Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 1

1. Describe geometrically the sets of points z in the complex plane defined by the following relations:
(a) $|z-1|=1$.
(b) $|z-1|=2|z-2|$.
(c) $1 / z=\bar{z}$.
(d) $\operatorname{Re}(z)=3$
(e) $\operatorname{Im}(z)=a$ with $a \in \mathbb{R}$.
(f) $\operatorname{Re}(z)>a$ with $a \in \mathbb{R}$.
(g) $|z-1|<2|z-2|$.
2. Prove that $\left|z_{1}+z_{2}\right| \geq\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$ and explain when equality holds.
3. Prove that the equation $z^{3}+2 z+4=0$ has its roots outside the unit circle. [Hint: what is the maximum value of the modulus of the first two terms if $|z| \leq 1$?]
4. (a) Prove that if $\left|w_{1}\right|=c\left|w_{2}\right|$ where $c>0$, then $\left|w_{1}-c^{2} w_{2}\right|=c\left|w_{1}-w_{2}\right|$.
(b) Prove that if $c>0, c \neq 1$ and $z_{1} \neq z_{2}$, then $\left|\frac{z-z_{1}}{z-z_{2}}\right|=c$ represents a circle. Find its center and radius. [Hint: an easy way is to use part (a)]
5. (a) Let z, w be complex numbers, such that $\bar{z} w \neq 1$. Prove that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|<1 \quad \text { if }|z|<1 \text { and }|w|<1,
$$

and also that

$$
\left|\frac{w-z}{1-\bar{w} z}\right|=1 \quad \text { if }|z|=1 \text { or }|w|=1 .
$$

(b) Prove that for fixed w in the unit disk \mathbb{D}, the mapping

$$
F: z \mapsto \frac{w-z}{1-\bar{w} z}
$$

satisfies the following conditions:
(i) F maps \mathbb{D} to itself and is holomorphic.
(ii) F interchanges 0 and w, namely, $F(0)=w$ and $F(w)=0$.
(iii) $|F(z)|=1$ if $|z|=1$.
(iv) $F: \mathbb{D} \mapsto \mathbb{D}$ is bijective. [Hint: Calculate $F \circ F$.]
6. Use n-th roots of unity (i.e. solutions of $z^{n}-1=0$) to show that

$$
2^{n-1} \sin \frac{\pi}{n} \sin \frac{2 \pi}{n} \cdots \sin \frac{(n-1) \pi}{n}=n
$$

[Hint: $1-\cos 2 \theta=2 \sin ^{2} \theta, \sin 2 \theta=2 \sin \theta \cos \theta$.]
7. Prove that $f(z)=|z|^{2}$ has a derivative only at $z=0$, but nowhere else.
8. Let $f(z)$ be analytic in a domain. Prove that $f(z)$ is a constant if it satisfies any of the following conditions:
(a) $|f(z)|$ is constant;
(b) $\operatorname{Re}(f(z))$ is constant;
(c) $\arg (f(z))$ is constant;
(d) $\overline{f(z)}$ is analytic;

How do you generalize (a) and (b)?
9. Let $f(z)$ be analytic. Show that $\overline{f(\bar{z})}$ is also analytic.
10. (a) Show that in polar coordinates, the Cauchy-Riemann equations take the form

$$
\frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial v}{\partial \theta} \text { and } \frac{\partial v}{\partial r}=-\frac{1}{r} \frac{\partial u}{\partial \theta}
$$

(b) Use these equations to show that the logarithm function defined by

$$
\log z=\log r+i \theta \text { where } z=r e^{i \theta} \text { with }-\pi<\theta<\pi
$$

is a holomorphic function in the region $r>0,-\pi<\theta<\pi$. Also show that $\log z$ defined above is not continuous in $r>0$.

Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 2

1. Suppose $U(z)$ has continuous second order partial derivatives and $z=f(\zeta), \zeta=\xi+i \eta$ is a holomorphic function. Show that

$$
\frac{\partial^{2} U}{\partial \xi^{2}}+\frac{\partial^{2} U}{\partial \eta^{2}}=\left|f^{\prime}(\zeta)\right|^{2}\left[\frac{\partial^{2} U}{\partial x^{2}}+\frac{\partial^{2} U}{\partial y^{2}}\right]
$$

2. Show that $U\left(x^{2}-y^{2}, 2 x y\right)$ is harmonic if and only if $U(x, y)$ is.
3. Let $a_{n} \neq 0$ and assume that $\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=L$. Show that $\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|}=L$. In particular, this shows that when applicable, the ratio test can be used to calculate the radius of convergence of a power series.
4. Let f be a power series centered at the origin. Prove that f has a power series expansion around any point in its disc of convergence.
5. Prove the following:
(a) The power series $\sum_{n=1}^{\infty} n z^{n}$ does not converge at any point of the unit circle.
(b) The power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}}$ converges at every point of the unit circle.
(c) The power series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$ converges at every point of the unit circle except at $z=1$.
6. Show that the series

$$
\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

defines a continuous function for $\operatorname{Re}(z)>1$. (This is the Riemann ζ function and you will see later that it is analytic in the above region-not just being continuous thereand it can be extended to the complex plane with only 1 removed. You do not need to prove the latter assertions.) [Hint: Show that the series converges uniformly for $\operatorname{Re}(z) \geq 1+\delta$, where $\delta>0$ is any positive number.]
7. Show that the series

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{n(n+1)}
$$

has radius of convergence 1 . Examine convergence at $z=1,-1$ and i.
8. It was defined that $e^{z}:=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$. Show that $e^{z}=\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}$.
9. (a) Express $\sin z$ in the form $u+i v$. Do the same for $\cos z$.
(b) Show that there exists a sequence z_{n} such that $\sin z_{n} \rightarrow \infty$. Do the same for $\cos z$. (This shows that unlike their real counter parts, $\sin z$ and $\cos z$ are unbounded.)
10. Prove that

$$
\text { (a) } \lim _{z \rightarrow(2 k+1) \pi / 2} \tan z=\infty, \text { (b) } \lim _{z \rightarrow(2 k+1) \pi / 2}[z-(2 k+1) \pi / 2] \tan z=-1 \text {. }
$$

[Hint: The proof of (b) is very short if done the "right" way.]
11. Show that if $|\alpha|<r<|\beta|$, then

$$
\int_{\gamma} \frac{1}{(z-\alpha)(z-\beta)}=\frac{2 \pi i}{\alpha-\beta}
$$

where γ denotes the circle centered at the origin, of radius r, with positive orientation.
12. Assume f is continuous in the region: $x \geq x_{0}, 0 \leq y \leq b$ and the limit

$$
\lim _{x \rightarrow+\infty} f(x+i y)=A
$$

exists uniformly with respect to y (independent of y). Show that

$$
\lim _{x \rightarrow+\infty} \int_{\gamma_{x}} f(z) d z=i A b
$$

where $\gamma_{x}:=\{z \mid z=x+i t, 0 \leq t \leq b\}$.

Mathematics Department
 The University of Georgia

Complex Analysis, by Elias M. Stein and Rami Shakarchi, 2.6: $1,2,5,6,8$

1. Assume real value functions u, v of two variables have continuous partial derivatives at $\left(x_{0}, y_{0}\right)$. Show that $f=u+i v$ has derivative $f^{\prime}\left(z_{0}\right)$ at $z_{0}=x_{0}+i y_{0}$ if and only if

$$
\lim _{r \rightarrow 0} \frac{1}{\pi r^{2}} \int_{\left|z-z_{0}\right|=r} f(z) d z=0 .
$$

2. (Cauchy's formula for "exterior" region) Let γ be piecewise smooth simple closed curve with interior Ω_{1} and exterior Ω_{2}. Assume $f^{\prime}(z)$ exists in an open set containing γ and Ω_{2} and $\lim _{z \rightarrow \infty} f(z)=A$. Show that

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f(\xi)}{\xi-z} d \xi= \begin{cases}A, & \text { if } z \in \Omega_{1} \\ -f(z)+A, & \text { if } z \in \Omega_{2}\end{cases}
$$

3. Let $f(z)$ be bounded and analytic in \mathbb{C}. Let $a \neq b$ be any fixed complex numbers. Show that the following limit exists

$$
\lim _{R \rightarrow \infty} \int_{|z|=R} \frac{f(z)}{(z-a)(z-b)} d z
$$

Use this to show that $f(z)$ must be a constant (Liouville's theorem).
4. Suppose that $f(z)$ is entire and $\lim _{z \rightarrow \infty} f(z) / z=0$. Show that $f(z)$ is a constant.
5. Let f be analytic on a domain D and let γ be a closed curve in D. For any z_{0} in D not on γ, show that

$$
\int_{\gamma} \frac{f^{\prime}(z)}{\left(z-z_{0}\right)} d z=\int_{\gamma} \frac{f(z)}{\left(z-z_{0}\right)^{2}} d z
$$

Give a generalization of this result.
6. Compute $\int_{|z|=1}\left(z+\frac{1}{z}\right)^{2 n} \frac{d z}{z}$ and use it to show that

$$
\int_{0}^{2 \pi} \cos ^{2 n} \theta d \theta=2 \pi \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2 \cdot 4 \cdot 6 \cdots(2 n)}
$$

Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 4

Complex Analysis, by Elias M. Stein and Rami Shakarchi, 2.6: 10, 13, 15

1. Prove by justifying all steps that for all $\xi \in \mathbb{C}$ we have $e^{-\pi \xi^{2}}=\int_{-\infty}^{\infty} e^{-\pi x^{2}} e^{2 \pi i x \xi} d x$.
[Hint: You may use that fact in Example 1 on p. 42 of the textbook without proof, i.e., you may assume the above is true for real values of ξ.]
2. Suppose that F is analytic on a region Ω. Define f by

$$
f(z)= \begin{cases}\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}} & \text { if } z \neq z_{0} \\ F^{\prime}\left(z_{0}\right) & \text { if } z=z_{0}\end{cases}
$$

where z_{0} is a point in Ω. Show that f is also analytic on Ω.
3. (1) Show that the series

$$
\zeta(z):=\sum_{n=1}^{\infty} \frac{1}{n^{z}}
$$

defines an analytic function in $\operatorname{Re}(z)>1$. (This statement is stronger than the one on continuity you worked earlier.)
(2) Find series representation of $\zeta^{(k)}(z)(k \geq 1)$ in $\operatorname{Re}(z)>1$ and justify you answer.
4. Give an example of a real valued non-zero function $f(x)$ for which $f(x)=0$ has infinitely many solutions in finite interval.
5. (1) Is there a function $f(z)$ that is analytic at $z=0$ and $f(1 / n)=f(-1 / n)=1 / n^{3}$?
(2) Is there a function $f(z)$ that is analytic at $z=0$ and $f(1 /(2 k+1))=0, f(1 / 2 k)=$ $1 / 2 k$?
Explain why in each case.
6. Let $f(z), g(z)$ be analytic in a connected open set Ω. Suppose $f(z) g(z)=0$ for all $z \in \Omega$. Show that either $f(z)$ or $g(z)$ is constantly 0 . (This implies $H(\Omega)$ is an integral domain in the language of commutative ring theory.)
7. If the radius R of convergence of the series $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ is finite, show that there is at least one point z_{0} on $|z|=R$ at which $f(z)$ is not analytic.
8. Let $f(z)$ be analytic in $D:|z|<1$ and $f(0)=0$. Show that $\sum_{n=1}^{\infty} f\left(z^{n}\right)$ converges uniformly to an analytic function on compact subsets of D.

Mathematics Department
 The University of Georgia
 Math 8150 Homework Assignment 5

Complex Analysis, by Elias M. Stein and Rami Shakarchi, 3.8: $1,2,4,5,7,8$

1. Prove that if

$$
\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} \quad \text { and } \sum_{n=-\infty}^{\infty} c_{n}^{\prime}(z-a)^{n}
$$

are Laurent series expansions of $f(z)$, then $c_{n}=c_{n}^{\prime}$ for all n.
2. Suppose that f is holomorphic in an open set containing the closed unit disc, except for a pole at z_{0} on the unit circle. Let $f(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$ denote the the power series in the open disc. Show that (1) $c_{n} \neq 0$ for all large enough n 's, and (2) $\lim _{n \rightarrow \infty} \frac{c_{n}}{c_{n+1}}=z_{0}$.
3. Expand $\frac{1}{1-z^{2}}+\frac{1}{3-z}$ in a series of the form $\sum_{-\infty}^{\infty} a_{n} z^{n}$. How many such expansions are there? In which domain is each of them valid?
4. Let $P(z)$ and $Q(z)$ be polynomials with no common zeros. Assume $Q(a)=0$. Find the principal part of $P(z) / Q(z)$ at $z=a$ if the zero a is (i) simple; (ii) double. Express your answers explicitly using P and Q.
5. Let $f(z)$ be a non-constant analytic function in $|z|>0$ such that $f\left(z_{n}\right)=0$ for infinite many points z_{n} with $\lim _{n \rightarrow \infty} z_{n}=0$. Show that $z=0$ is an essential singularity for $f(z)$. (An example of such a function is $f(z)=\sin (1 / z)$.)
6. Let f be entire and suppose that $\lim _{z \rightarrow \infty} f(z)=\infty$. Show that f is a polynomial.

Mathematics Department

The University of Georgia
Math 8150 Homework Assignment 6
Complex Analysis, by Elias M. Stein and Rami Shakarchi,
2.7: 4
3.8: 9, 10, 14, 15(b), 17, 19(a)

Work out 3.8.9 as hinted there except modify the contour there more precisely as follows. The contour is the rectangle with vertices $(0,0),(1,0),(1, R),(0, R)$ indented at each of $(0,0),(1,0)$ by a quarter disc of small radius ε. Use an appropriate branch of the function $f(z)=\log \left(1-e^{2 i \pi z}\right)=\log \left(-2 i e^{i \pi z} \sin (\pi z)\right)$.

1. (1) Show without using 3.8 .9 in the textbook by Stein and Shakarchi that

$$
\int_{0}^{2 \pi} \log \left|1-e^{i \theta}\right| d \theta=0
$$

(2) Show the above identity is equivalent to the one in 3.8 .9 of the textbook.
2. Evaluate $\int_{0}^{\infty} \frac{x^{a-1}}{1+x^{3}} d x, 0<a<4$.
3. (1) Prove the fundamental theorem of algebra using Rouché's theorem.
(2) Prove the fundamental theorem of algebra using the maximum modulus principle.

1. Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{a+\sin ^{2} \theta}, a>0$.
2. Assume $f(z)$ is analytic in region D and gamma is a rectifiable curve in D with interior in D. Prove that if $f(z)$ is real for all $z \in \Gamma$, then $f(z)$ is a constant.
3. Find the number of roots of $z^{4}-6 z+3=0$ in $|z|<1$ and $1<|z|<2$ respectively.
4. Prove that $z^{4}+2 z^{3}-2 z+10=0$ has exactly one root in each open quadrant.
5. Prove that the equation

$$
z \tan z=a, a>0
$$

has only real roots in \mathbb{C}.
6. Let f be analytic on a bounded region Ω and continuous on the closure $\bar{\Omega}$. Assume $f(z) \neq 0$. Show that $f(z)=e^{i \theta} M$ (where θ is a real constant) if $|f(z)|=M$ (a constant) for $z \in \partial \Omega$.

Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 7

Complex Analysis, by Elias M. Stein and Rami Shakarchi
8.5: $1,2,9,10,11,13,15,16,17$,

Note: Explain that 8.6.9 does not violate the uniqueness of solution of the Dirichlet problem in a disc.

1. Assume a real valued continuous function $u(x, y)$ has mean value property (MVP) in a region Ω. That is, for each a in Ω there exists $r_{0}>0$ such that

$$
u(a)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(a+r e^{i t}\right) d t \text { for } 0<r \leq r_{0}
$$

This exercise guides to a proof of the fact that MVP implies harmonicity using Poisson formula for the solution of the Dirichlet problem in any disc given in class.
(1) Assume that $\bar{\Omega}_{1}$ is a compact region in Ω. Prove that u cannot attain maximum (resp. minimum) value in in the interior Ω_{1} unless it is a constant on Ω_{1}. (Avoid circular reasoning: you cannot use the equivalence of harmonicity and MVP and the maximum/minmum modulus principle for harmonic functions.)
(2) Let $\bar{D}_{r}(a) \in \Omega$ be a disk in Ω. Let $g(z)=u(x, y)$ for $z \in \partial D_{r}(a)$ and let $U(z)$ be the solution of the Dirichlet problem in $\bar{D}_{r}(a)$ with boundary values $g(z)$. Show that $u(z)-U(z)=0$ in $\bar{D}_{r}(a)$ and conclude that u is harmonic in Ω.
[Note: The same method idea in (1) also yields the uniqueness of the solution of the Dirichlet problem in a disc.]
2. (1) Let $f(z) \in H(\mathbb{D}), \operatorname{Re}(f(z))>0, f(0)=a>0$. Show that

$$
\left|\frac{f(z)-a}{f(z)+a}\right| \leq|z|, \quad\left|f^{\prime}(0)\right| \leq 2 a
$$

(2) Show that the above is still true if $\operatorname{Re}(f(z))>0$ is replaced with $\operatorname{Re}(f(z)) \geq 0$.
3. Assume $f(z)$ is analytic in \mathbb{D} and $f(0)=0$ and is not a rotation (i.e. $f(z) \neq e^{i \theta} z$). Show that $\sum_{n=1}^{\infty} f^{n}(z)$ converges uniformly to an analytic function on compact subsets of \mathbb{D}, where $f^{n+1}(z)=f\left(f^{n}(z)\right)$.

Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 8

Complex Analysis, by Elias M. Stein and Rami Shakarchi
8.5: $5,8,12,14$

1. Let z_{1}, z_{2} be distinct points and $k>0$. Let C be the circle/line: $\frac{\left|z-z_{1}\right|}{\left|z-z_{2}\right|}=k$. Show that z_{1} and z_{2} are reflections of each other along C.
Hint: See problem 4 in Homework Assignment 1.
2. (1) Let f be a fractional linear transformation. Show that f preserve the cross ratio, i.e., $\left(f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), f\left(z_{4}\right)\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.
(2) Let C be a line or circle. Let z_{1}, z_{2}, z_{3} be any three distinct points on C. Let z^{*} be the reflection of z along C. Show that $\left(z_{1}, z_{2}, z_{3}, z^{*}\right)=\overline{\left(z_{1}, z_{2}, z_{3}, z\right)}$.
3. Find the following fractional linear transformations:
(1) it maps $0, i,-i$ to $1,-1,0$.
(2) it maps $0,1, \infty$ to $1, \infty, 0$.
(3) it maps $0,1,2$ to $1, \infty, 0$.

Be cautious of what it means when ∞ is involved.
4. Let $\Omega=\{z:|z-1|<\sqrt{2},|z+1|<\sqrt{2}\}$. Find a bijective conformal map from Ω to the upper half plane \mathbb{H}.
5. Find the fractional linear transformation that maps the circle $|z|=2$ into $|z+1|=1$, the point -2 into the origin, and the origin into i.
6. Let $\Omega=\mathbb{D} \backslash(-1,-1 / 2]$. Find a bijective conformal map from Ω to the unit disk \mathbb{D}. How do you find the most general form of all such maps (you don't have to explicitly describe the general form, just explain the strategy for obtaining it)?
7. Let $\Omega=\mathbb{C} \backslash[0, \infty)$. Is there an analytic isomorphism from Ω to \mathbb{C} ? If yes, exhibit one such isomorphism. If no, explain why.
8. (1) Show that if f is analytic in an open set containing the disc $|z-a| \leq R$, then

$$
|f(a)|^{2} \leq \frac{1}{\pi R^{2}} \int_{0}^{2 \pi} \int_{0}^{R}\left|f\left(a+r e^{i \theta}\right)\right|^{2} r d r d \theta
$$

(2) Let Ω be a region and $M>0$ a fixed positive constant. Let \mathcal{F} be the family of all analytic functions f on Ω such that $\iint_{\Omega}|f(z)|^{2} d x d y \leq M$. Show that \mathcal{F} is a normal family.

Mathematics Department
 The University of Georgia Math 8150 Homework Assignment 9

Complex Analysis, by Elias M. Stein and Rami Shakarchi
5.6: $1,2,10,11,1213,14,15$
5.7: 1, 2

Note that I have distributed in class:
12.30: 2, 4, 9, 12, 14.
12.40: $2,4,8,11$

1. The purpose of this exercise is to exhibit the remarkable example in (2) using (1). Try to understand its significance and implications/ramifications.
(1) Assume that $c_{n} \geq 0$ and the radius of convergence of $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ is 1 . Show that $z=1$ is a singular point. [For any power series $f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}$ with radius of convergence $R<\infty$, a point $R e^{i \phi}$ on the boundary is called singular if the radius of convergence of the Taylor series of f at $r e^{i \phi}$ is $R-r$ for any $r \in(0, R)$. If each point on the boundary is singular, the boundary is called the natural boundary.]
(2) Let $f(z)=\sum_{n=0}^{\infty} \frac{z^{2^{n}}}{2^{n}}$. Show that f is analytic in the open disc \mathbb{D}, continuous on the closed disc $\overline{\mathbb{D}}$, and each point on $\partial \mathbb{D}$ is singular.
