important to note that L/F is finite but not necessarily Galois.
However, Gal(E/L) = {σ ∈ Gal(E/F ) : σ|L = id} is a subgroup of Gal(E/F ) = lim

←−
Gal(K/F ), so

Gal(E/L) is {(σK) : σK fixes L ∩K,∀K/F finite, Galois} which is ∩K/Fπ−1K (Gal(K/(L ∩K)). Each
term of this last intersection is closed and of finite index (so also open), which gives the result.

216 Definition
Let G be a topological group. A continuous G-module M means M is a topological abelian group
with a continuous map G ×M → M such that g(m + m′) = g(m) + g(m′), (gg′)(m) = g(g′(m)),
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and 1 · m = m. A homomorphism of G-modules αM → N is a group homomorphism such that

α(gm) = gα(m).

217 Remark
If M is a G-module, then the G action extends uniquely to a Z[G]-module.

218 Definition
Let H ≤ G be a subgroup and N an H-module. We would like to augment N to make it a G-module.
To do so, define

IndGH(N) := {maps φ : G→ N | φ(hg) = hφ(g)}.

We give IndGH(N) an abelian group structure by pointwise addition, (φ+ φ′)(x) := φ(x) + φ′(x), and
we defing the G-action by (g · φ)(x) := φ(xg).

Note: if α : N → N ′ is an H-module map, we have an induced map IndGH(N)→ IndGH(N ′) given
by φ 7→ α ◦ φ.

219 Lemma

(1) For all G-modules M and all H-modules N ,

HomG(M, IndGH(N)) ∼= HomH(M,N)

(2) IndGH : ModH → ModG is an exact functor.

Proof For (1), take α ∈ HomG(M, IndGH(N)) and define βα : M → N by m 7→ (α(m))(1). It is easy
to check that βα is a group homomorphism. Now look at the action of h ∈ H:

βα(hm) = α(hm)(1) = (h(α(m)))(1) = α(m)(h1) = h(α(m)(1)) = hβα(m).

Hence we have a map for (1) in the forward direction. For the backwards direction, let
β ∈ HomH(M,N) and define αβ : M → IndGH(N) by m 7→ (g 7→ β(gm)). This evidently a group
homomorphism. Now we see

αβ(g′m) = (g 7→ β(gg′m))

g′(αβ(m)) = g′(g 7→ β(gm))

= (g 7→ β((gg′)m)),

so they are indeed equal.

Now we check that they are mutual inverses. Consider β 7→ αβ 7→ β(αβ), so αβ : m 7→ (g 7→
β(g(m))), and β(αβ) : m 7→ (αβ(m))(1) = β(1(m)) = β(m). Now consider α 7→ βα 7→ α(βα).
We have βα : m 7→ α(m)(1) and α(βα) : m 7→ (g 7→ βα(g(m))) = (g 7→ α(gm)(1) = α(m)(g)) =
α(m)(1). This completes (1).

For (2), consider an exact sequence 0→M
α→ N

β→ P → 0 of H-modules. We must show
that

0→ IndGH(M)
ι→ IndGH(N)

π→ IndGH(P )→ 0

is exact. We have ι : φ 7→ α ◦ φ. It follows quickly that it is exact at IndGH(M). For the middle
factor, that the composite of the two maps is 0 is immediate, and the other half of exactness is
nearly the same argument as for the left factor. So, the only difficulty is showing exactness at
the rightmost factor. We have π : ψ 7→ β ◦ ψ.

Pick φ ∈ IndGH(P ) and consider “lifting” φ. Let s be a right coset representative for H in

G and let n(s) ∈ N be such that φ(s) = β(n(s)). Define φ̃(hs) := h · (n(s)) and check that

β ◦ φ̃ = φ to complete the proof.
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220 Corollary
Let M be a G-module, H ≤ G a subgroup. For all H-module homomorphisms β : M → N , then there

exists a unique α : M → IndGH(N) such that

M

IndGH(N) N

∃!α β

where the bottom arrow is given by φ 7→ φ(1).

221 Example
Let H = {1}. Then H-modules are simply abelian groups. Now

IndG{1}(M) = IndG(M) = {φ : G→M} = Hom(Z[G],M).

M ′ is induced from H if M ′ ∼= IndGH(M) for some H-module M . If H = {1}, we often omit it from
the notation.

222 Remark
Let G be a finite group, H ≤ G a subgroup.

(a) A G-module M is induced if and only if there exists an abelian group M0 such that
M = ⊕g∈GgM0, in which case IndG(M0)→ Z[G]⊗Z M0 by φ 7→

∑
g g ⊗ φ(g−1).

(b) Suppose H is a subgroup of G. If M is an induced G-module, then M is an induced
H-module.

(c) If M is a G-module, then there exists a surjective homomorphism IndG(M)�M given by
φ 7→

∑
g gφ(g−1). In terms of Z[G]⊗Z M0 →M , this is (

∑
ngg)⊗m 7→

∑
nggm.

December 7th, 2015: Draft

We’ll continue our discussion of cohomology groups.

223 Notation
Let M denote some G-module. Let MG denote the elements of M which are fixed under the

action of G. One may check that M → MG is left exact directly. Alternatively, one can note
M →MG = HomG(Z,M) where Z has the trivial action, and HomG(Z,−) is left exact in general.

224 Definition
We say a G-module I is injective if Hom(−, I) is an exact functor.

225 Defitheorem
For every G-module M , there exists an injective G-moduleI and an injection M ↪→ I. This is often

phrased by saying “the category of G-modules has enough injectives ”.

In particular, every G-module M has an injective resolution, i.e. there exists an exact sequence

0→M → I0 → I1 → I2 → · · ·

where each Ij is an injective G-module. (This arises by taking injections from cokernels.) The rth

cohomology group of G with coefficients in M is

Hr(G,M) :=
ker dr : (Ir)G → (Ir+1)G

im dr−1(Ir−1)G → (Ir)G
r ≥ 0, I−1 := 0.
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This definition is independent of the choice of I• and gives functors M 7→ Hr(G,M). (For more details,
see the appendix to chapter 2 of Milne’s class field theory notes.)

226 Theorem
The functors M → Hr(G,M) are uniquely determined by the following properties:

(a) H0(G,M) = MG for all G-modules M

(b) Hr(G, I) = 0 for all r > 0 and injective G-modules I

(c) For all short exact sequences of G-modules

0→M → N → P → 0

there exists a long exact sequence

0→ H0(G,M)→ H0(G,N)→ H0(G,P )

δ1→ H1(G,M)→ H1(G,N)→ H1(G,P )

δ2→ · · ·

The maps δr are also uniquely determined.

Proof We’ll show the injective resolution definition has (some of) these properties. For (a), we
have 0 → M → I0 → I1 → · · · , which gives 0 → MG → (I0)G → (I1)G, which is exact.
Hence H0(G,M) is measuring exactness at 0→ (I0)G → (I1)G, which is ker(I0)G → (I1)G =
imMG → (I0)G = MG.

For (b), I0 = I, Ij = 0 for all j > 0 is an injective resolution. Applying the fixed points
functor to 0→ I → I0 → 0 and computing homology gives the result immediately. We omit (c).

227 Proposition (Shapiro’s Lemma)
Let H be a subgroup of G and let M be an H-module. Then for any r ≥ 0, Hr(G, IndGH(N)) ∼=
Hr(H,N). In particular, Hr(G, IndG(M0)) = 0 for all r > 0.

Proof Let A be any H-module. We have AH ∼= HomR(Z, A) ∼= HomG(Z, IndGH(A)) ∼= IndGH(A). Now
let N → I• be an injective resolution. Then

0→ IndGH(N)→ IndGH(I•)

is injective. In fact, one can check that inducing an injective module preserves injectivity, so
IndGH(Ij) is injective. By the observation at the start of the proof, 0→ (I•)H is isomorphic to
0→ (IndGH(I•))G, so Hr(H,N) ∼= Hr(G, IndGH(N)).

For the final claim, Hr(G, IndG(M0)) ∼= Hr({e},M0) = 0 for all r > 0.

228 Aside
When r = 0, this argument is reasonable to do by hand. For higher r, it becomes a pain
to compute the relevant isomorphism explicitly because of the need to repeatedly induce the
injective resolution.

Shapiro’s lemma is used in many ways. We’ll explore the case of dimension shifting .

229 Definition
Let M be a G-module. Take M∗ := IndG{e}(M). From our definition of induced modules, M naturally
injects into M∗ (as the constant functions), so we have an exact sequence

0→M →M∗ → N → 0.
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Taking cohomology with coefficients in G gives a long exact sequence

0→M →M∗ → N → 0

· · ·
→ Hr(M)→ Hr(M∗)→ Hr(N)

→ Hr+1(M)→ Hr+1(M∗)→ · · ·

This allows for inductive proofs using Shapiro’s lemma when enough terms can be shown to cancel.

230 Definition
We next define cohomology via (inhomogenous) cochains . SetG0 := {e}, Cr(G,M) := {maps φ : Gr →
M}. Define boundary maps

dr : Cr(G,M)→ Cr+1(G,M)

φ 7→

(g1, . . . , gr+1) 7→ g1φ(g2, . . . , gr+1) +

r∑
j=1

(−1)jφ(g1, . . . , gr+1) + (−1)r+1)φ(g1, . . . , gr)

 .

The group of r- cocycles is Zr(G,M) := {φ ∈ Cr(G,M) : drφ = 0}, and the group of r-

coboundaries is Br(G,M) = im dr−1.

231 Proposition
dr ◦ dr−1 for all r and Hr(G,M) ∼= Zr(G,M)/Br(G,M).

232 Example
Let r = 1, so Z1(G,M) = {φ : G → M | g1φ(g2) − φ(g1g2) + φ(g2) = 0}. The constraint on φ is

equivalent to φ(g1g2) = g1φ(g2) + φ(g1), and such φ are referred to as crossed homomorphisms .

Setting g1 = g2 = e, we still get φ(e) = 0. This is surprisingly amenable to computation.

The coboundaries B1(G,M) = {φ : G→M | φ(g) = g(m)−m for some m ∈M}. These are called

principal crossed homomorphisms . If G acts trivially on M , then H1(G,M) = Hom(G,M).

233 Remark
H2(G,M) classifies extensions of G by M with a fixed action of G on M .

234 Example
Suppose G = 〈σ〉 is a cyclic group. Consider φ ∈ Z1(G,M), so φ(σi−1) = σi−1φ(σ) + φ(σi−1). Hence
φ is determined by φ(σ). If σn = e, then

0 = φ(σn) = σn−1φ(σ) + φ(σn−1) = · · ·
= (σn−1 + σn−2 + · · ·+ σ + e)φ(σ).

Hence φ(σ) = m ∈ kerNG, where NG denotes the norm map m 7→ (σn−1 + · · ·+ σ+ e)(m). We then

find H1(G,M) = kerNG/(σ − 1)(M).

We now define the connecting homomorphisms of long exact sequences in terms of cochains.

235 Definition
Let 0→M → N → P → 0 be a short exact sequence of G-modules. Let δr : Hr(G,P )→ Hr+1(G,M)

be defined as follows. For φ ∈ Zr(G,P ), lift it to φ̃ ∈ Cr(G,N). Then drφ̃ : Gr+1 → N , and in fact

we find the image of drφ̃ is in M . Hence φ 7→ drφ̃.
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Having defined group cohomology in several ways, today we’ll discuss its functorial properties.

236 Notation
Let G,G′ be groups, M a G-module, M ′ a G′-module.

237 Definition
We say homomorphisms α : G′ → G and β : M →M ′ are compatible homomorphisms if β(α(g′)m) =

g′(β(m)). (Here β is just an abelian group homomorphism.) This is precisely saying that viewing M
as a G′-module under induced by α, β is a G′-module morphism.

238 Example
If α = id, then this condition reduces precisely to requiring β is a G-module homomorphism.

239 Definition
If (α, β) are compatible, then we obtain a homomorphism of of complexes C•(G,M) → C•(G′,M ′)
given by φ 7→ β ◦ φ ◦ αr. This induces (group) homomorphisms Hr(G,M)→ Hr(G′,M ′) for all r ≥ 0.

240 Example
1. Shapiro’s lemma says Hr(G, IndGH(M))

∼→ Hr(H,M). Let α : H ↪→ G and β : IndGH(M) → M
by β(φ) := φ(e). These maps are in fact compatible:

h(φ(e)) = φ(h) = φ(eh) = (hφ)(e) = β(hφ).

In fact, the resulting map Hr(G,M)→ Hr(G′,M ′) above is the isomorphism from our proof of
Shapiro’s lemma. Going the other way is a bit irritating.

2. Let α : H ↪→ G and β : M →M be the identity. This gives the restriction map

Res : Hr(G,M)→ Hr(H,M),

which on cocycles is obtained precisely by restricting the domain. Alternatively, consider
α : G → G by the identity and β : M → IndGH(M) by m 7→ (g 7→ g · m). This gives a map
Hr(G,M)→ Hr(G, IndGH(M)). Composing this with the map from Shapiro’s lemma gives

Res : Hr(G,M)→ Hr(G, IndGH(M))→ Hr(H,M)

3. Let H E G, α : G→ G/H, β : MH ↪→M . This gives the inflation map

Inf : Hr(G/H,MH)→ Hr(G,M).

4. Fix g0 ∈ G. Consider αg0 : G → G given by conjugation: σ 7→ g0σg
−1
0 . Let βg0 : M → M by

m 7→ g−10 m. One can check these two maps are compatible, so they give rise to Hr(G,M) →
Hr(G,M), which is clearly an isomorphism. In fact, this is the identity, which we’ll show in a
moment.

As a consequence, αg, βg give a G-action on Hr(H,M) for H normal. The induced H-action will
be trivial, so the G-action factors through G/H, giving a natural G/H-action on Hr(H,M) for
any H E G.

To see that the induced map is the identity, consider r = 0, so MG → MG by m 7→ β(m) =
g−10 m = m. Now assume the result is true for r = n − 1 and apply dimension shifting to the
short exact sequence

0→M → IndG(M)→ N → 0

which yields a morphism of long exact sequences
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Hr−1(G, IndG(M)) Hr−1(G,N) Hr(G,M) 0

Hr−1(G, IndG(M)) Hr−1(G,N) Hr(G,M) 0

id id

Now Hr(G,M)→ Hr(G,M) must be the identity.

5. Let H ≤ G be a subgroup of finite index and let S be a set of left coset representatives.
Define a homomorphism NG/H : MH → MG given by m 7→

∑
s∈S sm. This is independent

of the representatives since M is fixed by H and is well-defined. We can think of this as
NG/H : H0(H,M)→ H0(G,M). As a general yoga, one should be able to extend things from

H0 to all Hr, and we may do so here. Define β : IndGH(M) → M by φ 7→
∑
s∈S sφ(s−1)). We

claim β is a G-module homomorphism:

β(gφ) =
∑
s∈S

s(gφ)(s−1) =
∑
s∈S

sφ(s−1g)

=
∑
s∈S

gg−1sφ(s−1g) = g
∑
s∈S

sφ(s−1)

= gβ(φ).

Hence we get a map Hr(G, IndGH(M))→ Hr(G,M). We want a corestriction map

Cor : Hr(H,M)→ HG,M),

so we use Shapiro’s lemma:

Hr(G, IndGH(M)) Hr(G,M)

Hr(H,M)

∼
Cor

Hence corestriction is easy to compute on H0, but because we have to use the inverse of the
Shapiro’s lemma map for r > 0, it’s annoying to compute in general. Geometrically, restriction is
roughly like pulling back, and corestriction is like pushing forward.

241 Proposition
Let H ≤ G, [G : H] = n, M a G-module. Then

Cor ◦Res: Hr(G,M)→ Hr(H,M)→ Hr(G,M)

is multiplication by [G : H].

242 Corollary
If G has finite order n, then nHr(G,M) = 0 for all r > 0.

Proof Multiplication by n factors through Hr({e},M) = 0.

243 Corollary
If G is finite and M is a finitely generated abelian group, then Hr(G,M) for r > 0 is finite.

Proof It’s annihilated by n by the first corollary, and from cocycles it is clearly finitely
generated, so it must in fact be finite.

244 Corollary
If G is finite and Gp is a p-Sylow subgroup, then

Res: Hr(G,M)→ Hr(Gp,M)

is injective on the p-primary component.
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Proof This follows from the fact that [G : Gp] is relatively prime to p.

Proof Consider

Cor ◦Res: Hr(G,M) Hr(H,M) Hr(G,M)

Hr(G, IndGH(M))

m 7→(g 7→gm)
∼

φ7→
∑
s∈S sφ(s

−1)

The composite is mercifully nice:

m 7→ (φm(g 7→ gm)) 7→
∑
s∈S

φm(s−1)

=
∑
s∈S

ss−1m =
∑
s∈S

m = [G : H]m.

245 Theorem (Inflation-Restriction Exact Sequence)
Let H E G, M a G-module, r > 0. Assume that Hi(H,M) = 0 for all 0 < i < r. Then

0 Hr(G/H,MH) Hr(G,M) (Hr(H,M))G/H

Hr+1(G/H,MH) Hr+1(G,M)

Inf Res

Trans

Inf

is exact, where Trans : Hr(H,M)G/H → Hr+1(G/H,MH) is the trangression map.

Proof We will not define the transgression map, which is more involved to define than corestriction.
So, we will only prove pieces. Let r = 1 and check exactness at H1(G,M). Let φ ∈ Z1(G,M)
be such that φ|H ∈ B1(G,M), i.e. φ(h) = hm0−m0 for some m0 ∈M independent of h. Define

φ′(g) := φ(g) − (gm0 − m0), so φ(h) = 0 for all h ∈ H. Further define φ̃ : G/H → MH by

φ̃(gH) := φ′(g). This is well-defined using the cocycle condition.
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