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Abstract. We give what is arguably a simple (though certainly not elemen-

tary, cf. [Sch]) proof of the Riemann Hypothesis for (projective, smooth, geo-
metrically connected) curves and hypersurfaces over finite fields, by an argu-

ment which reduces us to checking a few examples.

1. The rules of the game

We give ourselves some basic facts about `-adic cohomology. We then combine
them with an incarnation of Deligne’s breakthrough idea in his Weil I paper, his
transposition to the `-adic context of Rankin’s “squaring” method.

2. Deligne’s version of the Rankin method

Let U0/Fq be an affine, smooth, geometrically connected curve. Ignoring base
points, the open curve U0 has a profinite fundamental group, πarith1 := π1(U0), its
extension of scalars U/Fq has a profinite fundamental group πgeom1 := π1(U), and
we have a short exact sequence

1→ πgeom1 → πarith1 → Gal(Fq/Fq)→ 1.

An `-adic local system (also called a lisse Q`-sheaf) F on U0 is simply a continuous,
finite-dimensional Q`-representation of πarith1 .

For each closed point ℘ of U0 we have an element Frob℘ in πarith1 , well defined
up to conjugacy. So it makes sense to form the reversed characteristic polyno-
mial det(1 − TFrob℘|F) of its action in the given representation. The L function

L(U0/Fq,F , T ) is the element of 1 + TQ`[[T ]] defined by the Euler product

L(U0/Fq,F , T ) :=
∏

closed points ℘

1

det(1− T deg(℘)Frob℘|F)
.

Suppose now and henceforth that the prime ` is not the characteristic p of Fq.
Grothendieck’s theory allows one to speak of the cohomology groups Hi

c(U,F), on
which Gal(Fq/Fq) operates. These are finite dimensional Q` vector spaces, which
vanish for i outside the range [1, 2]. Of the two possibly nonzero groups, we know
one of them exactly: H2

c (U,F) is the Tate twist (F)πgeom1
(−1) of the coinvariants

(F)πgeom1
, the largest quotient of F on which πgeom1 acts trivially. What this means

concretely is that we have the formula

det(1− TFrobq|H2
c (U,F)) = det(1− qTFrobq|(F)πgeom1

).

Grothendieck’s cohomological formula for the L function is

L(U0/Fq,F , T ) =
det(1− TFrobq|H1

c (U,F))

det(1− TFrobq|H2
c (U,F))

,

1
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cf. [Gr-Lef, Thm. 5.1], [Ka-GKM, 2.3.2].
The local systems we are interested in are the Ri := Rif?Q` for proper smooth

morphisms f : X → U0. A fundamental compatibility for these Ri is this, cf.
[SGA 4, Exp. XV, Cor. 2.2]. Let ℘ be a closed point of U0. The residue field
F℘ at ℘ is the field FN℘ with N℘ elements. The fibre of f over ℘ is a proper

smooth scheme X0,℘/FN℘, whose extension of scalars to FN℘ we denote X℘. The
fundamental compatibility is that

det(1− TFrob℘|Ri) = det(1− TFrobN℘|Hi(X℘,Q`)).

We now come to two notions due to Deligne. Given a field embedding ι : Q` ↪→ C,
an `-adic local system F on U0 is said be ι-pure of some integer weight w if, for
all closed points ℘ of U0, all the eigenvalues of Frob℘ on F have, via ι, complex

absolute value N℘w/2. An `-adic local system F is said to be ι-real if, via ι, for all
closed points ℘ of U0, the reversed characteristic polynomial det(1 − TFrob℘|F)
has coefficients in R, the field of real numbers.

By means of the identity

1/det(1− TFrob℘|F) = exp(
∑
n≥1

Trace(Frobn℘|F)Tn/n),

we see that ι-reality is the condition that for each closed point ℘ of U0, and each
n ≥ 1, ι(Trace((Frobn℘|F)) is real. The key point now is that if F ι-real, then any

even tensor power F⊗2k of F is not only ι-real, but each of its Euler factors

1/ det(1− T deg(℘)Frob℘|F⊗2k) = exp(
∑
n≥1

(Trace(Frobn℘|F))2kTn deg(℘)/n)

is a power series, via ι, in 1 + TR≥0[[T ]], i.e., it has constant term 1 and all its
coefficients are nonnegative real numbers.

Theorem 2.1. (Deligne, compare [De-Weil I, 3.2] and [De-Weil II, 1.5.2]) Let F be
an `-adic local system on U0 which is ι-real. Suppose that every even tensor power
F⊗2k of F satisfies the following condition: every eigenvalue β2k of Frobq on the
coinvariants ((F)⊗2k)πgeom1

has |ι(β2k)| ≤ 1. Then for each closed point ℘, every

eigenvalue αi,℘ of Frob℘ on F has |ι(αi,℘)| ≤ 1.

Proof. From the Euler product expression for the L-function of F⊗2k, we see that,
via ι,

(1) The power series for the L-function has nonnegative real coefficients.
(2) The power series of each Euler factor 1/ det(1 − T deg(℘)Frob℘|F⊗2k) has

nonnegative real coefficients.
(3) The power series for the L-function dominates, coefficient by coefficient,

the power series of each Euler factor 1/ det(1− T deg(℘)Frob℘|F⊗2k).

By the hypothesis on coinvariants, the denominator in the cohomological expression
of the L-function of F⊗2k, namely

det(1− qTFrobq|((F)⊗2k)πgeom1
),

has all its reciprocal zeros of absolute value, via ι, at most q. So the L-function is
certainly, via ι, holomorphic in |T | < 1/q.

Choose a closed point ℘ of U0. By the coefficientwise domination (3) above, it
follows that each Euler factor 1/det(1−T deg(℘)Frob℘|F⊗2k) must be holomorphic
in |T | < 1/q. This in turn means that each eigenvalue of Frob℘|F⊗2k has, via
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ι, absolute value ≤ qdeg(℘). But if α is an eigenvalue of Frob℘|F , then α2k is an

eigenvalue of Frob℘|F⊗2k. Thus we get the inequality |ι(α)2k| ≤ qdeg(℘), for each
k ≥ 1. Thus we get

|ι(α)| ≤ qdeg(℘)/2k

for every integer k ≥ 1. Letting k →∞, we get

|ι(α)| ≤ 1.

�

Corollary 2.2. Let F be an `-adic local system on U0 which is ι-real. Suppose that
for some closed point ℘0, every eigenvalue αi,℘0 of Frob℘0 on F has |ι(αi,℘0)| ≤ 1.
Then for every closed point ℘, every eigenvalue αi,℘ of Frob℘ on F has |ι(αi,℘)| ≤ 1.

Proof. In view of the theorem, it suffices to show that for every tensor power
F⊗2k of F , every eigenvalue β2k of Frobq on the coinvariants ((F)⊗2k)πgeom1

has

|ι(β2k)| ≤ 1. For d := deg(℘0), βd2k is an eigenvalue of (Frobq)
d on the coinvariants

((F)⊗2k)πgeom1
. Viewing these coinvariants as a quotient representation of (F)⊗2k,

the action of (Frobq)
d is just the action of Frob℘0 on this quotient. In other

words, βd2k is among the eigenvalues of Frob℘0 on (F)⊗2k, cf. [De-Weil II, 1.4.4].
These last eigenvalues are 2k-fold products of eigenvalues of Frob℘0

on F , each
of which has absolute value, via ι, ≤ 1. Thus the same estimate holds for each
eigenvalue of Frob℘0

on (F)⊗2k. Since βd2k is among these, we get |ι(βd2k)| ≤ 1,
hence |ι(β2k)| ≤ 1. �

3. RH for curves

Fix a characteristic p > 0 and a genus g ≥ 1. There are standard examples of
(projective, smooth, geometrically connected) curves of genus g over the prime field
Fp for which RH is “easy”, in the sense that, at least over a suitable finite extension
Fq/Fp, the Frobenius eigenvalues on H1 are explicit Jacobi sums or Gauss sums,

which are well known to have the correct absolute value q1/2. For example, if p 6= 2,
we can take the (complete nonsingular model of the) hyperelliptic curve

y2 = x2g+1 − 1,

if p does not divide 2g + 1, or

y2 = x2g+2 − 1,

if p does divides 2g+ 1. These examples give rise to Jacobi sums. In characteristic
two, we have the (complete nonsingular model of) the curve

y2 − y = x2g+1,

which gives rise to Gauss sums.
We have the following “connect by curves” lemma.

Lemma 3.1. Suppose given two (projective, smooth, geometrically connected) curves
of genus g ≥ 1 over Fq, say C0 and C1. Then there exists a finite extension E/Fq,
an affine, smooth, geometrically connected curve U0/E, a proper smooth morphism
f : C → U0 with geometrically connected fibres which are curves of genus g, and
two E-valued points u0, u1 ∈ U0(E) such that the fibres Cui/E, for i = 0, 1, are
E-isomorphic to the given curves Ci ⊗Fq E/E.
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Proof. For genus one, choose an integer n ≥ 4 prime to p. Extending scalars,
we may assume first that both of the given curves have a rational point. Then the
curves become groupschemes, with a chosen rational point as origin. Over a further
finite extension E/Fq, we may choose a point of order n on each curve. Then we
use the modular curve Y1(n)/E as our U0, and the universal family it carries as our
f : C → U0.

For g ≥ 2, the moduli space H0
g/Fp classifying tricanonical embedded genus g

curves is quasiprojective, smooth and geometrically connected, cf. [De-Mum, &3]
and [Mum, Ch. 5,&2], and every genus g curve over an Fq underlies an Fq-valued
point of H0

g/Fp. Here it is enough to pull back the universal family over H0
g/Fp to a

spacefilling curve π : U0 → H0
g which is bijective on Fq-points, cf. [Ka-SFC, Thm.

8] and [Ka-SFC Corrections]. [We could instead use the moduli space Mg,3K/Fp
classifying genus g curves together with a basis of H0(C, (Ω1)⊗3), which is a Gm
bundle overH0

g/Fp, so is itself quasiprojective, smooth and geometrically connected,
cf. [Ka-Sar, 10.6.5].]

�

Theorem 3.2. Let C0/Fq be a (projective, smooth, geometrically connected) curve
of genus g ≥ 1 over Fq. Then RH holds for C0/Fq.

Proof. Choose a genus g curve C1/Fq for which we know RH. Making a finite
extension of scalars if necessary, connect C0 to C1 in a one parameter family f :
C → U0 over an affine, smooth, geometrically connected curve U0/q. We will prove
that the local system R1f?Q` on U0 is pure of weight one, i.e., that RH holds for
every curve in the family, in particular it holds for C0. Choose a square root q1/2

of q in Q`, so that we can speak of the one half Tate-twisted local system

F := R1f?Q`(1/2),

on which Frob℘ is now divided by (q1/2)deg(℘). For any ι, F is ι-real; indeed

forR1f?Q` the traces of all powers of all Frob℘ are integers. Because RH holds for
C1, Frobu1

|F has all eigenvalues of absolute value one (via any ι). So by Corollary
2.2, all eigenvalues of any Frob℘ have, via ι, absolute value ≤ 1. This means that on

R1f?Q` itself, all eigenvalues of any Frob℘ have, via ι, absolute value ≤ N℘1/2. But
the functional equation tells us that α 7→ N℘/α is an involution of the eigenvalues,
so in fact this inequality is an equality; R1f?Q` is ι-pure of weight one for every
ι. �

4. The persistence of purity

We have the following variant of Corollary 2.2.

Theorem 4.1. Let F be an `-adic local system on U0 which is ι-real. Suppose that
for some closed point ℘0, every eigenvalue αi,℘0 of Frob℘0 on F has |ι(αi,℘0)| = 1.
Then for every closed point ℘, every eigenvalue αi,℘ of Frob℘ on F has |ι(αi,℘)| = 1,
i.e., F is ι-pure of weight zero as soon as some Frob℘0

is ι-pure of weight zero.

Proof. By Corollary 2.2, each Frob℘ has all its eigenvalues of absolute value, via
ι, ≤ 1. So it will have all its eigenvalues of absolute value, via ι, = 1, if and only
if det(Frob℘) has, via ι, absolute value = 1. So we are reduced to proving that
det(F) is ι-pure of weight zero if det(Frob℘0

) is. To prove this purity, we may
replace the rank one local system det(F) by any tensor power (det(F))⊗n, n ≥ 1,
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of itself. It then suffices to apply the following lemma to the rank one local system
det(F), and compute the ι-absolute value of the α there. �

Lemma 4.2. Let L be an `-adic local system on U0 of rank one. Then some tensor

power L⊗n of L is geometrically constant, i.e., there exists α ∈ Q`
×

such that

Frob℘|L⊗n = αdeg(℘).

Proof. Because we know RH for the complete nonsingular model of U0, we know
that in H1

c (U,Q`), every eigenvalue of Frobq has absolute value ≤ q1/2 for every ι.

By duality, every eigenvalue of Frobq on H1(U,Q`) has absolute value ≥ q1/2. In

particular, 1 is not an eigenvalue of of Frobq on H1(U,Q`).
Now consider a rank one local system L on U0. It is a homomorphism from

πarith1 := π1(U0) to the group O×Q` of `-adic units in Q`. Because its image is

compact, this homomorphism lands in O×Eλ , for some finite extension Eλ/Q`. The

residue field Fλ ofOEλ is finite, so replacing L by its n’th tensor power for n = #F×λ ,
we reduce to the case where the homomorphism in question takes values in the
group 1 +λOEλ of principal units. Now raising to the `’th power, we reduce to the
case where our homomorphism takes values in the group 1 + `λOEλ . This group
is isomorphic, by the logarithm, to the additive group `λOEλ , which is a subgroup
of Eλ ⊂ Q`. Thus we have a homomorphism from πarith1 := π1(U0) to Q`. Its
restriction to πgeom1 := π1(U) is then an element of H1(U,Q`) which is fixed by
Frobq. But as remarked above, there are no such nonzero elements. Therefore the
corresponding tensor power of our L is trivial when restricted to πgeom1 . This means
exactly that it is of the asserted form. �

5. RH for hypersurfaces

For X0 ⊂ Pn+1 a smooth hypersurface of degree d and dimension n ≥ 1 over Fq,
and X/Fq its extension of scalars to Fq, we define Primn(X,Q`) to be Hn(X,Q`)
if n is odd, and to be Hn(X,Q`)/ < Ln/2 >, for < Ln/2 > the one-dimensional
span of the n/2 power of the hyperplane class L ∈ H2(X,Q`).

One knows (weak Lefschetz for X ⊂ Pn+1) that for i < n, the restriction
map gives an isomorphism Hi(Pn,Q`) ∼= Hi(X,Q`). Thus for i < n, we have
Hi(X,Q`) = 0 unless i is even, in which case Hi(X,Q`) = Q`(−i/2), the one di-
mensional space on which Frobq acts as qi/2. By Poincaré duality on X, these same
statements hold for Hi(X,Q`) for i in the range n < i ≤ 2n. So for X0/Fq, its Zeta
function has the form

P (T )/

n∏
i=0

(1− qiT ), n odd,

1/P (T )

n∏
i=0

(1− qiT ), n even,

with
P (T ) = det(1− TFrobq|Primn(X,Q`)).

From the formula for Zeta, we see that P (T ) has integer coefficients. Thus RH for
X0/Fq is the assertion that Primn(X,Q`), or equivalently Hn(X,Q`), is ι-pure of
weight n (for some ι, or equivalently for every ι, since the only possible ambiguity
in what ι does to our characteristic polynomials is which square root of q it chooses,
and even this is only a problem when n is odd). The functional equation asserts
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that α 7→ qn/α is an involution on the eigenvalues of Frobq, so RH is equivalent to
the assertion that every eigenvalue of Frobq on Primn(X,Q`), or equivalently on

Hn(X,Q`), has ι-absolute value ≤ qn/2. If we extend scalars from Fq to some Fqe ,
we simply replace Frobq by its e’th power, so it is enough to prove RH after such
an extension of scalars.

From the point count formula

#X0(Fqr ) = #Pn(Fqr ) + (−1)nTrace((Frobq)
r|Primn(X,Q`)),

we see the well known equivalence of RH for X0/Fq with the existence of an estimate

#X0(Fqr ) = #Pn(Fqr ) +O(qrn/2)

as r ≥ 1 varies.

Theorem 5.1. Given (p, d, n), suppose there exists a projective smooth hypersur-
face X0/Fp of dimension n and degree d for which RH holds. Then for every finite
extension Fq/Fp, and every projective smooth hypersurface X1/Fq of dimension n
and degree d, RH holds.

Proof. Say we wish to prove RH for X1/Fq. Denote by X0/Fq the extension of
scalars from Fp to Fq of the X0/Fp for which we know RH. Choose homogeneous
equations F0 and F1 for these two hypersurfaces. Then use the one parameter family
tF0 +(1−t)F1 over the dense open set of the affine t-line where this equation defines
a nonsingular hypersurface, and apply Theorem 4.1 to its Rnf?(Q`)(n/2). �

6. Example hypersurfaces with RH

When the degree d is prime to p, then as Weil showed, RH holds for the Fermat
hypersurface of equation

∑n+2
i=1 X

d
i = 0. So Theorem 5.1 gives RH when the degree

d is prime to p.
Suppose now that p divides d. We first treat the special case d = 2, for which

p = 2 is the only problematic prime. If n is odd, then Primn vanishes, so there is
nothing to prove. If n = 2m is even, then Primn is one-dimensional. We take as
example the hypersurface of equation

∑m+1
i=1 XiXm+1+i = 0, which over any finite

field Fq is projective and smooth with #P 2m(Fq) + qm rational points (i.e., Primn

in this case is Q`(−n/2), on which Frobq acts as qm = qn/2).
Suppose now that d ≥ 3 and that p divides d. Then Gabber’s hypersurface

Xd
1 +

n+1∑
i=1

XiX
d−1
i+1 = 0

is nonsingular in characteristic Fp, cf. [Ka-Sar, 11.4.6].

Proposition 6.1. If d ≥ 3 and p|d, Gabber’s hypersurface over Fp satisfies RH.

We will prove this in the next two sections, using Delsarte’s method.

7. Delsarte’s method and RH

Suppose we are given a homogeneous form F (X1, ..., Xn+2) over Fq whose van-
ishing defines a smooth hypersurface H0 in projective space Pn+1. Denote by
Haff

0 ⊂ An+2 the affine hypersurface defined by the same equation. Then we have
the elementary relation, for each finite extension E/Fq, with qE := #E,

#Haff
0 (E) = 1 + (qE − 1)#H0(E).
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As noted above, H0 satisfies RH if and only if, as E/Fq varies over all finite exten-
sions, we have

#H0(E) = #Pn(E) +O(q
n/2
E ).

or, equivalently, if and only if, as as E/Fq varies over all finite extensions, we have

#Haff
0 (E) = qn+1

E +O(q
(n+2)/2
E ).

We will show that Gabber’s hypersurface Xd
1 +

∑n+1
i=1 XiX

d−1
i+1 = 0 satisfies this

last estimate, and hence satisfies RH.
For this, we need some preliminaries. Fix an integer N ≥ 1. Given an N -

tuple W = (w1, ..., wN ) of nonnegative integers, we write XW for the N -variable

monomial
∏N
i=1X

wi
i . We say that a nonempty collection of N -variable monomials

{XWv}v is linearly independent if the vectors {Wv}v are linearly independent in

QN . [Notice that in both Gabber’s homogeneous form Xd
1 +

∑n+1
i=1 XiX

d−1
i+1 and

the Fermat form
∑n+2
i=1 X

d
i in N = n + 2 variables, the monomials that occur are

linearly independent.]

Theorem 7.1. Let N ≥ 1, and let XW1 , ..., XWN be N linearly independent mono-
mials in N variables. Suppose that each variable Xi occurs in at most two of these
monomials. Then for the affine hypersurface V of equation

∑
iX

Wi = 0 in AN ,
and variable finite fields Fq, we have

#V (Fq) = qN−1 +O(qN/2).

We will prove this by counting, for each subset S ⊂ [1, 2, ..., N ], the points where
the variables Xs, s ∈ S take nonzero values, and the other variables vanish. The
key result, essentially due to Delsarte [Dels], is this.

Theorem 7.2. (Delsarte) Let N > k ≥ 0, and suppose given N − k linearly
independent monomials XW1 , ..., XWN−k in N variables. Consider the hypersurface
V :

∑
iX

Wi = 0 in AN . Denote by V ? ⊂ V the open set of V where all variables
are invertible (i.e., V ? is the hypersurface in GNm defined by

∑
iX

Wi = 0). Then
for variable finite fields Fq, we have

#V ?(Fq) =
(q − 1)N

q
+O(q(N+k)/2).

Granting the truth of Delsarte’s theorem, let us prove Theorem 7.1. Thus
XW1 , ..., XWN are N linearly independent monomials in N variables. If we put
all but d ≥ 1 of the variables to 0, say Xd+1, ..., XN , some of the monomials XWi

will vanish (those in which any of Xd+1, ..., XN occurs), and the remaining ones (if
any), those which involved only X1, ..., Xd, will be linearly independent monomials
in those d variables.

For each subset S ⊂ [1, ..., N ], we denote by V ?(S)(Fq) the set of points on V
for which precisely the variables Xs, s ∈ S take nonzero values.

Lemma 7.3. For each subset S ⊂ [1, ..., N ], we have

#V ?(S)(Fq) =
(q − 1)#S

q
+O(qN/2).

Proof. If S = ∅, V ?(∅)(Fq) consists of one point, namely (0, ..., 0), and the assertion

is trivially true with the O(qN/2) term alone.
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If 1 ≤ #S ≤ N/2, there are at most #S ≤ N/2 variables, each of which assumes
at most q− 1 values. So the assertion is trivially true with the O(qN/2) term alone.

If #S > N/2, we have set fewer than half (namely N −#S) of the variables to
zero. As each variable occurs in at most two of the monomials, we have killed at
most 2(N−#S) variables, so we are left with at least N−2(N−#S) monomials, i.e.,
we have at least 2#S −N monomials. The number of surviving monomials is thus
at least #S−(N−#S). Applying Theorem 7.2 (with its N and k now #S and k ≤
(N −#S), the error term O(q(N+k)/2) in Theorem 7.2 is now O(q(#S+(N−#S))/2),
i.e. it is O(qN/2). �

With this lemma in hand, we prove Theorem 7.1. Indeed, we have

#V (Fq) =
∑

S⊂[1,2,...,N ]

#V ?(S)(Fq) =

= (
∑

S⊂[1,2,...,N ]

(q − 1)#S

q
) +O(qN/2).

The numerator of the sum is just the binomial expansion of ((q − 1) + 1)N .

8. proof of Delsarte’s Theorem 7.2

We view the N − k linearly independent monomials XWi in N variables as an
f.p.p.f. surjective homomorphism of split tori over Z,

φ : GNm → GN−km , X = (X1, ..., XN ) 7→ (XW1 , ..., XWN−k).

We will prove the following (slightly more general) version of Theorem 7.2.

Theorem 8.1. Let N > k ≥ 0, and suppose given an f.p.p.f. surjective homomor-
phism of split tori over Z,

φ : GNm → GN−km .

Denote by
σ : GN−km → A1

the function “sum of the coordinates”. Then for variable finite fields Fq, we have
the estimate

#{x ∈ GNm(Fq)|σ(φ(x)) = 0} =
(q − 1)N

q
+O(q(N+k)/2).

Proof. The homomorphism φ corresponds to the injective group homomorphism
φ∨ : ZN−k ⊂ ZN which sends the i’th basis vector of the source to Wi. The kernel
Ker(φ) is the group whose character group is the cokernel of φ∨. This cokernel is
a finitely generated abelian group, say M , with M ⊗ Q of dimension k. Thus M
sits in a short exact sequence

0→Mtors →M →M/Mtors
∼= Zk → 0,

with Mtors a finite abelian group. Dually, we have an f.p.p.f. short exact sequence
of groupschemes over Z

0→ Gkm → Ker(φ)→ µMtors
→ 0,

with µMtors
:= Hom(Mtors,Gm) a finite flat groupscheme of multiplicative type.

The composite closed immersion

Gkm ⊂ Ker(φ) ⊂ GNm
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sits in a short exact sequence

0→ Gkm → GNm
π→ GN−km → 0.

By Hilbert’s Theorem 90, this gives a short exact sequence of Fq-valued points

0→ Gkm(Fq)→ GNm(Fq)
π→ GN−km (Fq)→ 0.

Our homomorphism φ : GNm → GN−km factors through this quotient map π as

GNm
π //

φ

""

GN−km

φ

��

GN−km

So

#{x ∈ GNm(Fq)|σ(φ(x)) = 0} = (q − 1)k#{x ∈ GN−km (Fq)|σ(φ(x)) = 0}.

It remains to treat the case of the f.p.p.f. surjective homomorphism

φ : GN−km → GN−km ,

which is a “k = 0” case of the theorem. For then we will have

#{x ∈ GN−km (Fq)|σ(φ(x)) = 0} =
(q − 1)N−k

q
+O(q(N−k)/2),

and multiplying through by (q − 1)k gives the assertion.
Thus we are reduced to treating universally the case k = 0 of the theorem. In

this case, we have an f.p.p.f. short exact sequence

0→ µMtors
→ GNm

φ→ GNm → 0,

which gives a four term exact sequence of finite groups

0→ µMtors(Fq)→ GNm(Fq)
φ→ GNm(Fq)→ H1(Gal(Fq/Fq), µMtors(Fq))→ 0.

We rewrite this simply as

0→ Ker → GNm(Fq)
φ→ GNm(Fq)→ Coker → 0.

In terms of coordinates (t1, ..., tN ) on the target GNm(Fq), we have

#{x ∈ GNm(Fq)|σ(φ(x)) = 0} =

= #Ker#{t ∈ GNm(Fq)|
∑
i

ti = 0 and t ∈ φ(GNm(Fq))}.

We count the set {t ∈ GNm(Fq)|
∑
i ti = 0 and t ∈ φ(GNm(Fq))} as follows. To

determine if a point t ∈ GNm(Fq) lies in the image φ(GNm(Fq)), i.e. to see if its
image in Coker vanishes, we sum all C×-valued characters of Coker over t; we
will get #Coker if t lies in the image, and zero otherwise. [We view characters of
Coker as characters of GNm(Fq) which are trivial on the subgroup φ(GNm(Fq)).] But
#Ker = #Coker, so we have

#{x ∈ GNm(Fq)|σ(φ(x)) = 0} =

=
∑

t∈GNm(Fq)|
∑
i ti=0

∑
χ∈Coker∨

χ(t).
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For t ∈ GNm(Fq), we determine whether or not
∑
i ti = 0 by choosing a nontrivial

C×-valued additive character ψ of Fq, and using the fact that
∑
a∈Fq ψ(a

∑
i ti) will

be q if
∑
i ti = 0, and zero if not. Thus our count is

= (1/q)
∑
a∈Fq

∑
χ∈Coker∨

∑
t∈GNm(Fq)

χ(t)ψ(a
∑
i

ti).

The a = 0 term is (1/q)
∑
χ∈Coker∨

∑
t∈GNm(Fq) χ(t), and the innermost sum van-

ishes except for χ = 1. So the a = 0 term is (1/q)(q − 1)N . For each a 6= 0 term,
and each χ, the sum

∑
t∈GNm(Fq) χ(t)ψ(a

∑
i ti) is a product of N Gauss sums, some

possibly trivial, so this sum has absolute value at most qN/2. The number of such
summands is (q − 1)#Coker, so we get the explicit estimate

|#{x ∈ GNm(Fq)|σ(φ(x)) = 0} − (q − 1)N

q
| ≤ q − 1

q
(#Coker)qN/2.

As #Coker = #Ker ≤ #Mtors, we have the asserted uniform estimate.
�
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