A NOTE ON RH FOR CURVES AND HYPERSURFACES OVER FINITE FIELDS

NICHOLAS M. KATZ

Abstract

We give what is arguably a simple (though certainly not elementary, cf. [Sch]) proof of the Riemann Hypothesis for (projective, smooth, geometrically connected) curves and hypersurfaces over finite fields, by an argument which reduces us to checking a few examples.

1. The rules of the game

We give ourselves some basic facts about ℓ-adic cohomology. We then combine them with an incarnation of Deligne's breakthrough idea in his Weil I paper, his transposition to the ℓ-adic context of Rankin's "squaring" method.

2. Deligne's version of the Rankin method

Let U_{0} / \mathbb{F}_{q} be an affine, smooth, geometrically connected curve. Ignoring base points, the open curve U_{0} has a profinite fundamental group, $\pi_{1}^{\text {arith }}:=\pi_{1}\left(U_{0}\right)$, its extension of scalars $U / \overline{\mathbb{F}_{q}}$ has a profinite fundamental group $\pi_{1}^{\text {geom }}:=\pi_{1}(U)$, and we have a short exact sequence

$$
1 \rightarrow \pi_{1}^{\text {geom }} \rightarrow \pi_{1}^{\text {arith }} \rightarrow \operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right) \rightarrow 1
$$

An ℓ-adic local system (also called a lisse $\overline{\mathbb{Q}_{\ell}}$-sheaf) \mathcal{F} on U_{0} is simply a continuous, finite-dimensional $\overline{\mathbb{Q}_{\ell}}$-representation of $\pi_{1}^{\text {arith }}$.

For each closed point \wp of U_{0} we have an element Frob $_{\wp}$ in $\pi_{1}^{\text {arith }}$, well defined up to conjugacy. So it makes sense to form the reversed characteristic polynomial $\operatorname{det}\left(1-T F r o b_{\wp} \mid \mathcal{F}\right)$ of its action in the given representation. The L function $L\left(U_{0} / \mathbb{F}_{q}, \mathcal{F}, T\right)$ is the element of $1+T \overline{\mathbb{Q}_{\ell}}[[T]]$ defined by the Euler product

$$
L\left(U_{0} / \mathbb{F}_{q}, \mathcal{F}, T\right):=\prod_{\text {closed points } \wp} \frac{1}{\operatorname{det}\left(1-T^{\operatorname{deg}(\wp)} \text { Frob }_{\wp} \mid \mathcal{F}\right)}
$$

Suppose now and henceforth that the prime ℓ is not the characteristic p of \mathbb{F}_{q}. Grothendieck's theory allows one to speak of the cohomology groups $H_{c}^{i}(U, \mathcal{F})$, on which $\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right)$ operates. These are finite dimensional $\overline{\mathbb{Q}_{\ell}}$ vector spaces, which vanish for i outside the range $[1,2]$. Of the two possibly nonzero groups, we know one of them exactly: $H_{c}^{2}(U, \mathcal{F})$ is the Tate twist $(\mathcal{F})_{\pi_{1}^{\text {geom }}}(-1)$ of the coinvariants $(\mathcal{F})_{\pi_{1}^{\text {geom }}}$, the largest quotient of \mathcal{F} on which $\pi_{1}^{\text {geom }}$ acts trivially. What this means concretely is that we have the formula

$$
\operatorname{det}\left(1-\operatorname{TFrob}_{q} \mid H_{c}^{2}(U, \mathcal{F})\right)=\operatorname{det}\left(1-q \operatorname{TFrob}_{q} \mid(\mathcal{F})_{\pi_{1}^{g e o m}}\right)
$$

Grothendieck's cohomological formula for the L function is

$$
L\left(U_{0} / \mathbb{F}_{q}, \mathcal{F}, T\right)=\frac{\operatorname{det}\left(1-\text { TFrob }_{q} \mid H_{c}^{1}(U, \mathcal{F})\right)}{\operatorname{det}\left(1-\text { TFrob }_{q} \mid H_{c}^{2}(U, \mathcal{F})\right)}
$$

cf. [Gr-Lef, Thm. 5.1], [Ka-GKM, 2.3.2].
The local systems we are interested in are the $R^{i}:=R^{i} f_{\star} \mathbb{Q}_{\ell}$ for proper smooth morphisms $f: \mathcal{X} \rightarrow U_{0}$. A fundamental compatibility for these R^{i} is this, cf. [SGA 4, Exp. XV, Cor. 2.2]. Let \wp be a closed point of U_{0}. The residue field \mathbb{F}_{\wp} at \wp is the field $\mathbb{F}_{\mathbb{N} \wp}$ with \mathbb{N}_{\wp} elements. The fibre of f over \wp is a proper smooth scheme $X_{0, \wp} / \mathbb{F}_{\mathbb{N} \wp}$, whose extension of scalars to $\overline{\mathbb{F}_{\mathbb{N} \wp}}$ we denote X_{\wp}. The fundamental compatibility is that

$$
\operatorname{det}\left(1-\operatorname{TFrob}_{\wp} \mid R^{i}\right)=\operatorname{det}\left(1-\operatorname{TFrob}_{\mathbb{N}_{\wp}} \mid H^{i}\left(X_{\wp}, \mathbb{Q}_{\ell}\right)\right) .
$$

We now come to two notions due to Deligne. Given a field embedding $\iota: \overline{\mathbb{Q}_{\ell}} \hookrightarrow \mathbb{C}$, an ℓ-adic local system \mathcal{F} on U_{0} is said be ι-pure of some integer weight w if, for all closed points \wp of U_{0}, all the eigenvalues of $\operatorname{Frob}_{\wp}$ on \mathcal{F} have, via ι, complex absolute value $\mathbb{N} \wp^{w / 2}$. An ℓ-adic local system \mathcal{F} is said to be ι-real if, via ι, for all closed points \wp of U_{0}, the reversed characteristic polynomial $\operatorname{det}\left(1-T F r o b_{\wp} \mid \mathcal{F}\right)$ has coefficients in \mathbb{R}, the field of real numbers.

By means of the identity

$$
1 / \operatorname{det}\left(1-\operatorname{TFrob}_{\S} \mid \mathcal{F}\right)=\exp \left(\sum_{n \geq 1} \operatorname{Trace}\left(\operatorname{Frob}_{\wp}^{n} \mid \mathcal{F}\right) T^{n} / n\right),
$$

we see that ι-reality is the condition that for each closed point \wp of U_{0}, and each $n \geq 1, \iota\left(\operatorname{Trace}\left(\left(\operatorname{Frob} b_{\S}^{n} \mid \mathcal{F}\right)\right)\right.$ is real. The key point now is that if $\mathcal{F} \iota$-real, then any even tensor power $\mathcal{F}^{\otimes 2 k}$ of \mathcal{F} is not only ι-real, but each of its Euler factors

$$
1 / \operatorname{det}\left(1-T^{\operatorname{deg}(\wp)} \operatorname{Frob}_{\wp} \mid \mathcal{F}^{\otimes 2 k}\right)=\exp \left(\sum_{n \geq 1}\left(\operatorname{Trace}\left(\operatorname{Frob}_{\wp}^{n} \mid \mathcal{F}\right)\right)^{2 k} T^{n \operatorname{deg}(\wp)} / n\right)
$$

is a power series, via ι, in $1+T \mathbb{R}_{\geq 0}[[T]]$, i.e., it has constant term 1 and all its coefficients are nonnegative real numbers.

Theorem 2.1. (Deligne, compare [De-Weil I, 3.2] and [De-Weil II, 1.5.2]) Let \mathcal{F} be an ℓ-adic local system on U_{0} which is ι-real. Suppose that every even tensor power $\mathcal{F}^{\otimes 2 k}$ of \mathcal{F} satisfies the following condition: every eigenvalue $\beta_{2 k}$ of Frob_{q} on the coinvariants $\left((\mathcal{F})^{\otimes 2 k}\right)_{\pi_{1}^{\text {geom }}}$ has $\left|\iota\left(\beta_{2 k}\right)\right| \leq 1$. Then for each closed point \wp, every eigenvalue $\alpha_{i, \wp}$ of Frob $_{\wp}$ on \mathcal{F} has $\left|\iota\left(\alpha_{i, \wp}\right)\right| \leq 1$.

Proof. From the Euler product expression for the L-function of $\mathcal{F}^{\otimes 2 k}$, we see that, via ι,
(1) The power series for the L-function has nonnegative real coefficients.
(2) The power series of each Euler factor $1 / \operatorname{det}\left(1-T^{\operatorname{deg}(\wp)}\right.$ Frob $\left._{\wp} \mid \mathcal{F}^{\otimes 2 k}\right)$ has nonnegative real coefficients.
(3) The power series for the L-function dominates, coefficient by coefficient, the power series of each Euler factor $1 / \operatorname{det}\left(1-T^{\operatorname{deg}(\wp)}\right.$ Frob $\left._{\wp} \mid \mathcal{F}^{\otimes 2 k}\right)$.
By the hypothesis on coinvariants, the denominator in the cohomological expression of the L-function of $\mathcal{F}^{\otimes 2 k}$, namely

$$
\operatorname{det}\left(1-q \operatorname{TFrob}_{q} \mid\left((\mathcal{F})^{\otimes 2 k}\right)_{\pi_{1}^{g e o m}}\right)
$$

has all its reciprocal zeros of absolute value, via ι, at most q. So the L-function is certainly, via ι, holomorphic in $|T|<1 / q$.

Choose a closed point \wp of U_{0}. By the coefficientwise domination (3) above, it follows that each Euler factor $1 / \operatorname{det}\left(1-T^{\operatorname{deg}(\wp)} \operatorname{Frob}_{\wp} \mid \mathcal{F}^{\otimes 2 k}\right)$ must be holomorphic in $|T|<1 / q$. This in turn means that each eigenvalue of $\operatorname{Frob}_{\wp} \mid \mathcal{F}^{\otimes 2 k}$ has, via
ι, absolute value $\leq q^{\operatorname{deg}(\wp)}$. But if α is an eigenvalue of Frob ${ }_{\wp} \mid \mathcal{F}$, then $\alpha^{2 k}$ is an eigenvalue of $F r o b_{\wp} \mid \mathcal{F}^{\otimes 2 k}$. Thus we get the inequality $\left|\iota(\alpha)^{2 k}\right| \leq q^{\operatorname{deg}(\wp)}$, for each $k \geq 1$. Thus we get

$$
|\iota(\alpha)| \leq q^{\operatorname{deg}(\wp) / 2 k}
$$

for every integer $k \geq 1$. Letting $k \rightarrow \infty$, we get

$$
|\iota(\alpha)| \leq 1
$$

Corollary 2.2. Let \mathcal{F} be an ℓ-adic local system on U_{0} which is ı-real. Suppose that for some closed point \wp_{0}, every eigenvalue $\alpha_{i, \wp_{0}}$ of $\operatorname{Frob}_{\wp_{0}}$ on \mathcal{F} has $\left|\iota\left(\alpha_{i, \wp_{0}}\right)\right| \leq 1$. Then for every closed point \wp, every eigenvalue $\alpha_{i, \wp}$ of $\operatorname{Frob}_{\wp}$ on \mathcal{F} has $\left|\iota\left(\alpha_{i, \wp}\right)\right| \leq 1$.

Proof. In view of the theorem, it suffices to show that for every tensor power $\mathcal{F}^{\otimes 2 k}$ of \mathcal{F}, every eigenvalue $\beta_{2 k}$ of Frob_{q} on the coinvariants $\left((\mathcal{F})^{\otimes 2 k}\right)_{\pi_{1}^{\text {geom }}}$ has $\left|\iota\left(\beta_{2 k}\right)\right| \leq 1$. For $d:=\operatorname{deg}\left(\wp_{0}\right), \beta_{2 k}^{d}$ is an eigenvalue of $\left(\operatorname{Frob}_{q}\right)^{d}$ on the coinvariants
 the action of $\left(\mathrm{Frob}_{q}\right)^{d}$ is just the action of $\mathrm{Frob}_{\wp_{0}}$ on this quotient. In other words, $\beta_{2 k}^{d}$ is among the eigenvalues of $F r o b_{\wp_{0}}$ on $(\mathcal{F})^{\otimes 2 k}$, cf. [De-Weil II, 1.4.4]. These last eigenvalues are $2 k$-fold products of eigenvalues of $F r o b_{\wp_{0}}$ on \mathcal{F}, each of which has absolute value, via $\iota, \leq 1$. Thus the same estimate holds for each eigenvalue of $\operatorname{Frob}_{\wp_{0}}$ on $(\mathcal{F})^{\otimes 2 k}$. Since $\beta_{2 k}^{d}$ is among these, we get $\left|\iota\left(\beta_{2 k}^{d}\right)\right| \leq 1$, hence $\left|\iota\left(\beta_{2 k}\right)\right| \leq 1$.

3. RH FOR CURVES

Fix a characteristic $p>0$ and a genus $g \geq 1$. There are standard examples of (projective, smooth, geometrically connected) curves of genus g over the prime field \mathbb{F}_{p} for which RH is "easy", in the sense that, at least over a suitable finite extension $\mathbb{F}_{q} / \mathbb{F}_{p}$, the Frobenius eigenvalues on H^{1} are explicit Jacobi sums or Gauss sums, which are well known to have the correct absolute value $q^{1 / 2}$. For example, if $p \neq 2$, we can take the (complete nonsingular model of the) hyperelliptic curve

$$
y^{2}=x^{2 g+1}-1
$$

if p does not divide $2 g+1$, or

$$
y^{2}=x^{2 g+2}-1
$$

if p does divides $2 g+1$. These examples give rise to Jacobi sums. In characteristic two, we have the (complete nonsingular model of) the curve

$$
y^{2}-y=x^{2 g+1}
$$

which gives rise to Gauss sums.
We have the following "connect by curves" lemma.
Lemma 3.1. Suppose given two (projective, smooth, geometrically connected) curves of genus $g \geq 1$ over \mathbb{F}_{q}, say C_{0} and C_{1}. Then there exists a finite extension E / \mathbb{F}_{q}, an affine, smooth, geometrically connected curve U_{0} / E, a proper smooth morphism $f: \mathcal{C} \rightarrow U_{0}$ with geometrically connected fibres which are curves of genus g, and two E-valued points $u_{0}, u_{1} \in U_{0}(E)$ such that the fibres $\mathcal{C}_{u_{i}} / E$, for $i=0,1$, are E-isomorphic to the given curves $C_{i} \otimes_{\mathbb{F}_{q}} E / E$.

Proof. For genus one, choose an integer $n \geq 4$ prime to p. Extending scalars, we may assume first that both of the given curves have a rational point. Then the curves become groupschemes, with a chosen rational point as origin. Over a further finite extension E / \mathbb{F}_{q}, we may choose a point of order n on each curve. Then we use the modular curve $Y_{1}(n) / E$ as our U_{0}, and the universal family it carries as our $f: \mathcal{C} \rightarrow U_{0}$.

For $g \geq 2$, the moduli space $H_{g}^{0} / \mathbb{F}_{p}$ classifying tricanonical embedded genus g curves is quasiprojective, smooth and geometrically connected, cf. [De-Mum, \&3] and $[\mathrm{Mum}, \mathrm{Ch} .5, \& 2]$, and every genus g curve over an \mathbb{F}_{q} underlies an \mathbb{F}_{q}-valued point of $H_{g}^{0} / \mathbb{F}_{p}$. Here it is enough to pull back the universal family over $H_{g}^{0} / \mathbb{F}_{p}$ to a spacefilling curve $\pi: U_{0} \rightarrow H_{g}^{0}$ which is bijective on \mathbb{F}_{q}-points, cf. [Ka-SFC, Thm. 8] and [Ka-SFC Corrections]. [We could instead use the moduli space $\mathcal{M}_{g, 3 K} / \mathbb{F}_{p}$ classifying genus g curves together with a basis of $H^{0}\left(C,\left(\Omega^{1}\right)^{\otimes 3}\right)$, which is a \mathbb{G}_{m} bundle over $H_{g}^{0} / \mathbb{F}_{p}$, so is itself quasiprojective, smooth and geometrically connected, cf. [Ka-Sar, 10.6.5].]

Theorem 3.2. Let C_{0} / \mathbb{F}_{q} be a (projective, smooth, geometrically connected) curve of genus $g \geq 1$ over \mathbb{F}_{q}. Then $R H$ holds for C_{0} / \mathbb{F}_{q}.

Proof. Choose a genus g curve C_{1} / \mathbb{F}_{q} for which we know RH. Making a finite extension of scalars if necessary, connect C_{0} to C_{1} in a one parameter family f : $\mathcal{C} \rightarrow U_{0}$ over an affine, smooth, geometrically connected curve U_{0} / q. We will prove that the local system $R^{1} f_{\star} \mathbb{Q}_{\ell}$ on U_{0} is pure of weight one, i.e., that RH holds for every curve in the family, in particular it holds for C_{0}. Choose a square root $q^{1 / 2}$ of q in $\overline{\mathbb{Q}_{\ell}}$, so that we can speak of the one half Tate-twisted local system

$$
\mathcal{F}:=R^{1} f_{\star} \overline{\mathbb{Q}_{\ell}}(1 / 2),
$$

on which Frob $_{\wp}$ is now divided by $\left(q^{1 / 2}\right)^{\operatorname{deg}(\wp)}$. For any ι, \mathcal{F} is ι-real; indeed for $R^{1} f_{\star} \overline{\mathbb{Q}_{\ell}}$ the traces of all powers of all Frob $_{\wp}$ are integers. Because RH holds for $C_{1}, \operatorname{Frob}_{u_{1}} \mid \mathcal{F}$ has all eigenvalues of absolute value one (via any ι). So by Corollary 2.2, all eigenvalues of any $\operatorname{Frob}_{\wp}$ have, via ι, absolute value ≤ 1. This means that on $R^{1} f_{\star} \mathbb{Q}_{\ell}$ itself, all eigenvalues of any Frob $_{\wp}$ have, via ι, absolute value $\leq \mathbb{N} \wp^{1 / 2}$. But the functional equation tells us that $\alpha \mapsto \mathbb{N} \wp / \alpha$ is an involution of the eigenvalues, so in fact this inequality is an equality; $R^{1} f_{\star} \mathbb{Q}_{\ell}$ is ι-pure of weight one for every ι.

4. The persistence of purity

We have the following variant of Corollary 2.2.
Theorem 4.1. Let \mathcal{F} be an ℓ-adic local system on U_{0} which is ı-real. Suppose that for some closed point \wp_{0}, every eigenvalue $\alpha_{i, \wp_{0}}$ of $\operatorname{Frob}_{\wp_{0}}$ on \mathcal{F} has $\left|\iota\left(\alpha_{i, \wp_{0}}\right)\right|=1$. Then for every closed point \wp, every eigenvalue $\alpha_{i, \wp}$ of $\operatorname{Frob}_{\wp}$ on \mathcal{F} has $\left|\iota\left(\alpha_{i, \wp}\right)\right|=1$, i.e., \mathcal{F} is ι-pure of weight zero as soon as some Frob $_{\wp_{0}}$ is ι-pure of weight zero.

Proof. By Corollary 2.2, each Frob $_{\wp}$ has all its eigenvalues of absolute value, via $\iota, \leq 1$. So it will have all its eigenvalues of absolute value, via $\iota,=1$, if and only if $\operatorname{det}\left(\right.$ Frob $\left._{\wp}\right)$ has, via ι, absolute value $=1$. So we are reduced to proving that $\operatorname{det}(\mathcal{F})$ is ι-pure of weight zero if $\operatorname{det}\left(\operatorname{Frob}_{\wp_{0}}\right)$ is. To prove this purity, we may replace the rank one local system $\operatorname{det}(\mathcal{F})$ by any tensor power $(\operatorname{det}(\mathcal{F}))^{\otimes n}, n \geq 1$,
of itself. It then suffices to apply the following lemma to the rank one local system $\operatorname{det}(\mathcal{F})$, and compute the ι-absolute value of the α there.
Lemma 4.2. Let \mathcal{L} be an ℓ-adic local system on U_{0} of rank one. Then some tensor power $\mathcal{L}^{\otimes n}$ of \mathcal{L} is geometrically constant, i.e., there exists $\alpha \in \overline{\mathbb{Q} \ell}^{\times}$such that

$$
\operatorname{Frob}_{\wp} \mid \mathcal{L}^{\otimes n}=\alpha^{\operatorname{deg}(\wp)} .
$$

Proof. Because we know RH for the complete nonsingular model of U_{0}, we know that in $H_{c}^{1}\left(U, \overline{\mathbb{Q}_{\ell}}\right)$, every eigenvalue of $F r o b_{q}$ has absolute value $\leq q^{1 / 2}$ for every ι. By duality, every eigenvalue of Frob_{q} on $H^{1}\left(U, \overline{\mathbb{Q}_{\ell}}\right)$ has absolute value $\geq q^{1 / 2}$. In particular, 1 is not an eigenvalue of of Frob_{q} on $H^{1}\left(U, \overline{\mathbb{Q}_{\ell}}\right)$.

Now consider a rank one local system \mathcal{L} on U_{0}. It is a homomorphism from $\pi_{1}^{\text {arith }}:=\pi_{1}\left(U_{0}\right)$ to the group $\mathcal{O}_{\overline{\mathbb{Q}_{\ell}}}^{\times}$of ℓ-adic units in $\overline{\mathbb{Q}_{\ell}}$. Because its image is compact, this homomorphism lands in $\mathcal{O}_{E_{\lambda}}^{\times}$, for some finite extension $E_{\lambda} / \mathbb{Q}_{\ell}$. The residue field \mathbb{F}_{λ} of $\mathcal{O}_{E_{\lambda}}$ is finite, so replacing \mathcal{L} by its n 'th tensor power for $n=\# \mathbb{F}_{\lambda}^{\times}$, we reduce to the case where the homomorphism in question takes values in the group $1+\lambda \mathcal{O}_{E_{\lambda}}$ of principal units. Now raising to the ℓ 'th power, we reduce to the case where our homomorphism takes values in the group $1+\ell \lambda \mathcal{O}_{E_{\lambda}}$. This group is isomorphic, by the logarithm, to the additive group $\ell \lambda \mathcal{O}_{E_{\lambda}}$, which is a subgroup of $E_{\lambda} \subset \overline{\mathbb{Q}_{\ell}}$. Thus we have a homomorphism from $\pi_{1}^{\text {arith }}:=\pi_{1}\left(U_{0}\right)$ to $\overline{\mathbb{Q}_{\ell}}$. Its restriction to $\pi_{1}^{\text {geom }}:=\pi_{1}(U)$ is then an element of $H^{1}\left(U, \overline{\mathbb{Q}_{\ell}}\right)$ which is fixed by Frob $_{q}$. But as remarked above, there are no such nonzero elements. Therefore the corresponding tensor power of our \mathcal{L} is trivial when restricted to $\pi_{1}^{\text {geom }}$. This means exactly that it is of the asserted form.

5. RH FOR HYPERSURFACES

For $X_{0} \subset \mathbb{P}^{n+1}$ a smooth hypersurface of degree d and dimension $n \geq 1$ over \mathbb{F}_{q}, and $X / \overline{\mathbb{F}_{q}}$ its extension of scalars to $\overline{\mathbb{F}_{q}}$, we define $\operatorname{Prim}^{n}\left(X, \mathbb{Q}_{\ell}\right)$ to be $H^{n}\left(X, \mathbb{Q}_{\ell}\right)$ if n is odd, and to be $H^{n}\left(X, \mathbb{Q}_{\ell}\right) /<L^{n / 2}>$, for $<L^{n / 2}>$ the one-dimensional span of the $n / 2$ power of the hyperplane class $L \in H^{2}\left(X, \mathbb{Q}_{\ell}\right)$.

One knows (weak Lefschetz for $X \subset \mathbb{P}^{n+1}$) that for $i<n$, the restriction map gives an isomorphism $H^{i}\left(\mathbb{P}^{n}, \mathbb{Q}_{\ell}\right) \cong H^{i}\left(X, \mathbb{Q}_{\ell}\right)$. Thus for $i<n$, we have $H^{i}\left(X, \mathbb{Q}_{\ell}\right)=0$ unless i is even, in which case $H^{i}\left(X, \mathbb{Q}_{\ell}\right)=\mathbb{Q}_{\ell}(-i / 2)$, the one dimensional space on which Frob $_{q}$ acts as $q^{i / 2}$. By Poincaré duality on X, these same statements hold for $H^{i}\left(X, \mathbb{Q}_{\ell}\right)$ for i in the range $n<i \leq 2 n$. So for X_{0} / \mathbb{F}_{q}, its Zeta function has the form

$$
\begin{aligned}
& P(T) / \prod_{i=0}^{n}\left(1-q^{i} T\right), \quad n \text { odd } \\
& 1 / P(T) \prod_{i=0}^{n}\left(1-q^{i} T\right), \quad n \text { even }
\end{aligned}
$$

with

$$
P(T)=\operatorname{det}\left(1-\text { TFrob }_{q} \mid \operatorname{Prim}^{n}\left(X, \mathbb{Q}_{\ell}\right)\right)
$$

From the formula for Zeta, we see that $P(T)$ has integer coefficients. Thus RH for X_{0} / \mathbb{F}_{q} is the assertion that $\operatorname{Prim}^{n}\left(X, \mathbb{Q}_{\ell}\right)$, or equivalently $H^{n}\left(X, \mathbb{Q}_{\ell}\right)$, is ι-pure of weight n (for some ι, or equivalently for every ι, since the only possible ambiguity in what ι does to our characteristic polynomials is which square root of q it chooses, and even this is only a problem when n is odd). The functional equation asserts
that $\alpha \mapsto q^{n} / \alpha$ is an involution on the eigenvalues of Frob_{q}, so RH is equivalent to the assertion that every eigenvalue of Frob_{q} on $\operatorname{Prim}^{n}\left(X, \mathbb{Q}_{\ell}\right)$, or equivalently on $H^{n}\left(X, \mathbb{Q}_{\ell}\right)$, has ι-absolute value $\leq q^{n / 2}$. If we extend scalars from \mathbb{F}_{q} to some $\mathbb{F}_{q^{e}}$, we simply replace $F r o b_{q}$ by its e 'th power, so it is enough to prove RH after such an extension of scalars.

From the point count formula

$$
\# X_{0}\left(F_{q^{r}}\right)=\# \mathbb{P}^{n}\left(F_{q^{r}}\right)+(-1)^{n} \operatorname{Trace}\left(\left(\operatorname{Frob}_{q}\right)^{r} \mid \operatorname{Prim}^{n}\left(X, \mathbb{Q}_{\ell}\right)\right),
$$

we see the well known equivalence of RH for X_{0} / \mathbb{F}_{q} with the existence of an estimate

$$
\# X_{0}\left(F_{q^{r}}\right)=\# \mathbb{P}^{n}\left(F_{q^{r}}\right)+O\left(q^{r n / 2}\right)
$$

as $r \geq 1$ varies.
Theorem 5.1. Given (p, d, n), suppose there exists a projective smooth hypersurface X_{0} / \mathbb{F}_{p} of dimension n and degree d for which $R H$ holds. Then for every finite extension $\mathbb{F}_{q} / \mathbb{F}_{p}$, and every projective smooth hypersurface X_{1} / \mathbb{F}_{q} of dimension n and degree d, RH holds.
Proof. Say we wish to prove RH for X_{1} / \mathbb{F}_{q}. Denote by X_{0} / \mathbb{F}_{q} the extension of scalars from \mathbb{F}_{p} to \mathbb{F}_{q} of the X_{0} / \mathbb{F}_{p} for which we know RH. Choose homogeneous equations F_{0} and F_{1} for these two hypersurfaces. Then use the one parameter family $t F_{0}+(1-t) F_{1}$ over the dense open set of the affine t-line where this equation defines a nonsingular hypersurface, and apply Theorem 4.1 to its $R^{n} f_{\star}\left(\overline{\mathbb{Q}_{\ell}}\right)(n / 2)$.

6. Example hypersurfaces with RH

When the degree d is prime to p, then as Weil showed, RH holds for the Fermat hypersurface of equation $\sum_{i=1}^{n+2} X_{i}^{d}=0$. So Theorem 5.1 gives RH when the degree d is prime to p.

Suppose now that p divides d. We first treat the special case $d=2$, for which $p=2$ is the only problematic prime. If n is odd, then Prim^{n} vanishes, so there is nothing to prove. If $n=2 m$ is even, then Prim n is one-dimensional. We take as example the hypersurface of equation $\sum_{i=1}^{m+1} X_{i} X_{m+1+i}=0$, which over any finite field \mathbb{F}_{q} is projective and smooth with $\# P^{2 m}\left(\mathbb{F}_{q}\right)+q^{m}$ rational points (i.e., Prim ${ }^{n}$ in this case is $\mathbb{Q}_{\ell}(-n / 2)$, on which Frob $_{q}$ acts as $\left.q^{m}=q^{n / 2}\right)$.

Suppose now that $d \geq 3$ and that p divides d. Then Gabber's hypersurface

$$
X_{1}^{d}+\sum_{i=1}^{n+1} X_{i} X_{i+1}^{d-1}=0
$$

is nonsingular in characteristic \mathbb{F}_{p}, cf. [Ka-Sar, 11.4.6].
Proposition 6.1. If $d \geq 3$ and $p \mid d$, Gabber's hypersurface over \mathbb{F}_{p} satisfies $R H$.
We will prove this in the next two sections, using Delsarte's method.

7. Delsarte's method and RH

Suppose we are given a homogeneous form $F\left(X_{1}, \ldots, X_{n+2}\right)$ over \mathbb{F}_{q} whose vanishing defines a smooth hypersurface H_{0} in projective space \mathbb{P}^{n+1}. Denote by $H_{0}^{\text {aff }} \subset \mathbb{A}^{n+2}$ the affine hypersurface defined by the same equation. Then we have the elementary relation, for each finite extension E / \mathbb{F}_{q}, with $q_{E}:=\# E$,

$$
\# H_{0}^{\text {aff }}(E)=1+\left(q_{E}-1\right) \# H_{0}(E)
$$

As noted above, H_{0} satisfies RH if and only if, as E / \mathbb{F}_{q} varies over all finite extensions, we have

$$
\# H_{0}(E)=\# \mathbb{P}^{n}(E)+O\left(q_{E}^{n / 2}\right)
$$

or, equivalently, if and only if, as as E / \mathbb{F}_{q} varies over all finite extensions, we have

$$
\# H_{0}^{\mathrm{aff}}(E)=q_{E}^{n+1}+O\left(q_{E}^{(n+2) / 2}\right)
$$

We will show that Gabber's hypersurface $X_{1}^{d}+\sum_{i=1}^{n+1} X_{i} X_{i+1}^{d-1}=0$ satisfies this last estimate, and hence satisfies RH.

For this, we need some preliminaries. Fix an integer $N \geq 1$. Given an N tuple $W=\left(w_{1}, \ldots, w_{N}\right)$ of nonnegative integers, we write X^{W} for the N-variable monomial $\prod_{i=1}^{N} X_{i}^{w_{i}}$. We say that a nonempty collection of N-variable monomials $\left\{X^{W_{v}}\right\}_{v}$ is linearly independent if the vectors $\left\{W_{v}\right\}_{v}$ are linearly independent in \mathbb{Q}^{N}. [Notice that in both Gabber's homogeneous form $X_{1}^{d}+\sum_{i=1}^{n+1} X_{i} X_{i+1}^{d-1}$ and the Fermat form $\sum_{i=1}^{n+2} X_{i}^{d}$ in $N=n+2$ variables, the monomials that occur are linearly independent.]
Theorem 7.1. Let $N \geq 1$, and let $X^{W_{1}}, \ldots, X^{W_{N}}$ be N linearly independent monomials in N variables. Suppose that each variable X_{i} occurs in at most two of these monomials. Then for the affine hypersurface V of equation $\sum_{i} X^{W_{i}}=0$ in \mathbb{A}^{N}, and variable finite fields \mathbb{F}_{q}, we have

$$
\# V\left(\mathbb{F}_{q}\right)=q^{N-1}+O\left(q^{N / 2}\right)
$$

We will prove this by counting, for each subset $S \subset[1,2, \ldots, N]$, the points where the variables $X_{s}, s \in S$ take nonzero values, and the other variables vanish. The key result, essentially due to Delsarte [Dels], is this.

Theorem 7.2. (Delsarte) Let $N>k \geq 0$, and suppose given $N-k$ linearly independent monomials $X^{W_{1}}, \ldots, X^{W_{N-k}}$ in N variables. Consider the hypersurface $V: \sum_{i} X^{W_{i}}=0$ in \mathbb{A}^{N}. Denote by $V^{\star} \subset V$ the open set of V where all variables are invertible (i.e., V^{\star} is the hypersurface in \mathbb{G}_{m}^{N} defined by $\sum_{i} X^{W_{i}}=0$). Then for variable finite fields \mathbb{F}_{q}, we have

$$
\# V^{\star}\left(\mathbb{F}_{q}\right)=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

Granting the truth of Delsarte's theorem, let us prove Theorem 7.1. Thus $X^{W_{1}}, \ldots, X^{W_{N}}$ are N linearly independent monomials in N variables. If we put all but $d \geq 1$ of the variables to 0 , say X_{d+1}, \ldots, X_{N}, some of the monomials $X^{W_{i}}$ will vanish (those in which any of X_{d+1}, \ldots, X_{N} occurs), and the remaining ones (if any), those which involved only X_{1}, \ldots, X_{d}, will be linearly independent monomials in those d variables.

For each subset $S \subset[1, \ldots, N]$, we denote by $V^{\star}(S)\left(\mathbb{F}_{q}\right)$ the set of points on V for which precisely the variables $X_{s}, s \in S$ take nonzero values.

Lemma 7.3. For each subset $S \subset[1, \ldots, N]$, we have

$$
\# V^{\star}(S)\left(\mathbb{F}_{q}\right)=\frac{(q-1)^{\# S}}{q}+O\left(q^{N / 2}\right)
$$

Proof. If $S=\emptyset, V^{\star}(\emptyset)\left(\mathbb{F}_{q}\right)$ consists of one point, namely $(0, \ldots, 0)$, and the assertion is trivially true with the $O\left(q^{N / 2}\right)$ term alone.

If $1 \leq \# S \leq N / 2$, there are at most $\# S \leq N / 2$ variables, each of which assumes at most $q-1$ values. So the assertion is trivially true with the $O\left(q^{N / 2}\right)$ term alone.

If $\# S>N / 2$, we have set fewer than half (namely $N-\# S$) of the variables to zero. As each variable occurs in at most two of the monomials, we have killed at most $2(N-\# S)$ variables, so we are left with at least $N-2(N-\# S)$ monomials, i.e., we have at least $2 \# S-N$ monomials. The number of surviving monomials is thus at least $\# S-(N-\# S)$. Applying Theorem 7.2 (with its N and k now $\# S$ and $k \leq$ $(N-\# S)$, the error term $O\left(q^{(N+k) / 2}\right)$ in Theorem 7.2 is now $O\left(q^{(\# S+(N-\# S)) / 2}\right)$, i.e. it is $O\left(q^{N / 2}\right)$.

With this lemma in hand, we prove Theorem 7.1. Indeed, we have

$$
\begin{aligned}
& \# V\left(\mathbb{F}_{q}\right)=\sum_{S \subset[1,2, \ldots, N]} \# V^{\star}(S)\left(\mathbb{F}_{q}\right)= \\
& =\left(\sum_{S \subset[1,2, \ldots, N]} \frac{(q-1)^{\# S}}{q}\right)+O\left(q^{N / 2}\right) .
\end{aligned}
$$

The numerator of the sum is just the binomial expansion of $((q-1)+1)^{N}$.

8. proof of Delsarte's Theorem 7.2

We view the $N-k$ linearly independent monomials $X^{W_{i}}$ in N variables as an f.p.p.f. surjective homomorphism of split tori over \mathbb{Z},

$$
\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}, \quad X=\left(X_{1}, \ldots, X_{N}\right) \mapsto\left(X^{W_{1}}, \ldots, X^{W_{N-k}}\right)
$$

We will prove the following (slightly more general) version of Theorem 7.2.
Theorem 8.1. Let $N>k \geq 0$, and suppose given an f.p.p.f. surjective homomorphism of split tori over \mathbb{Z},

$$
\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}
$$

Denote by

$$
\sigma: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{A}^{1}
$$

the function "sum of the coordinates". Then for variable finite fields \mathbb{F}_{q}, we have the estimate

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \mid \sigma(\phi(x))=0\right\}=\frac{(q-1)^{N}}{q}+O\left(q^{(N+k) / 2}\right)
$$

Proof. The homomorphism ϕ corresponds to the injective group homomorphism $\phi^{\vee}: \mathbb{Z}^{N-k} \subset \mathbb{Z}^{N}$ which sends the i 'th basis vector of the source to W_{i}. The kernel $\operatorname{Ker}(\phi)$ is the group whose character group is the cokernel of ϕ^{\vee}. This cokernel is a finitely generated abelian group, say M, with $M \otimes \mathbb{Q}$ of dimension k. Thus M sits in a short exact sequence

$$
0 \rightarrow M_{\text {tors }} \rightarrow M \rightarrow M / M_{\text {tors }} \cong \mathbb{Z}^{k} \rightarrow 0
$$

with $M_{\text {tors }}$ a finite abelian group. Dually, we have an f.p.p.f. short exact sequence of groupschemes over \mathbb{Z}

$$
0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \operatorname{Ker}(\phi) \rightarrow \mu_{M_{\text {tors }}} \rightarrow 0
$$

with $\mu_{M_{\text {tors }}}:=\operatorname{Hom}\left(M_{\text {tors }}, \mathbb{G}_{m}\right)$ a finite flat groupscheme of multiplicative type. The composite closed immersion

$$
\mathbb{G}_{m}^{k} \subset \operatorname{Ker}(\phi) \subset \mathbb{G}_{m}^{N}
$$

sits in a short exact sequence

$$
0 \rightarrow \mathbb{G}_{m}^{k} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\pi} \mathbb{G}_{m}^{N-k} \rightarrow 0
$$

By Hilbert's Theorem 90 , this gives a short exact sequence of $\mathbb{F}_{q^{-}}$-valued points

$$
0 \rightarrow \mathbb{G}_{m}^{k}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\pi} \mathbb{G}_{m}^{N-k}\left(\mathbb{F}_{q}\right) \rightarrow 0 .
$$

Our homomorphism $\phi: \mathbb{G}_{m}^{N} \rightarrow \mathbb{G}_{m}^{N-k}$ factors through this quotient map π as

So

$$
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \mid \sigma(\phi(x))=0\right\}=(q-1)^{k} \#\left\{x \in \mathbb{G}_{m}^{N-k}\left(\mathbb{F}_{q}\right) \mid \sigma(\bar{\phi}(x))=0\right\}
$$

It remains to treat the case of the f.p.p.f. surjective homomorphism

$$
\bar{\phi}: \mathbb{G}_{m}^{N-k} \rightarrow \mathbb{G}_{m}^{N-k},
$$

which is a " $k=0$ " case of the theorem. For then we will have

$$
\#\left\{x \in \mathbb{G}_{m}^{N-k}\left(\mathbb{F}_{q}\right) \mid \sigma(\bar{\phi}(x))=0\right\}=\frac{(q-1)^{N-k}}{q}+O\left(q^{(N-k) / 2}\right)
$$

and multiplying through by $(q-1)^{k}$ gives the assertion.
Thus we are reduced to treating universally the case $k=0$ of the theorem. In this case, we have an f.p.p.f. short exact sequence

$$
0 \rightarrow \mu_{M_{\text {tors }}} \rightarrow \mathbb{G}_{m}^{N} \xrightarrow{\phi} \mathbb{G}_{m}^{N} \rightarrow 0
$$

which gives a four term exact sequence of finite groups

$$
0 \rightarrow \mu_{M_{\text {tors }}}\left(\mathbb{F}_{q}\right) \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\phi} \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \rightarrow H^{1}\left(\operatorname{Gal}\left(\overline{\mathbb{F}_{q}} / \mathbb{F}_{q}\right), \mu_{M_{\text {tors }}}\left(\overline{\mathbb{F}_{q}}\right)\right) \rightarrow 0 .
$$

We rewrite this simply as

$$
0 \rightarrow K e r \rightarrow \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \xrightarrow{\phi} \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \rightarrow \text { Coker } \rightarrow 0 .
$$

In terms of coordinates $\left(t_{1}, \ldots, t_{N}\right)$ on the target $\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)$, we have

$$
\begin{gathered}
\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \mid \sigma(\phi(x))=0\right\}= \\
=\# \operatorname{Ker} \#\left\{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \mid \sum_{i} t_{i}=0 \text { and } t \in \phi\left(\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\right)\right\} .
\end{gathered}
$$

We count the set $\left\{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \mid \sum_{i} t_{i}=0\right.$ and $\left.t \in \phi\left(\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\right)\right\}$ as follows. To determine if a point $t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)$ lies in the image $\phi\left(\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\right)$, i.e. to see if its image in Coker vanishes, we sum all \mathbb{C}^{\times}-valued characters of Coker over t; we will get \#Coker if t lies in the image, and zero otherwise. [We view characters of Coker as characters of $\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)$ which are trivial on the subgroup $\phi\left(\mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)\right)$.] But $\#$ Ker $=\#$ Coker, so we have

$$
\begin{aligned}
& \#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \mid \sigma(\phi(x))=0\right\}= \\
& =\sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \mid \sum_{i} t_{i}=0} \sum_{\chi \in \text { Coker } \vee} \chi(t) .
\end{aligned}
$$

For $t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)$, we determine whether or not $\sum_{i} t_{i}=0$ by choosing a nontrivial \mathbb{C}^{\times}-valued additive character ψ of \mathbb{F}_{q}, and using the fact that $\sum_{a \in \mathbb{F}_{q}} \psi\left(a \sum_{i} t_{i}\right)$ will be q if $\sum_{i} t_{i}=0$, and zero if not. Thus our count is

$$
=(1 / q) \sum_{a \in \mathbb{F}_{q}} \sum_{\chi \in \text { Coker } \vee} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right) .
$$

The $a=0$ term is $(1 / q) \sum_{\chi \in \text { Coker } \vee} \sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t)$, and the innermost sum vanishes except for $\chi=\mathbb{1}$. So the $a=0$ term is $(1 / q)(q-1)^{N}$. For each $a \neq 0$ term, and each χ, the sum $\sum_{t \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right)} \chi(t) \psi\left(a \sum_{i} t_{i}\right)$ is a product of N Gauss sums, some possibly trivial, so this sum has absolute value at most $q^{N / 2}$. The number of such summands is $(q-1) \#$ Coker, so we get the explicit estimate

$$
\left|\#\left\{x \in \mathbb{G}_{m}^{N}\left(\mathbb{F}_{q}\right) \mid \sigma(\phi(x))=0\right\}-\frac{(q-1)^{N}}{q}\right| \leq \frac{q-1}{q}(\# \text { Coker }) q^{N / 2}
$$

As $\#$ Coker $=\#$ Ker $\leq \# M_{\text {tors }}$, we have the asserted uniform estimate.

References

[De-Mum] Deligne, P., Mumford, D., The irreducibility of the space of curves of given genus. Publ. Math. IHES 36 (1969), 75-109.
[De-Weil I] Deligne, P., La conjecture de Weil I. Publ. Math. IHES 43 (1974), 273-307.
[De-Weil II] Deligne, P., La conjecture de Weil II. Publ. Math. IHES 52 (1981), 313-428.
[Dels] Delsarte, J., Nombre de solutions des équations polynomiales sur un corps fini. Séminaire Bourbaki, Vol. 1, Exp. No. 39, 321-329, Soc. Math. France, Paris, 1995.
[Gr-Lef] Grothendieck, A., Formule de Lefschetz et rationalité des fonctions L. Séminaire Bourbaki, Vol. 9, Exp. No. 279, 41-55, Soc. Math. France, Paris, 1995.
[Ka-GKM] Katz, N.,. Gauss sums, Kloosterman sums, and monodromy groups. Annals of Mathematics Studies, 116. Princeton University Press, Princeton, NJ, 1988. x+246 pp.
[Ka-Sar] Katz, N., and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy. American Mathematical Society Colloquium Publications, 45. American Mathematical Society, Providence, RI, 1999. xii+419 pp.
[Ka-SFC] Katz, N., Space filling curves over finite fields. Math. Res. Lett. 6 (1999), no. 5-6, 613-624.
[Ka-SFC Corrections] Katz, N., Corrections to: "Space filling curves over finite fields" [Math. Res. Lett. 6 (1999), no. 5-6, 613624]. Math. Res. Lett. 8 (2001), no. 5-6, 689-691.
[Mum] Mumford, D., Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, Neue Folge, Band 34 Springer-Verlag, Berlin-New York 1965 vi+145 pp.
[Ran] Rankin, R. A., Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. Proc. Cambridge Philos. Soc. 35, (1939). 351-372.
[Sch] Scholl, A., Hypersurfaces and the Weil conjectures. Int. Math. Res. Not. (2011), no. 5, 1010-1022.
[SGA 4] Séminaire de Géometrie Algebrique du Bois Marie 1963/64 (SGA 4), Springer Lecture Notes in Mathematics 269-270-305.
[Weil] Weil, A., Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc. 55, (1949). 497-508.

