Higher categories student seminar

Peter Teichner and Chris Schommer-Pries

Contents

0 Introduction - Peter Teichner and Chris Schommer-Pries 2
0.1 Part 1: Lower higher categories - Peter 2
0.1.1 Motivation 1: Higher categories show up everywhere 2
0.1.2 Motivation 2: The homotopy hypothesis 4
0.2 Part 2: Higher higher categories - Chris 5
0.2.1 Broad outline and motivation 5
0.2.2 Detailed outline 6
1 Strict n-categories and their classifying spaces - Lars Borutzky 6
1.1 Strict n-categories, left Kan extensions, and nerves of 1-categories 6
1.2 Higher nerve functors 8
1.3 Examples of higher categories 9
2 Strictification of weak 2-categories - Arik Wilbert 10
2.1 Motivation 10
2.2 The theorem 11
2.2.1 The definitions 11
2.2.2 The proof 13
2.3 Correction from previous lecture 14
3 2-groupoids and 2-types - Malte Pieper 15
3.1 Motivation 15
3.2 What's a 2-group? 15
3.3 Classify 2-groups! 16
3.4 2-types/equivalence $\leftrightarrow 2$-groups/equivalence 17
3.5 Addendum (handout): Classification of homotopy 2-types: Some basic definitions 19
4 No strict 3-groupoid models the 2-sphere - Daniel Brügmann 21
4.1 Outline 21
4.2 The homotopy groups of groupoids 22
4.3 The auxiliary result 23
5 Complete Segal spaces and Segal categories - Alexander Körschgen 24
5.1 Definitions 24
5.2 Groupoids 26
5.3 Relation with n-Types 26
5.4 Examples 27
6 Examples and problems with weak n-categories - Kim Nguyen 27
6.1 Background 27
6.2 The setup 28
6.3 The 2-nerve 29
7 The "group-like" realization lemma - Dimitar Kodjabachev 31
7.1 Recollections 32
7.2 The lemma 33
8 The model structure on Segal n-categories - Piotr Prstagowski 36
8.1 Internal hom and relative categories 36
8.2 Description of fibrant n-categories 38
8.3 Back to 2-categories 39
8.4 Further comments 39
9 Segal categories vs. quasicategories - 41
10 Relative categories vs. quasicategories - 41
11 The homotopy hypothesis - 41
12 On the relation to topological field theories - Peter Teichner 41

0 Introduction - Peter Teichner and Chris Schommer-Pries

0.1 Part 1: Lower higher categories - Peter

We will give two different motivations for the study of (higher) categories.

0.1.1 Motivation 1: Higher categories show up everywhere

Categories just used to be used to group mathematicians into their subject areas; it's only recently that categories are studied in their own right. For instance, to teach linear algebra is to explore the category VECT ${ }^{f . d .}$. Of course, there's the eternal argument: is this better to work with abstract vector spaces or with matrices? Well in fact, they amount to the same thing, by the equivalence of categories MAT $\simeq \operatorname{VECT}$.d., where the former has objects \mathbb{N}, and $\operatorname{MAT}(m, n)$ consists of the $(m \times n)$-matrices. Explicitly, this equivalence is given by $n \mapsto K^{n}$ (for K our chosen base field), but the inverse is noncanonical.
Why do we like VECT ${ }_{K}^{f . d .}$ better? Well, in MAT the objects (considered as vector spaces) come with chosen bases, but the maps ignore the bases. From a categorical point of view, one would prefer to have maps that preserve whatever structure our objects come equipped with.

But let's go further: notice that we're working over a field K. But these themselves form a category, FIELDS. These two categories should interact! In fact, we claim that 2-categories have already appeared twice in this lecture:

1. First, the notion of equivalence of categories uses the (strict) 2-category

$$
\mathrm{CAT}= \begin{cases}2 & \text { natural isomorphisms } \\ 1 & \text { functors } \\ 0 & \text { categories }\end{cases}
$$

Indeed, $\mathrm{VECT}^{f . d .}$ and MAT are not isomorphic! (For instance, the latter is small, but the former isn't.) We note here that 2-morphisms can be composed both "horizontally" and "vertically": if we have functors $C_{2} \stackrel{G, G^{\prime}}{\longleftarrow} C_{1} \stackrel{F, F^{\prime}, F^{\prime \prime}}{\rightleftarrows} C_{0}$ and natural transformations $\left(G \stackrel{\theta}{\Rightarrow} G^{\prime}\right)^{t},\left(F \stackrel{\eta}{\Rightarrow} F^{\prime}\right)^{t}$, and $\left(F^{\prime} \stackrel{\eta^{\prime}}{\Rightarrow} F^{\prime \prime}\right)^{t}$, then we have the vertical composition $\left(F \stackrel{\eta^{\prime} \circ \eta}{\Rightarrow} F^{\prime \prime}\right)^{t}$ and the horizontal composition $\left(G \circ F \stackrel{\theta \circ \eta}{\Rightarrow} G^{\prime} \circ F^{\prime}\right)^{t}$.
2. As long as we're here, let's change from FIELDS to RINGS (and replace VECT ${ }^{f . d .}$ with MOD ${ }_{R}$). We claim that to truly undestand the structure of linear algebra, one must study the double category

```
2 intertwiners
1 vert. - 1 hor. ring homomorphisms (with composition) - bimodules (with tensor product) .
0 rings
```

Recall that an intertwiner sits inside a typical square of morphisms as

which in this notation is a homomorphism $\eta: M \rightarrow M^{\prime}$ of abelian groups such that $\eta\left(r_{1} \cdot m \cdot r_{0}\right)=$ $\varphi_{1}\left(r_{1}\right) \cdot \eta(m) \cdot \varphi_{0}\left(r_{0}\right)$.
We can obtain from this a (weak) 2-category, as follows. Given the vertical 1-morphism $\left(R_{1} \stackrel{\varphi}{\leftarrow} R_{0}\right)^{t}$, we turn it into the horizontal 1-morphism ${ }_{R_{1}} R_{1 R_{0}}$ (given the $R_{1}-R_{0}$-bimodule structure in which R_{1} acts by left multiplication and R_{0} acts through φ). Then, composition of ring homomorphisms becomes the tensor product of bimodules: $\left(R_{2} \stackrel{\varphi^{\prime}}{\leftarrow} R_{1} \stackrel{\varphi}{\leftarrow} R_{0}\right)^{t}$ turns into $\left(R_{2} R_{2 R_{1}}\right) \otimes_{R_{1}}\left(R_{1} R_{1 R_{0}}\right)$. This gives us the category

$$
\begin{array}{ll}
2 & \text { intertwiners } \\
1 & \text { bimodules } \\
0 & \text { rings. }
\end{array}
$$

But what's "weak" about this? Well, the "strictness" of CAT is referring to the strict associativity of composition of 1-morphisms (functors). Here, on the other hand, we only have natural isomorphisms governing associativity - these are called associators. But to be honest, we're lucky we have intertwiners around to even be able to say what these should be!

Here is a first step towards understanding weak 2-categories:

$$
\text { monoidal categories } \simeq \text { weak 2-categories with one object. }
$$

But now we have a 3-category on the board! In what world does the above equivalence hold? 2-categories form a 3-category, so to say this requires 3-categories. And of course, this goes on forever.

0.1.2 Motivation 2: The homotopy hypothesis

Suppose that X is a nice (locally path-connected and semilocally simply connected) space, so that it has a universal cover. Here are three classification results, in increasing order of beauty (or slightly more precisely, category-theoretic preferability):

1. If $\pi_{0} X=0$, then

$$
\begin{aligned}
\left\{\begin{array}{ll}
0 & \text { path-connected covering spaces of } X \\
1 & \text { isomorphisms of spaces over } X
\end{array}\right\} & \simeq\left\{\begin{array}{ll}
0 & \text { subgroups of } \pi_{1}\left(X, x_{0}\right) \\
1 & \text { isomorphisms induced by conjugation }
\end{array}\right\} \\
(Y \xrightarrow{p} X) & \mapsto p_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right)
\end{aligned}
$$

for some $y_{0} \in p^{-1}\left(x_{0}\right)$. Note that $\pi_{1}\left(X, x_{0}\right)$ acts on $p^{-1}\left(x_{0}\right)$ by path-lifting, and $p_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right) \subset$ $\pi_{1}\left(X, x_{0}\right)$ is precisely the stabilizer of y_{0}. But since Y is connected then the action of $\pi_{1}\left(X, x_{0}\right)$ is transitive, so this is actually independent of the choice of y_{0}. (The latter category is immediately seen to be equivalent to the category of transitive $\pi_{1}\left(X, x_{0}\right)$-sets and isomorphisms.)
2. If $\pi_{0} X=0$, then

$$
\left\{\begin{array}{ll}
0 & \text { covering spaces of } X \\
1 & \text { morphisms of spaces over } X
\end{array}\right\} \simeq \pi_{1}\left(X, x_{0}\right) \text {-sets. }
$$

Here, $\pi_{0} Y$ is identified with the set of orbits of the associated $\pi_{1}\left(X, x_{0}\right)$-set. Note that the latter category is equivalent to the functor category $\operatorname{FUN}\left(\pi_{1}\left(X, x_{0}\right) \rightrightarrows *, \mathrm{SET}\right)$.
3. For any space X,

$$
\left\{\begin{array}{ll}
0 & \text { covering spaces of } X \\
1 & \text { morphisms of spaces over } X
\end{array}\right\} \simeq \operatorname{FUN}\left(\pi_{\leq 1} X, \mathrm{SET}\right)
$$

where

$$
\pi_{\leq 1} X= \begin{cases}0 & X \\ 1 & \text { paths up to homotopy rel endpoints }\end{cases}
$$

is the fundamental groupoid of X.
Note that even when X is connected, 3 is still much better than 2. For instance, in equivariant topology one often cannot choose a basepoint. Moreover, one generally uses the van Kampen theorem to compute $\pi_{1}\left(X, x_{0}\right)$. But this has the annoying (but necessary) hypothesis of connectivity of intersections. On the other hand, the van Kampen theorem for $\pi_{\leq 1} X$ has no such restrictions, and this already makes it more useful.

Let us put this all into a bit more context. The last of the results above fits into the diagram

More generally, we would like to have the diagram

This is the homotopy hypothesis (originally due to Grothendieck): any notion of an n-category should have a classifying space functor, and this should induce an equivalence (in an appropriate sense!) between n groupoids n-types.

We will see that strict 3 -groupoids do not model all 3-types (e.g. the Postnikov truncation $\tau_{\leq 3} S^{2}$ of S^{2}). (This 3 is a sharp bound.) So, in the second part of the seminar, we'll study weak higher categories.

0.2 Part 2: Higher higher categories - Chris

0.2.1 Broad outline and motivation

So, now we know that we should only expect the homotopy hypothesis to hold for weak n-categories: n-types $\simeq n$-groupoids. In the limit $n \rightarrow \infty$, this becomes CW-complexes $\simeq \infty$-groupoids; this is another version of the homotopy hypothesis, which is built directly into the foundations of many of the most popular notions of higher categories.

As a matter of convention, we will say that an (N, n)-category is an N-category where all k-morphisms are invertible for $k>n$. Here, $N \leq \infty$. For instance, an $(\infty, 0)$-category is an ∞-category with all morphisms invertible above level 0 . In other words this is an ∞-groupoid, i.e. (what should be) a space.

In this part of the seminar, we'll look at models of (∞, n)-categories that have the homotopy hypothesis built in, notably Rezk's Θ_{n}-spaces. This ends up making the theory very closely related to the usual homotopy theory of CW-complexes, and we will study one particular incarnation of this: the Baez-Dolan stabilization hypothesis. This is a higher-categorical version of the Freudenthal suspension theorem, which says that if X is $(k-1)$-connected, then $\pi_{i} X \rightarrow \pi_{i} \Omega \Sigma X$ is an isomorphism for $i \leq 2(k-1)$. As a corollary, this implies that if X is also an $(n+k)$-type with $k \geq n+2$, then $X \rightarrow \Omega \Sigma X$ induces an equivalence of $(n+k)$-types (i.e. $\left.X \simeq \tau_{n+k} \Omega \Sigma X\right)$. In other words, there is a $((k+1)-1)$-connected $(n+k+1)$-type whose loopspace is equivalent to X, namely $Y=\Sigma X$. In other words, X can be canonically delooped!

At $n=0$ (so with $k \geq 2$), this is the theory of Eilenberg-MacLane spaces $K(G, k)$. In general, if G is a group, then we can form $K(G, 1)=B G$, which has $n=0$ and $k=1$. But this doesn't satisfy our bound (since $k=1 \nsupseteq n+2=2$), so we can't deloop further in general. Of course, if $B G \simeq \Omega Y$ then $G=\pi_{1} B G=\pi_{1} \Omega Y=\pi_{2} Y$, so G must be abelian. Bu in fact, this is the only obstruction: if G is abelian, then $K(G, 2)$ has $n=0$ and $k=2$, and the bound is satisfies; indeed, $K(G, 2) \simeq \Omega K(G, 3)$, and we can continue all the way up.

The stabilization hypothesis is the analog of this stabilization phenomenon in higher category theory. To explain this, we look at the periodic table of $(k-1)$-connected $(n+k, n+k)$-categories:

	$n=0$	$n=1$	$n=2$
$k=0$	sets	categories	2-categories
$k=1$	monoids	monoidal categories	monoidal 2-categories
$k=2$	commutative monoids	braided monoidal categories	braided monoidal 2-categories
$k=3$	$" "$	symmetric monoidal categories	sylleptic monoidal 2-categories
$k=4$	$" "$	$" "$	symmetric monoidal 2-categories
$k=5$	$" "$	$" "$	$"$

(This of course extends to the right, but one can actually use "negative thinking" to extend it to the left as well. We won't dabble in such silly games, however.) Let's explain the $n=0$ column. First, of course a (-1)-connected $(0,0)$-category is just a set. Then, a 0 -connected $(1,1)$-category is just a 1 -category with one object; this is exactly the data of a monoid. Then, a 1-connected (2,2)-category is a 2-category with one object and one 1-morphism. The 2 -morphisms admit both horizontal and vertical composition, but by the Eckmann-Hilton argument (the same argument which shows that π_{2} is abelian), one can show that these must both be commutative and must agree. So, our 2 -morphisms exactly give us the data of a commutative monoid. One can check that this column stabilizes after this.

So, the stabilization hypothesis posits that the t-fold "loop" functor
$\{($ pointed $)(k+t-1)$-connected $(n+k+t, n+k+t)$-categories $\} \rightarrow\{($ pointed $)(k-1)$-connected $(n+k, n+k)$-categories $\}$ should be an equivalence whenever $k \geq n+2$.

0.2.2 Detailed outline

So, we'll now outline the plan for the second part of the seminar more carefully.

- Talks 5-6: These will concern generalities on (∞, n)-categories, as well as some particular models.
- Talks 7-8: These will concern the E_{n}-stabilization hypothesis. Recall that in spaces, if X is a $(k-1)$ connected $(k+n)$-type with $k \geq n+2$, then $X \simeq \Omega Y$ (where Y will be a k-connected $((k+1)+n)$-type). Given any $(k-1)$-connected \bar{X}, however, we can form $Z=\Omega^{k-1} X$. This gives an equivalence between $(k-1)$-connected spaces and certain $(k-1)$-fold loopspaces. Note that Z is an n-type with $k \geq n+2$, and so if also $X \simeq \Omega Y$, then Z is actually a k-fold loopspace. One uses the E_{n}-operad to keep track of n-fold deloopings; an " E_{n}-space" is exactly a space with operations like those of an n-fold loopspace. (For instance, at $n=1$ we get the little 1-disks operad.)
Now, since we built the homotopy hypothesis into our (∞, n)-categories, we can talk about " $E_{k}-(N, n)$ categories" (for $N \leq \infty$), and the forgetful functor

$$
E_{k}-(n, n) \text {-categories } \rightarrow E_{k-1^{-}}(n, n) \text {-categories }
$$

will be an equivalence if $k \geq n+2$. This will follow from certain topological facts (namely the connectivity of configuration spaces of points in \mathbb{R}^{n}) about the E_{n}-operads. The theory will come in Talk 7, and these facts will be proved in Talk 8.

- Talks 9-11: These will connect up E_{k} (∞, n)-categories with pointed $(n+k+1)$-categories.
- Talk 12: This will be about applications to TFT's, given by either Peter or Chris.

1 Strict n-categories and their classifying spaces - Lars Borutzky

In this talk, all our categories will be small; this will allow us to avoid any set-theoretic issues.

1.1 Strict n-categories, left Kan extensions, and nerves of 1-categories

We begin with the following inductive definition.
Definition 1. A (strict) 0-category is a set. Then, a (strict) n-category \mathcal{C} consists of:

- a collection of objects,
- for each pair of objects x, y, a strict $(n-1)$-category $\mathcal{C}(x, y)$, and
- composition functors $\mathcal{C}(x, y) \times \mathcal{C}(y, z) \rightarrow \mathcal{C}(x, z)$,
such that composition is associative, and for each object x there is an identity object 1_{x} in $\mathcal{C}(x, x)$ that behaves appropriately. (We will make this notion more precise in a bit; we should really have "identity" morphisms all the way up.) Inductively, we say that the 0 -morphisms of \mathcal{C} are its objects, and the k-morphisms of \mathcal{C} are the $(k-1)$-morphisms of the various $(n-1)$-categories $\mathcal{C}(x, y)$.
Example 1. Let X be a space. Then we can form a 2-category as follows: the objects are the points of X, the 1-morphisms from x to y are paths $\gamma:[0, t] \rightarrow X$ (for some $t \geq 0$) such that $\gamma(0)=x$ and $\gamma(1)=y$, and the 2 -morphisms are homotopy classes of homotopies rel endpoints. (We allow these to run over trapezoids, so that we don't only have morphisms between paths defined on the same interval.) Composition is defined by concatenation; note that this is strictly associative. This is the reason we've chosen to use intervals of arbitrary length, rather than defining all our paths on the unit interval.

We will define classifying spaces via nerve functors, which come from the following very general framework.

Suppose \mathcal{C} is a cocomplete category, and that we have a functor $F: \boldsymbol{\Delta} \rightarrow \mathcal{C}$. Then we have the left Kan extension L of F along the standard inclusion (really the Yoneda embedding) $j: \boldsymbol{\Delta} \hookrightarrow$ sSet, which admits a right adjoint R : these all sit in the diagram

in which the solid arrow commutes (up to natural isomorphism). (This is generally written with sSet in the top-right, but our diagram package is too shoddy to be able to pile diagonal arrows.)

The functor R is easy to describe. If $c \in \mathcal{C}$, then $R c \in \operatorname{sSet}$ has $(R c)_{n}=\mathcal{C}(F[n], c)$, and for any $f \in \boldsymbol{\Delta}([\mathbf{n}],[\mathbf{m}])$ we have $(R c)(f)=(F f)^{*}:(R c)_{m} \rightarrow(R c)_{n}$.

The construction of L is cool, so we describe it too. If $X \in$ sSet and $c \in \mathcal{C}$, let us write $X_{n} \cdot c=\coprod_{X_{n}} c \in \mathcal{C}$. Now, $f \in \boldsymbol{\Delta}([\mathbf{n}],[\mathbf{m}])$ induces the diagram

As we range over all morphisms in $\boldsymbol{\Delta}$, we get a whole bunch of these corners. We say that a wedge of (or a cocone on) this diagram is an object $c \in \mathcal{C}$ together with maps $\gamma_{n}: X_{n} \cdot F[n] \rightarrow c$ such that all diagrams

commute. Finally, a coend is a universal wedge (i.e. the initial object in the evident category of wedges). This is denoted by $\int^{n} X_{n} \cdot F[n]$. We define $L X=\int^{n} X_{n} \cdot F[n]$; the behavior of L on morphisms is given by the universal property.

We observe that $L \Delta^{n} \cong F[n]$ (this is just the computation of $L \Delta^{n}=\int^{m}\left(\Delta^{n}\right)_{m} \cdot F[m]$), and in fact $L \circ j \cong F$, as we have claimed above. This immediately implies that we have natural isomorphisms

$$
\operatorname{sSet}\left(\Delta^{n}, R c\right) \cong(R c)_{n}=\mathcal{C}(F[n], c) \cong \mathcal{C}\left(L \Delta^{n}, c\right)
$$

(by Yoneda, by definition, and by this observation, respectively). That is, $L \dashv R$. (Of course, given $X \in$ sSet, we have that $X \cong \operatorname{colim}_{\Delta^{n} \rightarrow X} \Delta^{n}$. This gives a shorter route to this adjunction.)

Example 2. Let $\mathcal{C}=$ Top, and let $F: \Delta \rightarrow$ Top be given by $F([n])=\left|\Delta^{n}\right|=\Delta_{n}$, the topological n-simplex. Then $(R Y)_{n}=\operatorname{Top}\left(\Delta_{n}, Y\right)$; that is, $R=$ Sing. $_{\bullet}$, the simplicial set of singular simplices functor. In the other direction, $L X=\int^{n} X_{n} \cdot \Delta_{n}=|X|$, the geometric realization.

Example 3. In this framework, we can now precisely define the nerve of a category. Let $\mathcal{C}=$ Cat and $F: \boldsymbol{\Delta} \rightarrow$ Cat, with $F([n])$ the usual category \underline{n} given by the poset $\{0 \rightarrow 1 \rightarrow \ldots \rightarrow n\}$. If $C \in$ Cat, then we have $(R C)_{n}=\operatorname{Cat}(\underline{n}, C)$, the sequences of n composable arrows in C. Thus $R=N$, the nerve functor. In the other direction, the functor $L:$ sSet \rightarrow Cat takes a simplicial set and returns the category whose objects are the vertices, whose morphisms are the edges, with composition relations generated by the 2 -simplices. (Technically, $L X=\tau_{1} X$, the 1-truncation of X.)

We make the following inductive definitions, which allow us to complete our previous definition.
Definition 2. If \mathcal{C} and \mathcal{D} are n-categories, then their product is the n-category $\mathcal{C} \times \mathcal{D}$ whose objects are given by $\operatorname{ob}(\mathcal{C}) \times \operatorname{ob}(\mathcal{D})$, and with $(\mathcal{C} \times \mathcal{D})\left((c, d),\left(c^{\prime}, d^{\prime}\right)\right)=\mathcal{C}\left(c, c^{\prime}\right) \times \mathcal{D}\left(d, d^{\prime}\right)$. Then, an n-functor $F: \mathcal{C} \rightarrow \mathcal{D}$ between n-categories is the data of a function $F: \operatorname{ob}(\mathcal{C}) \rightarrow \operatorname{ob}(\mathcal{D})$ and, for each pair $x, y \in \mathcal{C}$, an $(n-1)$-functor $\mathcal{C}(x, y) \rightarrow \mathcal{D}(F x, F y)$, such that all diagrams

commute.
We can now be more precise about our "identity k-morphisms". We define the one-point ($n-1$)-category pt in the obvious way, and then we require for each object x in \mathcal{C} an $(n-1)$-functor $1_{x}: \mathrm{pt} \rightarrow \mathcal{C}(x, x)$ such that the composition

$$
\mathcal{C}(x, y) \cong \mathrm{pt} \times \mathcal{C}(x, y) \xrightarrow{1_{x} \times \mathrm{id}} \mathcal{C}(x, x) \times \mathcal{C}(x, y) \rightarrow \mathcal{C}(x, y)
$$

is the identity $(n-1)$-functor (and such that 1_{y} similarly yields the identity $(n-1)$-functor).

1.2 Higher nerve functors

We would like to generalize our nerve construction to arbitrary strict n-categories. We begin at the case $n=2$. Then we define the nerve of a 2-category C to be the functor $\boldsymbol{\Delta}^{\mathbf{o p}} \rightarrow$ Cat by taking [n] to the category Cat (\underline{n}, C), whose objects are strings of n composable arrows in C and whose morphisms are given by strings of n horizontally composable 2-morphisms in C. (So in particular, for there to be any morphisms between two \underline{n}-diagrams in C, they must have the same objects.) We can also obtain this by considering \underline{n} as a 2-category with only trivial 2-morphisms, and then we just take $[n]$ to the 1 -category of functors $\underline{n} \rightarrow C$ of 2-categories. All in all, we get a functor $N C: \boldsymbol{\Delta}^{\mathbf{o p}} \rightarrow \operatorname{Fun}\left(\boldsymbol{\Delta}^{\mathbf{o p}}\right.$, Set $)$, which takes $[n]$ to the functor which takes $[k]$ to strings of k composable natural transformations between functors $[n] \rightarrow C$. We consider this as a bisimplicial set $N C: \boldsymbol{\Delta}^{\mathbf{o p}} \times \boldsymbol{\Delta}^{\mathbf{o p}} \rightarrow$ Set.

And so of course, in the general case that C is an n-category, we get an n-fold simplicial set. We can actually rephrase the entire story as coming from the diagram

Now, L should be considered the "free n-category" functor, and $R=N$ should be considered as the "nerve of an n-category".

We've already mentioned the geometric realization functor $|\cdot|:$ sSet \rightarrow Top. We can extend inductively by using our coend construction iteratively, and indeed we get $|\cdot|: s^{n}$ Set \rightarrow Top as

$$
|X|=\int^{k_{1}}\left(\cdots\left(\int^{k_{n-1}}\left(\int^{k_{n}} X_{k_{n}} \cdot \Delta^{k_{n}}\right)_{k_{n-1}} \cdot \Delta^{k_{n-1}}\right) \cdots\right)
$$

In fact, the realization of a bisimplicial set is isomorphic to the diagonal, and by induction this extends to n-fold simplicial sets. In any case, we call the end result of all this is the classifying space functor $B=|N \cdot|: n$ Cat \rightarrow Top.

1.3 Examples of higher categories

We end with Peter attempting to collect a (hopefully long) list of further examples of strict n-categories from the audience.

Example 4. CAT, the category of small categories, is in fact a strict 2-category. The 1-morphisms are functors, and the 2 -morphisms are natural transformations.

Example 5. We have the 2-category GROUPS of groups; the 1-morphisms are the group homomorphisms, and the 2 -morphisms between $\varphi, \varphi^{\prime}: G_{1} \rightarrow G_{2}$ are the elements $g \in G_{2}$ such that $\varphi^{\prime}=c_{g} \circ \varphi$, where c_{g} denotes conjugation by g. Vertical composition comes from multiplication in G_{2} since $c_{g h}=c_{g} \circ c_{h}$, and this is associative because multiplication in G_{2} is.

This actually embeds into the 2-category GROUPOIDS, where the group G becomes the groupoid $G \rightrightarrows *$. In fact, GROUPS \rightarrow GROUPOIDS is a 2 -functor. The surprising fact (which we leave as an exercise) is that this is fully faithful: all natural transformations between morphisms of groupoids $\left(G_{1} \rightrightarrows *\right)$ and $\left(G_{2} \rightrightarrows *\right)$ come from the 2-morphisms as we have defined above.

Example 6. Let A be an abelian monoid. Then there is a strict n-category \mathcal{C}_{A}^{n}, which we can define inductively. This has one object, denoted $*$, and then we set $\mathcal{C}_{A}^{n}(*, *)=\mathcal{C}_{A}^{n-1}$. We begin at $n=0$ with $\mathcal{C}_{A}^{0}=A$. However, we technically only remember that this is a set, so instead we should begin wtih $\mathcal{C}_{A}^{1}(*, *)=(A \rightrightarrows *)$. On the other hand, we could instead inductively define \mathcal{C}_{A}^{n} as a monoid in n-categories, and then we could begin at $n=0$.

The abelianness becomes necessary at $n=2$. Namely, $\mathcal{C}_{A}^{2}(*, *)=\mathcal{C}_{A}^{1}=(A \rightrightarrows *)$, and the composition $\operatorname{map} \mathcal{C}_{A}^{2}(*, *) \times \mathcal{C}_{A}^{2}(*, *) \rightarrow \mathcal{C}_{A}^{2}(*, *)$ must be a functor. But this is equivalent to asking for the multiplication map $A \times A \rightarrow A$ to be a morphisms of monoids, which is true iff A is abelian.

Example 7. (N.B. that this example is not quite right; we correct it in the next lecture.) We can consider TOP to be a 2-category. One way to do this would be to take the 1-morphisms to be the continuous maps, and the 2 -morphisms to be the homotopy classes of homotopies. On the other hand, we could instead take our 2 -morphisms to be homotopies indexed by arbitrary intervals $[0, t]$. This recovers TOP $(*, X)$ as the
fundamental 2-category of X that we saw earlier. But now we can finally get an interesting 3-category! Namely, we can take TOP with $\operatorname{TOP}(A, B)$ the fundamental 2-category of the mapping space space (with the compact-open topology). (This probably requires compactly generated and weak Hausdorff conditions, but only Dave cares about this.) Of course, one should check that $\operatorname{TOP}(A, B) \times \operatorname{TOP}(B, C) \rightarrow \operatorname{TOP}(A, C)$ is indeed a 2 -functor.

Example 8. Whenever we have a topological category (i.e. a category enriched in TOP), then we can get a strict 3-category in this way. This therefore includes simplicial (model) categories, via geometric realization of mapping spaces.

Example 9. It is impossible to generalize the "Moore paths" construction past 2-categories. This follows from the fact that there exist weak n-categories that cannot be strictified for $n \geq 3$.

2 Strictification of weak 2-categories - Arik Wilbert

2.1 Motivation

Peter begins with a review of the previous lecture, in order to motivate the present one.
Given a category \mathcal{A} with products, we define \mathcal{A}-CAT to be the category of categories enriched over \mathcal{A}. So for instance, SET-CAT $=$ CAT $=1-$ CAT, $2-$ CAT $=$ CAT-CAT, and more generally $n-$ CAT $=((n-1)-$ CAT $)-$ CAT. Applying classifying spaces take us to TOP and TOP-CAT respectively, and the nerve functor $\left|N_{\bullet}\right|:$ TOP-CAT \rightarrow TOP makes the diagram commute.

Now, if $F: \mathcal{A} \rightarrow \mathcal{B}$ is a product-preserving functor, then we have $\tilde{F}: \mathcal{A}$-CAT $\rightarrow \mathcal{B}$-CAT. For instance, $i:$ SET \rightarrow CAT gives us a functor $\tilde{i}:$ SET-CAT $=$ CAT \rightarrow CAT-CAT $=2$-CAT, which takes a 1-category and returns the 2 -category which only has identity 2 -morphisms. Inductively, we get n-CAT $\rightarrow(n+1)$-CAT.

Exercise 1. Show by induction that these functors have both left and right adjoints, and that these adjoints are both product preserving.

Lemma 1. $n-\mathrm{CAT}=(n-\mathrm{CAT}, \times)$ has inner Hom's; that is, there are natural isomorphisms (of sets)

$$
n-\operatorname{CAT}(B \times C, D) \cong n-\operatorname{CAT}(B, \underline{n-\operatorname{CAT}}(C, D))
$$

Corollary 1. n-CAT is an $(n+1)$-category.
(This generalizes our previous observation that CAT is a 2-category.)
In order to prove the lemma, we need the following definition. A globular set is given by a diagram of sets of the form

$$
A_{n} \rightrightarrows \cdots \rightrightarrows A_{2} \rightrightarrows A_{1} \rightrightarrows A_{0}
$$

for some $n<\infty$; the forward maps are called s and t (for "source" and "target"), and there are backwards maps (not pictured), called u (for "unit"); these must of course satisfy certain axioms, the most obvious which being $s \circ u=t \circ u=$ id. Pictorially, one should think of each element of A_{k} as a " k-globe" running between its source and target hemispheres (i.e. $(k-1)$-globes): all of this is just a different way of decomposing the k-ball into a CW-complex.

Lemma 2. An n-category is a globular set together with multiplications (ending at A_{n})

$$
\left\{\left(a^{\prime}, a\right): s^{m-p}\left(a^{\prime}\right)=t^{m-p}(a)\right\}=A_{m} \times_{A_{p}} A_{m} \rightarrow A_{m}
$$

for $0 \leq p<m-1$, satisfying certain diagrams.
(Under this correspondence, A_{k} is the set of k-morphisms.)
Now one easily defines k-Cell, the free k-category on one k-morphism, and then we can define the inner Hom by

$$
\underline{n-\mathrm{CAT}}(C, D)_{k}=n-\operatorname{CAT}\left(i^{n-k}(k-\mathrm{Cell} \times C, D) .\right.
$$

For instance, at $n=2, \underline{2-\operatorname{CAT}}(C, D)$ has objects the functors $C \rightarrow D, 1$-morphisms the functors $C \times(\bullet \rightarrow$ $\bullet) \rightarrow D$ (i.e. natural transformations of functors), and 2-morphisms the functors $C \times(2-\mathrm{Cell}) \rightarrow D$ (where $2-C e l l$ looks like two parallel arrows and a natural transformation between them).

And now, on to Arik's talk!

2.2 The theorem

Today we will be concerned with the following theorem.
Theorem 1. Every bicategory is biequivalent to a 2-category.
The first half of the talk will explain the ideas in the theorem, and then in the second half we'll sketch a proof.

2.2.1 The definitions

Definition 3. A bicategory \mathcal{B} consists of the following data:

1. a collection of objects $\operatorname{ob}(\mathcal{B})($ denoted $A, B, C, \ldots)$;
2. categories $\mathcal{B}(A, B)$ for all $A, B \in \mathrm{ob}(\mathcal{B})$ (with objects the 1 -morphisms f, g, \ldots and morphisms the 2-morphisms $\alpha, \beta, \gamma, \ldots)$;
3. horizontal composition functors

$$
c_{A B C}: \mathcal{B}(B, C) \times \mathcal{B}(A, B) \rightarrow \mathcal{B}(A, C)
$$

for all $A, B, C \in \operatorname{ob}(\mathcal{B})$ (denoted $(g, f) \mapsto g \circ_{1} f$ and $\left.(\beta, \alpha) \mapsto \beta \star \alpha\right)$, along with identity functors $I_{A}: \mathbf{1} \rightarrow \mathcal{B}(A, A)$ for all $A \in \operatorname{ob}(\mathcal{B})$ satisfying the usual diagrams;
4. natural isomorphisms

$$
\begin{aligned}
a & : c_{A B D} \circ\left(c_{B C D} \times \mathrm{id}\right) \rightarrow c_{A C D} \circ\left(\mathrm{id} \times c_{A B C}\right) \\
l & : \\
r & c_{A B B} \circ\left(I_{B} \times \mathrm{id}\right) \rightarrow \mathrm{id} \\
r & : c_{A A B} \circ\left(\mathrm{id} \times I_{A}\right) \rightarrow \mathrm{id},
\end{aligned}
$$

called the associator and the left and right unitors, which induce 2-morphisms

$$
\begin{aligned}
& a_{h, g, f}:\left(h \circ_{1} g\right) \circ_{1} f \rightarrow h \circ_{1}\left(g \circ_{1} f\right) \\
& l_{f}: I_{B} \circ_{1} f \rightarrow f \\
& r_{f}: f \circ_{1} I_{A} \rightarrow f
\end{aligned}
$$

these must satisfy the pentagon axiom, dictating that the diagram

commutes, and the triangle axiom, dictating that the diagram

commutes.
Remark 1. Note that if a, l, r are identity maps, then \mathcal{B} is just a 2 -category. So, one may think of a bicategory as a weak 2-category.

Example 10. Cat is a 2-category, and hence a bicategory.
Example 11. A monoidal category is a 1-object bicategory.
Example 12. If \mathcal{B} is a bicategory, then we have the dual bicategory $\mathcal{B}^{o p}$; this construction reverses 1morphisms, but keeps the 2 -morphisms running in the same direction.

Example 13. Tangles form a bicategory. The objects are just the nonnegative integers, where $n \geq 0$ is identified with the n-point 0 -manifold. A 1-morphism is a flat tangle, i.e. a cobordism in $\mathbb{R} \times I \subset \mathbb{R} \times \mathbb{R}$. Then, 2 -morphisms are cobordisms up to isotopy rel boundary in $\mathbb{R} \times I \times I$. (If one cares about this, one should look up a picture.)

Now, if we care about bicategories, then we must know what their morphisms are.
Definition 4. If \mathcal{B} and \mathcal{B}^{\prime} are bicategories, then a homomorphism of bicategories $(F, \phi): \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ consists of the following data:

1. a function $F: \operatorname{ob}(\mathcal{B}) \rightarrow \mathrm{ob}\left(\mathcal{B}^{\prime}\right)$;
2. functors $F_{A B}: \mathcal{B}(A, B) \rightarrow \mathcal{B}^{\prime}(F A, F B)($ for all $A, B \in \mathrm{ob}(\mathcal{B}))$;
3. natural isomorphisms $\phi_{A B C}: c_{F A, F B, F C}^{\mathcal{B}^{\prime}} \circ\left(F_{B C} \times F_{A B}\right) \rightarrow F_{A C} \circ c_{A B C}^{\mathcal{B}}$ and $\phi_{A}: I_{F A}^{\mathcal{B}^{\prime}} \rightarrow F_{A} \circ I_{A}^{\mathcal{B}}$ (for all $A, B, C \in \mathrm{ob}(\mathcal{B})$), giving 2-morphisms $\phi_{g f}: F g \circ_{1} \rightarrow F\left(g \circ_{1} f\right)$ and $\phi_{A}: I_{F A}^{\mathcal{B}^{\prime}} \rightarrow F\left(I_{A}^{\mathcal{B}}\right)$;
these must satisfy certain diagrams that we won't actually write down.
(To see the axioms in full detail, consult e.g. Leinster's paper "Basic Bicategories" or Chris's thesis.)

Example 14. We claim that there is a homomorphism of 2-categories $\mathcal{B}(-, A): \mathcal{B}^{o p} \rightarrow$ Cat, for any fixed object $A \in \mathrm{ob}(\mathcal{B})$. Given any $B \in \mathrm{ob}\left(\mathcal{B}^{o p}\right)$, we obtain the category $\mathcal{B}(B, A)$. We have

$$
\mathcal{B}(-, A)_{B C}: \mathcal{B}^{o p}(B, C) \rightarrow \operatorname{Cat}(\mathcal{B}(B, A), \mathcal{B}(C, A))
$$

by $\left(B \xrightarrow{f^{o p}} C\right) \mapsto\left(\mathcal{B}(B, A) \xrightarrow{B\left(f^{o p}, A\right)_{B C}} \mathcal{B}(C, A)\right)$. But we have a map going backwards, too: if we have a morphism given by $(B \xrightarrow{g} A) \mapsto(C \xrightarrow{f} B \xrightarrow{g} A)$ and $(\alpha: g \Rightarrow h) \mapsto\left(\alpha \times \mathrm{id}: g \circ_{1} f \Rightarrow h \circ_{1} f\right)$, then we can recover the morphism $B \xrightarrow{f^{o p}} C$. This example will lead to the 2-Yoneda lemma, which gives us the 2-Yoneda embedding.

Definition 5. Two bicategories \mathcal{B} and \mathcal{B}^{\prime} are called biequivalent if there exists a homomorphism $F: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ such that:

1. F is locally an equivalence (i.e. $F_{A B}$ is an equivalence of categories for all $A, B \in \operatorname{ob}(\mathcal{B})$);
2. for all $B^{\prime} \in \operatorname{ob}\left(\mathcal{B}^{\prime}\right)$, there exists a object $B \in \mathrm{ob}(\mathcal{B})$ such that $F B$ is internally equivalent. (If $A, B \in \mathrm{ob}(\mathcal{B})$, we say that A and B are internally equivalent if there exist 1-morphisms $f: A \leftrightarrows B: g$ together with isomorphisms $\left(1 \rightarrow g \circ_{1} f\right) \in \mathcal{B}(A, A)$ and $\left(f \circ_{1} g \rightarrow 1\right) \in \mathcal{B}(B, B)$.)

2.2.2 The proof

We now have all the definitions necessary for the theorem in hand, and so we can embark on the proof itself.
Our goal is, for bicategories \mathcal{B} and \mathcal{B}^{\prime}, to define a bicategory

$$
\left[\mathcal{B}, \mathcal{B}^{\prime}\right]= \begin{cases}2 & \text { modifications } \\ 1 & \text { transformations } \\ 0 & \text { homomorphisms }\end{cases}
$$

When \mathcal{B}^{\prime} is a 2-category, this will be a 2-category as well.
Note that if $D \xrightarrow{h} E$ is a 1-morphism in \mathcal{B}, then we obtain functors $h_{*}: \mathcal{B}(C, D) \rightarrow \mathcal{B}(C, E)$ and $h^{*}: \mathcal{B}(E, C) \rightarrow \mathcal{B}(D, C)$.

Definition 6. A transformation (or strong transformation) $\sigma: F \rightarrow G$ between two homomorphisms $F, G: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ of bicategories is the following data:

1. 1-morphisms $\sigma_{A}: F A \rightarrow G A$ for all $A \in \mathcal{B}$;
2. natural isomorphisms

$$
\sigma_{A B}:\left(\sigma_{A}\right)^{*} \circ G_{A B} \rightarrow\left(\sigma_{B}\right)_{*} \circ F_{A B}
$$

inducing invertible 2-morphisms

$$
G f \circ_{1} \sigma_{A} \rightarrow \sigma_{B} \circ_{1} F f
$$

for all 1-morphisms $f: A \rightarrow B$ in \mathcal{B};
satisfying certain diagrams that one can look up in the literature.
(Note that the classical definition of a natural transformation involves certain equalities; this is analogous, but we're only using isomorphisms.)

Definition 7. A modification $\Gamma: \sigma \Rightarrow \tilde{\sigma}$ between two transformations $\sigma, \tilde{\sigma}: F \rightarrow G$ of homomorphisms of bicategories $F, G: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$ consists of the following data:

1. a 2-morphism $\Gamma_{A}: \sigma_{A} \Rightarrow \tilde{\sigma}_{A}$ between the 1-morphisms $\sigma_{A}, \tilde{\sigma}_{A}: F A \rightarrow G A$, for all objects $A \in \mathcal{B}$.

Of course, the analogy runs that bicategories should be thought of as points, homomorphisms should be thought of as directed edges, transformations should be thought of as 2-disks running between two (parallel) directed edges, and modifications should be thought of as 3-balls running between two (parallel) 2-disks.

Let us indicate why $\left[\mathcal{B}, \mathcal{B}^{\prime}\right]$ is strict when \mathcal{B}^{\prime} is. We must define the horizontal compositions

$$
\left[\mathcal{B}, \mathcal{B}^{\prime}\right](G, H) \times\left[\mathcal{B}, \mathcal{B}^{\prime}\right](F, G) \rightarrow\left[\mathcal{B}, \mathcal{B}^{\prime}\right](F, H)
$$

which we denote by $(\tilde{\sigma}, \sigma) \mapsto \tilde{\sigma} \circ \sigma$. For any object $A \in \mathcal{B}$, this is defined by the commutative diagram

Moreover, for all 1-morphisms $f: A \rightarrow B$ in \mathcal{B}, if \mathcal{B}^{\prime} is strict we have the invertible 2-morphism $(\tilde{\sigma} \circ \sigma)_{f}$: $H f \circ_{1}(\tilde{\sigma} \circ \sigma)_{A} \rightarrow(\tilde{\sigma} \circ \sigma)_{B} \circ_{1} F f$ given by

$$
\left(H f \circ_{1} \tilde{\sigma}_{A}\right) \circ_{1} \sigma_{A} \xrightarrow{\tilde{\sigma}_{f} \star \mathrm{id}}\left(\tilde{\sigma}_{B} \circ_{1} H f\right) \circ_{1} \sigma_{A}=\tilde{\sigma}_{B} \circ_{1}\left(H f \circ_{1} \sigma_{A}\right) \xrightarrow{\mathrm{id} \star \sigma_{f}} \tilde{\sigma}_{B} \circ_{1}\left(\sigma_{B} \circ_{1} F f\right)=(\tilde{\sigma} \circ \sigma)_{B} \circ_{1} F f
$$

(where the equalities comes from the assumption that \mathcal{B}^{\prime} is strict). Now, we can see strict associativity as follows. If $F \xrightarrow{\sigma} G \xrightarrow{\tilde{\sigma}} H \xrightarrow{\tilde{\tilde{\sigma}}} I$ is a sequence of composable 2 -morphisms, we must see that $(\tilde{\tilde{\sigma}} \circ \tilde{\sigma}) \circ \sigma=\tilde{\tilde{\sigma}} \circ(\tilde{\sigma} \circ \sigma)$. But this follows from unwinding the definitions.

We now present a proof of the main theorem.
Proof. Let \mathcal{B} be a bicategory. We consider a homomorphism $Y: \mathcal{B} \rightarrow\left[\mathcal{B}^{o p}\right.$, Cat $]$, which we call the 2-Yoneda embedding. (Note that the target is a 2-category, since Cat is strict.) On objects, this is given by an example above, $A \mapsto \mathcal{B}(-, A)$. Now, define the subbicategory $\mathcal{B}^{\prime} \subset\left[\mathcal{B}^{o p}\right.$, Cat $]$ to be the full image of \mathcal{B}, i.e. the full subbicategory spanned by the homomorphisms $Y A: \mathcal{B}^{o p} \rightarrow$ Cat. This defines a homomorphism $Y^{\prime}: \mathcal{B} \rightarrow \mathcal{B}^{\prime}$. This will be our biequivalence; note that \mathcal{B}^{\prime} is a strict bicategory since it's a subbicategory of a strict one. Of course, this is essentially surjective by construction, s it only remains to check that it's a local equivalence. But this is just the 2 -categorical Yoneda lemma that Y is a local equivalence. But this means that Y^{\prime} is too. (Of course, to actually do this all rigorously, we should think about the 1-morphisms and 2-morphisms; so far, we've only thought about objects. But this is as incredibly messy as it is straightforward, so we forbear.)

The question becomes: Where does this proof essentially fail for tricategories? In fact, if \mathcal{T} is a tricategory, then we will need to consider $\mathcal{T} \rightarrow\left[\mathcal{T}^{o p}\right.$, Bicat $]$, and this target is not strict. The problem is that Bicat \rightarrow $2-$ Cat is only a weak functor.

We end with a reference: On the nLab, one can search "2-categorical Yoneda lemma", and there is a link to a paper by Igor Baković for a complete hands-on proof. Of course, the nLab itself has a high-powered proof as well.

2.3 Correction from previous lecture

Finally, Peter returns to correct something from last time. Recall we had $\pi_{\leq 2}:$ TOP $\rightarrow 2$-CAT given by Moore paths (i.e. paths indexed on an interval $[0, l]$ for any $l \geq 0$) and homotopies rel endpoints indexed on trapezoids. (Incidentally we can do this with tangles too, to obtain a strict 2-category.) We concluded wrongly that we can obtain a strict 3-category with objects the compactly generated Hausdorff spaces and with morphisms the 2 -categories $\pi_{\leq 2}(\operatorname{TOP}(A, B))$. The problem is that composition is not strictly associative.

We do indeed have associative composition maps $\operatorname{TOP}(B, C) \times \operatorname{TOP}(A, B) \rightarrow \operatorname{TOP}(A, C)$, but the issue is that $\pi_{\geq 2}$ isn't product-preserving: the problem is the fact that we've got Moore loops, so in a product of spaces we can only naturally take products of paths that have the same length. So we only have the solid diagrams

and to have strict associativity would require naturally selecting dotted arrows. Now it turns out that the right-downward arrow is in fact an equivalence, so we can choose a section, but this involves a choice which there's no canonical way to make; hence we don't get strict associativity. Thus, we only get a weak 3 -category.

3 2-groupoids and 2-types - Malte Pieper

3.1 Motivation

Peter jumps in to give us a review of what we've seen and an idea of where we're headed. Recall that we defined strinct n-categories for all n, but we saw that this could be generalized. Last week, Arik showed us $2-\mathrm{CAT} \subset \mathrm{BiCAT}$, and given $B \in \operatorname{BiCAT}$, he showed that $Y: B \rightarrow \operatorname{Fun}\left(B^{o p}, \mathrm{CAT}\right)$ is an equivalence onto its essential image. We've defined equivalences in both situations 2-CAT and BiCAT; thus we can deduce a morphism of homotopy categories: $h-2$-CAT $\rightarrow h$-BiCAT. (This actually might be an equivalence, but there's verbal debate about this. If we have two strict categories and consider the weak functors between them, not all of them can be strictified. This doesn't prove the opposite, but at least it's not transparent that this is an equivalence. Interestingly, it will actually suffice to show that $h-2-\mathrm{GRP} \xrightarrow{\sim} h-2$-types.)

Now, remember that Lars showed that there's always a classifying space functor $B: n-\mathrm{CAT} \rightarrow \mathrm{TOP}$, and this respects the inclusions CAT $\rightarrow 1$-CAT $\rightarrow \cdots \rightarrow n$-CAT. Now, the composite functor CAT $\rightarrow n$-CAT \rightarrow TOP is already surjective on weak homotopy types. So from the point of view of topology, we don't need the intermediate categories! However, what we will see in more detail today is that we can take a subfiltration of n-GRP $\subset n$-CAT by GRP $\rightarrow 2$-GRP $\rightarrow \cdots \rightarrow n$-GRP, and this has geometric content: there is a factorization $B: n$-GRP $\rightarrow n$-types \subset TOP. The punchline, then, will be that for $n \leq 2$ these actually induce equivalences of homotopy catories n-GRP $\xrightarrow{\sim} n$-types. However, we will need to weaken our n-categories for $n>2$ in order to get an equivalence here.

And now, on to Malte's talk!

3.2 What's a 2-group?

We begin with the definition.
Definition 8. A (strictly) coherent 2-group is a weak monoidal category with an adjoint equivalence for each object, such that all morphisms are invertible. (One can see the precise diagrams on the handout that's been distributed, which is also appended to the end of this section.) These define the category C2G. An adjoint equivalence $\left(g, \bar{g}, i_{g}, e_{g}\right)$ consists of two elements $g, \bar{g} \in \mathcal{G}$ and isomorphisms $i_{g}: 1 \xrightarrow{\cong} g \otimes \bar{g}$ and $e_{g}: \bar{g} \otimes g \xrightarrow{\cong} 1$, such that two diagrams commute (which equate maps $1 \otimes g \rightarrow g \otimes 1$ and $\bar{g} \otimes 1 \rightarrow 1 \otimes \bar{g}$).

Remark 2. Now, why do we use this definition of 2-group? What does it have to do with the more intuitive notions that we've already seen? Well, weak 2 -groups are equivalent to coherent 2 -groups by a choice of adjoint equivalences. (A weak 2-group can be defined to be a bicategory with a single object and with all
morphisms invertible. Or, we can repeat the definition of coherent 2-group, but replace our requirement of adjoint equivalences by saying that for all $g \in \mathcal{G}$ there is some $\bar{g} \in \mathcal{G}$ such that $g \otimes \bar{g} \cong 1 \cong \bar{g} \otimes g$.)

Definition 9. A homomorphism of coherent 2-groups is a weak monoidal functor, and a 2-homomorphism is a weak monoidal natural transformation.

Remark 3. Our functor does not explicitly carry over the adjoint equivalences. However, note that it determines an isomorphism $\overline{\mathcal{F}(-)} \cong \xlongequal{\cong}(\overline{-})$ if we claim compatibility with the unit and counit of the adjoint equivalences, as given in the diagrams in the handout.

3.3 Classify 2-groups!

In order to begin our classification, we introduce the following definition.
Definition 10. A coherent 2-group is called special if it is skeletal (i.e. its underlying category is skeletal, i.e. any two isomorphic objects are equal) and the unitors l and r as well as e and i are all identities.

Proposition 1. Every coherent 2-group is equivalent to a special one.
Proof sketch. Essentially the point here is that once we're skeletal, the only issue might be that our isomorphisms are nontrivial automorphisms. It turns out that these can be hidden by fiddling with the 2-morphisms $\mathcal{F}_{2}: \mathcal{F}(x) \otimes \mathcal{F}(y) \xrightarrow{\cong} \mathcal{F}(x \otimes y)$, and these can all be turned into equalities at once.

We now introduce an invariant of special 2-groups. This will be the algebraic data necessary to classify them. Given \mathcal{G}, we associate the quadruple (G, H, α, a), where:

- $G=(\mathrm{ob}(\mathcal{G}), \otimes)$ is a group because \mathcal{G} is skeletal;
- $H=\left(\operatorname{Aut}\left(1_{\mathcal{G}}\right), \circ\right)$ is an abelian group (by the Eckmann-Hilton argument);
- $\alpha: G \rightarrow \operatorname{Aut}(H)$ given by $g \mapsto\left(h \mapsto\left(1_{g} \otimes h\right) \otimes 1_{\bar{g}}\right)$ is a group action;
- $a: G^{3} \rightarrow H$ given by $\left(g_{1}, g_{2}, g_{3}\right) \mapsto a_{g_{1}, g_{2}, g_{3}} \otimes 1 \frac{}{g_{1} \otimes g_{2} \otimes g_{3}}$ is a normalized cocycle in $C^{3}(G ; H)$, where H is a $\mathbb{Z}[G]$-module via α.
(That a is a cocycle follows from the pentagon axiom. To say a cocycle is normalized means that if $g_{i}=1_{G}$ for any i then $a\left(g_{1}, g_{2}, g_{3}\right)=1_{H}$. We recall that group cohomology has its n-chains given by $C^{n}(G ; H)=$ $\operatorname{Hom}_{\text {Set }}\left(G^{n+1}, H\right)$, with e.g. $(\partial a)\left(g_{1}, g_{2}, g_{3}, g_{4}\right)=g_{1} \cdot a\left(g_{2}, g_{3}, g_{4}\right)-a\left(g_{1} g_{2}, g_{3}, g_{4}\right)+a\left(g_{1}, g_{2} g_{3}, g_{4}\right)-a\left(g_{1}, g_{2}, g_{3} g_{4}\right)+$ $a\left(g_{1}, g_{2}, g_{3}\right)$.)

Proposition 2. There is a bijective correspondence between such quadruples (G, H, α, a) and special 2-groups up to canonical isomorphism.

Proof sketch. We first indicate how to go back. Given a quadruple (G, H, α, a), we define \mathcal{G} by ob $(\mathcal{G})=G$, $\mathcal{G}(g, g)=H, \mathcal{G}(g, h)=\emptyset$ for $g \neq h$, and tensor products on morphisms is given by $1_{g} \otimes-=\alpha(g,-)$ and $-\otimes 1_{g}=\mathrm{id}$, and hence we set $f \otimes f^{\prime}=(f \otimes 1) \circ\left(1 \otimes f^{\prime}\right)$, and lastly $a_{g_{1}, g_{2}, g_{3}}=a\left(g_{1}, g_{2}, g_{3}\right)$.

Now, the composition back to quadruples very obviously is the identity. So, it remains to specify what the canonical isomorphism is. If the composition applied to \mathcal{G} produces \mathcal{H}, then we define a canonical isomorphism $\mathcal{F}: \mathcal{G} \rightarrow \mathcal{H}$ which is the identity everywhere except on morphisms, where we have $\mathcal{G}(g, g) \rightarrow$ $\mathcal{H}(g, g)$ given by $f \mapsto f \otimes 1_{\bar{g}}$.

Now, this is actually a rather weak statement; ideally we'd have an equivalence of categories. So, we give a brief indication of what the morphisms are on the algebraic side. Associated to $\mathcal{F}: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$, the morphism of algebraic quadruples is a triple (ϕ, ψ, k), where:

- $\phi: G \rightarrow G^{\prime}$ is a group homomorphism;
- $\psi: H \rightarrow H^{\prime}$ is a homomorphism of $\mathbb{Z}[G]$-modules (i.e. $\psi(\alpha(g, h))=\alpha(\phi(g), \psi(h))$;
- $k: G^{2} \rightarrow H^{\prime}$ given by $k\left(g_{1}, g_{2}\right)=\left(\mathcal{F}_{2}\right)_{g_{1}, g_{2}} \otimes 1 \overline{g_{1} \otimes g_{2}}$ is a normalized cochain such that $d k=\psi_{*}(a)-$ $\phi^{*}\left(a^{\prime}\right)$.

Then, the precise statement is the following.
Proposition 3. We have an equivalence of categories $\{(G, H, \alpha, a)\} /$ iso. $\stackrel{\sim}{\leftrightarrow}$ S2G/equiv..
Combining with the results of the previous talk, we have the string of equivalences

$$
\{(G, H, \alpha, a)\} / \text { iso. } \underset{\leftrightarrow}{\leftrightarrow} \text { S2G/eq. } \stackrel{\sim}{\leftrightarrow} \text { C2G/eq. } \stackrel{\sim}{\leftrightarrow} \text { weak } 2 \text {-groups/eq. } \stackrel{\sim}{\leftrightarrow} \text { strict } 2 \text {-groups/eq.. }
$$

Every equivalence here but the last is actually an equivalence of tricategories, but the last one is impossible to strictify in this way.

3.4 2-types/equivalence $\leftrightarrow 2$-groups/equivalence

We would like to extend the above to strict 2 -groups/eq. $\stackrel{\sim}{\leftrightarrow}$ connected 2 -types $/ \sim$. To be precise, we make the following definition.

Definition 11. A connected 2-type X is a CW-complex with exactly one 0 -cell, denoted $*$, such that $\pi_{i}(X, *)=0$ for all $i>2$.

We restrict our attention to connected 2-types; we can run this whole machine one connected component at a time, so this is no real loss.
(As an interesting aside, if X and Y are connected 2-types, then it is possible for $\pi_{3} \operatorname{map}(X, Y) \neq 0$, but it is always the case that $\pi_{3} \operatorname{map}_{*}(X, Y)=0$. As should be clear from our categorical setup, we will only be considering based maps.)

Definition 12. We write $\pi_{\leq 2} X$ for the endomorphism category of $* \in X$ in the path 2-category, i.e. the 2-category of points of X, paths in X, and homotopy classes of endpoint-preserving homotopies between paths. So $\pi_{\leq 2} X$ has objects the loops at $*$, and has morphisms the homotopy classes of homotopies rel endpoints.

We give an explicit model for our classifying spaces: $B \mathcal{G}=\left|N_{\bullet}\left(N_{\bullet} \mathcal{G}, \otimes\right)\right|$. (The nerve of \mathcal{G} is levelwise a monoid, and so we can take the nerve again to obtain a bisimplicial set. The geometric realization of this is by definition the classifying space of \mathcal{G}.) The element $\varphi \in N_{i} N_{j} \mathcal{G}$ (for $i \geq 1$) is equivalent to a string of j composable morphisms running from $g_{1_{0}} \otimes \cdots \otimes g_{i_{0}}$ to $g_{1_{j}} \otimes \cdots \otimes g_{i_{j}}$.
Proposition 4. $B \mathcal{G}$ is a 2-type. In fact, $B \mathcal{G}=B(|N \mathcal{G}|, \otimes)$; that is, $B \mathcal{G}$ is a model for the classifying space of the usual classifying space $|N \mathcal{G}|$ of \mathcal{G}, which is itself a topological monoid with operation induced from $\otimes: N_{i} \mathcal{G} \times N_{i} \mathcal{G} \rightarrow N_{i} \mathcal{G}$.

Remark 4. Now, $\pi_{i+1}(B \mathcal{G}) \cong \pi_{i}\left(\left|N_{\bullet} G\right|\right)$. For $j \geq 3$, we claim that we have a filler in the diagram

for any horizontal maps making the square commute; this is the statement that $\pi_{j}\left(N_{\bullet} \mathcal{G}\right)=0$ for $j \geq 3$. (In general one must bifibrantly replace a simplicial set to compute its simplicial homotopy groups. But $N_{\bullet} \mathcal{G}$ is a Kan complex (i.e. it is fibrant) since it's the nerve of a groupoid, and moreover every simplicial set is cofibrant. So $N_{\bullet} \mathcal{G}$ is bifibrant.) This is exactly the statement that $\pi_{j}(B \mathcal{G})=0$ for $j \geq 3$. Now, this diagram is equivalent to asking for a filler in

(Recall that τ_{1} sits in the adjunction $\tau_{1}:$ sSet \leftrightarrows Cat $: N$; the objects are the vertices, and the morphisms are generated by the edges modulo the 2 -simplices.) But the vertical map is an isomorphism since τ_{1} only depends on the 2 -skeleton, so in fact there is a unique filler.

Now we know that our two constructions land in the right places. So, it remains to show that they are inverses (up to the correct notions of equivalence).

First, let us prove that $\pi_{\leq 2} B \mathcal{G} \simeq \mathcal{G}$. We will have a morphism $\mathcal{F}: \mathcal{G} \rightarrow \pi_{\leq 2} B \mathcal{G}$, and passing to special 2 -groups induces an isomorphism on the algebraic data G and H. Furthermore, we can extend our algebraic data with a cochain to get an inverse in the category of quadruples. So, let us define \mathcal{F}. On objects, we take $g \in \mathcal{G}$ to $p_{g}: I \rightarrow B \mathcal{G}$, which is a parametrization of the geometric realization of $g \in N_{1} N_{0} \mathcal{G}$. On morphisms, we take $\alpha: g \rightarrow h$ to $\hat{\alpha}: H^{2} \rightarrow B \mathcal{G}$ in the similar way, considering $\alpha \in N_{1} N_{1} \mathcal{G}$. One shows that this can be extended to an associative unital functor \mathcal{F}; to do this, one must simply guess the right simplices that witness these facts. (For instance, to show that \mathcal{F}_{1} is a functor, we must show that $\mathcal{F}_{1}(g h)=\mathcal{F}_{1}(g) \circ \mathcal{F}_{1}(h)$. This is witnessed by the evident 2 -simplex running from $p_{g h}$ to $p_{g} \star p_{h}$, which is associated to $(g, h) \in N_{2} N_{0} \mathcal{G}$.) To show that G and H are isomorphisms, we have that $G \widetilde{\pi_{\leq 2} B \mathcal{G}}=\left(\operatorname{ob}\left(\widetilde{\pi_{\leq 2} B \mathcal{G}}\right), \otimes\right) \cong \pi_{1}(B \mathcal{G}, *) \cong \pi_{0}\left(\left|N_{\bullet} \mathcal{G}\right|\right) \cong$ $\mathcal{G}_{\widetilde{\mathcal{G}}}$, where the last isomorphism takes $[g]$ to $\left[p_{g}\right]$. (Here, $\widetilde{\mathcal{G}}$ denotes the skeletonization of \mathcal{G}.)

Finally, we sketch that $B \pi_{\leq 2} X \simeq X$. For this, we define

for f a π_{1}-isomorphism. One must check that:

1. $\pi_{1} B \pi_{\leq 2} f$ is an isomorphism;
2. t is natural on π_{1};
3. t is an isomorphism on the left side.

After a similar argument for π_{2}, we may apply Whitehead's theorem to obtain that t is a homotopy equivalence.

Now, the first statement amounts to unwinding the definitions and using the above result for the other direction. For the other steps one defines t similarly to the way we defined \mathcal{F} in the previous step and then
considers the diagram

in which the composition from the bottom to the top right can be explicitly understood for $X=K(G, 1)$.
Chris summarizes: By some hard work, we were able to construct functors in both directions. Going back and forth in both directions admit functorial comparisons, and the point is that this preserves π_{1} and π_{2}.

3.5 Addendum (handout): Classification of homotopy 2-types: Some basic definitions

Definition 13. A coherent 2 -group is a category \mathcal{G} together with a bifunctor $\otimes: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$, an object $1 \in \mathcal{G}$, natural isomorphisms l, r (unitors) and a (associator) and for every $g \in \mathcal{G}$ an adjoint equivalence $\left(g, \bar{g}, i_{g}, e_{g}\right)$, s.t. all morphisms are invertible and the following diagrams commute:
Pentagon Identity:

Unit Law:

Definition 14. An adjoint equivalence is a quadruple (g, \bar{g}, i_{g}, e_{g}), where $g, \bar{g} \in \mathcal{G}$ and $i_{g}: 1 \rightarrow g \otimes \bar{g}$ (unit) and $e_{g}: \bar{g} \otimes g \rightarrow 1$ (counit) are isomorphisms, s.t. the following diagrams commute:

Definition 15. A homomorphism of coherent 2-groups is a weak monoidal functor \mathcal{F}. It consists of a functor $\mathcal{F}_{1}: \mathcal{G} \rightarrow \mathcal{G}^{\prime}$, natural isomorphisms $\mathcal{F}_{2_{g h}}: \mathcal{F}_{1}(g) \otimes \mathcal{F}_{1}(h) \rightarrow \mathcal{F}_{1}(g \otimes h)$ and an isomorphism $\mathcal{F}_{0}: 1^{\prime} \rightarrow \mathcal{F}_{1}(1)$, s.t. the following diagrams commute:

Compatibility with the associator:

$$
\begin{aligned}
& \left(\mathcal{F}_{1}(g) \otimes \mathcal{F}_{1}(h)\right) \otimes \mathcal{F}_{1}(k) \xrightarrow{\mathcal{F}_{2} \otimes 1} \mathcal{F}_{1}(g \otimes h) \otimes \mathcal{F}_{1}(k) \xrightarrow{\mathcal{F}_{2}} \mathcal{F}_{1}((g \otimes h) \otimes k) \\
& \downarrow_{a_{\mathcal{F}_{1}(g) \mathcal{F}_{1}(h) \mathcal{F}_{1}(k)}^{\prime}}^{\mathcal{F}_{2}}{ }_{\mathcal{F}_{1}\left(a_{g h k)}\right)} \downarrow \\
& \left.\mathcal{F}_{1}(g) \otimes\left(\mathcal{F}_{1}(h)\right) \otimes \mathcal{F}_{1}(k)\right)^{1 \otimes \mathcal{F}_{2}} \mathcal{F}_{1}(g) \otimes \mathcal{F}_{1}(h \otimes k) \xrightarrow{\mathcal{F}_{2}} \mathcal{F}_{1}(g \otimes(h \otimes k))
\end{aligned}
$$

Compatibility with the unitors:

Definition 16. A 2-homomorphism of coherent 2 -groups is a weak monoidal natural transformation θ : $\mathcal{F} \rightarrow \mathcal{F}^{\prime}$, i.e. $\mathcal{F}, \mathcal{F}^{\prime}: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ are weak monoidal functors and θ is a natural transformation $\theta: \mathcal{F}_{1} \rightarrow \mathcal{F}_{1}^{\prime}$, s.t. the following diagrams commute:
Compatibility with \mathcal{F}_{2} and \mathcal{F}_{0} :

Remark 5. An isomorphism $\mathcal{F}_{-1_{g}}: \overline{\mathcal{F}(g)} \rightarrow \mathcal{F}(\bar{g})$ is uniquely determined by the commutativity of the following diagrams:
Compatibility with the unit and the counit:

4 No strict 3-groupoid models the 2-sphere - Daniel Brügmann

As usual (his words), Peter jumps in to contextualize. Recall that Malte told us about 2-groupoids - almost. Really they are 2-categories with invertible morphisms, of course; Malte restricted to the case of a single object. Thus we have the inclusions $2-G R=2-G R P_{0} \subset 2-G R P \subset 2$-CAT. If we replace 2 with 1 , we just get $\mathrm{GR}=1-\mathrm{GRP}_{0} \subset 1-\mathrm{GRP}$. We understand these well, so Malte's talk is the first nontrivial case. Now, recall that we have the classifying space functor $B: 2-\mathrm{GRP} \rightarrow 2$-TYP \subset TOP, which restricts to $B: 2$-GRP $\rightarrow 2$-TYP ${ }_{0}$.

But actually, not quite. The one unnatural thing in the previous talk is that we added a basepoint; from this, we concluded that we had a bijection between equivalence classes of objects of $2-\mathrm{GRP}_{0, *}$ and $2-\mathrm{TYP}_{0, *}$. But of course, these are really all 3-categories - ideally, we should enrich our statement to say that we have an equivalence $2-G R P \simeq 2-$ TYP (of (3, 1)-categories). Peter challenges Dave's comment last week, and claims that this maps to a Quillen equivalence 2 -CAT $\xrightarrow{\sim}$ BiCAT. Dave has quibbles. But Peter wants to progress downwards to $n=1$.

So, here is the thing about baspoints: we only get 2-categories. This is reflected in topology, by the fact that if $X, Y \in k-\mathrm{TYP}_{0, *}$ then $\pi_{n}\left(\operatorname{Map}_{*}(X, Y)\right.$, const $) \cong\left[S^{n} \wedge X, Y\right]_{*}$, and this is trivial for $n \geq k$ since the source $S^{n} \wedge X$ only has $(n+1)$-cells and higher. Thus, $\operatorname{Map}_{*}(X, Y) \in(k-1)$-TYP. Thus, we can consider $k-\operatorname{TYP}_{0, *}^{\times} \in k$-TYP (where the \times denotes that we are only taking homotopy equivalences, so that all our morphisms are invertible). Now, at $n=1$, we have $B: 1-G R P \rightarrow 1$-TYP, which restricts to $B: 1-\mathrm{GRP}_{0} \rightarrow 1-\mathrm{TYP}_{0}$. But in fact, we have a 2 -category at $1-\mathrm{GRP}_{0, *} ; 2$-morphisms are given by multiplication by an element in the target. In fact, morally we should have that $\pi_{2}\left(\mathrm{GR}^{\times} ; G\right)=\pi_{1}\left(\mathrm{GR}^{\times}(G, G), \mathrm{id}_{G}\right)=Z(G)$. (Of course, this is also $\pi_{1}\left(\operatorname{Map}(B G, B G), \mathrm{id}_{B G}\right)$, the unpointed maps.) Thus, adding a basepoint kills the last categorical layer.

Now, we would like this analogy to continue upwards. Daniel will now shatter our dreams.

4.1 Outline

More precisely, we will see that no strict 3-groupoid models the 3-type of the 2 -sphere.
Recall that we have a realization functor $R: n$ CAT \rightarrow SSET, which restricts to n GROUPOID $\rightarrow n$-TYPES. The homotopy hypothesis asserts that this should always be an equivalence. What we will show is that this is not satisfied if we take strict 3 -groupoids. We will write S^{2} to mean its 3 -type, and we will often drop the word "strict" too.

There are two ingredients to this proof.

1. First, we will define the homotopy groups of an n-groupoid (which will vanish above level n), and we will show that this commutes with realization: $\pi_{i}(\mathcal{A}) \cong \pi_{i}(R \mathcal{A})$ (naturally).
2. Then, we will do something on the 3 -groupoid side that we can't do with 3 -types. Namely, we have the following resut: if \mathcal{C} is a 3 -groupoid with $\pi_{0}(\mathcal{C})=\pi_{1}(\mathcal{C})=*$ and $\pi_{2}(\mathcal{C}) \cong \mathbb{Z}$, then there is a diagram of 3 -groupoids
where \mathcal{D} is 2 -connected.
This implies the main result as follows. Suppose we have a strict 3 -groupoid \mathcal{C} with $R \mathcal{C} \simeq S^{2}$. Then we get

$$
R \mathcal{C} \stackrel{\pi_{*} \text {-iso. }}{ } R \mathcal{A} \xrightarrow{\pi_{3} \text {-iso. }} R \mathcal{D}
$$

by naturality. By naturality of the Hurewicz map, we get

But of course $H_{3}(R \mathcal{A})=H_{3}\left(S^{2}\right)=0$ (since we can make the Postnikov truncation $p_{3} S^{2}$ by attaching only 5 -cells and higher), so this becomes a commutative diagram

which is impossible.
Simpson explains this as follows: the Whitehead pairing constructs the Hopf map, giving the nontrivial element of $\pi_{3}\left(S^{2}\right)$. But Whitehead pairings must vanish on any $R \mathcal{C}$.

Peter explains this as follows: the map $\mathcal{A} \rightarrow \mathcal{D}$ is a nontrivial map to a $K(\mathbb{Z}, 3)$, but this doesn't exist in spaces $-H^{3}\left(S^{2} ; \mathbb{Z}\right)=0$. This gets at the fact that strict 3 -groupoids are too strict: there are too many maps between them.

4.2 The homotopy groups of groupoids

Definition 17. A 0 -groupoid is a set, and an equivalence of 0 -groupoids is a bijection. Then, an n-groupoid \mathcal{A} is an n-category such that:

- for all $x, y \in \operatorname{Ob}(\mathcal{A}), \mathcal{A}(x, y)$ is an $(n-1)$-groupoid;
- for all 1-morphisms $u \in \mathcal{A}(x, y)$ and for any $z \in \operatorname{Ob}(\mathcal{A})$, precomposition and postcomposition give equivalences of $(n-1)$-groupoids $u-: \mathcal{A}(y, z) \rightarrow \mathcal{A}(x, z)$ and $-u: \mathcal{A}(z, x) \rightarrow \mathcal{A}(z, y)$.

An equivalence of n-groupoids is a functor $F: \mathcal{A} \rightarrow \mathcal{B}$ of n-categories which is fully faithful (which is defined inductively) and essentially surjective (which can be defined simply as the existence of a morphism in either direction between any object and an object in the image of F, since our morphisms will be appropriately invertible). (For $X, Y \in \operatorname{Ob}(\mathcal{A})$, we say that X is equivalent to Y, and write $X \sim Y$, iff there is a morphism $X \rightarrow Y$. This is obviously transitive and reflexive; to show symmetry, we use the definition of n-groupoid.)

We point out that the second condition on an n-groupoid is not as strict as one might imagine it should be. One might demand a more rigid invertibility condition. Our arguments go through in those cases too. Also, our composition goes the correct way, which is opposite from usual; this will make our pictures look better.

Now, we first define the homotopy groups as sets.
Definition 18. First, we define $\pi_{0}(\mathcal{A})=\operatorname{Ob}(\mathcal{A}) / \sim$. (This is obviously functorial. Note also that if $F: \mathcal{A} \rightarrow \mathcal{B}$ is a functor of n-groupoids, then $\pi_{0}(F)$ is surjective iff F is essentially surjective.) Then, given $a \in \operatorname{Ob}(\mathcal{A})$ and $1 \leq i \leq n$, we define $\pi_{i}(\mathcal{A}, a)=\pi_{i-1}\left(\mathcal{A}(a, a), 1_{a}\right)$. (This is functorial by induction.)

We now define our functor $R: n$ GROUPOIDS \rightarrow sSET. Now, we can consider n GROUPOIDS $\subset((n-$ 1)GROUPOIDS)-CAT (i.e. categories enriched in ($n-1$)-groupoids), and we already know how to realize the latter, as $((n-1)$ GROUPOIDS $)$-CAT \rightarrow sSET-CAT. From here, we realize to bisimplicial sets as sSET-CAT \subset sCAT $\xrightarrow{N_{*}}$ ssSET (i.e. the composition $\Delta^{o p} \rightarrow$ CAT \rightarrow sSET). Then, we take realization (i.e. precomposition with the diagonal) to get to TOP. Thus, the entire diagram is

$$
R: n \text { GROUPOIDS } \subset((n-1) \text { GROUPOIDS })-\mathrm{CAT} \xrightarrow{\text { induction }} \operatorname{sSET}-\mathrm{CAT} \subset \operatorname{sCAT} \xrightarrow{N_{*}} \operatorname{ssSET} \xrightarrow{\Delta^{*}} \operatorname{sSET} .
$$

(Typically one uses the homotopy-coherent nerve, but this is actually hidden in our argument.)
Proposition 5. $\pi_{i}(\mathcal{C}, c) \cong \pi_{i}(R \mathcal{C}, c)$.
Proof sketch. We use the following fact: if $\mathcal{C} \in \operatorname{sCAT}$, then $h \mathcal{C}$ is a groupoid with $\operatorname{Ob}(h \mathcal{C})=\operatorname{Ob}(\mathcal{C})$ and $h \mathcal{C}(X, Y)=\pi_{0}(\mathcal{C}(X, Y))$. This implies that $\pi_{i}\left(\left|N_{*} \mathcal{C}\right|, c\right) \cong \pi_{i-1}\left(\mathcal{C}(c, c), \mathrm{id}_{c}\right)$. (This is like taking loopspaces.)

Now, our proof will go by induction on the previous R, say $R_{n-1}:(n-1)$ GROUPOIDS \rightarrow sCAT. Then,

$$
\pi_{i}\left(\left|N_{*} R \mathcal{A}\right|, a\right) \cong \pi_{i-1}\left((R \mathcal{A})(a, a), 1_{a}\right)=\pi_{i-1}\left(R(\mathcal{A}(a, a)), 1_{a}\right) \cong \pi_{i-1}\left(\mathcal{A}(a, a), 1_{a}\right)=\pi_{i}(\mathcal{A}, a)
$$

Now, we give the group structure on the homotopy groups of n-groupoids. First, if $\mathcal{A} \in n$ GROUPOID \subset n-CAT, then $\mathcal{A}(a, a)$ is a monoid-object in $(n-1)$-CAT. Then, $\pi_{1}(\mathcal{A}, a)=\pi_{0}\left(\mathcal{A}(a, a), 1_{a}\right)=\operatorname{Ob}(\mathcal{A}(a, a)) / \sim$. But composition is invertible up to equivalence, so this is not just a monoid but a group. Then of course, we define π_{i} for $i \geq 2$ by induction. We can use the Eckmann-Hilton $\operatorname{argument}$ to see that $\pi_{2}(\mathcal{A}, a)$ is an abelian group. Namely, $\pi_{2}(\mathcal{A}, a)=\pi_{1}\left(\mathcal{A}(a, a), 1_{a}\right)$, but since $\mathcal{A}(a, a)$ is an $(n-1)$-category, then $(\mathcal{A}(a, a))\left(1_{a}, 1_{a}\right)$ is a monoid-object in $(n-2)$-CAT. But now Eckmann-Hilton says that abelian-monoid-obects in $(n-2)$-CAT are the same thing as monoid-objects in the category of monoid-objects in $(n-2)$-CAT (which is a non-full subcategory - the only morphisms allowed are those that preserve the monoid structure). Note that there are two compositions on the latter: we will denote the horizontal composition by + .

4.3 The auxiliary result

For $n \geq 2$ we have an equivalence of 1-categories between one-object one-1-morphism n-categories and abelian-monoid-objects in $(n-2)$-CAT; this takes \mathcal{C} to $(\mathcal{C}(c, c))\left(1_{c}, 1_{c}\right)$. This will allow us to prove our result.

Proof sketch. There will actually be an intermediate 3 -groupoid \mathcal{B} between \mathcal{C} and \mathcal{A}. Namely, we define \mathcal{B} to have one object c, with $\mathcal{B}(c, c)=\left\{1_{c}\right\}$ and with $(\mathcal{B}(c, c))\left(1_{c}, 1_{c}\right)=(\mathcal{C}(c, c))\left(1_{c}, 1_{c}\right)$. Then we have $\mathcal{C} \hookleftarrow \mathcal{B}$, which is a π_{*}-isomorphism.

The construction of \mathcal{A} is more complicated, and in fact it will be easier to first define \mathcal{D} (depending on $\mathcal{C})$. We set $\operatorname{Ob}(\mathcal{D})=\{c\}$, with one 1 -morphism and one 2 -morphism, and with $\left((\mathcal{D}(c, c))\left(1_{c}, 1_{c}\right)\right)\left(1_{1_{c}}, 1_{1_{c}}\right)=$ $\left((\mathcal{C}(c, c))\left(1_{c}, 1_{c}\right)\right)\left(1_{1_{c}}, 1_{1_{c}}\right)$. Note that this agrees with the 3 -morphisms in \mathcal{B}.

Finally, we get \mathcal{A} by changing the set of objects. In the equivalence of 1-categories given at the beginning of this subsection, we observe that an n-groupoid gives us an abelian-monoid-object in $(n-2)$ GROUPOIDS \subset $(n-2)$-CAT; moreover, this assignment is fully faithful (in a sense we won't explicitly define). (This is a statement about compatibility with the abelian-monoid-object structure.) We say this because we will construct the map $\mathcal{A} \rightarrow \mathcal{D}$ in abelian-monoid-objects in $(n-2)$ GROUPOIDS. We start at the adjunction Ob: 1GROUPOIDS \leftrightarrows SET : codiscrete (where "codiscrete" means we have exactly one morphism between any two objects). Now, \mathcal{B} gives us an abelian-monoid-object \mathcal{G} in $(n-2)$ GROUPOIDS, and we define \mathcal{A} to give us

$$
\mathcal{G}^{\prime}=\operatorname{codiscrete}(\mathbb{N} \times \mathbb{N}) \times{ }_{\text {codiscrete }(\mathrm{Ob}(\mathcal{G}))} \mathcal{G}
$$

Specifically, the map $\mathbb{N} \times \mathbb{N} \rightarrow \operatorname{Ob}(\mathcal{G})$ is given by choosing a representative a of $1 \in \mathbb{Z} \cong \pi_{0}(\mathcal{G})=\pi_{2}(\mathcal{B}) \cong$ $\pi_{2}(\mathcal{C})$, and similarly a representative b of -1 . Then we declare that $(1,0) \mapsto a$ and $(0,1) \mapsto b$ (and extend by the monoid structure; note that the codiscrete functor preserves monoid structure since it's a right adjoint).

Now, \mathcal{D} corresponds to some abelian-monoid-object \mathcal{H} in $(n-2)$ GROUPOIDS, where $\operatorname{Ob}(\mathcal{H})=\left\{1_{1_{c}}\right\}$ and $\mathcal{H}\left(1_{1_{c}}, 1_{1_{c}}\right)=\mathcal{G}\left(1_{1_{c}}, 1_{1_{c}}\right)$.

So to finish, we have the following key fact. Suppose we have a morphism $\varphi:(0,0) \rightarrow(1,1)$ in \mathcal{G}^{\prime} (note that $\operatorname{Ob}\left(\mathcal{G}^{\prime}\right)=\mathbb{N} \times \mathbb{N}$); this exists because these are both sent to $0 \in \pi_{0}(\mathcal{G})$. Then, we claim that for any $k \in \mathbb{Z}$, every morphism $\alpha:(m, n) \rightarrow(m+k, n+k)$ can be uniquely written as $\alpha=1_{m, n}+k \cdot \varphi+u$, where $u \in \mathcal{G}^{\prime}((0,0),(0,0))$. (We denote by φ its translates, too.) (This proof is rather involved, and uses an interchange law that we won't get into.) Then, our functor $\mathcal{A} \rightarrow \mathcal{D}$ is defined via the functor $\mathcal{G}^{\prime} \rightarrow \mathcal{H}$ given by $\alpha \mapsto u \in \mathcal{H}(0,0)$. This completes the proof.

There is a question about the existence of \mathcal{A} as defined via \mathcal{G}^{\prime}, since the functor from n-groupoids to abelian-monoid-objects in $(n-2)$-groupoids may not be essentially surjective. But in fact, this can be checked by hand.

Chris adds: It might initially seem confusing that we need to go through \mathcal{A} from \mathcal{B} to \mathcal{D}. But he can give us an explicit example where we need it. Note that \mathcal{D} is a $K(\mathbb{Z}, 3)$. Then, suppose we have that \mathcal{B} is 1-connected and has 2 -morphisms given by $\mathbb{Z} / 2 \times \mathbb{Z}$, and with 3-morphisms $(\mathbb{Z} / 2 \times \mathbb{Z} \times \mathbb{Z})$ with the source and target maps $(\mathbb{Z} / 2 \times \mathbb{Z} \times \mathbb{Z}) \rightrightarrows \mathbb{Z} / 2 \times \mathbb{Z}$ given by $s(x, m, n)=(x, n)$ and $t(x+m, n)$. So as a category, this splits as a lone copy of \mathbb{Z} and a copy of $(\mathbb{Z} / 2 \times \mathbb{Z} \rightrightarrows \mathbb{Z} / 2 \times \mathbb{Z})$. Now, the automorphisms of the second factor are exactly the elements that get sent to the identity, i.e. $2 \mathbb{Z} \subset \mathbb{Z}$. But this doesn't have a π_{3}-isomorphism to \mathcal{D}; at best, we can hit $2 \mathbb{Z} \subset \mathbb{Z}$.

5 Complete Segal spaces and Segal categories - Alexander Körschgen

Peter announces that the seminar schedule has changed: we will be bypassing the E_{n} stuff, and we will be going directly to infinity and beyond! Today we will see that weak n-groupoids are equivalent to n-types.

A quick note. Suppose \mathcal{C} is a (small) category, and we have objects $X_{i} \in \mathcal{C}$. Then of course we know what the nerve $N(\mathcal{C})$ is supposed to be. But we spell this out in detail, since not everyone may have thought through it. Of course vertices are objects and morphisms are edges. Then, triangles witness compositions $\varphi_{12} \circ \varphi_{01}=\varphi_{02}$ (for morphisms $\varphi_{i j}: X_{i} \rightarrow X_{j}$). Then, associativity translates to a well-defined choice for labeling the interior of a 3 -simplex, namely $\varphi_{13} \circ \varphi_{01}=\varphi_{23} \circ \varphi_{02}$. This should give some idea of why higher category theory can be embedded into the theory of simplicial sets - "internal simplicial sets" should be thought of as a generalization of "internal categories".

And now, on to Alexander's talk!

5.1 Definitions

We will study Segal categories. We will think of the nerve as a set of vertices $N C_{0}$, and sets $N C\left(a_{0}, \ldots, a_{k}\right)$ for each $\left(a_{0}, \ldots, a_{k}\right) \in\left(N C_{0}\right)^{k+1}$; we consider this set as $\left\{\left(f_{1}, \ldots, f_{k}\right): s f_{1}=a_{0}, t f_{1}=s f_{2}=a_{1}, \ldots\right\}$. This satisfies $N C\left(a_{0}, \ldots, a_{k}\right) \cong N C\left(a_{0}, a_{1}\right) \times N C\left(a_{1}, a_{2}\right) \times \cdots \times N C\left(a_{k-1}, a_{k}\right)$.

With this in hand, we give the following definition.
Definition 19. Let A be a category with products. Then an A-simplicial set S consists of a set S_{0} and objects $S\left(a_{0}, \ldots, a_{k}\right) \in A$ for each $\left(a_{0}, \ldots, a_{k}\right) \in\left(S_{0}\right)^{k+1}$ together with maps $\sigma^{*}: S S\left(a_{0}, \ldots, a_{k}\right) \rightarrow$ $S\left(a_{\sigma(0)}, \ldots, a_{\sigma(k)}\right) \in A$ for each $\sigma:[k] \rightarrow[m] \in \Delta$, such that:

- $\left(\sigma_{1} \circ \sigma_{2}\right)^{*}=\sigma_{2}^{*} \circ \sigma_{1}^{*}$ (and these satisfy the simplicial identities);
- $S(a) \in A$ is terminal in A.

Remark 6. We view the maps $[n] \rightarrow[0] \in \Delta$ as giving us $S(a) \rightarrow S(a, \ldots, a)$ for all $a \in A$.
Remark 7. This is similar to the idea of an internal category (i.e. a simplicial object), although note that S really is a set. Of course, there will be cases that we can consider sets as living in A.

We want to define the categories (∞, n)-Cat and n-Cat ${ }^{W}$ recursively. These are equipped with a notion of equivalence, as well has a ("homotopy category") functor h^{n} to Cat (usual strict categories) that preserves products and equivalences, and a functor π_{0}^{n} to Sets which preserves products and sends equivalences to isomorphisms of sets. (Of course, $\pi_{0}^{n}=\pi_{0} \circ h^{n}$.)
Definition 20. - At $n=0$, we have that a weak 0 -category is a set; equivalences are bijections, h^{0} is the usual discrete embedding, and so π_{0}^{0} is the identity functor.

- Meanwhile, an $(\infty, 0)$-category is a space that is homotopy equivalent to a CW-complex; equivalences are homotopy equivalences, h^{0} is the fundamental groupoid functor, and so π_{0}^{0} is the usual π_{0} functor.
- A weak n-category or (∞, n)-category is an enriched simplicial set C in [the same thing but with $n-1$] such that for all tuples $\left(a_{0}, \ldots, a_{k}\right) \in\left(C_{0}\right)^{k+1}$ with $k \geq 2$, the map

$$
C\left(a_{0}, \ldots, a_{k}\right) \rightarrow C\left(a_{0}, a_{1}\right) \times \cdots \times C\left(a_{k-1}, a_{k}\right)
$$

induced by the edge inclusions $(i, i+1) \rightarrow[k]$ is an equivalence of $[n-1$ versions $]$.
This last condition is called the Segal condition.
Note that this is already weaker than our previous conditions at $(\infty, 1)$-categories: we have "spaces of k-morphisms", and this is only required to be homotopy equivalent to the evident composition, whereas it used to have to be an isomorphism. We will see in a future talk that these are Quillen equivalent to, but not the same as, quasicategories.

Definition 21. An (∞, n)-category is also called a Segal n-category.
Definition 22. Let X be a weak n-category or an (∞, n)-category. Then we define the homotopy category $h^{n}(X) \in$ Cat to have objects X_{0} and morphisms determined inductively by $\left(h^{n} C\right)(x, y)=\pi_{0}^{n-1}(C(x, y))$. The composition

$$
\left(h^{n} C\right)(x, y) \times\left(h^{n} C\right)(y, z) \rightarrow h^{n}(x, z)
$$

is defined by

$$
\left(h^{n} C\right)(x, y) \times\left(h^{n} C\right)(y, z)=\pi_{0}^{n-1}(C(x, y) \times C(y, z)) \cong \pi_{0}^{n-1} C(x, y, z) \xrightarrow{h} \pi_{0}^{n-1}(C(x, z))=h^{n}(x, z)
$$

The point here is that the Segal condition is only a homotopy equivalence, but it induces an isomorphism on π_{0}.
Definition 23. We define the functor π_{0}^{n} by $\pi_{0}^{n} C=\pi_{0} h^{n} C$ (i.e. the objects of $h^{n} C$ up to isomorphism).
Definition 24. A simplicial map $f: C \rightarrow D$ between weak n-categories or (∞, n)-categories is an equivalence if:

- $C(a, b) \rightarrow D(f(a), f(b))$ is an equivalence of $[n-1$ guys $]$ for all $a, b \in C_{0}$, and;
- $h^{n} C \rightarrow h^{n} D$ is an equivalence of categories.

This second condition is slightly stronger than we need, but it will suffice for our purposes.
Remark 8. We have the inclusion Sets \rightarrow Top, and this induces a fully faithful functor n-Cat ${ }^{W} \rightarrow$ (∞, n)-Cat. (And of course, we have n-Cat $\rightarrow n$-Cat ${ }^{W}$.) So we will mostly work in the latter context, but most of the things we do will go through for weak n-categories.

Remark 9. A weak 1-category is just a strict small 1-category. However, the notion of equivalences is weaker.

5.2 Groupoids

Definition 25. We declare that every ($\infty, 0$)-category is an $(\infty, 0)$-groupoid. Then, an (∞, n)-category is an (∞, n)-groupoid if all $C\left(a_{0}, \ldots, a_{k}\right)$ are $(\infty, n-1)$-groupoids and $h^{n} C$ is a groupoid in the classical sense.

Definition 26. For an ($\infty, 0$)-groupoid, the homotopy groups π_{i}^{0} are the classical homotopy groups of the space. If C is an (∞, n)-groupoid, we define its homotopy groups based at any $c \in C_{0}$ by $\pi_{i}^{n}(C, c)=$ $\pi_{i-1}^{n-1}\left(C(c, c), \mathrm{id}_{c}\right)$. (Note that we obtain id_{c} as the map from the terminal object of C to $C(c, c)$.)

We want to define realization functors to spaces which commute with taking homotopy groups. We denote these by $B^{n}:(\infty, n)-$ Cat \rightarrow Top.

Definition 27. At $n=0$ we just define the realization functor B^{0} to be the identity. Then if C is an (∞, n) category, we define a simplicial space $s C$ by taking $s C_{0}=C_{0}$ and $s C_{k}=\coprod_{\left(a_{0}, \ldots, a_{k}\right) \in s C_{0}^{k+1}} B^{n-1} C\left(a_{0}, \ldots, a_{k}\right)$. Then we define B^{n} to be the composition of this with the realization functor.

Theorem 2 (Segal, Tamsamani). If C is an $(\infty, 1)$-groupoid, then we have a map $C(x, y) \times \Delta^{1} \rightarrow B^{1} C$, and this admits an adjoint $C(x, y) \rightarrow P_{x, y}\left(B^{1} C\right)$ as a map into the path space from x to y. This is a weak equivalence for all $x, y \in C_{0}$.

Corollary 2. By induction, it follows that if C is an (∞, n)-groupoid, then $B^{n-1} C(x, y) \xrightarrow{\sim} P_{x, y} B^{n} C$.
This will allow us to show that our notion of homotopy groups really do make sense, and are compatible with realization.

We need the following result to prove the theorem.
Lemma 3. If C is an (∞, n)-groupoid, then $\pi_{i}\left(B^{n} C, c\right) \cong \pi_{i}^{n}(C, c)$.
Proof. We go by induction. At $n=0$ this is a definition. For $n>0$, we have $\pi_{0}\left(B^{n} C\right)$ is given by C_{0} up to paths generated by the $B^{n-1} C(x, y)$. (A quick way to see this is that $\pi_{0}: T o p \rightarrow$ Sets is a left adjoint, so we can compute π_{0} of a simplicial space by first applying π_{0} levelwise and then computing the colimit in Sets.) On the other hand, $\pi_{0}^{n}(C, c)=\pi_{0} h^{n} C$, which is C_{0} up to isomorphisms, but since we're in a groupoid then this is just C_{0} up to morphisms. So, we get $\pi_{0}(|C(x, y)|)$.

Then, for all $i>0$ we have a map $B^{n-1} C(c, c) \rightarrow P_{c, c} B^{n} C$, and this is an equivalence. Therefore,

$$
\pi_{i}^{n}(C, c)=\pi_{i-1}^{n-1}\left(C(c, c), \mathrm{id}_{c}\right)=\pi_{i-1}\left(B^{n-1} C(c, c), \mathrm{id}_{c}\right) \cong \pi_{i-1}\left(\Omega_{c} B^{n} C, \operatorname{const}_{c}\right)=\pi_{i}\left(B^{n} C, c\right)
$$

One could now prove the theorem. We won't. Rather, we would like to see why realization gives an equivalence onto n-Types (i.e. fixes the problems we had with strict n-categories).

5.3 Relation with n-Types

We construct functors $\Pi^{n}:(\infty, n)$-Grpds $\rightarrow(\infty, n+1)$-Grpds which preserve products and commute with taking the homotopy category.

So at $n=0$, let X be a space. Then we set $\left(\Pi^{0} X\right)_{0}=X_{\text {discrete }}$, and $\left(\Pi^{0} X\right)\left(a_{0}, \ldots, a_{k}\right)=\operatorname{map}\left(\Delta^{k}, X\right)_{a_{0}, \ldots, a_{k}}$. This satisfies the Segal condition because

$$
\operatorname{map}\left(\Delta^{k}, X\right)_{a_{0}, \ldots, a_{k}} \rightarrow \operatorname{map}\left(\Delta^{1}, X\right)_{a_{0}, a_{1}} \times \cdots \times \operatorname{map}\left(\Delta^{1}, X\right)_{a_{k-1}, a_{k}}
$$

is induced by the spine inclusion (the longest ordered string of edges in the k-simplex), which is a homotopy equivalence and which therefore induces a homotopy equivalence of mapping spaces. It is clear
that this preserves products since we're mapping into our spaces. Lastly, we have that $\left(h^{1}\left(\Pi^{0} X\right)\right)(x, y)=$ $\pi_{0}\left(\operatorname{map}\left(\Delta^{1}, X\right)_{x, y}\right)=\left(\pi_{\leq 1} X\right)(x, y)=\left(h^{0} X\right)(x, y)$. So the homotopy category is preserved: $h^{1} \circ \Pi^{0}=h^{0}$.

Now for $n>0$, let X be an (∞, n)-groupoid. Again we set $\left(\Pi^{n} X\right)_{0}=X_{0}$. Now, we define $\left(\Pi^{n} X\right)\left(a_{0}, \ldots, a_{k}\right)=$ $\Pi^{n-1}\left(X\left(a_{0}, \ldots, a_{k}\right)\right)$. One can show by induction that this preserves the homotopy category as well, satisfies the Segal condition, and so on.

More importantly, though, this construction comes with a map $B^{n+1} \Pi^{n} X \rightarrow B^{n} X$. At $n=0$, this is $B^{1} \Pi^{0} X \rightarrow B^{0} X$, and by the adjunction this is equivalent to a map $s \Pi^{0} X \rightarrow \operatorname{map}\left(\Delta^{\bullet}, X\right)$. For $n>0$, we define the map inductively. Then, the crucial result is the following.

Proposition 6. The map $B^{n+1} \Pi^{n} X \rightarrow B^{n} X$ is a weak equivalence.
Given an n-type X, we can send it through the functors

$$
(\infty, 0)-\operatorname{Grpd} \xrightarrow{\Pi^{0}} \cdots \xrightarrow{\Pi^{n-1}}(\infty, n) \text {-Grpds }
$$

with $B^{n}\left(\Pi^{n-1} \circ \cdots \circ \Pi^{0} X\right) \simeq X$. (Actually, this is true for any space.) On the other hand, we can define a discretization functor $\widetilde{\pi}_{0}^{n}:(\infty, n)$-Grpds $\rightarrow n-\operatorname{Grpd}^{W}$, which is defined inductively by taking the usual $\pi_{0}:$ Top \rightarrow Sets. This comes with a natural transformation Id $\rightarrow \widetilde{\pi}_{0}^{n}$ (i.e. $\widetilde{\pi}_{0}^{n}$ followed by the inclusion), which has that

$$
\pi_{i}\left(\widetilde{\pi}_{0}^{n} X\right)= \begin{cases}\pi_{i}(X, x), & i \leq n \\ 0, & i>n\end{cases}
$$

So this kills all homotopy groups above level n. Therefore, $\widetilde{\pi}_{0}^{n}\left(\Pi^{n-1} \circ \cdots \circ \Pi^{0} X\right)$ has all the same homotopy groups as X as well.

So to summarize, we have the following theorem.
Theorem 3. If X is an n-type, there is a weak n-groupoid C such that $B^{n} C C \simeq X$.
This passes through

$$
(\infty, 0)-\operatorname{Grpd} \xrightarrow{\Pi^{n-1} \cdots \cdots \circ \Pi^{0}}(\infty, n)-\operatorname{Grpd} \xrightarrow{\widetilde{\pi}_{0}^{n}} n-\operatorname{Grpd}^{W}
$$

under which if we have $X \mapsto \hat{X} \mapsto C$ then $B^{n} C \simeq B^{n} \hat{X} \simeq X$.

5.4 Examples

Peter collects examples from the audience.
Example 15. Given an n-type, we get a weak n-groupoid. This is already way better than strict n-groupoids.
Example 16. We will construct a functor catBiCat $\rightarrow 2-$ Cat W next week, called the coherent nerve. If we actually start with a strict 2-category, then we can get two different weak 2-groupoids: either we can take the nerve, or we can take the coherent nerve. It will turn out that the latter is better, since it will automatically be fibrant.

6 Examples and problems with weak n-categories - Kim Nguyen

6.1 Background

We begin by recalling that an n-category \mathcal{C} is a simplicial set enriched in $(n-1)$-categories such that the Segal maps

$$
\mathcal{C}\left(a_{0}, \ldots, a_{k}\right) \xrightarrow{\sim} \mathcal{C}\left(a_{0}, a_{1}\right) \times \cdots \times \mathcal{C}\left(a_{k-1}, a_{k}\right)
$$

are equivalences of $(n-1)$-categories for all tuples $\left(a_{0}, \ldots, a_{k}\right) \in\left(\mathcal{C}_{0}\right)^{k+1}$. (A 0 -category is just a set.)

Example 17. Let \mathcal{C} be a strict n-category. Taking the nerve $N \mathcal{C}$ gives a simplicial object in strict $(n-1)$ categories. Moreover, $N \mathcal{C}_{0}$ is discrete, and in fact the Segal maps are isomorphisms. Taking fibers as

yields our weak n-category. (More precisely, we should give our functor from strict n-categories to weak n-categories inductively, so that we can consider a simplicial object in strict ($n-1$)-categories as a simplicial object in weak ($n-1$)-categories; of course, isomorphisms will be taken to equivalences.)

So now we have three different types of 2-dimensional categories, which sit in the (non-commutative) diagram

today we will study the 2-nerve.

6.2 The setup

We recall that the usual nerve is induced by the inclusion $\boldsymbol{\Delta} \hookrightarrow$ Cat \hookrightarrow Bicat. This would give us the usual nerve. Instead, we will consider the strict 2-category NHom, whose objects are bicategories, whose 1-morphisms are bicategory homomorphism, and whose 2 -morphisms are icons: "identity component oplax natural transformations".

Recall that a homomorphism $(F, \varphi): \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ of bicategories consists of:

- a function $F: \operatorname{ob}(\mathcal{D}) \rightarrow \operatorname{ob}\left(\mathcal{D}^{\prime}\right) ;$
- functors $F: \mathcal{D}(A, B) \rightarrow \mathcal{D}^{\prime}(F A, F B)$ for all $A, B \in \mathrm{ob}(\mathcal{D})$;
- natural northeast-oriented isomorphisms φ in the diagrams

- a natural northeast-oriented isomorphism φ^{0} in the diagrams

There are of course axioms for the associators and unitors, but we won't write them down. This homomorphism is called normal if φ^{0} the identity.

Definition 28. Let $(F, \varphi),(G, \psi): \mathcal{A} \rightarrow \mathcal{D}$ be two normal homomorphisms. An icon can only exist if $F(A)=G(A)$ for all $A \in \operatorname{ob}(\mathcal{A})$, and in this case consists of a natural downward-oriented transformation α in the diagram

such that the vertical composition

is equal to the vertical composition

(One can also write that " $\alpha \mathrm{Id}=\mathrm{Id} "$.)
Proposition 7. NHom is a strict 2-category.
Proof. See Stephen Lack's paper on icons.

6.3 The 2-nerve

Now, we will define an inclusion $\boldsymbol{\Delta} \hookrightarrow$ NHom, which will induce the 2-nerve, as follows.
First, there is a high-minded perspective. Recall that in the diagram

since every simplicial set is the colimit of its simplices, then we have a unique extension Cat \leftarrow sSet. This admits a right adjoint Cat \rightarrow sSet; this is the ordinary nerve functor. On the other hand, in this situation
we have

and this time the right adjoint to the left Kan extension will be the 2-nerve.
But let us give a hands-on description as well. Consider $\operatorname{NHom}([n], \mathcal{D})$ for some bicategory \mathcal{D}. Then a normal homomorphism consists of the data of objects $B_{i} \in \operatorname{ob}(\mathcal{D})$ for $0 \leq i \leq n$, along with 1-morphisms $\beta_{i j}: B_{i} \rightarrow B_{j}$ whenever $i<j$, and an downward-oriented invertible 2 -cell $\beta_{i j k}$ in the diagram

whenever $i<j<k$, such that the evident tetrahedron commutes, i.e. that the diagram of morphisms

commutes in $\mathcal{D}\left(B_{i}, B_{l}\right)$. (One generally considers the commutativity of an n-simplex by looking at the two canonical morphisms from 0 to n, namely the direct edge and the spine edge, and then demanding an equality of ($n-1$)-morphisms.) Then, an icon between two normal homomorphisms $(B, \beta) \rightarrow(C, \gamma)$ can only exist if $B_{i}=C_{i}$, and then consists of downward-oriented 2-cells $\varphi_{i j}$ in the diagrams

such that the vertical composition of $\beta_{i j k}$ followed by $\varphi_{i k}$ followed by $\gamma_{i j k}^{-1}$ equals the horizontal composition of $\varphi_{i j}$ with $\varphi_{j k}$. (One should picture this as two triangles that share vertices, along with three bigons running between their corresponding edges.)

Now, given a bicategory \mathcal{D}, we will obtain $N \mathcal{D} \in\left[\boldsymbol{\Delta}^{\mathbf{o p}}\right.$, Cat $]$. Namely, for each $[n]$ we get $N H o m([n], \mathcal{D})$ as above. (This uses the fact that NHom is a strict 2-category.) This is the 2 -nerve.

Let's look at the simplicial levels $n \geq 2$:

- $N \mathcal{D}_{0}$ is the discrete category whose objects are those of \mathcal{D};
- $N \mathcal{D}_{1}$ has objects the 1 -cells of \mathcal{D} and morphisms the 2 -cells;
- $N \mathcal{D}_{2}$ has objects the 2-commuting triangles and morphisms given by the "two triangles plus three bigons" situation above.

Proposition 8. ND is a 2-category.
Proof. We already saw that $N \mathcal{D}_{0}$ is discrete, so it remains to check the Segal maps. In fact, we claim that the Segal map

$$
N \mathcal{D}_{k} \rightarrow N \mathcal{D}_{1} \times_{N \mathcal{D}_{0}} \cdots \times_{N \mathcal{D}_{0}} N \mathcal{D}_{1}
$$

is a surjective equivalence. For surjectivity, note that an object of the fiber product $\left(\mathcal{D}_{1}\right)^{\times_{N \mathcal{D}_{0}} k}$ is a string of composable 1-cells. We can hit this by taking the associated $(k+1)$-gon given by pasting together the triangles.

We will skip full-faithfulness, but the idea is quite similar.
Note that for an n-simplex in the usual nerve, we do nothing more than choose objects for vertices and morphisms for edges, and then check things about the faces. In the 2 -nerve, we choose objects for vertices, morphisms for edges, and 2-cells for faces, and then check things about the 3-cells. (This can be thought of some sort of coskeletal filtration towards the homotopy-coherent nerve.)

Example 18. Here is an example which will illustrate the advantage of the 2-nerve over the ordinary nerve. Note that we've talked about n-categories, but we haven't really talked about their morphisms. For example, let G be a group and let A be an abelian group. These are associated to 1-object 2-groupoids $\mathcal{G}=(G \Rightarrow G \rightrightarrows \mathrm{pt})$ and $\mathcal{A}=(A \Rightarrow \mathrm{pt} \rightrightarrows \mathrm{pt})$. Now, taking nerve (i.e. considering simplicial maps) would give no nontrivial morphisms. But we want the homotopy hypothesis to hold, so this can't be right. On the other hand, $B^{2} \mathcal{G} \simeq B G$ and $B^{2} \mathcal{A}=K(A, 2)$, so we should be getting $[B G, K(A, 2)]=H^{2}(G, A)$.

So instead, let's take the 2-nerve of \mathcal{A}. This has $N \mathcal{A}_{0}=(\mathrm{pt} \rightrightarrows \mathrm{pt})$ and $N \mathcal{A}_{1}=(A \rightrightarrows \mathrm{pt})$ as before, but then $N \mathcal{A}_{2}$ has objects A. It turns out that we will get $G^{2} \rightarrow A$, and this will be nontrivial. (This defines second cohomology since we're in the normal case.)

The point here is that in the ordinary nerve, \mathcal{G} only has objects the elements of G along the edges and no morphisms, whereas \mathcal{A} has only one object but interesting morphisms along the edges. So, there's no interaction between them where there should be. Again, the difference is that in the 2-nerve, the faces are data instead of conditions (which in turn get bumped up to the tetrahedra).

7 The "group-like" realization lemma - Dimitar Kodjabachev

Peter reminds us of what's going on today: we're proving a black box lemma, which we use for our inductive definition $|-|:(\infty, n)$-groupoids \rightarrow Top (which preserved homotopy groups). It turns out that it's enough to prove this for $n=1$. And in fact, we'll soon see that we can also model ($\infty, 1$)-groupoids by Kan complexes, and this identification preserves geometric realization. And there's a beautiful combinatorial definition for the homotopy groups of a Kan complex, which allows us to easily compute the homotopy groups of the corresponding ($\infty, 1$)-groupoid.

Before handing over the chalk to Dimitar, Peter shows us one cool step in the proof. Suppose X is a (compactly generated) space; then we have $S_{\bullet} X$, its singular sset. It's rather obvious from the definitions that the combinatorial homotopy groups of $S \bullet X$ coincide with the ordinary homotopy groups of X; then, the previous result to which we alluded implies that $\left|S_{\bullet} X\right|$ also has the same homotopy groups, and this ends up being a cofibrant replacement for X. On the other hand, we can instead define a simplicial space $S_{\bullet} X_{\text {space }}$ (with its compact-open topology and then the compactly-generated topology from there). Let's just refer to this as $S_{\bullet} X$, and refer to the previous one as $S_{\bullet} X_{\delta}\left(\delta\right.$ for "discrete"). Then, there is a map $S_{\bullet} X_{\delta} \rightarrow S_{\bullet} X$, and the crazy thing is that this actually geometrically realizes to a homotopy equivalence. In fact, we have $X=C_{0} X \rightarrow S \bullet X$ (given by constant simplices), and we claim that this is a weak equivalence - that is, that
in each degree it's a homotopy equivalence. Dimitar will prove for us that (under certain assumptions) this guarantees that the realizations are equivalent, too.

Now, we have the diagram $X=S_{0} X \xrightarrow{\sim} S_{\bullet} X \stackrel{\text { id }}{\leftarrow} S_{\bullet} X_{\delta}$. What's crazy is that this is the only way to get between $S_{0} X$ and $S_{\bullet} X_{\delta}$; there's no map from a space to its discretization. However, let's apply the path space functor $\operatorname{Path}(Y)=C^{0}(I, Y)$ (whose k-simplices are $\operatorname{Path}\left(C^{0}\left(\Delta^{k}, X\right)\right)$). Then we get $\operatorname{Path}\left(S_{\bullet} X\right) \stackrel{\sim}{\sim} \operatorname{Path}(X) \xrightarrow{\sim} X$ (with the second map given by $e v_{1}$). But note that in the compactly generated topology, we have a homeomorphism $\operatorname{Path}\left(C^{0}\left(\Delta^{k}, X\right)\right) \cong C^{0}\left(\Delta^{k} \times I, X\right)$. In this target, there is the subspace $C^{0}\left(\Delta^{k+1}, X\right) \subseteq C^{0}\left(\Delta^{k} \times I, X\right)$ given by taking those maps off the cylinder that map constantly off of $\Delta^{k} \times\{0\}$. So this inclusion is also an equivalence. On the other hand, if you follow through how the simplicial maps work, the bottom face $\Delta^{k} \times\{0\}$ collapses down to the 0 -vertex of Δ^{k+1}, and so this subspace - thought of as a simplicial space - is homeomorphic to the simplicial pathspace $P(S \bullet X)$. Thus we have the diagram

where $\mathcal{P}: \Delta \rightarrow \Delta$ is given by $[n] \mapsto[n+1]$, and $(\sigma:[n] \rightarrow[m]) \mapsto(\mathcal{P} \sigma:[n+1] \rightarrow[m+1])$ is given by setting $\mathcal{P} \sigma(0)=0$ and by shifting the rest over by one. There is a small lemma that $\left|S_{0}\right| \xrightarrow{\sim}\left|P\left(S_{\bullet}\right)\right|$; note too that we have a natural transformation $d_{0}^{*}: P S_{\bullet} \rightarrow S_{\bullet}$ (which we should think of as an evaluation map). This should help us understand the coming talk.

And now, on to Dimitar's talk!

7.1 Recollections

The theory of $(\infty, 0)$-category is as follows.

- An $(\infty, 0)$-category is a space that's homotopy equivalent to a CW-complex.
- An equivalence is a homotopy equivalence.
- The homotopy category of an $(\infty, 0)$-category is its fundamental groupoid.

Then, we continued by induction to define (∞, n)-categories, as follows.

- An (∞, n)-category X is an $((\infty, n-1)$-Cat $)$-enriched simplicial set, i.e.:
- a set X_{0} of objects, and
- for each $\left(x_{0}, \ldots, x_{k}\right) \in\left(X_{0}\right)^{k+1}$, an $(\infty, n-1)$-category $X\left(x_{0}, \ldots, x_{k}\right)$, such that
- the Segal maps

$$
\sigma_{n}: X\left(x_{0}, \ldots, x_{n}\right) \rightarrow X\left(x_{0}, x_{1}\right) \times \cdots \times X\left(x_{n-1}, x_{n}\right)
$$

are equivalences of $(\infty, n-1)$-categories.
(Note that we're leaving out some things, like for instance that the morphism space associated to a single object is contractible; this is why the above string of products doesn't need to be decorated as fiber products.)

We then have the following special case. Every $(\infty, 0)$-category is an $(\infty, 0)$-groupoid. Then, an (∞, n) groupoid is an (∞, n)-category such that for all $\left(x_{0}, \ldots, x_{k}\right) \in\left(X_{0}\right)^{k+1}, X\left(x_{0}, \ldots, x_{k}\right)$ is an $(\infty, n-1)$ groupoid. Given an (∞, n)-groupoid X, we have its homotopy category $h^{n}(X)$, which is a groupoid in the ordinary sense.

7.2 The lemma

We saw the following theorem last time.
Theorem 4. Given an $(\infty, 1)$-groupoid X, the map $X(a, b) \rightarrow P_{a, b}|X|$ is a weak equivalence for all $(a, b) \in$ $\left(X_{0}\right)^{2}$.

This implies Peter's claim, since we defined the homotopy groups of the (∞, n)-groupoid X in terms of the spaces $X(a, b)$, whereas the homotopy groups of the space $P_{a, b}|X|$ are just shifted homotopy groups of $|X|$.

This was originally Segal's result, but he did it much before (∞, n)-categories were around. So instead, he proved this theorem in the special case that $X_{0}=\{*\}$. We'll restrict ourselves to this special case.

Segal was actually interested in this for different reasons. He was contributing to the so-called delooping machine. The question is, what are the conditions on X such that we have an equivalence $X \simeq \Omega Y$? This arises here because there's a unique morphism space when $X_{0}=\{*\}$. In fact, there's a very beautiful characterization of loopspaces, that they are precisely the spaces equipped with the structure that makes them into such morphism spaces!

We will actually prove the following slight generalization.
Theorem 5. Let $X: \Delta^{o p} \rightarrow$ Top be a simplicial space, such that:

1. $X_{0}=\{*\}$ and X_{1} is connected;
2. The maps

$$
\sigma_{m}=\left(\left(f_{1}^{*}, f_{2}^{*}, \ldots, f_{n}^{*}\right): X_{n} \rightarrow X_{1} \times \cdots \times X_{1}\right.
$$

(where $f_{u}:[1] \rightarrow[n]$ is given by $f_{i}(0)=i-1$ and $f_{i}(1)=i-$ this is the spine map) are homotopy equivalences.

Then the map $X_{1} \rightarrow \Omega|X|$ (adjoint to $\Sigma X_{1} \rightarrow|X|$) is a homotopy equivalence iff X_{1} has a homotopy inverse.
Note that X_{1} is an H-space via $\sigma_{2}: X_{2} \xrightarrow{\simeq} X_{1} \times X_{1}$; we can choose a homotopy inverse to this, and then the map $m: X_{2} \rightarrow X_{1}$ (given by $m(0)=0$ and $m(1)=2$) gives us a multiplication. Of course, since we chose a homotopy inverse, there's no hope of this having any sort of nice associativity properties or anything like that.

We also explain the map $\Sigma X_{1} \rightarrow|X|$. This is really just the inclusion of the 1 -simplices; normally this would be a map $\Delta^{1} \times X_{1} \rightarrow|X|$, but since we've declared that X_{0} is just a point, this factors through (any given explicit model for) the suspension.

Proof. The "only if" is obvious: the inverse on a loopspace is just given by running loops backwards. So we can focus on the "if" direction.

Let $P(X): \Delta^{o p} \rightarrow$ Top be the simplicial path space, i.e. $P(X)=X \circ \mathcal{P}$ where $\mathcal{P}: \Delta \rightarrow \Delta$ is as Peter described. This gives that $(P(X))_{n}=X_{n+1}$, and $d_{0}:[n] \rightarrow[n+1]$ induces $d_{0}^{*}: P X_{n}=X_{n+1} \rightarrow X_{n}$, i.e. the natural transformation $e v_{1}$.

To prove the statement, we will construct a diagram

and show that it is homotopy cartesian. This will imply our claim since it will imply that we can take any factorization the map $|P X| \rightarrow|X|$ as $|P X| \stackrel{\sim}{\hookrightarrow}|P X|^{\prime} \rightarrow|X|$ and then take the actual pullback (i.e. the fiber) of $P X^{\prime} \rightarrow|X|$, and the map from X_{1} will be an equivalence. But of course, $\Omega|X|=\operatorname{fiber}\left(P_{x_{0}}|X| \rightarrow|X|\right)$, and so if we choose $|P X|^{\prime}$ to be $P_{x_{0}}|X|$, then we get $X_{1} \xrightarrow{\sim} \Omega|X|$.

So, how do we show that this diagram is homotopy cartesian? We actually prove this using the following more general statement.

Proposition 9. Let $X, X^{\prime} \in \mathrm{Top}^{\Delta^{o p}}$, and let $f: X^{\prime} \rightarrow X$ be a simplicial map. If for all morphisms $\theta:[m] \rightarrow[n]$ the diagram

is homotopy cartesian, then the diagram

is homotopy cartesian for all n.
This will prove our theorem if we take $X^{\prime}=P X$ (the simplicial pathspace), then we can prove that the diagrams induced by θ will indeed be homotopy cartesian, and taking $n=0$ will recover the main diagram in the proof.

Let us now show why the diagrams induced by θ are homotopy cartesian. We claim that it suffices to check this statement for maps of the form $\theta:[0] \rightarrow[n]$ given by $\theta(0)=n$. To see what's going on, let's take $n=1$. Then our diagram becomes

Recall that $P X(\theta)=(X \circ P)(\theta)$, and that $P: \Delta \rightarrow \Delta$ is given on objects by $[n] \mapsto[n+1]$ and on morphisms by setting $(P(\theta))(0)=0$ and shifting everything else by 1 . So in this case, $P(\theta):[1] \rightarrow[2]$ is given by $0 \mapsto 0$ and $1 \mapsto 2$. Then, $X(P(\theta))=m$ (the mapwe defined above). And now we must assume that we have a homotopy inverse. We claim that if X is an H-space with multiplication $m: X \times X \rightarrow X$, then the "shearing" map $S h: X \times X \rightarrow X \times X$ given by $(x, y) \mapsto(m(x, y), y)$ is a homotopy equivalence iff m has a homotopy inverse $i: X \rightarrow X$ (which wlil then we given by $m(\mathrm{id}, i) \simeq \mathrm{id}$). So if m (as in the theorem) has a
homotopy inverse, we get a diagram

factoring the previous one. If we take an arbitrary θ, the statement follows from the so-called "pullback lemma". First, things are quite similar if we have $\theta:[0] \rightarrow[n]$, and then arbitrary $\theta:[m] \rightarrow[n]$ are tackled by considering the diagram

since the outer rectangle and the right square are homotopy pullbacks, then the left square is a homotopy pullback too.

So, it remains to prove the proposition.
Proof of proposition. We'll ignore the difference between the ordinary realization $|X|$ of a simplicial space X and the "fat" realization $\|X\|$, where doesn't quotient out by degeneracies. (They are compared very nicely in the appendix to Segal's paper.) This is legal because $X_{0} \simeq *$.

We go by induction to show that for all m, the diagram

is homotopy cartesian.
Note that $\|X\|_{m}$ is homeomorphic to the double mapping cylinder of $\|X\|_{m-1} \leftarrow\left|\partial \Delta^{m}\right| \times X_{m} \rightarrow$ $\left|\Delta^{m}\right| \times X_{m}$. We use without proof the following fact: if we have a diagram of spaces

such that the two small squares are homotopy cartesian, then the induced map on double mapping cylinders
$Y \rightarrow X$ fits into homotopy cartesian diagrams

for $i=0,1,2$.
We're running out of time, so we just sketch the idea from here on out. Each $\|X\|_{m}$ is a double mapping cylinder as we have already described, so $\|X\|$ is equivalent to the mapping telescope of $\|X\|_{0} \rightarrow\|X\|_{1} \rightarrow$ $\|X\|_{2} \rightarrow \cdots$. Each of the diagrams producing the $\|X\|_{m}$ is homotopy cartesian, and ultimately this shows that the mapping telescope itself is homotopy cartesian. The inductive assumption comes into play in the above unproved fact: one of the squares is only homotopy cartesian by assumption.

This completes the proof of the theorem.

8 The model structure on Segal n-categories - Piotr Prstagowski

Peter gives a very brief introduction: "Now we're moving into a new part of the seminar, where now we try to get a handle on morphisms of higher categories." And now, on to Piotr's talk!

8.1 Internal hom and relative categories

We begin with the internal hom. Recall that in Sets, we have $\operatorname{Hom}(X \times Y, Z) \simeq \operatorname{Hom}\left(X, Z^{Y}\right)$, where we simply define $Y^{Z}=\operatorname{Hom}(Y, Z)$. This motivates the following definition.

Definition 29. Let C be a category and $X \in \operatorname{ob}(C)$. If there exists a right adjoint to the functor $A \mapsto A \times X$, we call it the internal Hom from X, and denote it by $A \mapsto[X, A]$.

Note that this may not exist for all objects X.
Proposition 10. Let C be such that all internal homs exist. Then they are all compatible, i.e. they glue into a bifunctor $[-,-]: C^{o p} \times C \rightarrow C$.

Proof. Yoenda lemma.
Example 19. The categories Sets, sSets, and Spaces all have internal homs.... almost. Actually, this is precisely the reason that most people restrict to compactly generated spaces. For instance, in sSets, $([X, Y])_{k}=\operatorname{Hom}\left(X \times \Delta^{k}, Y\right)$. The categories $\mathrm{Ab}, \operatorname{Mod}_{R}$, and $\operatorname{Ch}(R)$ also all admit internal homs (although the monoidal structures there must be the appropriate tensor products, not Cartesian products.)

Definition 30. A relative category is a pair $A^{\prime} \subseteq A$ of categories such that the inclusion induces a bijection $\mathrm{ob}\left(A^{\prime}\right) \simeq \operatorname{ob}(A)$.

Since we really do mean to demand that A^{\prime} contains all the objects of A, then this is equivalent to simply choosing a subclass of morphisms which is closed under composition.

Example 20. There is the relative category (nCat, \sim) \subseteq (nCat).

The motivation for this is that we would often like to consider A^{\prime} as consisting entirely of "isomorphisms". That is, we would like to obtain a space of morphisms in A which allows for zig-zags where the backwards maps live in A^{\prime}. We will not actually define these mapping spaces - that's left for a different talk - but we'll focus on the resulting internal hom.

Here is the central theorem of this talk.
Theorem 6. nCat admits an internal hom.
(When we say nCat, we either mean weak n-categories or (∞, n)-categories.)
Proof sketch. There is an embedding nCat $\subseteq \operatorname{Fun}\left(\left(\boldsymbol{\Delta}^{o p}\right)^{\times n}\right.$, $\left.\operatorname{Sets}\right)=\operatorname{Psh}\left(\boldsymbol{\Delta}^{\times n}\right)$, as follows. Given $F, G \in$ $\operatorname{Psh}\left(\Delta^{\times n}\right)$, we define $[F, G]$ by $[F, G]\left(\Delta^{k_{1}} \times \cdots \times \Delta^{k_{n}}\right)=\operatorname{Hom}\left(F \times\left(\Delta^{k_{1}} \times \cdots \times \Delta^{k_{n}}\right), G\right)$.

We're pretty sure this construction actually works in all functor categories - not just presheaf categories. Also, this is what we already saw for sSets.

Now, there exists a certain n-category $S^{k_{1}, \ldots, k_{n}}$ such that for $C, D \in \mathrm{nCat},[C, D]_{\mathrm{nCat}}$ is given by $[C, D]_{\text {ncat }}\left(\Delta^{k_{1}} \times \cdots \times \Delta^{k_{n}}\right)=\operatorname{Hom}\left(C \times S^{k_{1}, \ldots, k_{n}}, D\right)$. The existence of this object is something of a piece of folklore, though.

One thing to observe here is that D is an n-category, and to understand its objects we just need to set all $k_{i}=0$. So note that this really contains more informations than the hom-sets. On the other hand, Kim showed us that there may not be "enough functors" between n-categories in general. Moreover, this construction does not respect equivalences of n-categories.

The solution to these problems is the following. We find a certain subcategory of nCat with "nice" objects. Here, "nice" will be defined by the following theorem.

Theorem 7. There exists a full subcategory nCat ${ }^{f i b} \subset$ nCat such that:

1. Every n-category is equivalent to one in nCat ${ }^{f i b}$.
2. Every equivalence $D \xrightarrow{\sim} D^{\prime}$ in $\mathrm{nCat}^{f i b}$ induces an equivalence $[C, D] \xrightarrow{\sim}\left[C, D^{\prime}\right]$.

We call this the subcategory of fibrant objects.
Example 21. In the case $n=0$, we can consider nCat $=$ sSets, and then this is the subcategory of Kan complexes.

Remark 10. This terminology comes from the fact that there is a model structure on a certain larger category containing nCat. This happens often: our original category may not be co/complete, but we can embed it into one that is, and then look for a model structure there. In fact, the specific embedding we take is of nCat into $(n-1)$ Cat-enriched simplicial sets (i.e, the category of precategories enriched in ($n-1$)Cat). The general statement is that if M is a nice (left proper, tractable, cartesian) model category, then $P C(M)$ is also a nice model category. Here, a fibrant object $X \in P C(M)$ will necessarily satisfy the Segal condition and have all $X\left(x_{0}, \ldots, x_{n}\right)$ as well. For more, check out "Homotopy theory of higher categories" by Simpson (Chapters 9-22).

Remark 11. In many of these examples, everything is cofibrant. This is why we are only focusing on the fibrant ones.

Remark 12. Actually, nCat ${ }^{f i b} \subseteq$ nCat extends to a morphism of relative categories, and (in an appropriate sense) this will be an equivalence.

Remark 13. It might seem weird that we're looking at model structures - i.e., ($\infty, 1$)-category structures on nCat. However, internal homs capture all the higher (noninvertible) morphisms that we might otherwise be ignoring, and so we really won't be losing anything after all.

8.2 Description of fibrant n-categories

We will need to describe:

- equivalences;
- fibrant objects;
- fibrations $C \rightarrow D$ where D is fibrant.

We need the following notation. Let E be the 1-category with two objects with a single isomorphism between them. Then we write \bar{E} for E, considered as an n-category. Also, if $X \in \mathrm{ob}(\mathrm{nCat})$ has object set S, then we write

$$
X_{n}=\bigsqcup_{\left(s_{0}, \ldots, s_{n}\right) \in S^{n+1}} X\left(s_{0}, \ldots, s_{n}\right) .
$$

Now, we can begin quite easily. At $n=0$ we take Sets to have the unique model structure where the isomorphisms are the weak equivalences; all morphisms will be both fibrations and cofibrations. (This is the only model structure which doesn't collapse the homotopy category to a single point.) Then at $n=1$ we take sSets with the Quillen model structure. This generalizes as follows.

Let $n>0$. Then we define weak equivalences to be equivalences between categories (as we have defined previously). Now, suppose $F: C \rightarrow D$ is a functor of n-categories and D is fibrant. Then we say that F is a fibration iff:

1. [isofibration] it has the right lifting property with respect to the morphism $\{*\} \hookrightarrow \bar{E}$ of n-categories;
2. [Segal] the map $C_{n} \rightarrow C^{1} \times{ }_{C^{0}} \cdots \times{ }^{C^{0}} C^{1} \times_{D^{1} \times{ }_{D^{0}} \cdots \times{ }_{D^{0}} D^{1}} D^{n}$ induced by the diagram

is a trivial fibration (i.e. a fibration and a weak equivalence (of ($n-1$)-categories)).
3. [Reedy] the morphism $C^{n} \rightarrow C\left(\partial \Delta^{n}\right) \times_{D\left(\partial \Delta^{n}\right)} D^{n}$ induced by the diagram

is a fibration.
Note that this tells us what the fibrant objects are, just by checking unique morphisms to the terminal n-category. Of course, the Segal condition is referring to the "spine inclusion" that we've seen before. For the Reedy condition, note that the boundary of a simplex is defined as a coequalizer, so this is defined as an equalizer.

Remark 14. Let's look at the isofibration condition for ordinary categories. Now $F: C \rightarrow D$ is a functor of 1-categories, and we assume we have a diagram

The upper functor chooses an object $c \in \mathrm{ob}(C)$, and the lower functor chooses an object $d \in \mathrm{ob}(D)$ and an isomorphism $h: p(c) \xrightarrow{\text { cong }} p(c)$. So, we have a fibration iff this lifts to an isomorphism in C. (This is sometimes called the "folk" model structure on categories.) The other two conditions will be empty in the case of $n=1$.

8.3 Back to 2-categories

Let's return to Kim's example back in 2-categories. Let G be a group, seen as a groupoid, seen as a 2-category (i.e. with only identity 2 -morphisms). Let A be an abelian group, seen as the 2 -morphisms $\operatorname{Aut}(\bullet \rightarrow \bullet)$ (i.e. A is a 2 -category). Recall that there's only a single strict functor between these two 2 -categories. However, we have that $B G \simeq K(G, 1)$ and $B A \simeq K(A, 2)$ (since the 1-category $(\bullet \rightarrow \bullet)$ is contractible). So as we've defined it, $[G, A] \not \approx[K(G, 1), K(A, 2)]=H_{g r p}^{2}(G ; A)$. This failure comes from the fact that A is not fibrant. What Kim was telling us is that if we see A as a bicategory, then there's a nicer way to see this: its 2-nerve $N A$ is fibrant.

Let's actually check this. To show that A isn't fibrant, there are two possible lines of attack. We could look at the Segal condition, but in fact these are isomorphisms so we won't get anywhere. Instead, we check the Reedy condition. Namely, we would like to show that $A_{2} \rightarrow A\left(\partial \Delta^{2}\right)$ is not a fibration. So first of all, note that

$$
A_{2}=A(0,0) \times A(0,1) \sqcup A(0,0) \times A(0,0) \sqcup \cdots,
$$

whereas

$$
A\left(\partial \Delta^{2}\right)=A(0,0) \times A(0,1) \times A(0,1) \sqcup \cdots
$$

(This just comes from the obvious inclusion $A\left(\partial \Delta^{2}\right) \subseteq\left(A_{1}\right)^{3}$ defined by some gluing conditions.) We only look at the part $A(0,0) \times A(0,1) \subseteq A_{2}$; this gets mapped into $A(0,0) \times A(0,1) \times A(0,1) \subseteq A\left(\partial \Delta^{2}\right)$. This sends a spine

to the evident component of $A\left(\partial \Delta^{2}\right)$. Note that the only composable arrows we have in $A(0,0) \times A(0,1)$ is just $\left(\mathrm{id}_{0}, f\right.$) (where f is the unique nonidentity 1 -morphism in A). This is not an isofibration: there are strictly more isomorphisms in the target than in the source.

So, when we "push the 2-cells of A down" when we take a fibrant replacement, this gives us the correct $[G, N A]$ that we would've expected.

8.4 Further comments

Karol shows us inductively why these are fibrant. Given a simplicial set K, we can consider the evaluation $C(K)$. Then, for fixed C, this gives us a functor $\mathrm{sSet}^{o p} \rightarrow \mathrm{nCat}$, the unique such one taking colimits to
limits and satisfies $C(\Delta[n])=C_{n}$. In particular, $C(\partial \Delta[n])$ is called a matching object; it comes with a canonical map $C_{n}=C(\Delta[n]) \rightarrow C(\partial \Delta[n])$. In fact, whenever we have an inclusion $K \hookrightarrow L$ of ssets, then $C(L) \rightarrow C(K)$ is a fibration. The way we do this is write out the inclusion as iterated pushouts along boundary inclusions (i.e., we attach all nondegenerate simplices of L which are not in K). This flips via $C(-)$ to a sequence of fibrations.

Now, $D_{n}=D(\Delta[n]) \rightarrow D_{1} \times_{D_{0}} \cdots \times_{D_{0}} D_{1}=D(S[n])$, where $S[n]$ denotes the spine. Since $S[n] \hookrightarrow \Delta[n]$, we see that this map must be a fibration. From here, we can compose all the way down to pt $=D(\emptyset)$. The inclusion of \emptyset is of course always a cofibration, so this map must be a fibration. Now, in the Segal diagram if we take a pullback then by what we have seen, the pullback will also be fibrant.

We note that in Piotr's definition of a fibration with fibrant target, assuming everything works out in the end, we could've assumed that the source is also fibrant.

Now, Chris says a few words. First of all, the argument that Karol described relies on having a pullback of a fibration be a fibration. In fact, we also have this by our n-categorical fibration by induction.

We also give an example of this n-category $S^{k_{1}, \ldots, k_{n}}$ through which we define the inner hom. Let's look at the case $n=2$, which is the easiest case where we can see something interesting happening. So, corresponding to any $\Delta^{k_{1}} \times \Delta^{k_{2}}$ is a strict 2-category given by a grid: there are $k_{1}+1$ objects, with k_{2} morphisms going across from each object to the next. This is our $S^{k_{1}, k_{2}}$. Now, $2 \mathrm{Cat} \subseteq \operatorname{Fun}\left(\boldsymbol{\Delta}^{o p}, 1 \mathrm{Cat}\right) \subseteq \operatorname{Fun}\left(\boldsymbol{\Delta}^{o p} \times \boldsymbol{\Delta}^{o p}\right.$, Set $)$, and this last category has an easy internal hom. Moreover, if X and Y are 2-categories, then this internal hom will again be a 2-category, and will in fact be the correct internal hom there. Namely, we claim that if $Y \in \operatorname{Fun}\left(\boldsymbol{\Delta}^{o p} \times \boldsymbol{\Delta}^{o p}\right.$, Set $)$ comes from a 2-category then there is a unique dotted arrow in the diagram

At the suggestion/questioning of Karol, we look at the case where our category has discrete objects. We have the multi-simplicial object Y, where Y_{0} is discrete (so $Y_{0 i}=Y_{00}$ for all i), $Y_{1}=\left(Y_{10} \leftleftarrows Y_{11} \Leftarrow Y_{12} \cdots\right.$), and similarly for Y_{2}. This is what we get for $\Delta^{0} \times \Delta^{k} \rightarrow Y$. But by the adjunction, this should give us a $\operatorname{map} \boldsymbol{\Delta}^{k} \rightarrow Y_{0}$. So what we're claiming is the existence of a unique filler in

Now, for a bigger grid associated to $\boldsymbol{\Delta}^{k_{1}} \times \boldsymbol{\Delta}^{k_{2}}$, suppose we have a map into the grid presentation of Y. The source admits maps in from $\Delta^{0} \times \Delta^{k_{2}}$ - in fact, one for each object. Namely, this picks out the associated column. Then we're taking a pushout to $\boldsymbol{\Delta}^{0} \times \boldsymbol{\Delta}^{0}$, and the filler is asking for an object. But Y, since it comes from an n-category, satisfies the Segal conditions. And this is what allows us to build the category $S^{k_{1}, k_{2}}$ by crushing out the columns of $\boldsymbol{\Delta}^{k_{1}} \times \boldsymbol{\Delta}^{k_{2}}$ and then adding in all the necessary compositions. This gives us the right set $\operatorname{Hom}\left(X \times S^{k_{1}, k_{2}}, Y\right)$.

TALKS AFTER I WILL HAVE LEFT

Let me know if you're willing to tex these!

9 Segal categories vs. quasicategories - ...
10 Relative categories vs. quasicategories - ...
11 The homotopy hypothesis - ...
12 On the relation to topological field theories - Peter Teichner

